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Abstract We study an information aggregation game in which each of a finite col-
lection of “senders” receives a private signal and submits a report to the center, who
then makes a decision based on the average of these reports. The integration of three
features distinguishes our framework from the related literature: players’ reports are
aggregated by a mechanistic averaging rule, their strategy sets are intervals rather than
binary choices, and they are ex ante heterogeneous. In this setting, players engage in
a “tug-of-war,” as they exaggerate and counter-exaggerate in order to manipulate the
center’s decision. While incentives to exaggerate have been studied extensively, the
phenomenon of counter-exaggeration is less well understood. Our main results are as
follows. First, the cycle of counter-exaggeration can be broken only by the imposition
of exogenous bounds on the space of admissible sender reports. Second, in the unique
pure-strategy equilibrium, all but at most one player is constrained with positive prob-
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110 G. C. Rausser et al.

ability by one of the report bounds. Our third and fourth results hold for a class of
“anchored” games. We show that if the report space is strictly contained in the signal
space, then welfare is increasing in the size of the report space, but if the containment
relation is reversed, welfare is independent of the size of the space. Finally, the equi-
librium performance of our heterogeneous players can be unambiguously ranked: a
player’s equilibrium payoff is inversely related to the probability that her exaggeration
will be thwarted by the report bounds.

Keywords Information aggregation · Majority rule · LIBOR · Baltic Dry Index ·
Yelp · Online reviews · Exaggeration · Counter-exaggeration · Mean versus median
mechanism · Strategic communication · Incomplete-information games · Strategic
information transmission

JEL Classification F71 · D72 · D82
1 Introduction

Information aggregation is ubiquitous in modern economies, and information aver-
aging is perhaps the most commonly used aggregation tool. Several key financial
benchmarks, for example, are set by having market participants submit price quotes to
a central agency, which then averages them in some way to determine a market rate.
The best known example is LIBOR, which is the trimmedmean of estimates submitted
by money-center banks of the rates at which they could borrow for a given maturity
and denomination. Similarly, the Baltic Dry Index (BDI) is set by averaging responses
from shipping brokers to daily questions about the cost of booking various cargoes
of raw materials on various routes. In these examples, a data contributor typically
has a vested interest in the rate that emerges from the process and thus an incentive to
manipulate it. Indeed, a flurry of recent criminal and civil manipulation charges against
LIBOR panel members has culminated in huge settlements. Significantly, in spite of
the obvious opportunities for manipulation of simple averaging rules, reform propos-
als currently on the table do not include procedures that would enable the aggregator
to reverse-engineer submitted quotes and recover agents’ actual information.

As use of the Internet has grown, online information aggregation/averaging sites
have enabled consumers to submit opinions relating to a host of products and ser-
vices, ranging from plumbers to restaurants to university courses. Services such as
AngiesList.com, Yelp.com, and Ratemyprofessors.com aggregate these opinions and
report averages that influence consumer choices significantly.1 As the importance of
these services and their summary statistics grows, parties with vested interests in the
reports have greater incentives to manipulate them. Not surprisingly, a cottage indus-
try has evolved around submitting positive restaurant reviews to Yelp.2 Despite these
problems, however, simple averaging procedures remain the norm.

1 See Anderson and Magruder (2012) for a discussion of the literature on online reviews and for measure-
ments of the impact on restaurant profits of a 4-star Yelp rating. See also Ye et al. (2009).
2 It has been claimed that as many as 40% of Yelp reviews are biased in some way Guynn and Chang
(2012).
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Information averaging is also commonplace in small-group settings, such as faculty
committees and boards of directors or trustees. A typical function of such groups is
to gather together several parties, each with idiosyncratic expertise, and apply their
collective wisdom to a single decision problem, such as designing a compensation
package for a new hire or allocating funds to an investment project. In these settings,
participants typically have heterogeneous preferences regarding the decision being
made; consequently, each has an incentive to package the information she contributes
in a way that will steer the collective outcome in her preferred direction.

An extensive literature has emerged to study information aggregation (see Sect.
2). Most contributions adopt a mechanism-design approach, exploring whether there
are aggregator responses that would induce full information revelation. As we have
emphasized, however, straightforward report-averaging has proved extremely resilient
as an aggregating instrument in spite of its deficiencies. One reason is that the ground
rules within which many real-world aggregators operate require them to provide their
patrons and/or clientswith a servicewhich is passive rather than strategic.Accordingly,
it seem worthwhile to investigate the strategic incentives for manipulation that are
embedded into real-world mechanistic aggregation institutions.

In this paper, we define a class of games that we call “aggregation games.” There
is a finite collection of agents. Each agent is characterized by two parameters. The
first is a privately observed signal, and the second is an observable characteristic, rep-
resenting the player’s bias w.r.t. the game’s outcome. After simultaneously observing
their respective signals, agents submit reports to a central authority, who averages
them in order to determine some payoff-relevant variable. Our framework focuses on
identifying agents’ incentives to misreport their information. For example, if an agent
has a preference for outcomes exceeding those that would otherwise result from the
aggregation process, she has an incentive to bias her reports upwardly, that is, she can
be expected to “rationally exaggerate” her private information. Of course, in many
aggregation situations—e.g., online reviews, teaching evaluations—many (perhaps
most) senders forgo the opportunity to act strategically. Accordingly, in Sects. 5.3 and
6.3, we introduce the possibility that some players will report their signals truthfully,
ignoring their incentives to do otherwise.

The problemof exaggeration in the context ofmultisender information transmission
has been widely studied (see Sect. 2 below). In our framework, there is a distinct
phenomenon that we call counter-exaggeration, which, to our knowledge, has not
previously been rigorously modeled.3 When sender r ’s message is only one of several
messages that contribute to the average, she obviously has an incentive to exaggerate
her message, to induce the center to assign more weight to her contribution. Moreover,
if r knows that sender i has a bias in the reverse direction, and thus will exaggerate
in a direction contrary to r ’s interests, r will have a further incentive to exaggerate.4

3 The phenomenon is certainly alluded to by many of the authors we discuss [e.g., Kawamura (2011),
Krishna and Morgan (2001)] but as we argue below, a specific set of model properties is required in order
to explore its implications.
4 Counter-exaggeration is an acknowledged necessitywithin the online reviewing community. For example,
as reputation.com (n.d.) observes: “. . .In these situations, there is realistically only one way to effectively
handle false reviews: having an overwhelming majority of positive reviews will discredit & nullify any false
& misleading reviews.”

123



112 G. C. Rausser et al.

In turn, i will be motivated to “counter-counter exaggerate” in order to offset r ’s
counter-exaggeration. Such a process could potentially result in a endless spiral of ever-
increasing exaggerations. Because agents are ex ante homogeneous in the literature
most relevant to our analysis (see pp. 8–10), this secondary incentive does not arise,
so that its implications have until now been neglected.

Some other key features of our setup are as follows: aggregate information is multi-
dimensional, but each agent privately observes the true value of exactly one component
of the vector-valued state of nature. However, the outcome of the game is a scalar, over
which all agents have (univariate) preferences. There is ex ante common knowledge
of bias heterogeneity. In the reporting process, talk is “cheap” in the sense that misre-
porting is not penalized. Finally, prespecified bounds on the message space constrain
the reports that agents can make.

To guide the reader’s intuition, we offer two illustrative vignettes, constructed to
highlight various key features of our model. Our first vignette concerns a faculty
committee, convened to decide how aggressively to pursue to a candidate whom the
department hopes to hire. Each committee member is assigned the task of obtaining
information about the candidate along a particular dimension (research, teaching,
outreach, service) and to rate her performance from that perspective according to
a common scale. The committee chair (who is required by institutional procedures
to comply with prespecified rules) averages the reported ratings, and the average is
mapped to a recruitment effort level. Although all faculty members agree that this
effort should reflect the profession’s collective assessment of the candidate’s merit, it
is common knowledge that each member is biased either in favor of or against her. A
familiar scenario would be: those in her field advocate for a particularly aggressive
recruitment campaign, while others with less sympathy for her research interests are
inclined to adopt a more relaxed approach. In our second vignette, a corporate board is
tasked with determining the size or level of investment in a new project. The suitability
of the project must be evaluated from many perspectives (e.g., revenue, cost, risk, and
strategic complementarities). Accordingly, the board commissions a member with
recognized expertise in each one of the relevant perspectives to investigate the project
from that particular perspective and to report its evaluation using a common numerical
rating scale. [Following Crawford and Sobel (1982), we assume that each expert
is able to assign without error an objective “score” to the project.] The board then
(mechanically) constructs an overall assessment of the project’s potential by averaging
the reported specialized ratings.5 This assessment is then mapped to a (scalar) level
of commitment to the project. Although all experts agree that the firm’s commitment
should reflectmarket realities, it is common knowledge that each one is biased either in
favor of or against the project. Some are less risk-averse than others; some approve the
direction in which the project would take the company; others do not. We could expect
that experts’ reports will be slanted in directions consistent with their biases. It would
be natural to expect that the project’s supporters (detractors) would inflate (deflate) the
scores they report, relative to their privately observed information.Moreover, knowing

5 Mechanical averaging seems plausible in this context: a board with its own heterogeneous preferences
would likely be too unwieldy to implement a sophisticated scheme designed to reverse-engineers experts’
biases.
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that others will behave in exactly the same way, the inflaters will need to inflate more
than they otherwise would, in order to counterbalance the impact of the deflaters.

Relative to the literature, our framework has a unique combination of features, most
notably a continuummessage space, a naive aggregation rule, and senders with ex ante
heterogeneous preferences. This combination yields a unique set of results relating to a
number of questions about the ubiquitous aggregationmechanismof simple averaging.
We discuss three of them here. First, how effectively does it aggregate information?
Consistent with the literature, we find that some information loss is a necessary social
cost of obtaining an equilibrium when agents are heterogeneous. Specifically, the map
from signal vectors to sender reports is not 1–1. This is because in the unique pure-
strategy equilibrium of an aggregation game, all but at most one player is constrained
with positive probability by one of the bounds on the report space.6 This result high-
lights the pivotal role that these boundaries play in our model. Without them, players
would engage in an endlessly escalating tug-of-war: those with positive biases would
distort their messages farther and farther to the right, in order to offset the increasingly
magnified leftward distortions of players with negative biases. But the constraints also
have welfare consequences: they result in “message-bunching,” and hence informa-
tion loss, at one or both ends of the signal spectrum; this is more prevalent, the greater
is both the number of players and the degree of player heterogeneity.7 Second, can
information losses be mitigated by restricting the set of admissible reports? While
the literature [e.g., Kawamura (2011), Rosar (2010)] suggests an affirmative answer,
our answer is no: while it is possible to restrict the space too much, thus increasing
information losses beyond the minimal level necessary for equilibrium existence, fur-
ther expansions of the message space beyond a certain point have no real impact, i.e.,
the information content of equilibrium and hence payoffs and aggregate welfare are
independent of the size of the space. Third, among our heterogeneous senders, which
ones are more negatively impacted by the aggregation process? Our framework yields
a sharp and intuitive answer to this question: a player will do better in equilibrium,
the less likely it is that her exaggeration will be thwarted by the bounds on admissible
reports. In a symmetric game, whose bounds are equidistant from the origin, players
with more extreme biases are more likely to want to send extreme messages and hence
are more likely to be constrained. On the other hand, when the bounds are one-sided
(e.g., any nonnegative report is admissible), the player with the most extreme positive
(negative) bias does best (worst).

The paper is organized as follows. The symbol † appended to a proposition title
indicates that its proof is in the “Appendix.” When a proposition follows immediately
from arguments in the text, its formal proof is omitted. Section 2 relates our model
to the literature. In Sect. 3, we introduce our model. Section 4 presents some general
results on the equilibrium properties of aggregation games. Aggregation games are
particularly tractable when there is exactly one player who is either unconstrained, or

6 The role of a compact message space in limiting information transmission has been noted in the literature,
[e.g., Rosar (2010)] but usually in contexts that differ from ours. See, for example, Ottaviani and Squintani
(2006).
7 Rosar (2010) also observes bunching which he restricts the space of admissible reports, but in his context,
bunching is not a necessary cost of obtaining an equilibrium.
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symmetrically constrained, by the bounds on reports. We call this player the “anchor,”
identify a class of games called anchored games, and conclude Sect. 4 with some
general results on anchored games. Sections 5 and 6 focus on two special classes of
anchored games. In Sect. 5, we study games that are symmetric in a strong sense: there
is a right-wing and a mirror-image left-wing faction. Because other model parameters
are also symmetric, neither faction has an advantage. Symmetric games have striking
properties, of which several have already been mentioned. Another is the impact of
player heterogeneity. Intuitively, payoffs decline as heterogeneity increases. Surpris-
ingly, however, a faction-mean-preserving spread of each faction’s biasesmay actually
increase aggregate welfare. Our final results focus on the size of the game. We intro-
duce the possibility that some players will report truthfully rather than strategically,
and we consider the effect of increasing the number of either truthful or strategic play-
ers. Section 6 studies a quite different class of anchored games, in which the upper
bound on the space of admissible reports is so high that it never binds in equilib-
rium. Games of this kind are anchored by the player with the largest positive bias. In
spite of significant structural differences, most properties of this class of games are
surprisingly similar to those of symmetric games. Section 7 concludes.

2 Related literature

In this section, we modify the notation in the papers we discuss in order to match our
own notation. Our paper contributes to the extensive literature initiated by Crawford
and Sobel (1982) [CS] on information transmission and aggregation.8 In CS, a single
sender privately observes a signal θ identifying the state of nature and then transmits
a message to a receiver, who makes a decision τ that affects the utility of both. The
receiver’s objective9 is to maximize−(τ −θ)2; the sender’s utility is−(τ − (θ +k))2,
where k≥0. When k > 0, the sender has an incentive to announce a message that
exceeds her observed signal; the receiver, recognizing this incentive, “de-biases” the
sender’s message, in order to learn all that can be learned about the true value of θ .
CS’s main result is that perfect information communication is attainable only if k = 0.
In equilibrium, the sender partitions her information space into intervals and reports
only the interval to which her signal belongs.

An early extension of the CS framework, byMelumad and Shibano (1991), demon-
strates that when the sender’s and the receiver’s preferences are disparate, information
transmission may do more harm than good. Blume et al. (2007) introduce noise into
the senders’ signals and find that noise can improve social welfare. Ottaviani and
Squintani (2006) and Kartik et al. (2007) extend CS by introducing the possibility that
the receiver is naive, i.e., takes the sender’s report at face value. Both papers point out
that when there is only one sender, a necessary condition for exaggeration—they call
it “language inflation”—is that the receiver is naive with probability less than one.

8 A portion of this literature has been published in this journal. See, for example, Dickhaut et al. (1995),
Plott et al. (2003), Gunay (2008), Yang (2010), and Chen and Gordon (2014).
9 CS specify a more general class of utility functions. The quadratic loss function we use, which in CS is
only an example, has been widely adopted in the subsequent literature.
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Clearly, when there are multiple senders, this condition is no longer necessary. Chen
(2010) extends the preceding specification by allowing that with positive probability,
the sender truthfully reports her signal. Within this setting, Chen can explain sender
exaggeration, receiver skepticism, and the clustering of messages at the top end of
the message space. While our mechanistic receiver does not exhibit skepticism, our
model also exhibits clustering and, of course, exaggeration.

A number of papers extend CS’s model to a multisender setting. In several, the
receiver (henceforth the center) decides according to majority rule. We discuss two
of these papers, Austen-Smith and Banks (1996) [AB] and Feddersen and Pesendor-
fer (1997) [FP]. The starting point for both is Condorcet (1785). His Jury Theorem
established conditions under which, when voters with identical preferences select
non-strategically (or sincerely) between two alternatives based on their private infor-
mation, and the majority prevails, then, as the number of voters increases without
bound, information is in the limit perfectly aggregated, in the sense that the majority’s
choice coincides with the choice that would be taken if all private information were
publicly available. (FP later call this property “full information equivalence.”) AB
study the relationship between sincerity and rationality. Under majority rule, rational-
ity dictates that one should decide how to vote conditional on the assumption that one’s
vote is decisive (or pivotal). Based on this assumption, one can make inferences about
the distribution of other senders’ realized signals and thus about the true state of the
world. AB show that under three specifications, voting sincerely is, except in very spe-
cial circumstances, incompatible with voting informatively, i.e., in a way that depends
non-trivially on one’s private signal. While AB focus on small games, FP explores the
implications of pivotality in large ones. FP’s specification of senders’ preferences is
quite similar to ours, except that their biases are private information. They consider a
sequence of games in which n increases without bound; when senders condition on
pivotality, their limit game exhibits full information equivalence. An important dif-
ference between both these papers and ours is that their senders’ reports are binary;
hence, they can lie but they cannot exaggerate.

Wolinsky (2002) adopts a mechanism-design approach. Each of several experts
receives a binary signal about whether a policy should be implemented; as in our
model, each expert’s signal is interpreted as the observation of a single dimension of
a multidimensional state of nature. Wolinsky’s players can, without detection, under-
but not overreport. His center is more inclined than any sender to implement the policy.
If the center cannot commit to a decision rule, then in equilibrium the experts reveal
no meaningful information and the policy is implemented with probability zero.

Another strand of the literature addresses issues closely related to the ones that
we confront. Battaglini (2002) extends CS by introducing multidimensional signals
and policies. His primary contribution is to show that when there are two senders who
perfectly observe themultidimensional state of nature, full revelation of information is
generically possible, regardless of the degree of heterogeneity between senders. This
result contrasts starkly with CS’s result for unidimensional signals. Battaglini (2004)
extends his earlier contribution to the case in which senders’ private information is
noisy. Ambrus and Takahashi (2008) point out that Battaglini’s full revelation result
depends critically on the assumption that the state and policy spaces are unbounded.
Levy and Razin (2007) consider a model with a multidimensional state space in which
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the degree of sender heterogeneity differs across dimensions. They focus on informa-
tional spillovers. If information along the first dimension reveals information along
the second, sender heterogeneity w.r.t. the second may inhibit information revelation
about the first. Chakraborty and Harbaugh (2007) study a game in which a single
sender has multidimensional comparative information; for example, a professor will
know the quality of multiple students. They show that the sender’s tendency to exag-
gerate can be mitigated by restricting the message space to a rank ordering. In spite
of the links between these papers and ours, their approaches are tangential, for three
reasons. First, while the state space in our model is also multidimensional, each sender
observes only one dimension of the state. Second, in our model, the outcome space
on which senders’ preferences are defined is unidimensional. Third, while much of
the literature just discussed focuses on constructing mechanisms to induce full revela-
tion, our concern is with the welfare properties of the passive method of aggregating
information (averaging) that prevails in a wide variety of institutional contexts, so
that the key question that these papers address, how revealing is the most revelatory
mechanism that can be designed, does not arise.

To conclude this section, we discuss the four papers most closely related to ours,
which consider averaging as (possibly one of several) decision rule(s)10: Morgan
and Stocken (2008) [MS], Gruner and Kiel (2004) [GK], Rosar (2010) [RR], and
Kawamura (2011) [KA]. In these papers, the sender privately observes a scalar iid
random variable, which is binary in MS and continuous in the others. In MS, as in our
paper, private information can be interpreted as a signal about a state of nature that
is of common concern; in KA, each player is concerned only about her own signal;
in GK and RR, the interpretation of signals is less transparent. In each case, senders
simultaneously submit reports to a central receiver, who aggregates themwith the goal
either of neutrally reflecting aggregate private information (MS), or of maximizing
aggregate welfare (the others). Thus, MS’s paper is furthest from ours in its modeling
of private information, but closest in other respects.

Each ofMS’ senders receives a binary signal and sends a binary report. The receiver
aggregates reports and chooses the policy which would be optimal for an unbiased
decision maker. When the number of senders is small, a sender might be deterred
from misreporting by the possibility that she might overshoot. But this possibility
decreases as the number of senders increases, so that more and more constituents
will vote according to their biases rather than their information. Since MS’s senders’
reports are binary, once again lying is possible, but exaggeration is not.

To highlight the difference between our model and those of GK/RR/KA, we return
to our faculty recruitment vignette (pp. 3–4). To sharpen the comparison, we consider
an extreme version of GK/RR’s model (in which their parameter α = 0). In their
models, as in ours, a sender’s private information reveals the candidate’s quality along
the single dimension that he investigates. In their models, the sender’s evaluation of

10 Krishna andMorgan (2001) [KM] is less relevant to us, since their experts submit reports sequentially not
simultaneously. On the other hand, KM explicitly address the issue of counter-exaggeration: “For instance,
hawks may choose more extreme positions on an issue if they know that doves are also being consulted,
and vice versa.” (p. 748).
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the candidate would depend exclusively on her quality along this dimension.11 In our
model, by contrast, there is an information-pooling component that is independent of
the degree of sender heterogeneity. All committee members in our model evaluate the
candidate’s quality according to the same criterion, i.e., the average of her qualities
along all dimensions. Thus, a sender in our model may be biased toward a candidate
because she works in his field, but the intensity of his bias is independent of her quality
in that particular field.

A related difference between these three models and ours is that their senders are ex
ante homogeneous, that is, since senders’ private signals are iid, it follows that before
any private information has been observed, their ex ante expected utilities—computed
as functions only of the center’s action and integrating w.r.t. the joint distribution
over signals—are identical. This property has striking implications for equilibrium
behavior. In particular, in each of GK’s equilibria under the averaging rule (regardless
of the value of their α parameter) and for any sender, the interim expected action by the
center—i.e., the center’s action conditional on the signal that the sender has observed—
coincides with the sender’s ideal action, that is, regardless of the signal she receives,
each sender can ensure that the center delivers, in expectation, her ideal outcome.
As a consequence, while there is a tension between GK’s center and each individual
sender, there is no tension whatsoever between GK’s senders. In their equilibria, as
in ours, each sender exaggerates the magnitude of her signal in order to influence
the center. However, as we noted on pp. 2–3, there is no impetus in their models for
competitive counter-exaggeration, i.e., exaggeration motivated by the need to offset
the exaggerations of other senders.12

In our model, by contrast, the degree of heterogeneity between senders is inde-
pendent of the state of nature, that is, for every state of nature, any two senders will
disagree about what is the best action for the center to take. By implication, if the ex
ante value of the center’s decision is ideal from one sender’s perspective, it cannot
be ideal from the other’s. A consequence of this irreducible heterogeneity is that our
model has a pure-strategy equilibrium only if the space of admissible reports is com-
pact.13 Without this restriction, senders would be locked into an endless “tug-of-war”
of exaggeration and counter-exaggeration, each trying to offset the “adverse” influ-
ences of all the others on the center’s decision (cf. pp. 2–3). This cycle can be broken
only by imposing bounds on the space of reports and thereby limiting the extent to
which a sender can exaggerate.

This difference has spillover implications on the welfare impact of heterogeneity
on information aggregation. In GK’s model, the social cost of incomplete information
is that the variance of the center’s decision is higher than it would be under truthful
revelation.We later refer to this consequence as a second-moment effect. In our model,
for all senders except at most one, there is a positive measure of types for whom one of
the bounds on reports is binding. For any type in this set, the second-moment effect is

11 When GK/RR’s α parameter is positive, other senders’ dimensions matter also.
12 When in RR’s model the report space is restricted, incentives for counter-exaggeration may arise.
13 RR considers compact report spaces, but they are not necessary for equilibrium.
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augmented by a first-moment effect: the expected value of the center’s decision differs
from that type’s most preferred outcome.

3 The model

We study an incomplete-information, simultaneous-move game with n > 1 players,
indexed by r = 1, . . . , n. For any variable x ∈ R

n , the symbol μ(x) will denote the
average of x’s components. The state of nature is represented by an n-vector θ ∈ R

n .
Player r receives a private, perfectly informative signal14 about the r ’th component of
θ and submits a report sr about this signal to the center. The center then takes a decision
based on the average μ(s(θ)) of these reports. Each player’s preferences depend on
μ(θ), as well as on a publicly known bias factor, and thus has an incentive to distort the
average signal received by the center. We reiterate for emphasis that while the social
information space is multidimensional, the decision space, over which players have
preferences, is unidimensional.

Player characteristics Each player has an observable characteristic and a type.
Player r ’s type is θr ∈ R, which is her private information about a unique dimension
of the state of nature θ (e.g., the riskiness of the project being evaluated15). Ex ante,
before players observe their private signals, the θr ’s are identically, independently, and
continuously distributed on the compact interval � ≡ [θ, θ ] ⊂ R, with θ > θ . Let
h(·) denote the density, and H(·) the c.d.f., of players’ types. We assume that h(·)
is bounded. Let � = �n denote the space of type profiles, with generic element θ.
Similarly, let�−r = �n−1 be the space of types for players other than r , with generic
element θ−r . For θ−r ∈ �−r , let h−r (θ−r ) = ∏

i �=r h(θi ). When we integrate w.r.t.
either player r ’s type or all other players’ types, we will use, respectively, the variants
ϑr and ϑ−r of θr and θ−r to distinguish dummy variables of integration.

Player r ’s observable characteristic is denoted by kr ∈ R and is interpreted as r ’s
bias w.r.t. revealed information: a player whose characteristic is positive prefers that
the center overestimate the aggregate information, i.e., the mean of players’ types. For
example, if board member r is particularly opposed to the project being evaluated,
then kr < 0. We refer to the vector k = (kr )nr=1 as the observable characteristic
profile. To avoid special cases and/or additional notation, Assumption A1 imposes
two restrictions on observable characteristics: players’ biases cancel each other out in
the aggregate and they are distinct.

Assumption A1 (i)
∑

i ki = 0; (ii) i �= r �⇒ ki �= kr .

Restriction (i) yields a clean expression for welfare, while (ii) ensures uniqueness.
The utility function The utility function is a mapping u : T × � × R → R, where

T ⊂ R is compact. The scalar first argument of u is the decision taken by the center in
response to information provided by the players: u(τ, θ, k) is the utility to a player with

14 In this sense, our model can be viewed as an n-dimensional extension of Crawford and Sobel (1982)
and its many successors, in which there is a single sender who is perfectly informed about a scalar state of
nature.
15 Here and below, references to “the project” and its “net return” relate to the second of the vignettes
outlined on pp. 3–4, in which a corporate board is tasked with determining the size of an investment project.
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observable characteristic k, when the central authority’s decision is τ and the vector of
unobservable characteristics is θ. The essence of an aggregation game is that players’
types affect their utility only through their effect on the average of all players’ types,
i.e., u(τ, θ, k) = u(τ, θ

′, k) if μ(θ) = μ
(
θ
′). In our vignette, the project’s net return

depends on aggregate information, while each board member has private information
about some component of the project.When convenient, wewrite the second argument
of u either as the vector θ or the scalarμ(θ). We further restrict utility to be a quadratic
loss function:16

Assumption A2

u(τ, μ(θ), k) = − (τ − (k + μ(θ)))
2 . (1)

In (1), μ(θ) + k would be a player’s ideal outcome—it depends on the aggregate
information μ(θ) and her own bias k—while τ , the center’s decision, depends on
the aggregate information reported by the players. The quadratic function captures
information losses that arise because players act strategically andmisreport their infor-
mation.

Pure strategiesWe assume that the center rejects reports that lie outside a compact
interval denoted by A = [a, ā].We refer below toa and ā as the announcement bounds.
Given the structure of ourmodel, a player whose unconstrained optimal report exceeds
ā necessarily weakly prefers to have a report of ā accepted than to have her report
rejected. Accordingly, to streamline the exposition, we impose as a restriction that each
player must choose a report in A. A pure strategy for player r is a function sr : � → A,
where sr (θr ) denotes r ’s announcement when her type is θr . (Henceforth, the symbol
sr will denote a function from types to A, while ar will denote a particular value of
sr (θr ).) The vector s = (s1,…, sn), called a pure-strategy profile, is thus a mapping
from� toA = An . A pure-strategy sr (·) is said to bemonotone if it is non-decreasing
and strictly increasing except when sr (·) is at the boundary of A. Since the space A
is bounded both above and below, if sr is monotone, there exists a low threshold type
θ
˜
r ∈ [θ, θ ] and a high threshold type θ̃r ∈ [θ, θ ] such that sr equals a on [θ, θ

˜
r ), is

strictly increasing on (θ
˜
r , θ̃r ) and equals ā on (θ̃r , θ ].17 Formally,

θ
˜
r (sr ) =

{ θ if sr (θ) > a
sup {θ ∈ � : sr (θ) = a} if sr (θ) = a,

(2a)

θ̃r (sr ) =
{ θ if sr (θ) < ā

inf {θ ∈ � : sr (θ) = ā} if sr (θ) = a
. (2b)

The outcome function The outcome function, t :A × R
n → R+, maps players’

announcements and the vector of observable characteristics to actions by the cen-

16 This is the classical specification for problems of the kind we are analyzing. See, e.g., Crawford and
Sobel (1982), Gilligan and Krehbiel (1989), Krishna and Morgan (2001), and Morgan and Stocken (2008),
to mention just a few.
17 Either one of the half-open intervals can be empty. For example, if sr (·) > a on�, then [θ, θ

˜
r (sr )) = ∅.
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tral authority. (Our notation distinguishes the outcome function t from the realized
outcome τ .) Our center aggregates information mechanically rather than strategically:
it takes each player’s report at its face value.18 Indeed, we restrict outcomes to be com-
plete information socially efficient (CISE), meaning that if players were to truthfully
reveal their types on average, the outcome would maximize social welfare, defined as
the average of players’ utilities. Defining the social welfare function as

w(τ, θ,k) =
∑

i

u(τ, θ, ki )/n, (3)

the CISE outcome function is t (θ,k) = argmax w(·, θ,k). An outcome implemented
by aCISEoutcome function is called aCISEoutcome. From (1) andAssumptionA1(i),
the CISE outcome is

t (a,k) = μ(a). (4)

Player’s expected payoff functions Player r ’s expected payoff function, Ur , maps
her own announcement and type into her utility, given other players’ strategies. Our
expression for Ur suppresses r ’s observable characteristic and the outcome function.
Formally, given a profile s−r of strategies for players other than r , player r ’s expected
payoff function Ur :A × � → R+ is

Ur (a, θ; s−r ) =
∫

�−r

u
(
t
(
(a, s−r (ϑ−r )),k

)
, (θ,ϑ−r ) , kr

)
dh−r (ϑ−r ). (5)

Henceforth, when confusion can be avoided, we will abbreviate the derivative ∂Ur
∂a to

U ′
r .

Equilibrium A monotone pure-strategy Nash equilibrium (MPE) for an aggregation
game is a monotone strategy profile s such that for all r , θ ∈ �, and a ∈ A,
Ur (sr (θ), θ; s−r ) ≥ Ur (a, θ; s−r ). From (1), (4), and (5), we know that

for all r, all a, all θ, and all s−r ,
∂2Ur (a, θ; s−r )

∂a∂θ
> 0. (6)

Inequality (6) states thatUr satisfies Milgrom–Shannon’s “single crossing property of
incremental returns (SCP-IR)” in (a; θ) Milgrom and Shannon (1994). In our con-
text, this property implies Athey’s sufficiency condition, SCC, for existence of a
pure-strategy equilibrium, i.e., “the single crossing condition for games of incom-
plete information” (Athey 2001, Definition 3).19

Proposition 1 (Existence of an MPE)† Every aggregation game has an MPE, s, with
the property that for each r, sr is continuously differentiable on (θ

˜
r (s), θ̃r (s)).

18 In our framework, we envisage the center not as an autonomous player—for example, a committee chair
with discretionary powers—but rather as a set of bureaucratic rules or procedures.
19 Athey’s condition requires that Ur satisfy SCP-IR only if other players play non-increasing strategies.
Our Ur ’s satisfy SCP-IR regardless of other players’ choices.
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While Athey’s machinery ensures the existence of a monotone equilibrium, it follows
immediately from (6) that monotonicity is a necessary condition for existence. Prop. 2
makes this precise.

Proposition 2 (Every equilibrium is an MPE)† If s is a pure-strategy equilibrium for
an aggregation game, then for each r, sr is strictly increasing on (θ

˜
r (s), θ̃r (s)).

4 Equilibrium properties of aggregation games

4.1 CUA strategies

We say that r ’s strategy is constrained unit affine (CUA) if it is unit affine except at the
announcement bounds, i.e., if for some λr ∈ R, sr (·) = min{ā,max{a, ι(·) + λr }}.
The defining property of a CUA strategy is that the extent of r ’s misrepresentation of
her type is independent of this type, except when r is constrained by the boundaries
of A. The parameter λr indicates the extent of r ’s misrepresentation. The quadratic
specification in (1) ensures that equilibrium strategies will be CUA. Indeed, if r were
not required to respect the bounds a and/or ā on λr , her optimal response to s−r would
be the affine strategy θr + λr (kr , s−r ), where

λr (kr , s−r ) = nkr︸︷︷︸
exaggeration

+
∑

i �=r

Eϑi (ϑi − si (ϑi ))

︸ ︷︷ ︸
counter-exaggeration

. (7)

In general, θr +λr (kr , s−r )will not belong to A for extreme realizations of θr . Accord-
ingly, r ’s constrained optimal response will be the CUA strategy:

sr (θr ) =min{ā,max{θr + λr (kr , s−r ), a}}. (8)

Equation (7) highlights the strategic misreporting incentives in an aggregation game.
A player exaggerates her information both to shift the center’s decision in the direction
of her bias kr [the first term on the rhs of (7)] and counter-exaggerates to offset the
aggregate exaggerations of other players (the second term). As players who prefer
higher outcomes attempt to influence the center by increasing their announcements,
other players who prefer lower outcomes will counter by decreasing theirs. As noted
earlier (p. 4), if there were no bounds on announcements, this tug-of-war would esca-
late endlessly. Thus, a necessary condition for the existence of an MPE is that the
announcement space A is bounded at least on one end. The announcement bounds
essentially limit the extent to which players can misreport their types. We will observe
below that playerswith different observable characteristics are restricted by the bounds
to different degrees.

To clarify concepts, we introduce some definitions. We will say that player r ’s
strategy sr (·) is
(1) non-degenerate (resp. degenerate) if the interval (θ

˜
r (sr ), θ̃r (sr )) is non-empty

(resp. empty);
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(2) up-constrained if θ
˜
r (sr ) = θ and θ̃r (sr ) < θ ;

(3) down-constrained if θ
˜
r (sr ) > θ and θ̃r (sr ) = θ ;

(4) single-constrained if it is either up-constrained or down-constrained;
(5) bi-constrained if it is both up-constrained and down-constrained; and
(6) almost-never-constrained if it is neither up-constrained nor down-constrained.

Degenerate
Almost-never-constrained strategies pick

boundary
interior points of A with probability one.20 An

MPE in which each player’s strategy is non-degenerate is called an NMPE.
All members of the set {sr (·) = min{ā,max{a, ι(·) + λr }}: λr ≤ a − θ} of down-

constrained degenerate strategies are functionally equivalent: in each case, sr (·) = a.
Similarly, all up-constrained strategies with λr ≥ ā− θ are equivalent. Hence, we can
impose without loss of generality (w.l.o.g.):

sr (·) = min{ā,max{a, ι(·) + λ}} is an admissible CUA strategy iff λr ∈ Λ

≡ [a − θ, ā − θ ]. (9)

Since ā > a and θ > θ , Λ �= ∅. From (2a) and (2b), if sr is an admissible CUA, then

θ
˜
r (sr ) = max{θ, a − λr } < min{θ, ā − λr } = θ̃r (sr ). (10)

If� ⊆ [a, ā ], we say that the announcement interval is inclusive. It follows from (10)
that

if � is inclusive, then no CUA strategy is bi-constrained. (11)

To see this, note that if � is inclusive and λr ≥ 0, then sr (θ) = θ + λr≥a + λr≥a.
Similarly, if λr ≤ 0, then sr (θ) ≤ ā. Since we focus exclusively on CUA strategies in
the remainder of the paper, we will sometimes use the symbol λr as a shorthand for
the CUA strategy with parameter λr . To identify an NMPE, we compute the λλλ vector
that solves the set (7) of n equations subject to the constraint (8). As a first step, we
let ξr (·) denote player r ’s deviation from affine, defined as the difference between the
CUA strategy sr (·) and the affine strategy ι(·) + λr , that is, from (8)

ξr (·) =min{ā,max{θr + λr , a}} − (θr + λr ) =

⎧
⎪⎨

⎪⎩

ā − (θr + λr ) if θr > θ̃r (λr )

(θr + λr ) − a if θr < θ
˜
r (λr )

0 otherwise

.

(12)

20 These distinctions relate to the concept of informative voting, which recurs throughout the information-
transmission literature. (It appears to have been introduced in Austen-Smith and Banks (1996).) Almost-
never-constrained strategies are informative, and degenerate ones are uninformative; the remaining types
are somewhere in between.
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Given λr , let Eξr denote r ’s expected deviation from affine (henceforth EDFA):

Eξr ≡Eϑr (sr (ϑr ) − (ϑr + λr )) (13)

=
∫ θ
˜
r

θ

(a − (ϑr + λr ))dH(ϑr ) +
∫ θ

θ̃r

(ā − (ϑr + λr ))dH(ϑr ). (14)

Thus,Eξr is a measure of the impact of bounds ā and a on r ’s expected announcement.
Note that

if r is single-constrained and Eξr �= 0, then λrEξr < 0. (15)

Deviations from affine play a critical role in our model. First, they limit the extent of
exaggeration and thus ensure that an MPE exists. Second, as Prop. 6 below shows, the
equilibrium expected payoff vector can be expressed exclusively in terms of the first
and second moments of the ξr ’s.

Substituting θi − si (θi ) = −(λi + ξi ) into (7) and rearranging, we obtain that if λλλ∗
is an MPE, then

nkr =
∑

i

λ∗
i +

∑

i �=r

Eξi (λ
∗
i ), for all r with λ∗

r ∈ int(Λ). (7′)

If λλλ∗ is an MPE, then for all i, j with λ∗
i , λ

∗
j ∈ int(Λ), (7′) immediately implies that

n(ki − kj) = Eξj(λ
∗
j ) − Eξi (λ

∗
i ). (16)

Figure 1 provides some intuition for the determination of equilibrium strategies for a
gamewith two players i and j, with 0 < ki = −kj. The figure is a diagonal cross section
of the three-dimensional graph from � × � to outcomes, that is, the graph depicts
the event that i and j observe signals with the same value. Player i is up-constrained;
player j is down-constrained. The thick piecewise-linear line represents the outcome
as a function of type realizations, given the two players’ strategies. The important
property highlighted by the heavy solid line is that the outcome accurately reflects the

aggregate signal only when θr ∈ [θ
˜
r , θ̃r ], for r = i, j; on the other hand, when θi > θ̃i

θj < θ
˜
j

(and θj ∈ [θ
˜
j, θ̃j]), the realized outcome is an under-

over estimate of the realized type.

Now, consider the outcome from player i’s perspective. For concreteness, suppose
θi = 0 and the horizontal axis represents j’s type. Player i’s ex post ideal outcome,
as a function of j’s type, is represented by the dashed line above the diagonal: for
every value of j’s type, i’s ex post ideal outcome exceeds this type by ki . When j
is unconstrained, her underreport exactly counteracts i’s overreport, resulting in an
outcome that is suboptimal from i’s perspective. However, at low values of θj, the
constraint a binds j’s underreporting, resulting in an outcome exceeding i’s ideal.
Equation (7′) indicates how the over- and underestimates are balanced in equilibrium:
in our two-player example, in which λi + λj = 0, Eq. (7′) reduces to 2ki = Eξj(λ

∗
j ).
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signal

outcome

player types

i’s strategy

j’s strategy

i’s ideal outcome

Area=|Eξ j(λ j)|= 2ki in equil (cf (7 ))

θ θ

ā

a

θ̃i

θ j

Fig. 1 Intuition for display (7′)

The right-hand term—the absolute magnitude of j’s deviation from affine—is the area
of the bottom left shaded triangle.

Since Eξr (λ
∗
r ) = 0 if r ’s equilibrium strategy is almost never constrained, (16) and

A1(ii) imply

Proposition 3 (Necessity of constraints) In any MPE, at most one player’s strategy
is almost never constrained.

An important property of an MPE is that, regardless of the width of the announcement
interval A, players misreport to the extent that the announcements of all but one player
are constrained, with positive probability, by one of the boundaries. The following
corollary of Prop. 3 is immediate.

Corollary 4 (Announcement bounds are necessary for equilibrium) If each player is
free to choose any report in R, then no pure-strategy equilibrium can exist.

Two further properties of MPEs are as follows:

Proposition 5 (Uniqueness and monotonicity of MPE)† Every aggregation game has
a unique MPE. In any MPE if ki > k j , then λ∗

i > λ∗
j .

4.2 MPE outcomes and payoffs

Wenext analyze two aspects of player r ’s equilibriumperformance: the extent towhich
the expected outcome of the game deviates from r ’s ideal, and the link between r ’s
equilibrium payoff and kr . We define as a benchmark the first-best outcome for player
r : this outcome would maximize r ’s payoff if she had complete information about the
average type. We denote this “ideal” outcome from r ’s perspective by t̂(θ, kr ). From
(1), it is
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t̂(θ, kr ) = μ(θ) + kr . (17)

Recalling that μ(s∗) is the equilibrium outcome of the game, the difference
Eϑ

(
μ(s∗(ϑ)) − t̂(ϑ, kr )

)
, which we label as r ’s expected deviation from first-best,

is a measure of the degree to which the equilibrium outcome differs in expectation
from player r ’s first-best. If s∗ = θ+λλλ∗ is an MPE profile and λ∗

r ∈ int(Λ), then from
(13) and (7′), r ’s expected deviation from first-best is a scalar multiple of r ’s EDFA,
that is,

Eϑ

(
μ
(
s∗(ϑ)

)− t̂(ϑ, kr )
) = Eξr/n. (18)

Property (18) establishes that in an NMPE, r ’s expected deviation from first-best is
determined entirely by the probability with which the announcement bounds restrict
r ’s announcement: the higher this probability is, the greater is the expected deviation,
whichwe shall call the first-moment effect on r ’s expected payoff. If θ is inclusive, then
r ’s expected deviation from first-best is positive

negative if r is
down-constrained
up-constrained . Even when the

first-moment effect is zero, r ’s payoff will be negatively impacted by a second-moment
effect, arising from the randomness in all players’ deviations from affine. From (1),
r ’s expected payoff from a strategy profile λλλ is −Eϑ

(
μ(ϑ) + kr − μ(s(θ))

)2, i.e., the
expectation of the squared difference between r ’s first-best outcome and the realized
outcome. Let V ξr (λr ) denote the ex ante variance of r ’s deviation from affine, i.e.,

V ξr (λr ) = Varϑ
(
sr (ϑr ) − (ϑr + λr )

)≤Var(θ). (19)

To verify the inequality in (19), note that when λr equals the upper bound ā − θ on
Λ, so that sr (·) = ā, V ξr (λr ) reduces to Varϑ

(
θ + ϑr

) = Var(θ). The inequality now

follows from the fact that ∂V ξr
∂λr

> 0 (expression (43) in the “Appendix”).

Proposition 6 (Equilibrium payoffs)† Let s∗ = θ + λλλ∗ be an MPE profile of an
aggregation game. For each player r with λ∗

r ∈ int(Λ), r ’s expected equilibrium
payoff is

Eϑu
(
μ
(
s∗
)
, μ(ϑ), kr

) = −Eϑ

(
μ(ϑ) + kr − μ

(
s∗
))2

= −
(
(Eξr (λ

∗
r )/n)2 + μ

(
V ξ(λλλ∗)

)
/n
)

. (20)

Proposition 6 shows that r ’s payoff is the sum of two negative effects: the first is the
square of the first-moment effect [see (18)], which differs for each player; the second is
the second-moment effect—i.e., the average, deflated by n, of the variances of players’
deviations from affine. The latter effect is common to all players. Thus, the difference
between two players’ expected equilibrium payoffs is proportional to the difference
between the squares of their expected deviations from affine.

Proposition 6 highlights an important property of our model: welfare losses arise
not from misreporting per se, but only from the indirect effects of misreporting via
players’ deviations from affine. The reason for this is that in equilibrium, players
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can reverse-engineer and hence offset the information distortions resulting from the
unconstrained misreports by others. However, players cannot offset the information
losses that result from deviations from affine. Specifically, since players know each
others’ λ-values, player r can infer the average state of nature μ(θ) from a profile of
announcements s−r (θ−r ) iff for each i �= r , player i’s announcement is unconstrained
by the announcement bounds, that is, i’s announcement does not deviate from i’s
affine function θi + λi .

We now consider social welfare. The standard benchmark is utilitarian.21 We refer
to this as average private welfare (APW). A natural alternative in our context is
to view social welfare from an unbiased perspective, i.e., from the perspective of
a player whose observable characteristic is zero, reflecting a preference for truthful
revelation. We define this measure as unbiased social welfare (USW). We will place
more emphasis on USW, since it has cleaner comparative statics properties.

USW =Eϑu(μ(s), μ(ϑ), 0) = −Eϑ (μ(ϑ) − μ(s(θ)))2 . (21a)

Under Assumption A1, the two measures differ by a scalar that is independent of
strategies.22

APW =USW −
∑

i

k2i /n. (21b)

From (34) in the proof of Prop. 6, the following result is immediate.

Proposition 7 (Unbiased social welfare) If λλλ∗ is an MPE profile of an aggregation
game, then

USW = −
{(

μ
(
Eξ(λλλ∗)

)+ μ
(
λλλ∗))2 + μ

(
V ξ(λλλ∗)

)
/n
}

. (22)

21 See, e.g., Morgan and Stocken (2008), Gruner and Kiel (2004), Rosar (2010), Kawamura (2011).
22

APW = 1

n
Eϑ

⎛

⎝
n∑

i=1

u(μ(s(θ)), μ(ϑ), ki )

⎞

⎠

= − 1

n
Eϑ

∑

i∈I
(μ(ϑ) + ki − μ(s(θ)))2

= − 1

n

⎧
⎨

⎩

∑

i

k2i + 2
∑

i

kiEϑ (μ(ϑ) − μ(s(θ))) + nEϑ (μ(ϑ) − μ(s(θ)))2

⎫
⎬

⎭

=USW −
∑

i

k2i /n.
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4.3 Anchored games

Our discussion so far has highlighted the central role played by the EDFA in deter-
mining equilibrium payoffs. The EDFA is an especially useful concept for games in
which some player j’s equilibrium EDFA is zero. This property arises when j’s equi-
librium strategy is either never constrained or else the constraints on j imposed by
the two announcement bounds cancel each other out in expectation. We shall refer to
such games as anchored games and to player j as the anchor. Anchored games exhibit
strong properties and are particularly easy to analyze, since there are closed-form
expressions relating the endogenous variables to primitives of the game, such as the
vector k, the announcement bounds, and the size of the game. In Sects. 5–6 below,
we study games in which a unique MPE with an anchor necessarily exists. In Sect. 5,
she is the “middle” player in a symmetric game. In Sect. 6, she is the player with the
largest observable characteristic in a game in which ā never binds.

To streamline our analysis of these games, we impose an additional assumption:

Assumption A3 (i) The announcement space is inclusive (cf. p. 16); (ii) the type
distribution is uniformwith density parameter h = 1/(θ−θ); (iii) ||k||∞ < (θ−θ)/4n.

Parts (i) and (ii) simplify our analysis. Moreover,

Remark 1 Every anchored game satisfying A3(iii) has an NMPE

Part (iii) ensures that every player’s equilibrium strategy is non-degenerate: without
this property, the k vector could be sufficiently dispersed that some players, in their
efforts to shift the average announcement in their favor, would choose strategies con-
strained with probability one by one of the announcement bounds.

Proposition 8 (Properties of anchored games) Let λλλ∗ be an MPE profile of an
anchoredaggregationgame, and let j be theanchor.For eachplayerr withλ∗

r ∈ int(Λ),

(1) r’s EDFA, Eξr = n(kj − kr ), and
(2) r’s expected deviation from first-best is (kj − kr ).

Part i) is obtained by combining (16) with the defining property of an anchored game,
i.e., Eξj(λ

∗
j ) = 0. Part ii) then follows from (18). Strikingly, r ’s expected deviation

fromfirst-best depends exclusively on the gapbetween j’s observable characteristic and
r ’s,while r ’s EDFAdepends both on this gap andn. To seewhy the latter is proportional
to n, recall that r ’s objective is to shift the mean announcement by a magnitude kr that
is independent of n; the greater n is, the smaller is r ’s contribution to the mean, and
hence, the more r must misreport. Note that the more r misreports, the more likely it is
that she will be constrained by the announcement bounds. Proposition 8(ii) shows that
the farther away a player’s observable characteristic is from the anchor’s, the larger in
absolute value is her expected deviation from first-best, and from Prop. 6, the lower
is her equilibrium payoff relative to other players.

5 Symmetric games

In this section, we study games that are symmetric in a strong sense. We say that
the announcement space is symmetric if the announcement bounds are symmetric
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about zero (i.e., if a = −ā), and that the type distribution is symmetric if θ = −θ .
(Assumption A3(ii) then implies that θ is symmetrically distributed around its mean
of zero.) We say that the observable characteristic vector k is symmetric if

for every player r̄ with kr̄ > 0, there exists amatched player r with kr = −kr̄ .
(23)

We will refer to players whose observable characteristics are positive
negative as the

right-wing
left-wing

faction. There is in addition a middle player m with km = 0. We will refer to a game
satisfying A1–A3 and the above symmetry conditions as a symmetric aggregation
game (SAG).

Proposition 9 (NMPE of symmetric games)† Every SAG has a unique NMPE satis-
fying

Eξr (λ
∗
r ) = −nkr , for all r with λr ∈ int(Λ). (24)

Moreover,

(1) λ∗
m = 0;

(2) for each player r̄ and matched player r, λ∗
r = −λ∗̄

r .

Only the middle player m announces truthfully in equilibrium. Assumption A3(i)
implies that this player is never constrained; hence, every SAG is anchored (see Sect.
4.3). All players other thanm misreport; their EDFA’s are determined entirely by their
observable characteristics and n.

It is immediate from Props. 6 and 9 that r ’s equilibrium expected payoff in a SAG
is entirely determined by kr and the average of the second moments of all players’
deviations is from affine.

Eϑu
(
μ
(
s∗
)
, μ(ϑ), kr

) = −
(
μ(V ξ)/n + k2r

)
. (20′)

Moreover, Prop. 9 implies that the squared term in expression (22) is zero, so that USW
depends only on the average second-moment effect, that is, the potentially negative
first-moment effect of exaggeration by player r̄ is fully offset by the equal and opposite
first-moment effect of her matched player, r. Specifically, in a SAG,

USW = − μ
(
V ξ(λλλ∗)

)
/n. (22′)

Prop. 9 is useful for analyzing the comparative statics of aggregation games. The
parameters we study below are (1) the magnitude of the bounds on the announcement
space (Sect. 5.1); (2) the heterogeneity of players’ observable characteristics (Sect.
5.2); and (3) the number and composition of players (Sect. 5.3). Our analysis sheds
light on the “design” of information aggregation mechanisms. In the language of our
illustrative vignette—a board making an investment decision—we will investigate
the effect on (a) the strategic misreporting of board members; (b) the truthfulness of
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aggregate reporting; and (c) overall welfare as (1) the board relaxes the restrictions
on its allowable messages; (2) the heterogeneity of board members’ biases increases;
and (3) the board becomes larger.

Throughout this section, whenever we make a statement relating to either θ , ā, or
kr̄ , we will be implicitly also making the matching statement about θ , a, or kr . Further,
when we study the effect of increasing ā, we will be simultaneously, but implicitly,
reducing a to preserve symmetry.

5.1 Effects of changing the announcement bounds

Since players strategically misreport their private information, one might expect that
welfare would be enhanced by tightening the announcement bounds to eliminate
extreme messages. But this intuition is incorrect. From Prop. 9, player r ’s EDFA,
Eξr (·), is independent of ā. If kr �= 0, then expression (14) implies that as ā changes,
λr must adjust so that Eξr (·) remains equal to −nkr . Specifically,

Proposition 10 (Effect of changing ā)† In the unique NMPE of an SAG:

dλr
dā

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if r is the middle player

1 if r is up-constrained

−1 if r is down-constrained
(1−H(θ̃r ))−H(θ

˜
r )

H(θ
˜
r )+(1−H(θ̃r ))

if r is bi-constrained

(25)

Proposition 10 implies that if r is single-constrained, she increases the degree of her
misreporting at exactly the rate that the bounds are relaxed; she responds more slowly
if she is bi-constrained.

Now, consider the welfare effects of relaxing the announcement bounds. First,
suppose that the announcement space is inclusive, so that no player is bi-constrained.
In this case, for the middle player m, ξm(·) = 0 is identically zero, and thus, Eξm
and V ξm are independent of ā. For r �= m, r is either up- or down-constrained: from
(12) and (25), ξr (·) is invariant w.r.t. symmetric changes in ā and a, that is, players
with k �= 0 adjust their announcements to fully compensate for the change in the
announcement bounds. Since, from Prop. 6, r ’s expected payoff is determined by
the first moment of r ’s own deviation from affine, and the second moments of all
players’ deviations, changes in ā and a, have no impact on r ’s payoff, provided that
the announcement space is inclusive.

This independence property no longer holds when at least one player’s equilibrium
strategy is bi-constrained. For some intuition for this difference, Fig. 2 considers
the impact of relaxing the announcement bounds when only the middle player m is
bi-constrained. Whenever m’s type lies outside the interval [a, ā], obliging her to
misreport her type, all players are negatively affected. The areas of the large triangles
at either end of the type spectrum indicate the magnitude of the distortion of m’s
information.When the bounds are relaxed to [a′, ā′], the sizes of both triangles shrink,
reflecting a decline in the variance of m’s deviation from affine. Ex ante, this change
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signal

player types
m’s original strategy
m’s new strategy

θ θ

ā

a

ā

a

Fig. 2 Intuition for Prop. 11

benefits all players equally, since, from Prop. 6, each player’s payoff is decreasing
in the variance of all players’ deviations from affine. Equation (42) in the proof of
Prop. 11 provides an expression for the rate at which a bi-constrained player’s variance
declines as the bounds are relaxed. The more players who are initially bi-constrained,
the greater is the collective benefit of a relaxation.

Proposition 11 (Effect of relaxing announcement bounds)† In the unique NMPE of
an SAG, as the announcement space expands:

(1) if initially the announcement space is inclusive, then the equilibrium expected
payoff of every player remains constant;

(2) if initially some player is bi-constrained, then each player’s equilibrium expected
payoff is equally positively affected, as is the unbiased social welfare.

Prop. 11 complements our discussion of Prop. 6 on p. 20. While misreporting
unambiguously increases as the announcement bounds are relaxed, welfare is either
unaffected or increases. This result highlights that it is deviations from affine rather
than misreporting per se that reduce welfare. The proposition also delivers a strong
normative message: at least from the perspective of information aggregation, the
announcement space should be sufficiently large that it contains the type space. For
real-world information-transmission problems in which the center is non-strategic,
our results thus provide a justification in terms of aggregation for “free speech.”

5.2 Effects of increasing player heterogeneity

We next study how player heterogeneity affects information aggregation and welfare.
In particular, we study the impacts of increases in both inter- and intra-faction hetero-
geneities. In SAGs, Part iii) of Prop. 8 implies Eξr = −nkr . Substituting this identity
into (14) and totally differentiating w.r.t. kr and λr , we obtain
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dλr
dkr

= n

H(θ
˜
r ) + (1 − H(θ̃r ))

> n (26)

where the denominator is the probability with which player r is constrained by the
announcement bounds. For kr > 0, as kr increases and players becomemore heteroge-
neous, λr also increases and at a rate faster than kr in order to maintain the equilibrium
property that Eξr = −nkr . It now follows, by differentiating (14) and (19) w.r.t. λr ,
that as kr increases, both |Eξr | and V ξr also increase, reducing the payoff not only of
r but of all other players as well.

Proposition 12 (Effect of dispersing players’ observable characteristics)† In the
unique NMPE of an SAG, an increase in |kr | reduces each player’s expected equi-
librium payoff.

This result is hardly surprising: as players become more heterogeneous, the extent of
their misreporting increases and the announcement bounds become more restrictive,
thereby reducing welfare. The impact of an increase in intra-faction heterogeneity is
less intuitive. Recall that in an SAG there is a right-wing

left-wing faction with k > 0
k < 0 and that

players are heterogeneous within each faction. We say that intra-faction heterogeneity
increases when, within each faction, the extremists become more extreme and the
moderates become more moderate. To explore the welfare impacts of this shift, we
reduce notation by assuming, for the remainder of Sect. 5.2:

Assumption A4 (i) [θ, θ ] = [−1, 1], so that h(·) = 1/2; (ii) (n−1) is divisible by 4.

Let k̄
+ ∈ (0, 1)(n−1)/2 be a strictly increasing vector, denoting the observable charac-

teristics of the right-wing faction. Choose vectors α ∈ R
(n−1)/4
++ and dk = (−α,α) ∈

R
(n−1)/2. We will consider a family of right-wing profiles of the form {k̄+ + γ dk :

γ �0}. Theobservable characteristics of the left-wing faction are impliedby symmetry.
An increase in γ represents a faction-mean-preserving spread of each faction’s profile
of observable characteristics. As γ increases in a neighborhood of zero,23 the moder-
ate members of the faction become more moderate—the dk’s are negative for the first
(n−1)/4 faction members, all of whom have k’s below the faction’s median—while
the extreme members become more extreme. Prop. 13 below establishes the following
effects of such a spread. If players’ characteristics are initially quite homogeneous—
specifically, contained in the interval (−1/4(n−1), 1/4(n−1))—the spread will reduce
both USW and APW. On the other hand, if the factions are initially quite polarized—
specifically, no player’s characteristic belongs to [−1/4(n−1), 1/4(n−1)]—the spreadwill
increase USW (though not necessarily APW).

Proposition 13 (Effect of a faction-mean-preserving spread of observable characteri-
stics)† Let USW(γ ) and APW(γ ) denote, respectively, unbiased social welfare and
aggregate private welfare for the unique NMPE of the n-player SAG satisfying
Assumption A4, whose right-wing faction has the profile of observable characteristics
k̄

+ + γ dk.

23 If γ is sufficiently small and k is strictly monotone, the perturbed vector k̄+ + γ dk will be also strictly
monotone.
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(1) if max(k̄
+
) < 1/4(n−1), then dUSW(γ )

dγ

∣
∣
∣
γ=0

< 0 and dAPW(γ )
dγ

∣
∣
∣
γ=0

< 0

(2) if min(k̄
+
) > 1/4(n−1), then dUSW(γ )

dγ

∣
∣
∣
γ=0

> 0

To obtain intuition for this surprising result, we return to Fig. 1 and set j = r, with
kr < 0. Intuitively, the magnitude of V ξr increases with the area of the triangle at the
bottom left of the figure. This area increases with the square of r’s low threshhold type,
θ
˜
r , i.e., V ξr is convex in r’s threshhold type. On the other hand, in a symmetric game

with a uniform distribution over types, r’s threshhold type is a concave function of r’s
EDFA. The curvature of the convolution relating V ξr to kr depends on the balance
between these two effects.

5.3 Effects of changing the size of the game

Until now, we have considered games inwhich the dimensionality of the state of nature
θ has been fixed.We now allow this dimensionality to vary and consider the possibility
that information is collected about only some of the dimensions. Specifically, we
assume θ ∈ R

N and let {N 1,N 2} be a partition of {1,…, N }, with n = #N 1. We
assume thatN 1 is symmetric in the sense of (23) and replace n with N in the statement
of A3(iii), so that ||k||∞ < θ/2N . For each component θi of θ such that i ∈ N 2, there
is no corresponding player. To motivate this structure, consider again our vignette
of a board of directors analyzing an investment project. Uncertainty relating to the
project’s success has N dimensions. Each of the n board members is assigned exactly
one dimension to investigate; since n ≤ N , theremay be dimensions of uncertainty that
are not “covered” by the board. We refer to such games as partially covered games
and the dimensions in N 2 as uncovered dimensions. In this section, we study the
impacts on equilibrium strategies and welfare in partially covered games of varying n.
For example, our original board could be augmented (increasing n) in order to obtain
information about more dimensions of the project. This would enable the center to
make a more informed decision and increase welfare. However, as n increases, more
players will engage in the tug-of-war of exaggeration and counter-exaggeration. This
would increase the first and second moments of players’ deviations from affine and
thus lower welfare. Since the true level of information isμ(θ) =∑2

i=1
∑

j∈N i
θ j/N ,

the CISE outcome in this context [cf. (4)] is given by

t (a) =
∑

i∈N 1
ai +∑k∈N 2

θek

N
= μ1(a) + μ2(θ

e) (4′)

where θek = Eθk , μ1(a) =
∑

i∈N 1
ai

N , and μ2(θ
e) =

∑
k∈N 2

θek
N . In equilibrium, each

player still adopts a CUA strategy; for r ∈ N 1, the level of misreporting is given by

λr = Nkr +
∑

i∈N 1\{r}
Eϑi (ϑi − si (ϑi )) . (7′′)
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Since the center averages all N dimensions, r ’s level of exaggeration increases from
nkr to Nkr [cf. (7)], but her level of counter-exaggeration depends only on n. The
analog of Prop. 9 [cf. (24)] is now

Nkr = −Eξr (λ
∗
r ) for all r. (24′)

From the equilibrium strategies in (7′′), we obtain the USW measure: [cf. (22′)]:

USW = − {μ1(V ξ(λλλ∗))/N + Var(θ) (1 − n/N)
}

(22′′)

The first and second terms are, respectively, the welfare losses that result from misre-
porting by strategic players and those from “uncovered” dimensions due to the lack of
information. Prop. 14 further exploits symmetry to obtain a closed-form expression
for (22′′):24

Proposition 14 (Welfare in Partially Covered Games)† For partially covered SAGs,
USW is given by

USW = −
∑

i∈N 1

k2i

(√
8

9Nh|ki | − 1

)

− θ
2

3

(
1 − n

N

)

≤ −
∑

i∈N 1

k2i

(
4
√
2

3
− 1

)

− θ
2

3

(
1 − n

N

)
< 0 (27)

Consider an increase innwhile holding N fixed, so thatmore uncovereddimensions are
covered by strategic players. From (27), USW rises at the rate of θ

2
/3N , as information

is obtained about more dimensions, but decreases at the rate of k2i

(√
8

9Nh|ki | − 1
)

as more players misreport their information and the variances of players’ deviations
from affine increase. Strikingly, as Prop. 15 proves, the welfare gains unambiguously
outweigh the welfare losses:

Proposition 15 (Effect of adding players)† Given assumptions A1–A3,

k2i

(√
8

9Nh|ki | − 1
)

< θ
2
/3N, so that in partially covered SAGs with N > n, USW

rises as n increases holding N fixed.

Thus, increasingnwhile holding N fixed always improveswelfare froman information
perspective, even when the additional players act strategically. The explanation for
this is apparent from an examination of (22′′). Since the new players’ strategies are
non-degenerate (Remark 1), each new player provides some information about the
dimension that she covers, which is an improvement on the zero information that is
obtained if the dimension remains uncovered. In other words, the second-moment
effect contributed by even a strategic player is necessarily of smaller magnitude than
the variance of θi .

24 Since the distribution of θ is uniform, and θ + θ = 0 in a SAG, Var(θ) = θ
2
/3.
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6 Single-bounded games

In many applications, the announcement space is naturally bounded on one side but
not the other. Most obviously, this occurs when announcements are restricted to be
nonnegative but there is no natural upper bound. (For example, our board members
might be reporting prices, interest rates, or the variances of some privately observed
statistic.) We refer to games satisfying this condition as single-bounded aggregation
games. In this context, it would be natural to model the upper bound on actions in a
single-bounded game as infinite.However, tomaintain consistencywith the framework
in Sect. 3, we impose an artificial upper bound that will never bind. Since, from (7), no
player’s equilibrium announcement will exceed n

(
max(k) + θ − a

)+ a, we impose
w.l.o.g. in Sect. 6

Assumption A5 a = θ = 0, and ā = n
(
max(k) + θ

)
.

A5 implies that the announcement space of a single-bounded game is inclusive. Fur-
ther, since the upper bound ā is never binding, ξr (·) ≥ 0 (from12). Hence,A5, together
with (15), implies

λr ≥ 0 �⇒ Eξr (λr ) = 0. (28)

In a single-bounded game, a key role is played by the player h, whose observable
characteristic exceeds that of any other player. Since

∑
i ki = 0, kh is necessarily

positive.

Proposition 16 (Single-Bounded Games)† Every single-bounded aggregation game
satisfying A1, A2, and A5 has a unique MPE λλλ∗ in which λ∗

h ≥ 0 and Eξh(λ
∗
h) = 0.

Moreover, for all r �= h, λ∗
r ∈ int(Λ) implies Eξr (λ

∗
r ) = n(kh − kr ) > 0.

Since Eξh(λ
∗
h) = 0, every single-bounded game is anchored, with h as the anchor.

While aggregation games satisfying Assumption A5 look and feel quite different from
the SAGs studied in Sect. 5, the comparative statics properties we obtain in Sect. 5 and
in this section are remarkably similar, at least for games in which the spread of k is
small enough relative to n that an NMPE exists.25 The similarity of the properties they
exhibit reflects the dominant role played by the anchor. We begin by characterizing
the equilibrium of an arbitrary single-bounded game and then discuss its comparative
statics properties. To avoid repetition, no formal results will be presented; we merely
relate these properties to the corresponding ones in Sect. 5.

Since Eξh = 0, (18) implies that the equilibrium outcome implements h’s first-best
outcome in expectation. Since a = θ , Eξr > 0 for r �= h implies λr < a−θ = 0, that
is, every other player, even including ones whose observable characteristicsare very
close to h’s, will underreport to counteract h’s extreme overreporting. Indeed, from (7′)

25 It is straightforward to identify conditions analogous to Assumption A3(iii) that guarantee the existence
of an NMPE. To save space, we leave this as an exercise for the reader.
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and Prop. 8,26
∑

i λi = n(1 − n)kh < 0, i.e., when n > 2, h’s overreporting is more
than compensated by the sum of all other players’ (unconstrained) underreporting.
Since player r �= h is constrained by the lower bound a, her expected first-best
outcome differs from the expected equilibrium outcome. From Prop. 16, r ’s EDFA,
Eξr = n(kh − kr ), is greater, the more different is r ’s characteristic from h’s.

To compute USW in a single-bounded game, we first note from (7′) that

λ∗
h = nkh −

∑

i �=h

(Eξi (λ
∗
i ) + λ∗

i ). (7′′′)

Substituting this expression for λ∗
h into (22), we obtain

USW = −
(
k2h + μ

(
V ξ(λλλ∗)

))
/n. (22′′′)

There is a striking similarity between (22′′′) and the corresponding expression (22′) for
SAGs. Except for the kh term, the first-moment effects in single-bounded games cancel
each other out; the only remaining source ofwelfare loss is the n-deflated average of the
second-moment effects.Note, further, that since kj = 0 for the anchor j = m in anSAG,

we can write, for either class of anchored game, USW = −
(
k2j + μ(V ξ(λλλ∗))

)
/n.

The difference between the two classes is that in an SAG, each player’s first-moment
effect is offset by her matched player’s, while in a single-bounded game, the anchor
offsets unilaterally all the other players first-moment effects.

6.1 Effects of changing the announcement bound

Suppose the lower announcement bound, a, decreases, holding θ constant at zero,
ensuring that the announcement space remains inclusive. The effects of this change
are identical to those discussed in Sect. 5.1: each player’s strategy adjusts to hold
constant the first and second moments of her deviation from affine. The equilibrium
outcome remains unchanged, as do all the other players’ expected payoffs.

6.2 Effects of increasing player heterogeneity

Once again, the effects here are qualitatively similar to the effects described in Sect.
5.2. In the present context, we interpret an increase in heterogeneity as an increase in
all components of the gap vector �k�k�k = (kh − ki )i �=h . Such a change unambiguously
lowers all players’ expected payoffs and USW. The proof closely parallels the proof
of Prop. 12. Again, it is more interesting to consider the impact of an increase in

26 Using (7′), then Prop. 8, and finally, Assumption A1(i), we obtain

nkh =
∑

i
λi +

∑

i �=h
Eξi (λi ) =

∑

i
λi + n

∑

i �=h
(kh − ki ) =

∑

i
λi + n2kh .
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intra-faction heterogeneity—for example, the effect of a mean-preserving spread of
�k�k�k. If we impose Assumption A3 and let [θ, θ ] = [0, 1], the result we obtain is very
similar to Prop. 13. If the largest element of �k�k�k is less than 1/4(n−1), USW declines
with a mean-preserving spread of �k�k�k. On the other hand, if the smallest element is
greater than 1/4(n−1), USW increases.

6.3 Effects of changing the size of the game

Finally, we consider the effect in a single-bounded, partially covered game of varying
the numbers n1 and n2 of strategic and non-strategic players as well as the dimension-
ality N of the state of nature. For consistency, we assume that the identity of the anchor
player h remains constant throughout. The effects of these variations are similar inmost
respects to the effects analyzed in Sect. 5.3. As in an SAG, r ’s EDFA is proportional
to N . In this case, if λλλ∗ is an equilibrium profile, then Eξr (λ

∗
r ) = N (kh − kr ) > 0.

The expression for r ’s expected payoff is identical to the right-hand side of (20′),
except that the kr s are replaced by (kh − kr )s. The comparative statics of USW and
expected payoffs w.r.t. n1 and N are comparable to those summarized in Prop. 15. The
one striking difference between symmetric and single-bounded games concerns the
strategic role played by the anchor player. An SAG is anchored by the middle player
m, whose role is entirely passive: regardless of who else is playing the game, λ∗

m = 0.
A single-bounded game is anchored by player h, whose strategy λ∗

h plays a pivotal
equilibrating role. For r �= h, r ’s expected deviation from first-best is positive, and
independent of n, even though as n increases, each newplayer contributes an additional
downward bias to the mean report (i.e., r �= h �⇒ λ∗

r < 0). This independence
property holds because, as noted above (p. 31), the anchor h single-handedly balances
the sum of all other players’ negative biases. More precisely, we replace n by N in
(7′′′) to obtain λh = Nkh −∑i �=h (Eξi (λi ) + λi ); since the number of terms in the
summation increases, and each one is negative, λh increases super-proportionally as
N increases.

7 Summary

This paper contributes to the literature on information aggregation. When private
information is aggregated, or multiple expert opinions are solicited, incentives arise
for agents to exaggerate or to counter-exaggerate, in order to offset the exaggeration
by other players. While the former concept has been addressed in the literature, the
latter has not. We analyze the incentives for both tendencies in a model with multiple
heterogeneous information providers and a single recipient. Three features distinguish
our framework from others in the literature: players’ reports are aggregated by a
mechanistic averaging rule, their strategy sets are intervals rather than binary choices,
and they are ex ante heterogeneous. Our model can be applied to a wide range of
institutional settings, including committees, media exchanges, judges’ panels, online
review sites, and many others.

In our model, the “center” is restricted by governance structures to be non-strategic,
as often happens in real-world settings such as faculty committees, corporate boards,
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and governmental working groups. This restriction renders it critically important to
select “appropriate” committee or board members whenever the center can do so.27

While our model assumes a passive center that takes both the reports and the member-
ship of the players as given, our results on player heterogeneity suggest guidelines for
how committee members might be selected. For instance, suppose m < n members
of a committee with known biases are already on board, and the center needs to select
the remaining n−m members. Sections 5.2 and 6.2 imply that it is not necessarily true
that the center should select members with the lowest degrees of biases. Instead, the
n − m members should be chosen to minimize the overall heterogeneity of the entire
committee. While this translates into selecting (symmetric) member pairs with the
lowest biases for symmetric games, for single-bounded games, the remaining mem-
bers should be chosen, so that their biases are as close as possible to the most biased
of the m existing members, i.e., the one with the highest bias k.

8 Appendix: Proofs

Proof of Proposition 1 To prove the proposition, we apply Theorems 1 and 2 of Athey
(2001). The first of these theorems is used to establish existence for finite-action
aggregation games. The second implies existence for general aggregation games. To
apply Athey’s first theorem, we define a finite-action aggregation game to be one in
which players are restricted to choose actions from a finite subset of A. In all other
respects, finite-action aggregation games are identical to (infinite action) aggregation
games. We now check that u satisfies Athey’s Assumption A1. Clearly, our types have
joint density w.r.t. Lebesgue measure, which is bounded and atomless. Moreover, the
integrability condition inAthey’sA1 is trivially satisfied, sinceu is bounded.Moreover,
inequality (6) implies that the SCC holds. Therefore, every finite-action aggregation
game has an MPE in which player r ’s equilibrium strategy sr is non-decreasing. By
Athey’s Theorem 2, the restricted game has an MPE, call it s∗. To show that s∗ will
also be an equilibrium for the original, unrestricted game, it suffices to show that for

all r , all θ and all a > ā,
∂Ur (a,θ;s∗−r )

∂a < 0. To establish this, note that s∗−r ≥ s−r ≥ 0,
so that since t is strictly increasing, a > ā implies

U ′
r (a, θ; s∗−r )<U ′

r (ā, θ; s∗−r )≤U ′
r (ā, θ; s−r )≤U ′

r (ā, θ; 0)≤ 0

Finally, to establish that sr is strictly increasing and continuously differentiable
on (θ

˜
r (s), θ ], note that U ′

r (sr (·), ·; s−r ) = 0 on (θ
˜
r (s), θ ]. From (6), Assump-

tion A2 and the implicit function theorem, we have, for all θ ∈ (θ
˜
r (s), θ ], dsr (θ)

dθ =
− ∂2Ur (sr (θ),θ;s−r )

∂a∂θ

/
∂2Ur (sr (θ),θ;s−r )

∂a2
> 0. ��

Proof of Proposition 2 Suppose that s is a non-monotone pure-strategy profile, that
is, for some r , and some θr , as well as δ > 0 with θ

˜
r (s) < θr and θr + δ < θ̃r (s), we

have da = sr (θ + δ) − sr (θ) ≤ 0. Since, clearly, Ur (·, ·; s−r ) is twice continuously

27 We thank an anonymous referee for this insightful observation.
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differentiable, it follows from the Taylor–Lagrange theorem that there exists ζ ∈ [0, 1]
such that

U ′
r

(
sr (θ + δ), θ + δ; s−r

)−U ′
r

(
sr (θ), θ; s−r

)

=�U ′
r

(
sr (θ)+ζ da, θ + ζ δ; s−r

) · (da, δ)≥ ∂2Ur
(
sr (θ)+ζ da, θ + ζ δ; s−r

)

∂a∂θ
δ≥0

The weak inequality holds because da ≤ 0, and from Assumption A2 and (4),
Ur (·, ·; s−r ) is strictly concave in r ’s action. The strict inequality follows from (6),
given that δ > 0. But optimality requires that U ′

r

(
sr (·), ·; s−r

) ≡ 0 on (θ
˜
r (s), θ̃r (s)).

Hence, s cannot be an equilibrium profile. ��
Proof of Proposition 5 Wewill prove uniqueness only for non-degenerate equilibrium
profiles. Uniqueness for other profiles is ensured by restriction (9), but we omit the
details. Let λλλ∗ be an NMPE for the aggregation game, and let λλλ be any other profile of
strategies such that for some j, λj �= λ∗

j . We will show that if λλλ satisfies the necessary
condition (16), then it fails the other necessary condition (7′).

We first establish a property of EDFA that will be useful. Differentiating (14) w.r.t.
λr and inferring from (10) that H(θ

˜
r ) < H(θ̃r ), we obtain

dEξr

dλr
= −

(

H(θ
˜
r ) + 1 − H(θ̃r )

)

⊂ (−1, 0] (29)

and
dEξr

dλr
= 0 iff r is almost never constrained

Suppose w.l.o.g. that λj > λ∗
j . From (29), Eξj(λj) < Eξj(λ

∗
j ). For all r �= j, (16)

implies that Eξr (λr ) < Eξr (λ
∗
r ), and (29), in turn, implies that λr > λ∗

r . To establish
that λλλ cannot satisfy (7′), it suffices to show that

⎛

⎝
∑

i

λi +
∑

i �=j

Eξi (λi )

⎞

⎠ >

⎛

⎝
∑

i

λ∗
i +

∑

i �=j

Eξi (λ
∗
i )

⎞

⎠ = nkj

or, equivalently,

λj − λ∗
j +

∑

i �=j

(
λi − λ∗

i

)
>
∑

i �=j

(
Eξi (λ

∗
i ) − Eξi (λi )

)

This last inequality is indeed satisfied, since by assumption, λj > λ∗
j , while (29)

implies that for all i �= j, λi − λ∗
i > Eξi (λ

∗
i ) − Eξi (λi ).

For the monotonicity of MPE, we prove λ∗
i > λ∗

j by contradiction. Suppose λ∗
i ≤

λ∗
j . The fact that θ

˜
r (λr ) = a − λr and θ̃r (λr ) = ā − λr imply that θ

ĩ
(λ∗

i ) ≥ θ
˜j

(λ∗
j )

and θ̃i (λ
∗
i ) ≥ θ̃ j (λ

∗
j ). Then, from (14), we know that Eξi (λ

∗
i ) ≥ Eξ j (λ

∗
j ). But (16)

and ki > k j imply that Eξi (λ
∗
i ) < Eξ j (λ

∗
j ). ��
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Proof of Proposition 6 We first establish a property of Eξ. Aggregating the identity
in (13) across players and rearranging, we obtain

Eϑ

(
μ
(
s∗(ϑ)

)− μ(ϑ)
) = μ

(
λλλ∗)+ μ(Eξ). (30)

Let ξ∗
r = ξr (λ

∗
r ). Expanding the left-hand side of (20), we obtain

Eϑ

(
μ(ϑ) + kr − μ

(
s∗(ϑ)

))2 = Eϑ(μ
(
s∗(ϑ)

)− μ(ϑ) − kr )
2

= Eϑ

(
μ
(
s∗(ϑ)

)− μ(ϑ)
)2 − 2krEϑ

(
μ
(
s∗(ϑ)

)

−μ(ϑ)) + k2r

= Eϑ

(
μ
(
s∗(ϑ)

)− μ(ϑ)
)2 − 2kr

(
μ
(
Eξ∗)

+μ
(
λλλ∗))+ k2r (31)

The last equality follows from (30). Expanding the first term on the right-hand side of
(31),

Eϑ

(
μ
(
s∗(ϑ)

)− μ(ϑ)
)2 = Eϑ

(
μ
(
s∗(ϑ) − (ϑ + λλλ∗)
︸ ︷︷ ︸

ξ∗

)+ μ
(
λλλ∗))2

= Eϑ

(
μ
(
s∗(ϑ) − (ϑ + λλλ∗)

))2

+2μ
(
λλλ∗)μ

(
Eξ∗)+ μ

(
λλλ∗)2 (32)

The first equality merely adds and subtracts μ(λλλ∗) and rearranges terms; the second
averages both sides of the identity in (13). Now, expand the first term in (32) to obtain

Eϑ

(
μ
(
s∗(ϑ) − (ϑ + λλλ∗)

))2 =
(
∑

i

Eϑi

(
s∗
i (ϑi ) − (ϑi + λ∗

i

))2

+
∑∑

i �= j
Eξ∗

i Eξ∗
j

)

/n2

=
(
∑

i

V ξ∗
i +

∑

i

(
Eξ∗

i

)2 +
∑∑

i �= j
Eξ∗

i Eξ∗
j

)

/n2

=
⎛

⎝
∑

i

V ξ∗
i +

[
∑

i

Eξ∗
i

]2
⎞

⎠ /n2

= μ
(
V ξ∗)/n + (μ(Eξ∗))2 (33)

The first equality is obtained by expanding μ(ϑ + λλλ∗ − s∗(ϑ)); the second is from the
relationship E(X2) = Var(X) + (EX)2 for a random variable X . Now, substituting
(33) back into (32),
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Eϑ

(
μ
(
s∗(ϑ)

)− μ(ϑ)
)2 = μ

(
V ξ∗)/n + (μ(Eξ∗)+ μ

(
λλλ∗))2 (34)

Finally, substitute (34) back into (31) to obtain

Eϑ

(
μ(ϑ) + kr − μ

(
s∗(ϑ)

))2 = μ
(
V ξ∗)/n + (μ(Eξ∗)+ μ

(
λλλ∗)− kr

)2

= μ
(
V ξ∗)/n + (Eξ∗

r /n)2

The last equality is obtained by adding Eξ∗
r /n to both sides of (7′) and substituting

for kr . ��
Proof of Remark 1 To verify that A3(iii) guarantees non-degeneracy, it suffices to
check that Eξr (λ

∗
r ) = n(kj − kr ) is consistent with λ∗

r ∈ int(Λ). Assuming w.l.o.g.
that λ∗

r > 0, (14) implies

Eξr (λ
∗
r ) =

∫ θ

ā−λ∗
r

(
ϑr + λ∗

r − ā
)
dh(ϑr ) = 0.5h

(
λ∗
r + θ − ā

)2

so that λ∗
r + θ − ā =

√
2

h
Eξr =

√
2

h
n(kj − kr ) if λ∗

r ∈ int(Λ) (35)

The last equality follows from Prop. 8. Also, from A3(iii),

2n(kj − kr )/h≤4n

h
||k||∞ <

4n

h
(θ − θ)/4n = (θ − θ)2

so that λr =
√

2
h n(kj − kr ) − (θ − ā) <

(
(θ − θ) − (θ − ā)

) = ā − θ , verifying that
λ ∈ int(Λ). ��
Proof of Proposition 9 The existence of a unique MPE was established in Prop. 5.
Non-degeneracy is implied by Assumption A3(iii) (see p. 22). Consider λλλ∗ such that
Eξr (λ

∗
r ) = −nkr for all r with λr ∈ int(Λ), and Parts ) and ) of the Proposition are

satisfied. Our symmetry conditions ensure that such a vector exists, i.e., that if r̄ and
r are matched players, if λ∗

r = −λ∗̄
r , and Eξr̄ (λ

∗̄
r ) = −nkr̄ , it follows from symmetry,

(13), and (14) that Eξr(λ
∗
r ) = −nkr . With the restrictions in (8), we only need to

verify that (7′) is satisfied by λλλ∗. Since
∑

i ki = 0 (Assumption A1), we have

−nkr =
∑

i �=r

nki = −
∑

i �=r

Eξi (λ
∗
i ) (36)

Moreover, from Parts ) and ) of the proposition,
∑

i λ
∗
i = 0. Substituting this property

and (36) into the right-hand side of (7′), we obtain
∑

i

λ∗
i +

∑

i �=r

Eξi (λ
∗
i ) = nkr ,

verifying that (7′) is indeed satisfied. ��
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Proof of Proposition 10 From Prop. 9, we have

Eξr≡
∫ θ
˜
r

θ

(−ā − (θr + λr ))dH(θr ) +
∫ θ

θ̃r

(ā − (θr + λr ))dH(θr )≡ − nkr , (37)

where, in the first integration, we substituted in a = −ā. Totally differentiating both
sides with respect to ā and λr and noting that θ

˜
r = a−λr = −ā−λr and θ̃r = ā−λr ,

we obtain

[

H(θ
˜
r ) − (1 − H(θ̃r ))

]

+
[

(H(θ
˜
r ) + (1 − H(θ̃r ))

]
dλr
dā

= 0.

Hence, dλr
dā =

(1−H(θ̃r ))−H(θ
˜
r )

H(θ
˜
r )+(1−H(θ̃r ))

. When r is bi-constrained, H(θ
˜
r ) and H(θ̃r ) are

both nonzero, so that dλr
dā ∈ (0, 1). When r is up-constrained (respectively, down-

constrained), H(θ
˜
r ) = 0 (respectively, H(θ̃r ) = 1), so that dλr

dā reduces to 1

(respectively,−1). If r is themiddle player,λr = 0, and, since everything is symmetric,
H(θ
˜
r ) = 1 − H(θ̃r ) so that

dλr
dā = 0. ��

Proof of Proposition 11 Since Part i) of the Proposition follows immediately from the
discussion below Prop. 10, we need only to prove in detail Part ii). Specifically, letting
I ∗ be the set of players who are bi-constrained in equilibrium, wewill show that player
r ’s expected payoff increases by − 1

n2
∑

i∈I ∗ dV ξi
dā , where

dV ξi

dā
= 4

H(θ
˜
i ) + (1 − H(θ̃i ))

{

(1 − H(θ̃i ))

∫ θ
˜
i

θ

(ϑi − θ
˜
i )dH(ϑi )

− H(θ
˜
i )

∫ θ

θ̃i

(ϑi − θ̃i )dH(ϑi )

}

< 0

Suppose there is a player i whose strategy is bi-constrained. (If i is not the middle
player, her matched player is also bi-constrained.) We will show that as ā increases
by da, the variance term V ξi decreases, which, from (20′), induces the same increase
in − 1

n2
dV ξi
dā da in the expected payoff of each player. Let the distribution function of

player i’s deviation fromaffine, ξi , be denoted as Fi (·). Obviously, Fi (·) is derived from
the distribution function of θ , H(·), as well as from i’s strategy and the announcement
bounds. The random variable ξi can be considered as a function of θi :

ξi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a − (θi + λi ) = θ
˜
i − θi if θi ≤ θ

˜
i

0 if θ
˜
i < θi ≤ θ̃i

ā − (θi + λi ) = θ̃i − θi if θi > θ
˜
i

. (38)
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Given that θi is distributed according to H(·), the distribution function Fi (·) of ξi can be
derived by combining H(·) and (38). Specifically, the support of Fi is [θ̃i − θ, θ

˜
i − θ ];

the fact that i is bi-constrained implies that θ̃i − θ < 0 and θ
˜
i − θ > 0. The values of

Fi are given by

Fi (x) =

⎧
⎪⎪⎨

⎪⎪⎩

Prob(θ̃i − θi ≤ x) = 1 − H(θ̃i − x) x ∈ [θ̃i − θ, 0)

Prob(θi ≥ θ̃i ) = 1 − H(θ̃i ) if x = 0

Prob(θ
˜
i − θi ≤ x) = 1 − H(θ

˜
i − x) x ∈ (0, θ

˜
i − θ ]

(39)

Note, in particular, that Fi (·) jumps up at x = 0 from 1 − H(θ̃i ) to 1 − H(θ
˜
i ). To

derive the variance V ξi , note first that since i is bi-constrained, λi ∈ int(Λ). We can,
therefore, invoke Prop. 9 to obtain

−nki ≡E(ξi ) =
∫ θ
˜
i−θ

θ̃i−θ

ξidFi (ξi ) = θ
˜
i − θ −

∫ θ
˜
i−θ

θ̃i−θ

Fi (ξi )dξi

where the last equality is obtained after integrating by parts. Thus,

∫ θ
˜
i−θ

θ̃i−θ

Fi (ξi )dξi = θ
˜
i − θ + nki . (40)

The variance of ξi can now be written as

V ξi =
∫ θ
˜
i−θ

θ̃i−θ

(ξi − E(ξi ))
2dFi (ξi ) = (θ

˜
i − θ − E(ξi ))

2 −
∫ θ
˜
i−θ

θ̃i−θ

Fi (ξi )2(ξi − E(ξi ))dξi

= (θ
˜
i − θ + nki )

2 − 2nki

∫ θ
˜
i−θ

θ̃i−θ

Fi (ξi )dξi − 2
∫ θ
˜
i−θ

θ̃i−θ

Fi (ξi )ξidξi

= (θ
˜
i − θ)2 + 2(θ

˜
i − θ)nki + (nki )

2 − 2nki (θ
˜
i − θ + nki ) − 2

∫ θ
˜
i−θ

θ̃i−θ

Fi (ξi )ξidξi

= (θ
˜
i − θ)2 − (nki )

2 − 2

[∫ 0

θ̃i−θ

(1 − H(θ̃i − ξi ))ξidξi

+
∫ θ
˜
i−θ

0
(1 − H(θ

˜
i − ξi ))ξidξi

]

, (41)

where the second equality follows from integration by parts, the third from E(ξi ) =
−nki , the fourth from (40), and the fifth from (39). Now, differentiating (41) with
respect to ā and noting that θ

˜
i = a − λi = −ā − λi and θ̃i = ā − λi , we obtain

dV ξi

dā
= 2

{[

1 − dλi
dā

] ∫ 0

θ̃i−θ

h(θ̃i − ξi )ξidξi −
[

1 + dλi
dā

] ∫ θ
˜
i−θ

0
h(θ
˜
i − ξi )ξidξi

}
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=
4
{
H(θ
˜
i )
∫ θ̃i

θ
(θi − θ̃i )dH(θi ) − (1 − H(θ̃i ))

∫ θ

θ
˜
i
(θi − θ

˜
i )dH(θi )

}

H(θ
˜
i ) + (1 − H(θ̃i ))

< 0

(42)

The first inequality holds because H(θ) = 0 and H(θ) = 1, while dθ
˜
i

dā
≡ d(a−λi )

dā =
−(1 + dλ

dā ) and dθ̃i
dā ≡ d(ā−λi )

dā = (1 − dλ
dā ). The second equality is obtained by substi-

tuting in the value of dλi/da using (25), changing the variables of integration from ξi
to θi = θ̃i − ξi and to θi = θ

˜
i − ξi in the two integrations, respectively. The term in

curly brackets is negative because θ < θ
˜
while θ > θ̃ . ��

Proof of Proposition 12 We already established that as kr increases, λr also increases,
raising Eξr . We will show that dV ξr/d|kr | > 0. Then, the proposition follows from
(20). By symmetry, we can, w.l.o.g., assume that kr > 0. Using the same procedures
as we used to derive (42), we differentiate the expression for V ξr in (41) w.r.t. λr , to
obtain

∂V ξr

∂λr
= 2

∫ θ
˜
r

θ

(θr − θ
˜
r )dH(θr ) + 2

∫ θ

θ̃r

(θr − θ̃r )dH(θr ) = −2Eξr = 2nkr , (43)

where the last equality follows from Prop. 9. Note that if r is up-constrained, the first
term in expression (43) is zero. Since dV ξr

dkr
= ∂V ξr

∂kr
+ ∂V ξr

∂λr

dλr
dkr

, we take the derivative
of (41) with respect to kr and combine (26) with (43) to obtain

dV ξr

d|kr | = 2n2|kr |
⎛

⎝ 1

H(θ
˜
r ) + (1 − H(θ̃r ))

− 1

⎞

⎠ > 0 (44)

To see the effect of increasing kr̄ on players’ expected payoffs, we totally differentiate

(20) w.r.t. kr̄ , noting that to preserve symmetry,
dkr
dkr̄

= −1, where r is r̄ ’s matched

player. As kr̄ increases, r̄ ’s and r’s welfare decline by
(

2
n2

dV ξr̄
dkr̄

+ 2kr̄
)
; for other

players, the decline is 2
n2

dV ξr̄
dkr̄

. ��
Proof of Proposition 13 Let I+ denote the members of the right-wing faction, and let
I+− denote the moderate members of this faction. Pick r ∈ I+. Let ξr (γ ) denote r ’s
deviation from affine in the equilibrium associated with the parameter γ . Since r is
up-bounded, we have

nk̄+
r = −Eξr (0) =

∫ θ

θ̃r

(θr − θ̃r )dH(θr ) = 0.5
∫ 1

θ̃r

(θr − θ̃r )dθ = (1 − θ̃r )
2/4

The first equality follows from Prop. 9 and the third from Assumption A4(i). Hence,

θ̃r = 1 − 2
√
nk̄+

r . Moreover, H(θ̃r ) = 0.5
∫ θ̃r
−1 dθ = 1+θ̃r

2 . Now, from (44),
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dV ξr

dkr

∣
∣
∣
∣
γ=0

= 2n2k̄+
r

(
H(θ̃r )

1 − H(θ̃r )

)

= 2n2k̄+
r

(
1 + θ̃r

1 − θ̃r

)

= 2n2k̄+
r

(
1 −

√
nk̄+

r
√
nk̄+

r

)

= 2n

(√

nk̄+
r − nk̄+

r

)

.

Hence, d2V ξr
dkr 2

∣
∣
∣
γ=0

= n
(√

n/
√
k̄+
r − 2n

)
≶ 0 as k̄+

r ≷ 1/4(n−1), that is, for k′ > k,

dV ξr (k′)
dk >

dV ξr (k)
dk if k′ < 1/4(n−1), and dV ξr (k′)

dk <
dV ξr (k)

dk if k > 1/4(n−1). From
Prop. 7, Prop. 9, and symmetry, USW = −2

∑
i∈I+ V ξi (γ ), so that

dUSW

dγ

∣
∣
∣
∣
γ=0

= −2
∑

i∈I+

dV ξi (γ )

dγ

∣
∣
∣
∣
γ=0

= −2
∑

i∈I+−

α
i

(
dV ξi+(n−1)/4(γ )

dki+(n−1)/4

∣
∣
∣
∣
γ=0

− dV ξi (γ )

dki

∣
∣
∣
∣
γ=0

)

.

Since k̄+
i+n/4 > k̄+

i ,
dUSW
dγ

∣
∣
∣
γ=0

> 0 if min(k̄
+
) > 1

4(n−1) and dUSW
dγ

∣
∣
∣
γ=0

< 0 if

max(k̄
+
) < 1

4(n−1) . ��
Proof of Proposition 14 Under A3, the variance of r ’s deviation from affine is

V ξr (λr ) = (Eξr )
2

(√
8

9h|Eξr | − 1

)

. (45)

To see this, assuming w.l.o.g. that λr > 0, and using the fact that λr ∈ int(Λ), we
have

V ξr (λr ) = −(Eξr )
2 +

∫ θ

ā−λr

(ϑr +λr − ā)2 dh(ϑr ) = (h/3)
(
λr +θ − ā

)3 − (Eξr )
2

which, from (35),

=h

3

(
2

h
Eξr

)3/2
− (Eξr )

2 =
√
8|Eξr |3
9h

− (Eξr )
2,

establishing (45). Note from (24) that in SAGs, Eξr = −Nkr . Substituting this into
(45) and then into (22′′), and using the fact that

∑
i∈N 1

Eξi = ∑
i∈N 1

λi = 0 in
SAGs, we obtain (27). To see that the inequality holds, recall that |ki | < θ/2N . ��
Proof of Proposition 15 Together with the assumption that θ is uniformly distributed,
Assumption A3(iii) puts an upper bound on ki : ki < 1

4Nh for all i ∈ N 1.We first show

that �(ki ) := k2i

(√
8

9Nh|ki | − 1
)
is increasing in ki ; we then show that Var(θ)/N >

�(1/4Nh). We know that
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d�(ki )

dki
∝
√

2

Nh|ki | − 2 >

√
2

Nh/4Nh
− 2 = √

8 − 2 > 0 (46)

where the inequality follows from ki < 1
4Nh . From (46) and noting from Assump-

tion A3(ii) that Var(θ) = 1/(12h2), we know that

Var(θ)/N − �(1/4Nh) = 4(N − √
2) + 3

48N 2h2
> 0,

since N ≥ 2 >
√
2. ��

Proof of Proposition 16 We first establish λ∗
h > 0, so that, from (28), Eξh(λ

∗
h) = 0,

and thus, h is the anchor of the game. Suppose, instead, that λ∗
h ≤ 0 and λ∗

h ∈ int(Λ).
(We can easily rule out the situation when λ∗

h = min(Λ) = a−θ ; we omit the details.)
Since kh > kr ∀r �= h, (16) implies that Eξh(λ

∗
h) < Eξr (λ

∗
r ) and thus λ∗

r < λ∗
h ≤ 0.

Since Eξr (λr ) = 0 when λr = 0, (29) and λ∗
r < 0 imply

λ∗
r + Eξr (λ

∗
r ) < 0 (47)

From (7′) andλ∗
h ∈ int(Λ),λ∗

h = nkh−∑r �=h(λ
∗
r +Eξr (λ

∗
r )) > 0,where the inequality

is due to kh > 0 and (47). This contradicts our supposition that λ∗
h ≤ 0. Property (28)

now ensures thatEξr (λr ) = 0, so that single-bounded aggregation games are anchored
with anchor h. The second part of the proposition now follows from Prop. 8. ��
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