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ABSTRACT

In this paper we examine the possibility of using pure geometrical information from a prior image to assist in the
reconstruction of tomographic data sets with lower number of counts. The situation can arise in dynamic studies, for example, in
which the sum image from a number of time frames is available, defining desired regions-of-interest (ROI's) with good accuracy,
and the time evolution of uptake in those ROI's needs to be obtained from the low count individual data sets. The prior
information must be purely geometrical in such a case, so that the activity in the ROI's of the prior does not influence the
estimated uptake from the individual time frames. It is also desired that the prior does not impose any other conditions on the
reconstructions, i.e., no smoothness or deviation from a known set of values is desired.

We attack this problem in the framework of Vision Response Functions (VRF's), based on the work done by J.J. Koenderink
in Utrecht. We show that there are assemblies of VRF's that can be presented in a form that is invariant with respect to rotations
and translations and that some functions of those invariants can convey the desired geometric prior information independent of
the level of activity in the ROI's, except at very low levels.

Preliminary results based on a one-dimensional reconstruction problem will be presented. Using the zero crossings of the
Gaussian derivative form of the Laplacian of a prior image at different scales, a variant of the EM algorithm has been found that
allows the reconstruction of low count data sets with those priors. At this time, this involves using a modified Conjugate
Gradient (CG) maximization method for the M-step of the algorithm. The results show that the distorted shapes of
reconstructions of data sets with low counts are effectively corrected by the method, although many questions exist at this time
about basic and computational issues.

1. - MOTIVATION FOR PRESENT STUDY

Reconstruction from Positron Emission Tomography (PET) data by Maximum Likelihood Estimator (MLE) methods has
reached a certain degree of maturity. Images obtained by the appropriate use of a cross-validation stopping rule, followed by
slight filtering, have been shown to provide reasonably unbiassed images with one particular characteristic, when compared with
Filtered Backprojection (FBP) images: the expected error in a particular region of a reconstruction is approximately proportional
to the square root of the average number of counts in that region, while FBP images show an expected error which is high and
almost independent of that average number of countsl.

It is felt that improvements on reconstructions will have to come, then, from the use of a priori information in a Bayesian
context. Those improvements, if they can be attained, are still necessary. Figure 1 shows the reconstruction of a slice of a data
set obtained from a normal volunteer in a Fluoro-deoxiglucose (FDG) study of the brain. The reference image contained
approximately 30 million (30M) counts, corresponding to a very good data set, while the FBP and MLE (1.4M) images
correspond to the images that one can expect to obtain in one single time frame of a dynamic study of a patient. It is quite clear
that the 1.4M reconstructions contain distortions of many structures which are expected to be imaged correctly in the reference
data set. Interestingly enough, both FBP and MLE reconstructions show nearly identical distortions. The same effect has been
repeatedly observed in Bayesian reconstructions with entropy prior information, or with the method of sieves. It appears, then,
that reconstructions whose information is only due to the measured tomographic data, will have similar distortions, regardless of
the method of reconstruction.

Dynamic studies in which data are obtained from a patient over a number of time frames are quite common. The
reconstruction of the data set obtained by adding all the time frames is often used by the physician for the purpose of defining
one or more Regions-of-Interest (ROI's). Then, the data at different time frames are reconstructed and examined in order to obtain
the time dependence of the uptake of a radioisotope in the ROI's, for example. The motivation of the present study, then, is to
attempt to answer the following question:



- Can the knowledge obtained from the reference image help with the reconstruction of the low count images?

Since the low count images may have varying rates of radioisotope uptake in different parts of the image, only the geometrical
information (not the uptake information) of the reference image is desired. The prior information that we extract from the
reference image must, therefore, be substantially independent of the amount of activity in a given structure, except, of course,
when there is little or no activity in it. In this study we will look at the invariant forms of assemblies of vision response
functions (VRF's ) as prior information for reconstruction. The only properties of the representation chosen to convery prior
information which make sense are the ones that are independent of the chosen coordinates, but rather depend on the object itself.
These properties are called invariant (under a certain group of transofmrations). Because of the non-projective origin of the data,
we may constrain ourselves to the group of orthogonal transformations, i.e., translations and rotations. In some cases we like an
additional invariance: invariance under general intensity transformations, which occurs when contrast or brightness adjustments
take place. In our case, this means invariance of geometric information under radioisotope concentration changes, as indicated
above.

Fig. 1 - Reconstruction of a data set with 30 million counts (30M) and of a data set with 1.4M counts of the same patient
showing that distortions of anatomical structures are distorted in both the FBP and MLE reconstruction results.

2. BAYESTAN RECONSTRUCTION

2.1 General formulation

In this report we shall use the following notation:
a - the vector of radioisotope activities to be estimated.
P - the vector of measured projection data
f - the matrix of transition probabilities

The MLE formulation of the reconstruction problems seeks to maximize the likelihood function P(pla), by finding an
estimate @ for which vector p has the highest probability of being the result of the measurement. A Bayesian target function
would answer to the different requirement of obtaining the image @ of highest probability given a measurement p, i.e.,
maximizing P(al p). The latter target function, if it can be defined, is the correct one to maximize in the case of noisy data:
Maximizing P(pla) will result in an image whose projection into data space follows the noisy data as close as possible, except
when stopped by an appropriate criterion2». Maximizing the second target function, P(al p), need not have that characteristic.

By using Bayes' rule,



P(alp) = P(pla)P(a)/ P(p). )

The Bayesian target function incorporates the likelihood function, or conditional probability P(pla), but it also
incorporates P(a), the probability distribution of the image @, or image "prior". ( Note that the probability P(p) is unity). If
we know that the image has a certain set of characteristics that can be put in the form of a probability distribution, maximization
of (1) can be expected to result in a better reconstruction than obtained by maximizing P(pla) alone.

Two basic types of priors that have been investigated by different groups: 1) non-informative priors, which result in a
regularization of the MLE process, and 2) informative priors that use knowledge specific to the image being reconstructed.
Among the latter, the work initiated by the Geman brothers in 19844 , and followed by a number of researchers, uses Gibbs
energy functions to enforce a certain degree of smoothness in neighbourhoods separated by boundaries. The recent work by Leahy
and Yan> and by C.T. Chen and X. Ouyang6 are current examples of that work: using anatomical boundaires extracted from MR
images, they have demonstrated improved results in simulated PET reconstructions. In the work reported here we will examine
the use of geometrical information obtained from sum images of PET studies with multiple time frames as a way to assist in the
reconstruction of data from single time frames.

2.2 The EM algorithm

The EM a]gorithm7 will be used as a basis for the work to be described here. The resulting two-step process for Maximum
Likelihood reconstruction of PET data was initially reported by Shepp and Vardi8 and it will be described here in a form similar
to the one that we are using for our MLE-PET reconstruction work!l. We will consider the application of absorption and detector
non-uniformity corrections, but, to simplify notation, we will leave out the correction for randoms background. We will also
leave out considerations relating to conservation of counts.

Expanding the above notation into a more complete form, we will use:

pjsi=L...J projection data, counts detected in tube j.
Cjsd =Lyursd absorption and gain corrections vector
a,i=1,..,1 activily in a pixel, the image being estimated
a‘.(k),i =1,...1 the activity estimated at the k! iteration
fi transition matrix elements, uncorrected
fli=rilc transition matrix elements, corrected
1 !

h; = 2 fg w 2 flia the projection of an image estimate.

i=1 Cj i=1

j =
=Y, ua o)



For the development of the EM algorithm we will make use of a vector X, the "complete" data set, whose elements X ji are
the number of disintegrations from pixel i that are detected in tube j. The relationship between the complete data set and the
"incomplete" set p is given by

b;= Zxﬁ

i . ?3) Ey

We will use the EM algorithm to estimate @ by maximizing the log likelihood of X given an activity distribution @. The *
complete data set X has elements which are Poisson distributed with means f" ji @;» while the detected counts or incomplete data
set vector p has elements which are Poisson variables with mean z f' ji @;- We consider only the case in which the data p are
uncorrected for attenuation, etc., i.e., they are purely Poisson in nature.

The target function to be maximized is, from Ref. 8,

L(a) = log P(xla) = 22[_f'ji a; + Xji log( 'ji ai) - log(xﬁ ')] 2

where P is the conditional probability of a complete data set X having resulted from an activity distribution a.

E-step: Shepp and Vardi show in Ref. 8 that, for Poisson random variables X

the conditional CXpCC[Gd value of xﬁ
given the data elements p; for a current estimate of the parameter a-(k) is
j p i

jiv

(k) £
4" f;p

- Jit

Ji

kA physical interpretation of this estimate can be seen by considering that if a tube has P counts and the pixel values are
a®, the expected fraction of p ; that was emitted by the ith pixel is f' w? | 2 g o

(k)We can then compute the expected value of the target function Eq. (4) given the incomplete data p and the current estimate
a

E{L(alp,a("))} = z z[—f'j,- a; + E{xﬁl P’a(k)} log( p a,.) - E{log(xﬁ ')}] o

Replacing from Eq. (5), we have

)
E{L(al pa®)}=>>-f a+ %Iog( "4 a,.) + terms independent of g, 0
J i o

M-step: Forklhle MLE case, we now maximize the expectation Eq. (7) with respect to the parameters @, which will lead
to the new values a** )Selting the partial derivatives with respect to @; equal to zero,
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and solving for @;, we get the next estimate of a/**":

(k) !
R T | o

Zf (k)

In Bayesian reconstructions, with the target function containing additional terms that depend exclussively on the estimate @,
the E step will be identical to that of the MLE, as given in (5), above. The M step, however, will require the maximization of a
target function different from (4), which may result in the need to obtain the maximum by an iterative method. The M step will
be further discussed below after the appropriate prior form for our problem has been established.

3. - INFORMATIVE PRIORS

3.1 Vision Response Functions (VRF's)

We want to develop priors that contain pure geometrical information about an image, but are to some extent inmune to noise.
It appears that Vision Response Functions, as proposed and developed by J.J. Koenderink and a substantial group of followers
and contributors at the University of Utrecht over the last several years, may provide the tools for the development of such
priors. An excellent summary of properties of the VRF's has been provided by B.M. ter Haar-Romeny et al®. From the practical
point of view of using VRF's as descriptors of prior information in an environment with noisy, poorly resolved images, as in
Emission Tomography, it appears that the three characteristics indicated below make VRF's appealing:

1 - VRF's make use of the concept of scale. Desirable features in an image may appear at a particular range of scales, while
noise and image distortions may be detectable at a different range of scales.

2 - The basic operation in using VRF's is the convolution of an image with derivatives of Gaussian functions. Because of the
averaging effect of the operation, extraction of derivatives, for example, does not result in increased noise, even at higher orders.

3 - The VRF's are "soft" local operators. The value of a particular pixel in the convolution of an image with a VRF will be
influenced by a local neighbourhood whose size depends on the chosen scale, with soft edges.

3.2 Invariants as priors in tomographic reconstruction

It is possible to combine Gaussian derivative operators in such a manner that image features are detected independently of
orientation and translation. These combinations are called "invariants” and they form the principal group of operators in which we
are interested. As was discussed in Section 1, we are interested in geometric descriptors that are insensitive to the intensity of a
feature. If we are describing, for example, a particular anatomical structure in a human brain whose radioisotope uptake as a
function of time is substantially different from that of surrounding tissue, we would not want the descriptor of the anatomical
structure to change shape as a function of time, except, of course, when the uptake is very small or zero.



For that reason, we need to restrict ourselves to invariants that have some characteristic that is independent of image intensity.
An initial search up to second order derivatives has yielded two invariants whose zero crossings are by nature independent of
intensity transformations:

2

a) The laplacian L; and b) the umbilicity U = L 1.

A

We note that we use the convention that repeated indices imply summation over all possible index values, i.e., the
dimensions,

2*>  9?
L;,= AN
dx* dy
Furthermore, applying the L;; operator implies convolving with the Laplacian of a two-dimensional Gaussian function of a given
standard deviation o, corresponding to the chosen scale.

(10)

The loci of zeros of the L, operator, when applied to a two dimensional image, are closely related to edges: If one defines an
edge as the locus of points of inflection defined by the vanishing of the second derivative along the local gradient direction, then
the zeros of the L; operator accurately describe edges provided that lines of equal intensity (isophotes) are sufficiently straight in
the neighborhoodfo.

The loci of zeros of the U operator can be best understood by considering an image as a 3-dimensional entity, in which the z-
dimension is the intensity of the image. Curvature is define as the reciprocal of the radius of a circle that fits in the
neighborhood of the point considered. The directions of maximum and minimum curvature (the principal curvatures) at a point
are at right angles with respect to each other. I both curvatures are positive, we have a "mountain”, if both are negative, we have a
"valley". If the principal curvatures are of opposite sign, we have a saddle point. Then, Gaussian curvature is the product of the
two principal curvatures, so that regions with positive Gaussian curvature are "mountains” or "valleys" (elliptical areas), and
regions with negative Gaussian curvature are saddle points (hyperbolic areas). Then, the loci of U = 0, separates the elliptical
from the hyperbolic areas and can be considered as a "patch classifier" 10,

The behavior of the L,; and U operators can be further understood by considering the following simulated PET example.
Fig. 2, top left, shows a phantom in which an elliptical ring of 100% activity contains eight ellipses in a 25% background. The
128 x 128 image contains Poisson noise corresponding to a total of 20 million (20M) counts. The left ellipses are all at 100%
intensity, while the right ellipses have intensities of 30, 50, 70 and 90%. The other two images in Fig. 2 show the result of
applying the L operator to the 20M count image at two different small scales. The zero level corresponds to middle grey.

Fig. 2 - Mathematically generated phantom with 8 elliptical regions and the result of applying the L,; operator at two different
scales. The top right ellipse of the set may not be easily seen in the printed page.



Fig. 3 shows the image of Fig. 2 with overlays corresponding to the zero crossings of the L; operator for three different
scales. At o = 1.28 pixels, it is evident that the zero crossings are picking up a considerable amount of noise, which has largely
disappeared at ¢ = 2.11 pixels. It is interesting to note that the contours obtained for the right hand ellipses preserve the edge
shape quite well, in spite of having decreased intensity when compared to the left hand ellipses. This is particularly significant,
since this is a required characteristic for the image descriptors in which we are interested. The zero crossings of the L;operator in
two dimensions always result in closed contours.

Fig. 4 shows the results of applying the operator U to the image of Fig. 2 for a scale of 6=1.28 pixels, where noise effects
are prominent. The zero crossings of that operator at 6=1.28 and 2.11 are also shown. Patch separation generated by the U
operator at 6=2.11 is not too different (for this simple phantom) from the approximate edge detection of the L; operator. This is
so because the different ellipses are actually "mountains” and they are separated from the valleys, where the two principal
curvatures will not generally have the same sign. The zero crossings of the U operator are also insensitive to intensity level,
except for noise effects, a desirable characteristic for our purposes.

Fig. 3 - Overlays of the zero crossings of the L operator on the image of Fig. 1. Notice that contour shape is practically
independent of intensity of the elliptical region, except for noise effects. '

Fig. 4 - The Umbilicity operator applied to the image of Fig. 2 and the zero crossings of that operator at a scale of 6=2.11
pixels.



3.3 Examples from human FDG studies

Data from PET data of FDG human brain studies have been reconstructed and processed by the L; and the U operators at
different scales and the zero crossings have been found. Images have been obtained first from a data set with excellent statistics
(30M counts) and then from a low count data set (1.4 M counts). Fig. 5 shows the zero crossings of the L, and U operators
superimposed on the reconstructed images for data sets in the upper part of a brain. The top images correspond to a 30M count
data set (very good statistics), while the bottom images are for the 1.4M count data. One scale is displayed (o = 1.28 pixels) for
the L; operator and one scale (¢ = 1.65 pixels) for the U operator. The chosen scales seem to convey a maximum of geometrical
information for the structures which dominate those brain images, without being affected significantly by small scale noise. The
zero crossings of the 1.4M images are substantially different from those of the 30M images.The images of Fig. 5 illustrate the

Fig. 5 - Reconstructions of human brain FDG studies with zeros of the Laplacian
(Ieft) and Umbilicity (right) operators supersimposed. Top: 30M count data,
bottom: 1.4M count data.

question that we are trying to
answer: Can a knowledge of the
priors shown in the top row of
the figure (30M count images)
assist in reconstruction of the
images at the bottom row (1.4M
counts)?

4. ONE-DIMENSIONAL
RECONSTRUCTION
PROBLEM

4.1 Preliminary objectives

In order to attempt to answer
the above question, it was felt that
starting with two-dimensional
images would be too complex and
time comsuming. Instead one-
dimensional reconstruction would
be attempted. The initial
objectives have been: 1) to find out
whether the EM formulation could
be used in defining an algorithm to
solve a Bayesian target function
that includes zero-crossings of
invariant operators, 2) to see
whether it is possible to force the
zero crossings of a reconstruction
with low counts into concordance
with the zero crossings of a high
count prior and 3) to find out what
happens to the expected error in a
region of interest (and to other
regions) when such concordance is
achieved.



4.2 Problem definition and MLE reconstructions

For the first experiments, we have chosen one-dimensional images of 256 pixels. An instrument with a point response function
(prf) of a 11/x! shape convolved with a small Gaussian resolution kernel was conceived as a way to imitate the response of a
tomograph. The prf generated, with a resolution kernel of ¢ = 1.5 pixels, is shown in Fig. 6. A source consisting of some
structures which mimic in some way a cut through a human brain reconstruction was generated, as shown also in Fig. 6. The result

i of convolving the source with the prf is also shown there. :

. A reference data set containing the
. . i ) ) ) ] Poisson statistics of a total of 500 K
B prf I 4 100 counts in the image was then
200 K source _ ]l obtained, as well as 10 independent
L — — - convolved : . data sets (10 through t9) containing
: 71 80 10 K counts each. A standard MLE
algorithm was prepared for the one-
dimensional reconstruction, with a
cross-validation stopping rulel. The
500K data set and the 10K data sets
were then reconstructed. No post-
filtering operation was carried out on
the MLE results, which show some
-1 20 amount of ringing. A specific ROI
\ : ] - was selected for evaluation of the
N current approach to Bayesian
I T 0 reconstruction, shown in Fig. 6 by
. 4 vertical lines. The locations of the
0 50 100 150 200 250 L,;=0 points (which always appear in

pairs in one-dimensional images) was

chosen for conveying the prior

information from the 500K results
Fig. 6 - One-dimensional problem description. System point response is shown, into the reconstruction of the 10K

as well as a source phantom and thé source convolved with the prf. data.
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4.3 Bayesian reconstructions with a limited Region-of-interest (ROT)

4.3.1 Algorithm dcvelopmcnt

We will first define a description for a prior based on an energy function of the form (1/ K)e™®®. With such an energy
function, the target function to be maximized will be, from (4),

" | B(a)=22[—fﬂ a; +xjlog(f'; @)~ log(x; )] - aV (@) an

As indicated earlier, the E step. of the EM algorithm is identical to the one for the MLE algorithm, i.e., the conditional
expected value of X ; given the data elements p ; for a current estimate of the parameter a(k)



a® f
x = E{x,Ipa®} = &L B a)

k
D fea®
R

but, from (7) and (11), the M step will consist in maximizing

Fu
y
f a® :
(k)
E{B(alp,a®)} = 22 -f'ia sz‘ % 5 log(f i) |- oV (a) (13)
7 l
with respect to the g; elements.
4.3.1.1 The distance function
The following is a first attempt at defining a distance function that can be used as the potential function Vin (13).
Consider that we have a prior image A which, when operated on by a Gaussian invariant operator L, has zeros located a Z,.
Then we consider an estimate @ obtained during the reconstruction process whose zero crossings of the same operator L are
located at z,,.
Next we consider a Region-of-Interest for zero interations (ROI) that contains those zeros Z,, that we want the reconstruction
to match. We also define an interaction distance D, such that, if a z, is within D, from a Z,, in ROI, that z, will
contribute to the potential function V. In a more formal manner, a zero z, of L(a) will conmbute to V if
|2~ Z,|< D, . (14)
for some zero Z,, of L(A) in ROI, .
Then, we define the potential function
1 &
V(a)=—Y D(z,) : (15)
N, k=1
where n, is the number of zeros that fulfill the condition (14) and D(z, ) is the distance lzk - Zml.
With those definitions, the function to maximize for the M step is, from (13) and (15), ’\)5'

' (k) nz
E{B(alp,a®)} = ZZ ~fla+ Z]JC” po log(f'; 4 ) —»a~-1—ZD(z»k). (16)

R, =1

10



'

Since the distance terms cannot be written explicitely as functions of the estimate elements a;, the maximization of (16)
cannot be carried out analytically, as is the case with the MLE problem. We will report here the attempts at maximizing (16) by
a conjugate gradient method, which appears to have succeeded.

4.3.1.2 Conjugate Gradient maximization

For the Conjugate Gradient (CG) method, we need an expression for the function to be maximized and its partial derivatives
’u‘ with respect to the parameters to be estimated. A modified form of the CG algorithm given in Numerical Recipes in C 11 hag
been used. The modification has consisted in limiting the search for parameter values to @;> O for all i, so that the logarithm

term in (16) can be evaluated.

The function F to be maximized is precisely equation (16), given above. F will have to be evaluated a large number of times
for different values of parameters @;. For every set of parameters, evaluation of the Bayesian term requires obtaining the zero
crossings of L{a) and obtaining from them the potencial function of (15).

- JF
For the partial derivatives—a—-—, the term obtained from the likelihood is easy:
a.

[

JoF 4 pif'; ai(k) 1
da, z fﬂ Zf'ji' ai('k) a; | @

likelihood /=1

For the Bayesian term, let us consider first some estimate @(x) in a continuous one-dimensional space to which a Gaussian
derivative operator L is applied '

W(x) = j: dx' L(x - x')a(x'). (18)

Next we look for the disturbance caused to W(x) by the app]icgtion of an increment Aa at some coordinate X, ,
AW(x) = [ dv'L(x - x')Aa8(x'~x) = AaL(x —x,). v 19)
Let X, be é zero crossing of W(x), i..,
W(x,)= j: dx' L(x, — x")a(x') =0. : a | (0)
With the increment Aa, there will be change in zero crossing described by Ax,, so that
[ ax{L[(x, + Axy) = x|a(x')} + AaL{(x, + Axy) — x,] = 0: ' en

If we do a first order expansion L(x, + Ax,)=L(xg5)+ Ax;L'(x,), and substitute in (21), we obtain the relation

11



Ax, _ L(x,—x)

22
Aa j dx' L' (x, — x")a(x') + AaL' (x, — x,)
and, when taking the limit as Aa — 0,
ox, _ L(x,—x,) o3

da fudx'L'(xo —x')a(x').

The interpretation of (23) is the following: the change in a zero crossing initially at X, when the function a(x)is changed
infinitesimaly at X, is given by the value of the operator L at a distance (X, — X;) from the origin, divided by the convolution
of the derivative of L with the function a(x) evaluated at X,. The numerator of (23) relates the change in zero crossing to the
distance between the zero which we are evaluating and the pixel that we are modifying. The denominator brings in information
about the function a(x)that we are dealing with.

Then, returning to the distance function D of (15) for a particular zero at z,, in a discrete one-dimensional coordinate system,

dD(z,) _ dD(z,) dz,
da; dz, Oda,

3

@4

where the subscript i in g; indicates that the change in parameter vector @ occurs at coordinate X;.

The expression is the change in distance between the zero z, of the estimate and the nearest Z,, of the prior, for an

aD(z,)
d

2

infinitesimal positive change in zero crossing of z,. For the simple distance function that we have defined for F in (15), the
values of the partial derivative are given by

+lforz, >Z
T,,={0forz, =2 _ 25
-lforz, <Z,

The complete expression for the partial derivatives of the function F to be maximized is then represented by

J (k) n, _
I IR LA W ER S 165 o5

— o _
(7 Jj=1 Zf Ji' a(k) nz =1 km j—”dxcLl(zk _x')a(k)(xn)

12
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where the zeros accepted in the summation over k fulfill the reqdirement (14).' The denominator of the second term is a

convolution which is carried out discretely.
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[ -~== MLE

5200 — —- =5.0, 6=2.0 -] 10000
.g - - & - 0=10.0, 6=2.5-
o i -1 8000
5 150 - |
Iy : -1 6000
= L
7'; 100 - \ 1

s \

:go - - 4000
= 0r = 2000
: P 1 z al R P |

135 140 145 150 155
Pixel No.
Image t5
L ' ' ' 4 12000
§200 < 10000
g -
VPN, ~ 8000
% 150 ]
g i -1 6000
'S 100 - ;
1) i A /A - 14000
[ N
[ = 2000
PR PO | P s 1 PO |
135 140 145 150 155
Pixel No.

Fig. 7. Two examples from the 10 Bayesian reconstructions carried out. With
the application of the prior information, the shape of the reconstructed

peak is closer to the reference image.
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4.3.2 Results of reconstruct-
ions.

Bayesian reconstructions by
the EM algorithm, in which the
E step was that of (12) and the M
step was obtained by maximizing
(16) by the modified CG method
were carried out to the same
number of iterations needed by
the MLE/cross-validation
method. The starting point for
Bayesian reconstructions was the
result of the 1st iteration of the
MLE, so as to avoid problems
with the denominator of (23).
Reconstructions with a=0 (in
Eq. 16) gave results that were
indistinguishable from MLE
results to several digits of
accuracy, indicating that the CG
method used in the M step did
not introduce significant errors.
The results reported here are for
reconstructions with the operator
L; , for 6=2.0, 0=5.00 and for
0=2.5 and 0=10.0. The choices
are empirical, at this time.

All ten 10K data sets showed
improvement in the shape of the
pcak in the chosen ROI. We
present two examples here in
Fig. 7. Shown are: the 500K
reconstructed image used as
prior, the MLE reconstruction
results which is generally
distorted, and then the Bayesian
results for the two sets of ¢ and
o parameters indicated. In all
cases, the Bayesian
reconstructions with increasing
value of o bring the peak closer
to the shape and position of the
prior image. The use of 6=2.5
instead of 6=2.0 also increases
shape control at the "skirts" of
the reconstruction,

It has been observed that the application of the Bayesian prior to to the selected ROI results is a slight decrease in the number
of counts in the integral under the peak of that region. The lost counts are displaced to adjacent areas. In addition, the variance
from the mean value of that integral does not improve when the Bayesian constraint is applied. This seems to point to the need
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of using a Bayesian prior for the complete image. With all the features of the image being constrained and the conservation of
counts insured by the inclusion of a Lagrance multiplier in (11), it is expected that there will be no count loss and, we hope, the
variance will decrease.

In order to apply the Bayesian prior to the complete image, it appears that the next step is to devise a method for controlling
the shape of wide features, whose edges are important at small scales, but the features are large. A multi-scale approach appears
necessary. Work is continuing in that direction,

4.4 Questions raised and future work

The preliminary work reported above raises a number of questions, both relating to the one-dimensional simulations described
- above and to the problem of two-dimensional reconstructions. This will be an attempt at cataloguing the areas that need further
investigation:

4.4.1. - One-dimensional simulation work.

One-dimensional work is interesting as a way of investigating algorithms and their behavior. There are two principal
areas in which further work is needed: a) conceptual and b)computational.

a) Conceptual:

- When using more than one scale ¢ in the Bayesian term, the term corresponding to each ¢ should be normalized so
that o can be a dimensionless quantity. Likewise, the interaction distance between zeros D, of (14) should be a distance related
to the scale parameter, although it is not clear at this time how that should be done.

- What is the effect of each o, separately? and what range of 6's should be used, and with which step size?

- In reconstructing the complete image by the Bayesian method, it appears necessary to start iterations at a large scale
and decrease scale as the iterative method continues and smaller detail is developed in the reconstructed image. How does one
relate ¢ to the detail in the iterations?

- How many iterations should be used for the Bayesian reconstructions?. The results given above have been for the same
- number of iterations determined by the cross-validation stopping rule for the MLE, but it is not clear what the results would be if
the same stopping rule were used for the Bayesian reconstructions. ' :

b) Computational:

- The use of the Conjugate Gradient method for the M-step is very slow. It will be important to speed up the
reconstruction process by, either speeding up the M-step considerably, or by dispensing completely with the EM method and
using another form of iterative algorithm (like the Successive Substitutions mecthod), which may be considerably faster.

4.4.2 - Two dimensional work.

In two dimensions, the more fundamental questions can be asked:
- What invariants should be used?
- Which scales are important?
- Is there a way to define the Bayesian parameter o a priori?

- Is the distance function used in the above 1-dimensional work adequate, or should other distance functions be
investigated?

- and finally, what benefits are obtained from that work?
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5. CONCLUSIONS
The work reported above is just the beginning of an attempt at using geometric information based of Vision Response Functions
as priors for tomographic image reconstruction. The preliminary reconstructions with 1-dimensional images look promising in
that it has been possible to correct distortions in reconstructions from data sets with a small number of counts using prior
information from data sets with high number of counts. However, more questions have been raised than answered at this time. It
appears possible, however, to work towards answering those questions in a systematic way and that is the direction that will be
taken.
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