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Abstract

We propose a new deep learning network capable of successfully segmenting intervertebral discs 

and their complex boundaries from magnetic resonance (MR) spine images. The existing U-

network (U-net) is known to perform well in various segmentation tasks in medical images; 

however, its performance with respect to details of segmentation such as boundaries is limited by 

the structural limitations of a max-pooling layer that plays a key role in feature extraction process 

in the U-net. We designed a modified convolutional and pooling layer scheme and applied a 

cascaded learning method to overcome these structural limitations of the max-pooling layer of a 

conventional U-net. The proposed network achieved 3% higher Dice similarity coefficient (DSC) 

than conventional U-net for intervertebral disc segmentation (89.44% vs. 86.44%, respectively; p < 

0.001). For intervertebral disc boundary segmentation, the proposed network achieved 10.46% 

higher DSC than conventional U-net (54.62% vs. 44.16%, respectively; p < 0.001).
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1. Introduction

Low back pain is a common disease in modern society. It can be caused by disorders of 

lumbar components such as an intervertebral disc, paraspinal muscle, and vertebral body. 

Therefore, it is important to examine the specific components of the lumbar spine for 

accurate diagnosis and treatment. Assessment of the intervertebral disc is particularly 

important since its shape is liable to physiological (age-related) and pathological changes 

[1,2]. Magnetic resonance (MR) imaging is a very effective non-invasive imaging modality 

for obtaining such information. However, segmentation of intervertebral discs in MR spine 

images is typically challenging for the following reasons: (1) object shapes are deformed 

and rotated; (2) the contrast between an object and its surroundings can be very low, which 

renders the boundary unclear; (3) the intensity within an object is not uniform.

Segmentation of intervertebral discs in MR spine images has been extensively studied. Ayed 

et al. [3] studied the application of graph-cut method for intervertebral disc segmentation 

and Michopoulou et al. [4] sought to detect and segment intervertebral discs using atlas-

based and fuzzy clustering methods. Law et al. [5] proposed a detection and segmentation 

method for intervertebral discs using anisotropic oriented flux, while Rabia et al. [6] 

proposed a 3D intervertebral disc segmentation algorithm using a simplex active surface 

model using weak shape prior. However, performance of these conventional methods, which 

depend on mathematical algorithms with hand-crafted features, is limited by the challenges 

mentioned above.

Recent years have witnessed remarkable advances in the field of machine learning, 

especially with the use of deep-learning techniques. Convolutional neural networks (CNNs) 

effectively extract image features and perform effective classification based on these 

features. Several intelligent techniques, such as computer aided diagnoses that employ 

CNNs, have been reported in the field of medical imaging [7]. Ji et al. [8] attempted 

segmentation of intervertebral discs in MR spine images using a classification network by 

splitting the entire image into small patches.

The most common and effective CNN in medical image segmentation is the U-network (U-

net) proposed by Ronneberger et al. [9]. As shown in Figure 1, a U-net is composed of an 

encoding part and a decoding part. The encoding part of conventional U-net is composed of 

convolutional layers and pooling layers and the decoding part is composed of convolutional 

layers and up-convolutional layers. Conventional U-net performs efficient feature extraction 

and segmentation using a large receptive field obtained through this structure [8]. However, 

since conventional U-net is based on feature extraction network for image classification, 

information pertaining to fine details of the image may disappear during the pooling process 

in the encoding part. For example, max-pooling layers, which is commonly used in U-nets, 

retains a pixel with the largest value among the neighboring four pixels and removes the 

information of the other pixels. Therefore, the pooling layer helps to efficiently detect the 

dominant information representing image characteristics, albeit with a loss of detailed 

information. The missing detail is not restored during up-convolutional layers. A skip 

connection can be added to this network to overcome this problem; however, it cannot 

completely recover the finer details. As a result, low-frequency information of the image is 
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generally emphasized [10,11]. Figure 2 displays a comparison between the results of the 

conventional U-net segmentation and manually segmented labels. Dice similarity coefficient 

(DSC) [12] of segmentation for a whole area of intervertebral discs is 87.49%, while the 

DSC at the boundaries of the discs is as low as 40.87%. This suggests that it is difficult to 

achieve fine grain segmentation with conventional U-net and it may lead to unsatisfactory 

results for complex objects, such as intervertebral discs.

Dilated convolution is a way to overcome this limitation. Dilated convolution uses filters of 

various sizes with various rates. It allows users to control the resolution in the feature 

extraction process and to enlarge the field of view (FOV) without increasing parameter and 

cost [13,14].

In this paper, we propose a new network which can effectively perform fine grain 

segmentation for intervertebral discs. In our proposed network, pooling layers are modified 

to compensate for the aforementioned drawbacks. Convolutional layers and network 

structure are also improved to maximize the efficiency of the overall segmentation network. 

A preliminary study of this method was partially presented at the annual meeting of 

International Society for Magnetic Resonance in Medicine (ISMRM) in 2018 [15].

2. Materials and Methods

2.1. Network Design: Boundary Specific U-Network (BSU-Net)

The purpose of this paper is to design a new network architecture based on U-nets, which 

can overcome the problems encountered in the detailed segmentation tasks. Hence, we 

propose a boundary specific U-network (BSU-net). The proposed network has a complex 

form of pooling layers and convolutional layers which are referred to as BSU-pooling layers 

and residual blocks respectively, and has a cascaded structure that uses preliminary 

outcomes of conventional U-net for efficient network learning. A schematic illustration of 

BSU-net is shown in Figure 3.

2.1.1. BSU-Pooling Layer—BSU-net has three components. The first is the advanced 

pooling process. Conventional max-pooling layer used in conventional U-net discards rest of 

the pixels in a calculation field except for one pixel with maximum value. This process 

contributes to the efficiency of feature extraction; however, the loss of the information 

contained in the discarded pixels during the pooling process results in an inaccurate 

estimation of boundaries of target object in detailed segmentation tasks. Therefore, there is a 

need for an advanced pooling layer scheme that can minimize the loss of information while 

increasing the efficiency of feature extraction. The proposed BSU-pooling layer shown in 

Figure 3c uses both a max-pooling layer that increases the efficiency of feature extraction 

and convolutional layers that compute the neighboring information without discarding it. In 

this case, the stride of the convolutional layers is set to 2, so that down-sampling effect as in 

the max-pooling layer is possible. Furthermore, the inputs of the layer are preserved through 

multiple paths: a path passing through 3 × 3 convolutional layer and a path passing through 

1 × 1 convolutional layer and another subsequent 3 × 3 convolutional layer (Figure 3c).
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2.1.2. Residual Block—The second component of BSU-net is the application of 

residual learning. Residual learning is applied to improve the efficiency of the convolutional 

layer. Conventional U-net is a very deep neural network with a large number of 

convolutional layers. Conventional U-net used in this study has a total of 38 convolutional 

layers and 62,803,650 learning parameters. Use of such a large number of consecutive 

convolutional layers can lead to the problem of gradient vanishing, which can degrade 

learning efficiency. The concept of residual learning was introduced to solve this problem 

[16]. Suppose we have a simple network ℋ which is a part of a certain deep neural network. 

When ℋ consists of two convolutional layers ℱn and ℱn + 1 and activation functions σ as 

shown in Figure 4a, output for the network with an input vector x is defined as 

ℋ x =  σn + 1 ℱn + 1 σn ℱn x ,  x ∈ ℝw × h × c where w, h, and c, respectively, denote the 

width, height, and the number of channels. During back propagation, gradient vanishing can 

occur if the weights of ℱn or ℱn + 1 are close to zero [16]. But if we change the network 

output ℋ x  to ℋ x   −  x, gradient vanishing is avoided. The changed network 𝒮 is defined 

as 𝒮 x =  ℋ x   –  x and is also expressed as ℋ x =  𝒮 x   +  x .  ℋ is converted to 𝒮 with 

“shortcut connection” between input and output as shown in Figure 4b. In this case, gradient 

vanishing rarely occurs because 1 is added to ∂𝒮 x
∂x . This change improves learning 

efficiency and allows the network to respond appropriately to small changes in input [16]. 

Residual block embeds this residual learning in BSU-net as displayed in Figure 3b. The first 

1 × 1 convolutional layer immediately after the input is arranged to match filter size.

2.1.3. Cascaded Network—Several studies have revealed that cascaded learning of 

networks improves learning efficiency and network performance [17–19]. It is an efficient 

way to improve performance of an entire network to provide outcomes from other networks 

or to combine outcomes from multiple networks like ensemble networks [20–22]. As shown 

in Figure 3a, conventional U-net outcomes are used to guide the learning of the entire BSU-

net. This augments overall segmentation and fine grain segmentation and results in improved 

overall performance of the network.

2.2. Experimental Materials

The dataset used in the experiments comprised of 3D MR spine images of 20 patients 

sourced from Spineweb [23, 31]. Among this dataset, the images used in actual experiments 

are 1 to 3 mid-sagittal images per patient, totaling 25. The pixel size of images is 1.5 × 1.5 

mm. Label data were made manually by a spine MR researcher and reviewed by a 

radiologist with an experience of more than 10 years. The experiments were implemented 

using 5-fold cross validation and each experiment had 5 test images and 20 training images. 

For fair validation of the network, all images from a single patient were used exclusively for 

either training or test.

The segmentation accuracy was evaluated using a DSC [12], and to assess the accuracy of 

measurement of fine details the evaluation was divided into the following three parts: (1) 

whole area; (2) boundary area; (3) boundary area with 2 pixels’ thickness. The first part 

evaluates segmentation accuracy of the entire area of intervertebral discs. The second and 
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third parts evaluate the accuracy of the boundaries of the intervertebral discs whose 

boundary thickness was defined as 1 pixel and 2 pixels, respectively. A modified Hausdorff 

distance (MHD) was also used to evaluate the segmentation accuracy [24]. Smaller MHD 

indicates the better segmentation performance. Paired t-test [25] was used to compare the 

results for three types of measurements; p-values below 0.05 were considered statistically 

significant.

Conventional U-net and dilated U-net were compared with BSU-net. Dilated U-net is a 

network in which dilated convolution is applied to conventional U-net. In the structure of 

dilated U-net used in this study, max-pooling layers used in conventional U-net are replaced 

with convolutional layers with stride 2, and dilated convolution blocks are placed before 

each convolutional layer with stride 2. Dilated convolution blocks are composed of three 

concatenated dilated convolutional layers whose rate is 1, 2, and 3 respectively, and a 

convolutional layer placed after them. Activation function (rectified linear unit (ReLU)) and 

batch normalization were used after each convolutional or dilated convolutional layer.

The proposed network and all the neural networks used in our experiments were trained and 

tested using Google tensorflow library based on python 2.7 (Google, Mountain View, CA, 

USA) [32]. The computing hardware used in the experiments were as follows: GPU, 

NVIDIA GeForce GTX 1080 (NVIDIA Corp., Santa Clara, CA, USA); CPU, 3.60 GHz 

Octa core (Xeon, Intel, Santa Clara, CA, USA); Memory, 32 GB. Hyper parameters applied 

to the experiments were as follows: Learning rate was 10−3, total training epoch was 200, 

and optimizer was Adam. All images used as input for the networks were resized to 256 × 

256 size matrix and normalized to values between 0 and 1.

3. Results

As shown in Table 1, both dilated U-net and BSU-net showed better results than 

conventional U-net in all DSC measurements. Furthermore, BSU-net showed better results 

than dilated U-net. As observed from these common trends, application of cascaded 

learning, BSU-pooling, and residual learning improved segmentation performance. In DSC 

measurement 1 (whole area segmentation), dilated U-net showed 2.02% higher DSC than 

conventional U-net and BSU-net showed a 3.00% higher DSC than conventional U-net. In 

DSC measurement 2 (boundary segmentation, thickness = 1 pixel), dilated U-net showed 

8.29% higher DSC than conventional U-net and BSU-net showed 10.45% higher DSC than 

conventional U-net. In DSC measurement 3 (boundary segmentation, thickness = 2 pixels), 

dilated U-net showed 5.66% higher DSC than conventional U-net and BSU-net showed 

7.34% higher DSC than conventional U-net. MHD results for three different networks 

showed similar trends (Table 2). Dilated U-net showed 0.03 mm lower MHD than 

conventional U-net and BSU-net showed 0.08 mm lower MHD than conventional U-net. 

Figure 5 compares the distributions of results according to the three DSC measurements and 

MHD measurement. In three DSC measurements, dilated U-net and BSU-net showed 

significant improvement in performance over conventional U-net. In DSC measurement 1, 

dilated U-net showed significantly increased DSC compared to conventional U-net (p < 

0.01) and BSU-net showed significantly higher DSC compared to conventional U-net (p < 

0.001). In DSC measurements 2 and 3, both dilated U-net and BSU-net showed significantly 
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higher DSC than conventional U-net (p < 0.001) On the other hand, in MHD measurement, 

dilated U-net showed no statistical difference compared to conventional U-net (p > 0.05), 

while BSU-net showed statistically significant MHD compared to conventional U-net (p < 

0.05). Figure 6 shows the comparisons between three networks. It is noticeable that under-

segmented area in the boundaries of intervertebral discs decreased in order of Figure 6b–d 

and correctly segmented area increased in order of Figure 6b–d. This indicates that BSU-net 

segmented more accurately than the other two networks.

BSU-net has three components: BSU-pooling layer, residual block, and cascaded network. 

Table 3 shows the results of five different networks including U-net, BSU-net and three 

different networks applying several BSU-net components (BSU-pooling layer, BSU-pooling 

layer and residual block, and cascaded learning network). When pooling layers of U-net 

were replaced with BSU-pooling layers, the results of three DSC measurements and MHD 

measurement were improved compared to conventional U-net. The applications of residual 

blocks and BSU-pooling layers (i.e., BSU-layers) to U-net improved the results of all DSC 

measurements compared to conventional U-net while there was little increasement of MHD 

result. Cascaded U-net has a similar structure to BSU-net, but conventional convolutional 

layers and pooling layers are used instead of BSU-layers. Cascaded U-net showed higher 

DSC and smaller MHD compared to conventional U-net. The application of each component 

improved the segmentation performance in most cases.

Figures 7–9 show the results of the five different networks in Table 3. Figure 7b–d shows 

segmentation results of conventional U-net, U-net applying BSU-layers, and BSU-net, 

respectively. U-net applying BSU-layers segmented more delicately than conventional U-

net, but there are some incorrectly segmented areas. On the other hand, the results of BSU-

net have detailed boundaries and no incorrectly segmented area. Figure 8b–d shows 

segmentation results of conventional U-net, cascaded U-net, and BSU-net, respectively. The 

white pixels represent estimated boundary pixels that are perfectly matched with true 

boundary labels. It is easily noticeable that cascaded U-net found a higher number of true 

boundary pixels than conventional U-net, and BSU-net detected the most among the three 

different networks. The enlarged views at the bottom of Figure 8 clearly show the results 

from each and demonstrate the improved performance of BSU-net. Figure 9b–d also shows 

segmentation results of conventional U-net, cascaded U-net, and BSU-net, respectively. In 

this case, cascaded U-net did not properly segment intervertebral disc, and its results are 

worse than those of conventional U-net. In some cases of cascaded U-net, it segmented 

intervertebral discs smaller than their actual size. On the other hand, BSU-net showed 

successful performance in these cases. Standard deviations in Table 3 shows the stability of 

BSU-net. Standard deviations of BSU-net are the lowest in most accuracy measurements 

while those of cascaded U-net are the highest in most accuracy measurements.

4. Discussion

Conventional U-net is a commonly used deep learning network that displays good 

performance in various kinds of studies. It is used for segmentation of organs and cancers in 

various types of medical images [26–28], and it is also used for object segmentation of 

optical images [29]. However, conventional U-net has limited ability for detailed boundary 
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segmentation [10] due to the structural limitations of a max-pooling layer that plays a key 

role in feature extraction process. It is not suitable for segmentation of objects with complex 

boundaries, such as intervertebral discs. The purpose of our proposed network, BSU-net, is 

to improve the pooling layer of conventional U-net. In this paper, BSU-net showed a better 

performance than conventional U-net for intervertebral disc segmentation in MR spine 

images. This indicates that BSU-net can perform more precise and fine-grain segmentation 

than conventional U-net. BSU-net will be of value in MR studies where quantitative MR 

values of disc need to be determined.

As shown in Tables 1 and 2 and Figure 5, dilated U-net performed better than conventional 

U-net and BSU-net showed better performance than dilated U-net. In most accuracy 

measurements, dilated U-net showed statistically significant performance improvement, but 

the improvement in MHD measurement was quite small. MHD indicates the accuracy of 

boundaries because it is based on the distances between obtained boundaries and reference 

boundaries. This indicates that the results of dilated U-net have many incorrectly segmented 

areas. Figure 10 shows the results of dilated U-net and BSU-net. There are some incorrectly 

segmented areas in the results of dilated U-net while the results of BSU-net have no 

incorrectly segmented areas. This is because the feature extraction process of dilated U-net 

did not remove unnecessary information compared to BSU-net. The number of trainable 

parameters used in BSU-net is 53,740,674 which is approximately 22% lower than dilated 

U-net (69,048,584) and approximately 14% lower than conventional U-net (62,803,650). 

This indicates that BSU-net performed successful fine-grain segmentation efficiently.

The components of the BSU-net are the BSU-pooling layer and residual block, and cascaded 

network. As shown in Table 3, the application of each component contributed to 

performance enhancement. The performance improvement of applying residual blocks is 

much smaller than those of applying other components. However, the number of trainable 

parameters were approximately 12% decreased. Therefore, the application of residual blocks 

brought efficiency to the entire learning.

When BSU-layers were applied to U-net, the result of DSC measurement 1 was only 0.74% 

higher than conventional U-net. The application of BSU-layers brought improved 

performance in terms of fine-grain segmentation, given the fact that the result of DSC 

measurement 2 was 7.72% higher than conventional U-net and the result of accuracy 

measurement 3 was 4.18% higher than conventional U-net. However, the MHD result of U-

net applying BSU-layers is worse than conventional U-net. These results indicate that the 

results of U-net applying BSU-layers had many incorrectly segmented areas. Figure 7 shows 

many incorrectly segmented areas in the results of U-net applying BSU-layers and they 

decreased the accuracy of whole segmented areas. These incorrectly segmented areas 

occurred because BSU-layers preserved the detailed information which was discarded in the 

feature extraction process in conventional U-net. The retention of this information affected 

the performance of the network. Therefore, in order to fully utilize the advantages of BSU-

layers, there is a need for a guiding mechanism that can discard unnecessary parts and 

narrow the target area into proper regions. Cascaded learning method can use the outcomes 

of conventional U-net to effectively guide BSU-layers to focus on the proper regions. This is 

the reason why BSU-net, which combines cascaded learning method and BSU-layers at the 
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same time, can achieve a high performance. Figure 7d shows the successful segmentation 

results of BSU-net without incorrectly segmented area. Appropriate guidance for BSU-

layers improved the efficiency of the entire network.

In general, cascaded learning uses the outcomes of former networks as inputs at the 

beginning of following networks [17–19]. However, cascaded learning applied to BSU-net 

puts the outcomes of conventional U-net at the back-end rather than the beginning of the 

following network. This is because detailed information of conventional U-net outcomes 

disappeared during the pooling process in the encoding part of the network. A network 

showed 1.67%, 4.01%, and 2.92% lower accuracy for three DSC measurements respectively 

when the outcomes of conventional U-net were put into the initial part of the following 

network.

As shown in Table 3, standard deviations of cascaded U-net are highest in most accuracy 

measurements. Figure 9 also shows the unstable performance of cascaded U-net. For eight 

out of the 25 cases, cascaded U-net showed over 1% lower accuracy than conventional U-net 

in all eight cases; two of these showed more than 7% lower accuracy. Contrastingly, BSU-

net showed lower accuracy than conventional U-net in just one case where the difference is 

smaller than 1%. This is because important information pertaining to the boundary areas was 

discarded during the feature extraction process in cascaded U-net. The loss of important 

information in the max-pooling process is a noticeable problem. On the other hand, BSU-net 

distinguished most intervertebral disc areas correctly, while unsegmented areas and over-

segmented areas did not deviate much from the actual boundaries. These results also indicate 

that the application of BSU-layers to cascaded U-net provides stability and generality to the 

network. Furthermore, the use of BSU-layers enables efficient training of the network. 

Cascaded U-net used in our experiments has 63,912,898 trainable parameters in a total of 42 

convolutional layers (3 × 3 convolutional layers: 41 and 1 × 1 convolutional layer: 1), while 

BSU-net has 53,740,674 trainable parameters, approximately 16% less than that in cascaded 

U-net, in a total of 79 convolutional layers (3 × 3 convolutional layers: 35 and 1 × 1 

convolutional layer: 44).

5. Conclusions

Intervertebral disc segmentation in MR images is challenging owing to their complex shapes 

and non-uniform intensity. This study introduces a robust deep-learning segmentation 

network, boundary specific U-net (BSU-net), which can successfully segment intervertebral 

discs with complex boundaries.

Conventional U-net is a deep learning segmentation algorithm for image segmentation 

which is commonly used in various fields. However, conventional U-net is not suitable for 

intervertebral disc segmentation because its performance with respect to the details of 

segmentation (such as the boundaries) is still limited owing to the structural limitations of 

the max-pooling layer that plays a key role in the feature extraction process in conventional 

U-net. The proposed BSU-net can overcome the limitations of conventional U-net and 

achieve fine-grain segmentation. BSU-net uses modified convolutional and pooling layers 

and applies cascaded learning method to overcome the structural limitations of conventional 
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U-net. BSU-net performed intervertebral discs segmentation in MR spine images with 

higher accuracy than conventional U-net, especially in the boundary areas.

Obtaining specific information about intervertebral discs is of great help for the diagnosis 

and treatment of lumbar diseases. In many translational studies with real patients, 

quantitative MRI such as T2 mapping is used to show treatment efficiency or track subtle 

changes over time. BSU-net, though not clinically applicable at this time, will be of great 

value in translational MR studies where quantitative MR values of the disc need to be 

determined using regions of interest. Our finding of 89% Dice similarity coefficient of BSU-

net against human annotator compares favorably with inter-observer agreement of about 

80% [30].
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Figure 1. 
Structure of conventional U-network (U-net).
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Figure 2. 
Intervertebral disc segmentation results from the conventional U-net. Blue areas are the 

results from the conventional U-net and red areas are manually segmented labels. Red lines 

are the boundaries of the labels.
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Figure 3. 
Whole structure of the proposed network. (a) Structure of the boundary specific U-network 

(BSU-net). (b) Structure of residual block. (c) Structure of BSU-pooling layer.
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Figure 4. 
Introduction of residual learning. (a) Conventional neural network layers. (b) A learning 

network of residual function 𝒮.
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Figure 5. 
Segmentation results of networks. (a) Dice coefficients for whole area of intervertebral discs. 

(b) Dice coefficients of the boundaries of intervertebral discs whose thickness is defined as 1 

pixel. (c) Dice coefficients of the boundaries of intervertebral discs whose thickness is 

defined as 2 pixels. (d) MHDs of intervertebral discs. A paired t-test was performed to 

calculate p-values. * denotes p < 0.05, ** denotes p < 0.01, *** denotes p < 0.001, and n.s. 

denotes not significant (p > 0.05).
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Figure 6. 
Segmentation result from networks. Brown area, yellow area, and blue area denote correctly 

segmented area, under-segmented area, and over segmented area, respectively. (a) Input 

image. (b) U-net result. (c) Dilated U-net result. (d) BSU-net result.
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Figure 7. 
Segmentation results of the networks overlaid on the input image. (a) The input magnetic 

resonance (MR) image. (b) The input MR image with U-net segmentation result. (c) The 

input MR image with the result from the modified U-net which is the conventional U-net 

whose convolutional and pooling layers are replaced with BSU-layers. (d) The input MR 

image with BSU-net result.
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Figure 8. 
Segmentation results. (a) Input MR spine image. (b) Boundary segmentation result from U-

net. (c) Boundary segmentation result from cascaded U-net. (d) Boundary segmentation 

result from BSU-net. White pixels correspond to boundary pixels that were perfectly 

matched with true boundary labels. BSU-net preserved more boundaries than other models.
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Figure 9. 
Segmentation results from all networks illustrating the outlier case of cascaded U-net. 

Brown area, yellow area, and blue area denote correctly segmented area, under-segmented 

area, and over segmented area, respectively. (a) Input image with label. (b) U-net result. (c) 

Cascaded U-net result. (d) BSU-net result.
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Figure 10. 
Comparison between dilated U-net and BSU-net. Blue area denotes segmentation results of 

dilated U-net and green area denotes segmentation results of BSU-net.
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Table 1.

Dice similarity coefficient (DSC) measurements for the three different models. Accuracy for boundary area is 

very limited.

Mean (%) SD (%)

Whole area segmentation U-net 86.44 2.24

Dilated U-net 88.46 2.63

BSU-net 89.44 2.14

Boundary segmentation (thickness = 1 pixel) U-net 44.16 4.18

Dilated U-net 52.45 4.08

BSU-net 54.62 4.59

Boundary segmentation (thickness = 2 pixels) U-net 67.51 3.59

Dilated U-net 73.17 3.70

BSU-net 74.85 3.20
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Table 2.

Modified Hausdorff distance (MHD) measurements for the three different models.

Mean (mm) SD (mm)

U-net 0.89 0.14

Dilated U-net 0.86 0.14

BSU-net 0.81 0.10
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Table 3.

DSC and MHD measurements for five different networks including conventional U-net, BSU-net and three 

different networks applying several components of BSU-net.

DSC (%) MHD (mm)

Measurement 1 Measurement 2 Measurement 3

Conventional U-net 86.44±2.24 44.16±4.18 67.51±3.59 0.89±0.14

U-net + BSU-pooling layer 87.30±3.16 50.68±5.50 71.68±4.76 0.88±0.14

U-net + BSU-layer 87.19±2.67 51.88±5.67 71.68±5.48 0.90±0.18

Cascaded U-net 87.70±4.00 50.25±8.68 71.33±7.63 0.86±0.17

BSU-net 89.44±2.14 54.62±4.59 74.85±3.20 0.81±0.10

Appl Sci (Basel). Author manuscript; available in PMC 2019 September 01.


	Abstract
	Introduction
	Materials and Methods
	Network Design: Boundary Specific U-Network (BSU-Net)
	BSU-Pooling Layer
	Residual Block
	Cascaded Network

	Experimental Materials

	Results
	Discussion
	Conclusions
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Figure 9.
	Figure 10.
	Table 1.
	Table 2.
	Table 3.



