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and Michael C. Frank1 (mcfrank@stanford.edu)

1Department of Psychology, Stanford University

Abstract

Young children acquire a wide range of linguistic and cognitive
skills in the first three years of life. Decades of experimental
work have established a solid empirical foundation for our un-
derstanding of cognitive development. But most experimental
studies are limited in statistical power and focus on specific
psychological constructs, thus making them unsuitable for de-
scribing developmental growth at scale. Here, we turned to
meta-analyses of experimental research. We conducted a meta-
meta-analysis to consolidate and integrate 23 meta-analyses
compiled on MetaLab, a community-augmented meta-analysis
platform. We found that most datasets can not meaning-
fully distinguish different functional forms for developmental
change, but in those that could, there is great diversity in the
best-fitting functional forms of the age model. We also evalu-
ated the impact of a range of methodological factors. Overall,
our work sheds light on the heterogeneous nature of develop-
mental trajectories and the subtle interactions between research
methods and experimental outcomes.

Keywords: meta-analysis; cognitive development; language
learning

Introduction
In the first three years of life, children undergo a plethora of
developmental changes, transitioning from newborn infants
who possess a limited understanding of language and cate-
gories to toddlers who are able to master a wide range of lin-
guistic and cognitive skills. Despite a wealth of research ex-
amining cognitive development, constructing a comprehen-
sive theory of cognitive development remains a formidable
challenge. Research in this area generally falls under two
categories: research that aims to document child develop-
ment holistically, and research that focuses on investigating
specific psychological constructs. The former tends to be ob-
servational studies, using instruments like the Bayley Scales
to capture an individual child’s development (e.g. Bayley,
2006). However, this approach poses a challenge to move
from global developmental milestones to underlying mech-
anisms. In contrast, the latter often uses experiments to al-
low causal traction on the potential mechanisms of one single
construct, but it is often difficult to reveal the connections be-
tween different processes and mechanisms.

In this paper, we aim to provide a quantitative synthesis
of experimental work across multiple areas of developmental
psychology, providing insights into the interrelatedness be-
tween psychological constructs. We achieve this goal by con-
solidating and integrating 23 meta-analyses of cognitive and

language development compiled on MetaLab, a community-
augmented meta-analysis platform (Bergmann et al., 2018).

Statistical meta-analysis, the technique of aggregating ef-
fect sizes across a systematic sample of experiments, has
unique advantages as a source of data about developmen-
tal processes. First, it allows researchers to explore ques-
tions that are difficult to address with individual studies. One
such example is the functional form of developmental curves,
or how different psychological processes change over time.
Many developmental studies use linear regression models
with age as a predictor, but this assumption of linearity may
not capture the complexities of developmental processes. For
example, some cognitive abilities – such as relational reason-
ing – might follow an inverted-U shape (Carstensen et al.,
2019; Walker, Bridgers, & Gopnik, 2016), while others – like
early vocabulary size – show an exponential increase (Frank,
Braginsky, Yurovsky, & Marchman, 2021). These non-linear
trends can be challenging to identify and interpret with lim-
ited data from individual studies, but meta-analytic methods
can provide a large amount of data across a broad age range,
enabling researchers to evaluate and compare different func-
tional forms of developmental trajectories.

Meta-analysis can also shed light on how research methods
influence the strengths of observed effects. Research meth-
ods and theories are fundamentally intertwined, and this is
especially true for developmental psychology, in which even
small changes to the methods could substantially change the
outcomes (Dale, Warlaumont, & Johnson, 2022). One ex-
ample is the influence of familiarization time. It has been
proposed that the amount of exposure infants have prior to
the test events can influence infants’ direction of preference
(i.e. novelty preference or familiarity preference, Hunter &
Ames, 1988). Although the empirical evidence for this the-
ory is mixed, this ambiguity has significant downstream con-
sequences on our understanding of infants’ cognitive capabil-
ities (Bergmann & Cristia, 2016; Cf. Black & Bergmann,
2017). Debates about infants’ arithmetic competence or
their evaluations of social agents are often centered around
the direction of preferences (Infants arithmetic competence:
Clearfield & Westfahl, 2006; Wakeley, Rivera, & Langer,
2000; Wynn, 1992; Evaluation of social agents: Hamlin,
Wynn, & Bloom, 2007; Salvadori et al., 2015). Due to
the time and resources required for developmental studies,
it is often difficult to directly evaluate the impact of subtle
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changes in methods. Therefore, meta-analytic methods pro-
vide a unique opportunity to investigate the effects of method-
ological factors on research findings.

Last but not least, meta-analytic methods make it possible
to compare and connect research findings across research ar-
eas. The use of effect size as the fundamental unit of analysis
allows for comparisons across different domains and research
areas, and it can help us answer questions such as whether
mutual exclusivity facilitates the process of syntactic boot-
strapping (Cao & Lewis, 2022; Lewis et al., 2016). How-
ever, a synthesis across multiple domains requires a database
of multiple meta-analyses. Towards that aim, MetaLab was
established to provide an open database of meta-analyses
(Bergmann et al., 2018). Developmental researchers are in-
vited to deposit their meta-analysis dataset into MetaLab, and
they are encouraged to use the datasets for custom analyses.
As of January 2023, Metalab contains 2,497 effect sizes from
30 different meta-analyses. This resource allows the begin-
nings of a quantitative synthesis across different research ar-
eas in developmental psychology.

In particular, we address three questions. First, we investi-
gate the shape of developmental curves across domains. The
form of growth curves has been of interest in a lot of areas
of developmental research (e.g., accelerating growth in vo-
cabulary: McMurray, 2007; asymptotic decreases in reaction
time: Kail, 1991). These nuanced descriptions of develop-
mental trajectories allow for a more precise understanding of
the mechanisms driving these changes. We aim to provide
these quantitative descriptions for more research areas. Sec-
ond, we hope to understand how research methods moderate
the strengths of the findings. Increasingly, developmental re-
search methods are scrutinized for their mechanisms and sci-
entific rigor (Paulus, 2022; Stahl & Kibbe, 2022). With Met-
aLab, the field is ripe for a more systematic understanding of
how different design choices in experiments could influence
the results. Finally, we offer a birds-eye view of the field by
integrating the growth curves across multiple domains. This
view would provide an empirical foundation for creating a
synthesized theory of cognitive development.

Methods
Datasets Datasets were retrieved from metalabr, the R
package built from Metalab. As of November 2022, the pack-
age includes 30 individual meta-analysis datasets covering
different research domains in language learning and cognitive
development. Our current datasets deviate from the retrieved
datasets in the following way: 2 datasets were removed due
data quality issues (Word segmentation neuro: only contained
1 study; Phonotactic learning: yielded null meta-analytic ef-
fect); 3 datasets were removed due to being observational
studies or including studies with quasi-experimental design
(Pointing and vocabulary concurrent; Pointing and vocabu-
lary, longitudinal; Video deficit); 1 dataset was replaced with
a more updated version (Infant directed speech preference); 2
pairs of dataset were combined into one because they measure

theoretically identical constructs (Pair 1: Word segmentation
behavioral, Functional word segmentation; Pair 2: Gaze fol-
lowing live, Gaze following video).

The final dataset contains 23 meta-analyses. Table 1 pro-
vides a summary of the datasets, along with the number of
effect sizes and participants included in each dataset. All
datasets that have manuscripts associated with are cited and
indicated by an asterisk in the references section.

All data and analysis scripts are available here.

Analytic Methods All analyses were conducted in R us-
ing the metafor package and the metameta package (Quin-
tana, 2023; Viechtbauer, 2010). We specified multi-level ran-
dom effect models with random effect structures that included
grouping by paper and by participant group. We removed the
clustering if the grouping information was missing from the
dataset. All moderators were included as fixed effects. All
model comparisons were based on the corrected Akaike In-
formation Criterion (AICc).

Results
Functional form of developmental curves
Our first research question was about the functional form
of the developmental trajectories we observed. We exam-
ined four specific forms: constant, linear, logarithmic, and
quadratic, each considered as an age-related fixed effect. We
evaluated the models based on AICc (Table 1). We also calcu-
lated the study-level power for each meta-analysis. As with
previous analyses of a subset of these data, individual stud-
ies often had low power to detect the average meta-analytic
effect, one potential cause of high variability in effect sizes
(Bergmann et al., 2018).

When using AICc in model selection, the value needs to be
contextualized in relation to the lowest AICc among the set
of models being compared. Under the conventional interpre-
tation, ∆i (AICi−AICmin, where AICi is the model being eval-
uated, and AICmin is the lowest AIC among the set of models)
less than 4 suggests minimal evidence against the model with
higher AICc; ∆i above 4 suggests substantial support for the
model with lower AICc (Burnham & Anderson, 2004). With
this interpretation framework, the functional forms in most
domains can not be meaningfully distinguished, with excep-
tions in 6 domains. In Mutual Exclusivity, there is a strong
preference for the logarithmic model (∆Linear = 5.75 ; ∆Quad.
= 16.91; ∆Const. = 37.21). We also found a strong prefer-
ence for the quadratic model in Mispronunciation sensitivity
(∆Linear = 6.39; ∆Log = 14.49; ∆Const. = 30.74) and a strong
preference for the constant model in Simple arithmetic com-
petence ( ∆Quad. = 6.55;∆Linear = 6.65; ∆Log = 6.74). The
comparison is less clear-cut in Gaze following, where there is
support for the Quadratic model against the Constant model
and the Logarithmic model (∆Log = 10.41;∆Const. = 43.73),
but the Linear model is comparable with the Quadratic model
(∆Linear = 2.07). Finally, in Statistical sound category learning
and Cross situational word learning, we only found evidence
against the logarithmic model (∆Log = 4.08) and the constant
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Dataset N ES N Subj. ES Power Const. Linear Log Quad.
Statistical sound category learning 11 350 0.56 [0.19,0.93] 0.30 0.0* 3.0* 4.1 2.5*
Vowel discrimination (native) 143 2418 0.59 [0.43,0.75] 0.49 0.0 1.3 1.0 1.6
Vowel discrimination (non-native) 49 600 0.65 [0.2,1.1] 0.68 0.0 1.6 1.7 1.5
Statistical word segmentation 103 804 -0.08 [-0.18,0.02] 0.07 0.0 1.3 1.5 1.1
Switch task 143 2764 -0.16 [-0.25,-0.06] 0.09 0.0 1.1 1.1 1.1
Prosocial agents 61 1244 0.4 [0.29,0.52] 0.17 0.0 2.1 1.9 2.1
Simple arithmetic competences 14 369 0.25 [0.04,0.46] 0.23 0.0 6.7 6.7 6.6
Symbolic play 196 7148 0.63 [0.53,0.72] 0.32 0.0 0.6 0.5 0.6
Word Segmentation 315 2910 0.2 [0.14,0.26] 0.17 0.0 1.3 1.0 1.6
Infant directed speech preference 83 985 0.47 [0.28,0.65] 0.25 0.0 1.0 1.8 0.9
Online word recognition 14 330 1.37 [0.78,1.96] 1.00 2.2 0.0 0.2 0.1
Mutual exclusivity 131 2222 1.27 [0.99,1.56] 0.99 37.2 5.8 0.0* 16.9
Label advantage in concept learning 100 1644 0.36 [0.23,0.48] 0.2 2.4 0.9 0.0 1.6
Sound symbolism 44 425 0.16 [-0.01,0.33] 0.10 2.9 0.0 0.0 0.7
Categorization bias 80 382 0.25 [-0.54,1.05] 0.11 0.9 0.3 0.0 0.4
Syntactic bootstrapping 60 832 0.24 [0.03,0.44] 0.13 0.5 0.3 0.0 0.6
Mispronunciation sensitivity 249 2122 0.45 [0.24,0.66] 0.47 30.7 6.4 14.5 0.0*
Cross-situational word learning 48 2241 0.67 [0.5,0.84] 0.86 4.0 0.1* 1.9* 0.0*
Gaze following 81 1407 0.81 [0.61,1.01] 0.93 43.7 2.1* 10.4 0.0*
Familiar word recognition 34 586 0.54 [0.38,0.69] 0.59 1.7 0.3 1.1 0.0
Abstract rule learning 95 1123 0.22 [0.07,0.37] 0.12 0.4 0.3 0.9 0.0
Natural speech preference 55 786 0.44 [0.23,0.65] 0.41 0.9 0.4 1.0 0.0
Language discrimination and preference 153 2060 -0.13 [-0.26,0] 0.08 2.3 2.0 2.9 0.0

Table 1: This table summarizes the number of effect sizes ES and the number of participants included in each meta-analysis
dataset. The ES estimates represent the aggregated effect sizes and their 95% confidence intervals from each dataset. The
power column includes study-level power. The last four columns include the values of ∆i of corrected Akaike Information
Criterion AICc for the age model with different functional forms: Constant, Linear, Logarithmic, and Quadratic. The values
were calculated from subtracting the minimum AICc from the AICc of each model. They were rounded to one decimal. The
bold values indicate the best fitting model (smallest AICc value). Asterisks indicate models that are a significantly better fit
compared to other functional forms for that dataset.Highlighted rows are the datasets that yield an unambiguous best model.

model (∆Log = 4.01), respectively.

Methodological Moderators

In this section, we considered methodological moderators
shared by multiple datasets. Given the limited number of
studies conducted with neuroimaging methods, we focused
our analyses on studies conducted with behavioral methods.
Therefore, we excluded studies that were conducted with ei-
ther fNIRS or EEG. Moreover, to minimize age-related het-
erogeneity, we only included studies with participants’ mean
age below 36 months. We added each methodological mod-
erator as an additional fixed effect to the age model with the
best-fitting functional form from the previous analysis. All
analyses were conducted on the subset of research domains
with multiple levels for the moderator of interests. Figure 1
provides a summary of the estimates for moderators.

Behavioral Measures Meta-analyses have very heteroge-
neous moderators coded, but many included coding of which
behavioral response measure was used in the original study:
looking-based behaviors (e.g., looking time or other eye-
tracking measures), sucking (as in the high amplitude suck-
ing procedure), and head-turn preference procedure (HPP).
An analysis on a subset of the datasets has shown significant
variation across methods (Bergmann et al., 2018). Here we
extended the analysis to include more datasets.

In general, nearly all effects were weakly positive such
that sucking and HPP yielded slightly larger effect sizes than

studies with looking behavioral measure, though these effects
were not always significant. Behavioral measure was a sig-
nificant predictor of effect sizes in only two domains, Vowel
Discrimination (Native) and Sound Symbolism. In Vowel
Discrimination (Native), studies with HPP or Sucking behav-
ioral measure have larger effect sizes than studies using look-
ing as the behavioral measure (HPP: β = 0.58 [0.33, 0.82], z
= 4.6, p < 0.01; Sucking: β = 0.96 [0.53, 1.4], z = 4.34, p <
0.01). Similarly, in Sound Symbolism, studies with HPP be-
havioral measures also yield larger effect sizes than looking
studies (β = 0.61 [0.24, 0.97], z = 3.29, p < 0.01).

We also explored whether there would be an interaction
between the research method and participants’ age. The in-
clusion of interaction terms did not meaningfully improve the
AICc of any of the main model (All ∆interaction < 2). The cur-
rent datasets can not distinguish between the interaction effect
and the main effect of the behavioral measure.

Stimuli Exposure Method Stimuli exposure method refers
to the type of exposure infants have during the experiments
prior to the test events. There are typically three types of
stimuli exposure method: 1) an infant would be conditioned
to show an orienting behavior (conditioning); 2) an infant
would be exposed to a stimulus for a constant amount of time
(familiarization); 3) an infant would be presented with some
stimuli repeatedly until the magnitude of response drops be-
low a threshold (habituation). We coded these three types as
three levels in the moderator stimuli exposure method.
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Figure 1: Each panel shows the moderator coefficient estimates. Each dot represents the estimate of the particular moderator
level compared to the baseline. For behavioral measure, the baseline level is looking. Orange dots indicate the estimate for
studies using sucking measure, and the blue dots indicate the estimates for studies using HPP measure. For stimuli exposure
method, the baseline level is familiarization. Green and yellow represent the estimates for studies using conditioning and
habituation in exposure phase, respectively. For stimuli naturalness, the dots represent the estimates for studies using natural
stimuli (e.g. real-world objects; natural speech) compared to studies using artificial stimuli (e.g. pictures, synthetic speech).
Error bars show 95% confidence intervals.

Stimuli exposure method is a significant predictor of effect
sizes in three domains, but the impacts of different stimuli
exposure method on effect sizes are mixed. In Vowel dis-
crimination (native), conditioning studies yielded larger ef-
fect sizes than familiarization studies (β = 0.57 [0.01, 1.12],
z = 2.01, p = 0.04). In Infant directed speech preference, ha-
bituation studies produced larger effect sizes than the famil-
iarization studies (β = 0.58 [0.07, 1.09], z = 2.24, p = 0.03),
whereas the opposite pattern was found in Language discrim-
ination and preference: habituation studies had smaller effect
sizes than the familiarization studies (β = -0.38 [-0.69, -0.07],
z = -2.41, p = 0.02)

Stimuli Naturalness Next, we considered stimuli natural-
ness. For primarily visual stimuli, we considered “natu-
ral” to mean stimuli that use real-world objects (e.g. pup-
pets, blocks). We compared these natural stimuli with
representation-type stimuli, such as pictures, videos, or draw-
ings. In primarily auditory stimuli, we compared recorded
natural speech with synthesized stimuli.

Natural stimuli has advantages over artificial stimuli across
modalities. We found that naturalness was a significant pre-
dictor for Label advantage in concept learning, with natural
stimuli yielding larger effect sizes than representation-type
stimuli (β = 0.23 [0.01, 0.45], z = 2.06, p = 0.04). Similarly,

in both Statistical word segmentation and Abstract rule learn-
ing, we found a natural speech advantage (Statistical word
segmentation: β = 0.47 [0.23, 0.72], z = 3.8, p < 0.01; Ab-
stract rule learning: β = 0.27 [0.05, 0.5], z = 2.35, p = 0.02).

Major author Margoni & Surian (2018) found evidence
for an author-based bias in the prosocial agents literature: re-
sults produced by certain authors were consistently larger. We
evaluated how prevalent this phenomenon was in the litera-
ture by coding a “major author” moderator. Authors are con-
sidered to be a “major author” if they are listed as authors in
more than 15% of the papers in the research area. When mul-
tiple major authors co-authored the same set of publications,
we considered one author from that author group. When mul-
tiple authors were considered as major authors but were asso-
ciated with different publications, we selected the ones with
the most publications in the research area.

We found evidence for a major author effect in 8 datasets,
where effect sizes of the studies produced by the major author
were larger than the rest of the papers. In 3 datasets, however,
we also found the opposite patterns, with certain authors pro-
duced on average smaller effect sizes.
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Figure 2: Each dot represents the estimate of coefficient for
studies produced by major author in the particular research
area, compared to other studies in the same research area.
Error bars show 95% confidence intervals.

Synthesis
Finally, we synthesized all 23 datasets by grouping them
based on the type of theoretical constructs they represented:
Sounds, Words, Cognitive abilities, and Communication.
We integrated the predictions from the best-fitting age-based
models in Figure 2, showing predictions across the range of
measured ages (See SI for each prediction line along with the
corresponding data). We found a striking range of functional
forms in the developmental trajectories across all types of the-
oretical constructs. In particular, the magnitudes of some phe-
nomena – online word recognition, gaze following, and mu-
tual exclusivity, for example – increased substantially over
development. In contrast, others – sound symbolism, cate-
gorization bias, and others – stayed constant at a measurable
level without showing developmental increases. We consid-
ered several explanations for why some phenomena would be
constant: one is that these meta-analyses might correspond
to relatively more experience-independent biases. On the
other hand, we cannot rule out cross-experiment confounding
factors wherein experimenters test progressively harder stim-
uli with development, thus counteracting any developmental
gains that might otherwise be measured.

Discussion
How can we quantitatively describe developmental growth at
scale? Meta-analysis is one promising method. In this paper,
we presented a bird-eye view of developmental psychology
by synthesizing 23 meta-analyses available on MetaLab. We
found great diversity in the shapes of the best-fitting mod-
els for each domain – while some phenomena showed larger
and larger effects with development, quite a number of oth-
ers stayed constant, suggesting a distinction between small
but measurable in-lab effects and behaviors that can easily

be observed in individual children (effect sizes > 2). We also
considered the moderating effects of different methodological
factors, including the type of behavioral measure, the type of
stimuli exposure methods, stimuli naturalness, and whether
the work is done by a “major author”. These factors moderate
effect sizes from different domains in heterogeneous ways,
though we did find evidence for naturalistic stimuli leading
to larger effects in a number of research areas.

This current synthesis highlights the variation in develop-
mental trajectories, challenging the traditional “milestone”
view of cognitive development. Under the milestone view,
learning and development are discrete and sequential: all in-
fants would follow some developmental sequences and ac-
quire skills in that order (Kuhl, 2004; Wilks, Gerber, & Erdie-
Lalena, 2010). Our findings suggest that this view is missing
two important details. First, at any given age, psychologi-
cal constructs could have a wide range of effect sizes. For
example, at 20 months of age, the predicted effect sizes for
communication skills range from 0.16 (Switch task) to 2.18
(Gaze following). The differences between the strengths of
the effect may reflect the differences in how these skills con-
tribute to communication, with some playing a more signifi-
cant role than others. In addition, the development of these
skills could follow significantly different trajectories, with
some increasing exponentially with age and others staying
constant throughout early childhood. The heterogeneity of
the developmental process calls for developing a more nu-
anced and integrated developmental theory.

The heterogeneity can also partly be attributed to the wide
variety of research methods. In the current analysis, we fo-
cused on in-lab experimental work, and thus the effect sizes
may as well reflect how well the research methods capture
the phenomenon of interest. Indeed, we have shown that
subtle experimental procedure changes (e.g. stimuli exposure
methods) could significantly alter the effect sizes. Moreover,
methods’ impact varies across domains, with some domains
being more susceptible to methodological factors than oth-
ers. Finally, the developmental trajectories that we document
could be influenced by researchers adapting their methods to
participants of different ages. Our findings call attention to
the importance of understanding methods’ nuances: rather
than treating methods as a mirror perfectly reflecting the phe-
nomenon, they should be regarded as an imperfect lens that
could distort our perception of the phenomenon.

Of course, meta-analysis is not a perfect tool either. De-
spite the inclusion of a variety of moderators, we can explain
relatively little variation in the datasets. One measure of het-
erogeneity is I2, which calculates the proportion of variance
accounted for by the meta-analytic model, relative to the total
variance in the dataset. The mean I2 across all the models
we ran was 0.74 (SD : 0.19), indicating that the majority of
the variation in effects across studies was unexplained by our
moderators (Higgins & Thompson, 2002).

Moreover, meta-analytic methods can often produce effect
sizes significantly larger than a comparable large-scale repli-
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Figure 3: Predictions of the best-fitting functional forms of the age model. X-axis is age in months. Y-axis is the predicted effect
size. The shaded area represents 95% confidence interval of the prediction. For each research area, we plotted the predicted
values for the age range included in the dataset.

cation (Kvarven, Strmland, & Johannesson, 2020). Part of the
discrepancy can be attributed to the heterogeneity of research
methods that is often minimized in a large-scale replication
(Lewis, Mathur, VanderWeele, & Frank, 2022). While we
have included methodological moderators in our analysis, it
is highly likely that the coded moderators did not fully reflect
the subtlety of research methods. However, the “Major au-
thor” effect found in many research domains could provide
a window into understanding the subtler aspects of research
methods. We could compare and contrast the methods and
materials used by “major authors” and those by others. This
would allow us to pinpoint the differences and understand
which aspects of the methods really matter, and which do not.

Our ultimate goal is to offer a data-driven synthetic the-
ory of cognitive development. Here we have made our first
step toward that goal by offering a synthesis of meta-analyses
across 23 different research domains. Moving forward, we
aim to expand and refine our synthesis by including more
research areas, correcting potential publication biases, and
accounting for more detailed methodological factors. We

would also like to make more connections between our meta-
analysis-based work and observational data, as well as the
many ongoing analyses based on large-scale multi-site repli-
cation projects (e.g. ManyBabies: Frank et al., 2017). Ulti-
mately, we hope our analysis can provide a solid empirical
foundation to help us better understand the complex and di-
verse processes involved in cognitive development.
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