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With the recent growth in data owing to ubiquitous internet connectivity, practical

problems involving prediction which abound in multiple fields such as healthcare, finance,

climate analysis, image processing and other disciplines are now becoming solvable. Tradi-

tionally such problems have been addressed by Model-Based approaches; i.e. by employing

assumptions about the data generating process (DGP) to construct a model which can then

used for predicting future values. However it is well known that such methods may suffer

xvii



from disadvantages such as model non-robustness, overfitting among others. In this thesis

along with Model-Based approaches the alternative paradigm of Model-Free Prediction is

explored for problems such as regression, time series and random fields. The Model-Free

framework does not assume knowledge of the DGP and is applied directly to the avail-

able data to construct estimators for both point prediction and prediction intervals. Both

Model-Based and Model-Free prediction methods are applied to synthetic and real-life data

and their prediction performances are compared using standard metrics to demonstrate the

applicability and usefulness of both approaches.
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Chapter 1

Model-Based and Model-Free Prediction

Forecasting and prediction problems abound in a multitude of disciplines including

finance, healthcare, climate analysis and image processing. The classical approach to solving

such problems utilizes what can be termed as Model-Based and involves constructing a

model of the data generating process (DGP) to capture the underlying relationships between

variables using the observed data. This model, which is assumed to capture the complexity

of the variables and their interactions, is then used to forecast or predict future observations.

However, as is well known, model construction, which is based on assuming adequate

knowledge of the underlying DGP, has several issues. In particular:

• It is often difficult to accurately characterize the complexity of the model based on

which future values are to be generated. This can lead to either an underfitted or

overfitted model causing inaccuracies in prediction.

• There may often be outliers in the observed data which can render the constructed

model inaccurate thereby again leading to errors in prediction.

1



Given these and other deficiencies in the typically used Model-Based approach one

can ask whether an entirely new prediction paradigm is possible which can overcome these

limitations. The Model-Free Prediction approach proposed by (Politis, 2013) and (Politis,

2015) aims to surmount these issues by following a principled procedure which entirely

avoids constructing an explicit model and instead follows a purely data-driven methodology

whereby a sequence of invertible transformations are created based on the observed data to

estimate future values. This approach is briefly outlined below.

Basic Model-Free Approach:

• Objective: Given Y n = (Y1, . . . ,Yn)
′ predict future value Yn+1 given the data

• Idea: Find an invertible transformation Hm so that (for all m) the vector εm = Hm(Y m)

has i.i.d. components εk where εm = (ε1, . . . ,εm)
′

(i) (Y1, . . . ,Ym)
Hm−→ (ε1, . . . ,εm)

(ii) (Y1, . . . ,Ym)
H−1

m←− (ε1, . . . ,εm)

(i) implies that ε1, . . . ,εn are known given the data Y1, . . . ,Yn

(ii) implies that Yn+1 is a function of ε1, . . . ,εn, and εn+1

• So, given the data Y n, Yn+1 is a function of εn+1 only, i.e., Yn+1 = h̃(εn+1)

• Suppose εn+1 ∼ cdf Fn+1(ε).

• Note that Fn+1(ε) is consistently estimated by ε1, . . . ,εn ∼ edf F̂n(ε)

2



• Under an L2 criteria this gives:

Ŷn+1 =
∫

h̃(ε) dF̂n(ε)

≈ 1
n ∑

n
i=1 h̃(εi)

or Ŷn+1 = mean [h̃(ε1), . . . , h̃(εn)]

• Similarly under an L1 criteria we have: Ŷn+1 = median [h̃(ε1), . . . , h̃(εn)]

In addition to constructing the point predictor Ŷn+1 based on an L1 or L2 criteria,

the method of bootstrapping (Efron & Tibshirani, 1993) can also be applied to estimate

prediction intervals.

The Model-Free principle outlined above therefore follows a transformation based

approach to predictive inference (Politis, 2013) whose goal is to create a sequence of

invertible transformations which can generate i.i.d. data. For problems such as regression on

boundary points, one-step ahead prediction of time-series or random fields the first step in

this process involves estimating the conditional distribution Fx(y) = P(Y ≤ y|X = x) where

x is a boundary point. Estimating this conditional distribution function at such a regressor

point is immediate via standard kernel methods but problems ensue if local linear methods

are to be used. In particular, the distribution function estimator is not guaranteed to be

monotone increasing, and the quantile curves can “cross”. In Chapter 2, a simple method of

correcting the local linear distribution estimator for monotonicity is proposed, and its good

performance is demonstrated via simulations and real data examples.

The Model-Free Prediction Principle has been successfully applied to general regres-

sion problems, as well as problems involving stationary time series. However, with long time

series, e.g. annual temperature measurements spanning over 100 years or daily financial

returns spanning several years, it may be unrealistic to assume stationarity throughout the

3



span of the dataset. In Chapter 3, we show how Model-Free Prediction can be applied

to handle time series that are only locally stationary, i.e., they can be assumed to be as

stationary only over short time-windows. Surprisingly there is little literature on point

prediction for general locally stationary time series even in Model-Based setups and there is

no literature on the construction of prediction intervals of locally stationary time series. We

attempt to fill this gap here as well. Both one-step-ahead point predictors and prediction

intervals are constructed, and the performance of Model-Free is compared to Model-based

prediction using models that incorporate a trend and/or heteroscedasticity. Both aspects of

Chapter 3, Model-Free and Model-Based, are novel in the context of time-series that are

locally (but not globally) stationary. We also demonstrate the application of our Model-based

and Model-free prediction methods to climate data which exhibits local stationarity and

show that our best Model-Free point prediction results outperform that obtained with the

RAMPFIT algorithm previously used for analysis of this data.

In Chapter 4 we demonstrate the use of the Model-Free principle for inference on

Random Fields defined on the non symmetric half-plane (NSHP), applications of which

abound in image processing, satellite data analysis, radiography and other areas. We show

how both Model-Based and Model-Free Prediction can be applied to such Random Fields

that are only locally stationary, i.e. fields that can be assumed to be stationary over short

’spatial’ regions. One-step ahead point predictors are constructed for the Model-Based and

Model-Free case and their performance is compared using a model that incorporates a trend.
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Chapter 2

Nonparametric estimation of the

conditional distribution at regression

boundary points

2.1 Introduction

Nonparametric regression via kernel smoothing is a standard statistical tool with

increased importance in the Big Data era; see e.g. (Wand & Jones, 1994), (Yu & Jones,

1998), (Yu, Lu, & Stander, 2003), (Koenker, 2005) or (Schucany, 2004) for reviews. The

fundamental nonparametric regression problem is estimating the regression function µ(x) =

E(Y |X = x) from data (Y1,x1), . . . ,(Yn,xn) under the sole assumption that the function µ(·)

belongs to some smoothness class, e.g., that it possesses a certain number of continuous

derivatives. Here, Yi is the real-valued response associated with the regressor X taking a

value of xi. Either by design or via the conditioning, the regressor values x1, . . . ,xn are
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treated as nonrandom. For simplicity of exposition, we will assume that the regressor X is

univariate but extension to the multivariate case is straightforward.

A common approach to nonparametric regression starts with assuming that the data

were generated by an additive model such as

Yi = µ(xi)+σ(xi)εi for i = 1,2, . . . ,n (2.1)

where the errors εi are assumed to be independent, identically distributed (i.i.d.) with mean

zero and variance one, and σ(·) is another unknown function.

Nevertheless, standard kernel smoothing methods are applicable in a Model-Free

context as well, i.e., without assuming an equation such as (2.1). An important example is

the Nadaraya-Watson kernel estimator defined as

µ̂(x) =
∑

n
i=1 K̃i,xYi

∑
n
i=1 K̃i,x

(2.2)

where b > 0 is the bandwidth, K(x) is a nonnegative kernel function satisfying
∫

K(x)dx = 1,

and

K̃i,x =
1
b

K
(

x− xi

b

)
.

Estimator µ̂(x) enjoys favorable properties such as consistency and asymptotic normality

under standard regularity conditions in a Model-Free context, e.g. assuming the pairs

(Y1,X1), . . . ,(Yn,Xn) are i.i.d. (Li & Racine, 2007).

The rationale behind the Nadaraya-Watson estimator (2.2) is approximating the

unknown function µ(x) by a constant over a window of “width” b; this is made clearer if a

rectangular function is chosen as the kernel K, e.g. letting K(x) = 1{|x|< 1/2} where 1A is
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the indicator of set A, in which case µ̂(x) is just the average of the Y ’s whose x value fell

in the window. Going from a local constant to a local linear approximation for µ(x), i.e., a

first-order Taylor expansion, motivates the local linear estimator

µ̂LL(x) =
∑

n
i=1 wiYi

∑
n
i=1 wi

(2.3)

where

wi = K̃i,x

(
1− β̂(x− xi)

)
and β̂ =

∑
n
i=1 K̃i,x(x− xi)

∑
n
i=1 K̃i,x(x− xi)2 . (2.4)

If the design points x j are (approximately) uniformly distributed over an interval

[a1,a2], then µ̂LL(x) is typically indistinguishable from the Nadaraya-Watson estimator µ̂(x)

when x is in the ‘interior’, i.e., when x ∈ [a1 + b/2,a2− b/2]. The local linear estimator

µ̂LL(x) offers an advantage when the design points x j are non-uniformly distributed, e.g.,

when there are gaps in the design points, and/or when x is a boundary point, i.e., when

x = a1 or x = a2 (plus or minus b/2); see (Fan & Gijbels, 1996) for details.

Instead of focusing on the conditional moment µ(x) = E(Y |X = x), one may consider

estimating the conditional distribution Fx(y) = P(Y ≤ y|X = x) at some fixed point y. Note

that Fx(y) = E(W |X = x) where W = 1{Y ≤ y}. Hence, estimating Fx(y) can be easily done

via local constant or local linear estimation of the conditional mean from the new dataset

(W1,x1) . . . ,(Wn,xn) where Wi = 1{Yi ≤ y}. To elaborate, the local constant and the local

linear estimators of Fx(y) are respectively given by

F̂x(y) =
∑

n
i=1 K̃i,x1{Yi ≤ y}

∑
n
i=1 K̃i,x

, and F̂LL
x (y) =

∑
n
j=1 w j1{Yj ≤ y}

∑
n
j=1 w j

(2.5)

where the local linear weights w j are given by eq. (2.4).

Viewed as a function of y, F̂x(y) is a well-defined distribution function; however,
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being a local constant estimator, it often has poor performance at boundary points. As

already discussed, F̂LL
x (y) has better performance at boundary points. Unfortunately, F̂LL

x (y)

is neither guaranteed to be in [0,1] nor is it guaranteed to be nondecreasing as a function of

y; this is due to some of the weights w j potentially being negative.

The problem with non-monotonicity of F̂LL
x (y) and the associated quantile curves

potentially “crossing” is well-known; see (Hall, Wolff, & Yao, 1999) for the former issue,

and (Yu & Jones, 1998) for the latter, as well as the reviews on quantile regression by (Yu

et al., 2003) and (Koenker, 2005). In case of quantile crossing, non-monotonicity of the

estimated conditional distribution function may lead to erroneous results where the estimated

95% (say) percentile turns out to be smaller than the 90% estimated percentile.

In case of the adjusted Nadaraya-Watson estimator described in (Hall et al., 1999)

the predictive distribution of an observation Yi, given X = x which may denote a vector of

past observed values of Y is estimated by:

P(Yi ≤ y|Xi = x)≡ π̃(y|x) =
Σn

i=1I(Yi ≤ y)pi(x)Kh(Xi− x)
Σn

i=1 pi(x)Kh(Xi− x)
(2.6)

The weights pi satisfy the conditions pi ≥ 0, Σi pi = 1 and

Σ
n
i=1 pi(x)(Xi− x)Kh(Xi− x) = 0 (2.7)

The estimated CDF π̃(y|x) therefore lies between 0 and 1 as required for a distribution

function. However the bias equation for the adjusted Nadaraya-Watson estimator (2.7) cannot

be satisfied for boundary points i.e. when x is close to either max xi or min xi. Therefore

in general this method cannot be used in place of the local constant kernel estimator of the

conditional distribution function. In case of the local linear estimators proposed by (Yu &
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Jones, 1998) the distribution function estimators are not constrained either to lie between 0

and 1 or to be monotone increasing. Given the shortcomings of these previously proposed

techniques we propose a new method in this Chapter for constructing a monotone local

linear distribution estimator.

In the next section, a simple method of correcting the local linear distribution esti-

mator for monotonicity is proposed; its good performance is demonstrated via simulations

and real data examples in Section 3. It should be noted here that while we focus on the

monotonicity correction for local linear estimators of the conditional distribution, the mono-

tonicity correction idea can equally be applied to other distribution estimators constructed

via different nonparametric methods, e.g. wavelets.

2.2 Local Linear Estimation of smooth conditional distri-

butions

2.2.1 Some issues with current methods

The good performance of local constant and local linear estimators (2.5) hinges

on Fx(·) being smooth, e.g. continuous, as a function of x. In all that follows, we will

further assume that Fx(y) is also continuous in y for all x. Since the estimators (2.5) are

discontinuous (step functions) in y, it is customary to smooth them, i.e., define

F̄x(y) =
∑

n
i=1 K̃i,xΛ(y−Yi

h0
)

∑
n
i=1 K̃i,x

, and F̄LL
x (y) =

∑
n
j=1 w jΛ(

y−Y j
h0

)

∑
n
j=1 w j

(2.8)
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where Λ(y) is some smooth distribution function which is strictly increasing with density

λ(y) > 0, i.e., Λ(y) =
∫ y
−∞ λ(s)ds. Here again the local linear weights w j are given by

eq. (2.4), and h0 > 0 is a secondary bandwidth whose choice is not as important as the

choice of b; see Section 2.2.5 for some concrete suggestions on picking b and h0 in practice.

Under standard conditions, both estimators appearing in eq. (2.8) are asymptotically

consistent, and preferable to the respective estimators appearing in eq. (2.5), i.e., replacing

1{Yj ≤ y} by Λ(
y−Y j

h0
) is advantageous; see Ch. 6 of (Li & Racine, 2007). Furthermore,

as discussed in the Introduction, we expect that F̄LL
x (y) would be a better estimator than

F̄x(y) when x is a boundary point and/or the design is not uniform, while F̄LL
x (y) and F̄x(y)

would be practically equivalent when x is an interior point and the design is (approximately)

uniform. Hence, all in all, F̄LL
x (y) would be preferable to F̄x(y) as an estimator of Fx(y) for

any fixed y. The problem again is that F̄LL
x (y) is not guaranteed to be a proper distribution

viewed as a function of y by analogy to F̂LL
x (y).

There have been several proposals in the literature to address this issue. An inter-

esting one is the adjusted Nadaraya-Watson estimator of (Hall et al., 1999) that is a linear

function of the Y ’s with weights being selected by an appropriate optimization procedure.

The adjusted Nadaraya-Watson estimator is much like a local linear estimator in that it has

reduced bias (by an order of magnitude) compared to the regular Nadaraya-Watson local

constant estimator. Unfortunately, the adjusted Nadaraya-Watson estimator does not work

well when x is a boundary point as the required optimization procedure typically does not

admit a solution.

Noting that the problems with F̄LL
x (y) and F̂LL

x (y) arise due to potentially negative

weights w j computed by eq. (2.4), Hansen proposed a straightforward adjustment to the

local linear estimator that maintains its favorable asymptotic properties (Hansen, 2004) .
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The local linear versions of F̂x(y) and F̄x(y) adjusted via Hansen’s proposal are given as

follows:

F̂LLH
x (y) =

∑
n
i=1 w�i 1(Yi ≤ y)

∑
n
i=1 w�i

and F̄LLH
xm

(y) =
∑

n
i=1 w�i Λ(y−Yi

h0
)

∑
n
i=1 w�i

(2.9)

where

w�i =


0 when β̂(x− xi)> 1

K̃i,x

(
1− β̂(x− xi)

)
when β̂(x− xi)≤ 1.

(2.10)

Essentially, Hansen’s proposal replaces negative weights by zeros, and then renormalizes

the nonzero weights. The problem here is that if x is on the boundary, negative weights are

crucially needed in order to ensure an extrapolation takes place with minimal bias; this is

further elaborated upon in the following subsection.

2.2.2 Extrapolation vs. interpolation

In order to illustrate the need for negative weights consider the simple case of n = 2,

i.e., two data points (Y1,x1) and (Y2,x2). The question is to predict a future response Y3

associated with a regressor value of x3; assuming finite second moments, the L2–optimal

predictor of Y3 is µ(x3) where µ(x) = E(Y |X = x) as before.

If x3 is an interior point as depicted in Figure 2.1, the problem is one of interpolation.

If x3 is a boundary point, and in particular if x3 is outside the convex hull of the design

points as in Figure 2.2, the problem is one of extrapolation. Let µ̂LL(x) denote the local

linear estimator of µ(x) as before. With n = 2, µ̂LL(x) reduces to just finding the line that

passes through the two data points (Y1,x1) and (Y2,x2). In other words, µ̂LL(x) reduces to a

convex combination of Y1 and Y2, i.e., µ̂LL(x) = ωxY1 +(1−ωx)Y2 where ωx =
x2−x
x2−x1

where
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x1 < x < x2 for interior points and x1 < x2 < x for boundary points. Note that ωx ∈ [0,1] if

x is an interior point, whereas ωx 6∈ [0,1] if x is outside the convex hull of the design points.

Hence, negative weights are a sine qua non for effective linear extrapolation.

For example, assume we are in the setup of Figure 2.2 where x1 < x2 < x3. In this

case, ωx3 is negative. Hansen’s proposal (Hansen, 2004) would replace ωx3 by zero and

renormalize the coefficients, leading to µ̂LLH(x3) = Y2; it is apparent that this does not give

the desired linear extrapolation effect.

To generalize the above setup, suppose that now n is an arbitrary even number, and

Yi represents the average of n/2 responses associated with regressor value xi for i = 1 or

2. Thus, we have a bona fide n–dimensional scatterplot that is supported on two design

points. Interestingly, the formula for µ̂LL(x) is exactly as given above, and so is the argument

requiring negative weights for linear extrapolation. Of course, we cannot expect a general

scatterplot to be supported on just two design points. Nonetheless, in a nonparametric

situation one performs a linear regression locally, i.e., using a local subset of the data.

Typically, there is a scarcity of design points near the boundary, and the general situation is

qualitatively similar to the case of two design points.
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Figure 2.1: Interpolation: prediction of Y3 when x3 is an interior point; Ŷ3 is a convex
combination of Y1 and Y2 with nonnegative weights.

Figure 2.2: Extrapolation: prediction of Y3 when x3 is outside the convex hull of the design
points; Ŷ3 is a linear combination of Y1 and Y2 with one positive and one negative weight.
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2.2.3 Monotone Local Linear Distribution Estimation

The estimator F̂LL
x (y) from eq. (2.5) is discontinuous as a function of y therefore we

will focus our attention on F̄LL
x (y) described in eq. (2.8) from here on. It seems that with

this double-smoothed estimator F̄LL
x (y) we can “have our cake and eat it too”, i.e., modify

it towards monotonicity while retaining (some of) the negative weights that are helpful in

the extrapolation problem as discussed in the last subsection. We are thus led to define a

new estimator denoted by F̄LLM
x (y) which is a monotone version of F̄LL

x (y); we will refer to

F̄LLM
x (y) as the Monotone Local Linear Distribution Estimator.

One way of constructing the estimator F̄LLM
x (y) is by first constructing its associated

density function denoted by f̄ LLM
x (y) which will be called the Monotone Local Linear

Density Estimator. This algorithm goes as follows.

Algorithm 1 (A1)

1. Recall that the derivative of F̄LL
x (y) with respect to y is given by

f̄ LL
x (y) =

1
h0

∑
n
j=1 w jλ(

y−Y j
h0

)

∑
n
j=1 w j

where λ(y) is the derivative of Λ(y).

2. Define a nonnegative version of f̄ LL
x (y) as f̄ LL+

x (y) = max( f̄ LL
x (y),0).

3. To make the above a proper density function, renormalize it to area one, i.e., let

f̄ LLM
x (y) =

f̄ LL+
x (y)∫

∞

−∞
f̄ LL+
x (s)ds

. (2.11)
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4. Finally, define F̄LLM
x (y) =

∫ y
−∞ f̄ LLM

x (s)ds.

To implement the above one would again need to divide the range of the y variable using a

grid of size ε in order to construct the maximum function in step 2 of Algorithm 1. The same

grid can by used to provide Riemann-sum approximations to the two integrals appearing in

steps 3 and 4.

Algorithm 1 works by computing the density function in Step 1 using local linear

estimation with both positive and negative weights. In general this obtained ”density” may

not be positive for all values of y and thus in Step 2 a correction is made to make it assume

only zero or positive values at all points. The obtained value are then normalized in Step 3

so that it integrates to 1 and therefore represents a legitimate density function. Finally the

monotone distribution function F̄LLM
x (y) is obtained in Step 4.

An alternative way to correct the monotonicity of F̄LL
x (y) is via a direct construction

as follows.

Algorithm 2 (A2)

1. Compute the unconstrained double-smoothed estimator F̄LL
x (y).

2. Choose a small enough ε> 0 and divide the range of the y variable using a uniform grid

of size ε. Let the gridded values be denoted by yi where yi = yi−1 + ε. Let y∗ = min

{y : F̄LL
x (y) = 1} and k∗ be the minimum integer such that yk∗ ≥ y∗. Similarly, let

y∗ = max {y : F̄LL
x (y) = 0} and k∗ be the maximum integer such that yk∗ ≤ y∗.

3. Define a second function G2 with the property that G2(y) = 0 for all y≤ y∗.
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Figure 2.3: Nonmonotonicity in CDF with negative weights

Figure 2.4: Monotone CDF

Now let G2(y) = max ( F̄LL
x (yi+1), G2(yi) ) for y ∈ (yi,yi+1] .

Repeat this procedure and define G2(y) for i = k∗,k∗+1, . . . ,k∗.

4. Define F̄LLM
x (y) = G2(y)/L where L = limy→∞ G2(y).

Algorithm 2 works by first estimating the distribution function in Step 1 using

local linear estimation with both positive and negative weights. In general this obtained
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“distribution” may not be monotonic and thus in Step 3 monotonicity corrections are effected

in the direction of increasing y values. Finally the range of values obtained are scaled in

Step 4 so that the final values of F̄LLM
x (y) lie between 0 and 1 and therefore represent a

legitimate distribution function.

Illustrations of monotonicity corrections using Algorithm A2 are given in the fol-

lowing figures. In Figure 2.3 after applying positive and negative local linear weights a

nonmonotonic distribution function is obtained. This is corrected for monotonicity with

appropriate scaling of values to lie between [0,1] using Algorithm 2 as shown in Figure 2.4.

It should also be noted that the monotonicity correction proposal in Step 2 of Algo-

rithm 2 is not unique. Algorithm 2 works from left to right thereby forcing the estimated

distribution to be an increasing function. One alternative to this procedure would be to

first calculate the generally nonmonotonic function F̄LL
x (y) and then proceed from right to

left thereby achieving monotonicity correction by forcing the estimated distribution to be

decreasing when y decreases. This is described in Algorithm 3 below.

Algorithm 3 (A3)

1. Compute the unconstrained double-smoothed estimator F̄LL
x (y).

2. Choose a small enough ε> 0 and divide the range of the y variable using a uniform grid

of size ε. Let the gridded values be denoted by yi where yi = yi−1 + ε. Let y∗ = min

{y : F̄LL
x (y) = 1} and k∗ be the minimum integer such that yk∗ ≥ y∗. Similarly, let

y∗ = max {y : F̄LL
x (y) = 0} and k∗ be the maximum integer such that yk∗ ≤ y∗.

3. Define a second function G2 with the property that G2(y) = 1 for all y≥ y∗.
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Now let G2(y) = min ( F̄LL
x (yi−1), G2(yi) ) for y ∈ [yi−1,yi).

Repeat this procedure and define G2(y) for i = k∗,k∗−1, . . . ,k∗.

4. Denote l = limy→−∞ G2(y) and define a function G3(y) = G2(y)− l.

5. Define F̄LLM
x (y) = G3(y)/L where L = limy→∞ G3(y).

Algorithm 3 is similar in style to Algorithm 2 the key difference being that it runs

over grid points from right to left (decreasing index) whereas the latter runs over grid points

from left to right (increasing index).

Yet another method of monotonicity correction can be based on the important notion

due to (Brunk, 1955), namely the Pool Adjacent Violators Algorithm (PAVA). Algorithm 4

shows how we can implement PAVA in order to correct F̄LL
x (y) for monotonicity.

Algorithm 4 (A4)

1. Compute the unconstrained double-smoothed estimator F̄LL
x (y).

2. Choose a small enough ε > 0 and divide the range of the y variable using a uniform

grid of size ε. Let the gridded values be denoted by yi where yi = yi−1 + ε. Let

Zi = F̄LL
x (yi).

3. The PAVA algorithm runs over these gridded points as follows:

(a) Consider values Zk−1 and Zk with frequencies of occurrence fk−1 and fk respec-

tively.

(b) If Zk−1 > Zk then define:
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Wk−1 =Wk =
fk−1Zk−1 + fkZk

fk−1 + fk

Set fk−1 = fk = ( fk−1 + fk)

else define:

Wk−1 = Zk−1 and Wk = Zk

fk−1, fk remain unchanged

(c) Repeat the above steps (a) and (b) in decreasing order of indices until all gridded

points yi are covered. Define a new function G2(y) by letting G2(yi) =Wi ∀i and

if y∈ (yi,yi+1) let G2(y) = G2(yi) which are the monotonicity corrected updated

values from F̄LL
x (y) obtained in the iterations above.

4. Denote l = limy→−∞ G2(y) and define a function G3(y) = G2(y)− l.

5. Define F̄LLM
x (y) = G3(y)/L where L = limy→∞ G3(y).

Remark 2.2.1 (Performance and runtime comparison of A1,A2,A3,A4) It should be

noted that the novel aspect of our proposal is to keep negative weights when required and

then make a monotonicity correction so that one can obtain well-defined estimates of the

distribution function F̄LLM
x (y). Either of the 4 algorithms above can be applied to obtain

the monotone distribution function. Indeed, other algorithms could also be devised for

this purpose. Notably Algorithms 1,2,3,4 perform similarly on data be it real or simulated.

However Algorithm 1 is preferable as it can be implemented much faster than Algorithms

2,3,4. The reason is that density estimates can be obtained very rapidly using built-in

functions in statistical software such as R. This is especially helpful during bootstrap when
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a large number of estimates of F̄LLM
x (y) are required to obtain confidence intervals as in

Section 2.2.4. A performance comparison of Algorithms 1,2,3,4 based on a simulation

study over a dataset with i.i.d. errors is given in Tables 2.5 and 2.10. Based on point

prediction results over this dataset it is observed that in our current implementation A1 runs

approximately 9 times faster than A2, A3 and 6 times faster than A4.

Remark 2.2.2 (Comparison with Isotonic Regression) In addition we would also like to

point out that there have been several methods proposed in the literature for ”isotonic”

regression i.e. monotonic estimation of a regression function µ(x) = E(Y |X = x) such as

the ones described in (Brunk, 1955), (Hall & Huang, 2001) and (Dette, Neumeyer, Pilz,

et al., 2006). While these are valid methods for constructing a monotone estimate of

E(Y |X = x) as a function of x in our case we require an estimate of Fx(y) = E(W |X = x)

where W = 1{Y ≤ y} that is monotone with respect to y and not with respect to x.

2.2.4 Standard Error of the Monotone Local Linear Estimator

Under standard conditions, the local linear estimator
√

nbF̄LL
x (y) is asymptotically

normal with a variance V 2
x,y that depends on the design; for details, see Ch. 6 of (Li & Racine,

2007). In addition, the bias of
√

nbF̄LL
x (y) is asymptotically vanishing if b = o(n1/5). Hence,

letting b∼ nα for some α ∈ (0,1/5), F̄LL
x (y) will be consistent for Fx(y), and approximate

95% confidence intervals for Fx(y) can be constructed as F̄LL
x (y)±1.96Vx,y

nb .

The consistency of F̄LL
x (·) towards Fx(·) implies that the monotonicity corrections

described in the previous subsection will be asymptotically negligible. To see why, fix a

point x of interest, and assume that Fx(y) is absolutely continuous with density fx(y) that is

strictly positive over its support. The consistency of f̄ LL
x (y) to a positive target implies that
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f̄ LL
x (y) will eventually become (and stay) positive as n increases. Hence, the monotonicity

correction eventually vanishes, and F̄LLM
x (y) is asymptotically equivalent to F̄LL

x (y).

Regardless, it is not advisable to use the aforementioned asymptotic distribution

and variance of F̄LL
x (y) to approximate those of F̄LLM

x (y) for practical work since, in finite

samples, F̄LLM
x (y) and F̄LL

x (y) can be quite different. Our recommendation is to use some

form of bootstrap in order to approximate the distribution and/or standard error of F̄LLM
x (y)

directly. In particular, the Model-Free bootstrap (Politis, 2015) in its many forms is im-

mediately applicable in the present context. For instance, the “Limit Model-Free” (LMF)

bootstrap would go as follows:

LMF Bootstrap Algorithm

1. Generate U1, . . . ,Un i.i.d. Uniform(0,1).

2. Define Y ∗i = G−1
xi
(Ui) for i = 1, . . . ,n where G−1

xi
(·) is the quantile inverse of F̄LLM

xi
(·),

i.e., G−1
xi
(u) = inf{y : F̄LLM

xi
(y)≥ u}.

3. For the points x and y of interest, construct the pseudo-statistic F̄LLM∗
x (y) which is

computed by applying estimator F̄LLM
x (y) to the bootstrap dataset (Y ∗1 ,x1) . . . , (Y ∗n ,xn).

4. Repeat steps 1–3 a large number (say B) times. Plot the B pseudo-replicates F̄LLM∗
x (y)

in a histogram that will serve as an approximation of the distribution of F̄LLM
x (y). In

addition, the sample variance of the B pseudo-replicates F̄LLM∗
x (y) is the bootstrap

estimator of the variance of F̄LLM
x (y).

Our focus is on point estimation of Fx(y) so we will not elaborate further on the construction

of interval estimates.

21



2.2.5 Bandwidth Choice

There are two bandwidths, b and h0, required to construct estimator F̄LLM
x (y) and its

relatives F̄x(y) and F̄LLH
x (y). We will now focus on choice of the bandwidth b which is the

most crucial of the two, and is often picked via leave-one-out cross-validation.

In this Chapter we are mostly concerned with estimation and prediction at boundary

points. Since often boundary problems present their own peculiarities, we are strongly rec-

ommending carrying out the cross-validation procedure ‘locally’, i.e., over a neighborhood

of the point of interest. One needs, however, to ensure that there are enough points nearby

to perform the leave-one-out experiment. Hence, our concrete recommendation goes as

follows.

• Choose a positive integer m which can be fixed number or it can be a small fraction of

the sample size at hand.

• Then, identify m among the regression points (Y1,x1), . . . ,(Yn,xn) with the property

that their respective xi’s are the m closest neighbors of the point x under consideration.

• Denote this set of m points by (Yg(1),xg(1)), . . . ,(Yg(m),xg(m)) where the function g(·)

gives the index numbers of the selected points.

• For k = 1, . . . ,m, compute Ŷg(k) which is the L2–optimal predictor of Yg(k) using leave-

one-out data. In other words, Ŷg(k) is the mean, i.e., center of location, of one of the

aforementioned distribution estimators based on the delete–one dataset, i.e. pretending

that Yg(k) is unavailable.

• Thus, for a range of values of bandwidth b, we can calculate the following:
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Err =
m

∑
k=1

(Ŷg(k)−Yg(k))
2. (2.12)

• Finally, the optimal bandwidth is given by the value of b that minimizes Err over the

range of bandwidths considered.

Coming back to the problem of selecting h0, define h = b/n and recall that in an

analogous regression problem the optimal rates h0 ∼ n−2/5 and h∼ n−1/5 were suggested

in connection with the nonnegative kernel K; see (Li & Racine, 2007). As in (Politis, 2013),

this leads to the practical recommendation of letting h0 = h2. We will adopt the same rule-

of-thumb here as well, namely let h0 = b2/n2 where b has been chosen previously via local

cross-validation. Note that the initial choice of h0 (before performing the cross-validation

to determine the optimal bandwidth b) can be set by a plug-in rule as available in standard

statistical software such as R.

2.3 Numerical work: simulations and real data

The performance of the three distribution estimators F̄x(y), F̄LLH
x (y) or F̄LLM

x (y)

described above are empirically compared using both simulated and real-life datasets

according to the following metrics.

1. Divergence between the local distribution F̄x(·) estimated by all three methods and

the corresponding local (empirical) distribution calculated from the actual data; this

is determined using the mean value of the Kolmogorov-Smirnov (KS) test statistic

(Serfling, 2009). The measurement is performed on simulated datasets where multiple

realizations of data at both boundary and internal points are available. Therefore
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the empirical distribution at any point can be calculated and compared versus the

estimated values. Our notation is KS-LC, KS-LLH and KS-LLM for the distribution

estimators F̄x(y), F̄LLH
x (y) or F̄LLM

x (y) respectively.

2. Comparison of estimated quantiles of Fx(·) at specified points using all three methods

versus the corresponding empirical values calculated using simulated datasets.

3. Point prediction performance as indicated by bias and Mean Squared Error (MSE)

on simulated and real-life datasets using all three methods. The MSE values of point

prediction are denoted as MSE-LC, MSE-LLH and MSE-LLM for the distribution

estimators F̄x(y), F̄LLH
x (y) or F̄LLM

x (y) respectively; the corresponding bias values are

denoted Bias-LC, Bias-LLH and Bias-LLM. For comparison purposes the point-

prediction performance is also measured using the local linear conditional moment

estimator as given by equations 3.17 and 2.4. In this case bias and MSE are indicated

as Bias-LL and MSE-LL respectively.

4. Performance comparison of all 4 monotonicity correction schemes described in

Algorithms A1, A2, A3 and A4 for the estimator F̄LLM
x (y). The comparison is

done using the mean values of the KS statistic between the local distribution F̄LLM
x (y)

using all 4 methods and the corresponding (local) empirical distribution obtained from

the data. Comparisons are also performed by measuring the MSE and bias of point

prediction on the simulated dataset with i.i.d. errors at a given boundary point.

It should be noted that all performance comparisons involving the KS test statistic

and point prediction for the estimator F̄LLM
x (y) are done using Algorithm A1 owing to the

shorter runtimes in this case as compared to A2, A3 and A4. Comparisons of all of these 4

algorithms for F̄LLM
x (y) are presented in Tables 2.5 and 2.10 for the dataset with i.i.d. errors.

24



On simulated datasets the performance metrics for all three distribution estimators

are calculated both at boundary and internal points to illustrate how performance varies

between F̄x(y), F̄LLH
x (y) and F̄LLM

x (y) in the two cases. Our simulated datasets contain 500

realizations each with 1001 data points. In such cases using Model-Free cross-validation

outlined in Section 2.2.5 is computationally expensive. Therefore for these datasets we

perform our comparisons using a range of bandwidth values from 3.7,7.4, . . . ,51.8 in steps

of 3.7. For the real-life dataset cross-validation is used to determine the most optimal

bandwidth for all predictors.

2.3.1 Simulation: Additive model with i.i.d Gaussian errors

Data Yi for i = 1, . . . ,1001 were simulated as per model (2.1) by setting µ(xi) =

sin(2πxi) , σ(xi) = τ where xi =
i
nand the errors εi as i.i.d. N(0,1). Sample size n was set to

1001. A total of 500 such realizations were generated for this study.

Results for the mean-value of the Kolmogorov-Smirnov test statistic between the LC,

LLH and LLM estimated distributions and empirical distribution calculated using available

values of the simulated data are given in Tables 2.1, 2.2, 2.3 and 2.4 for boundary point

n= 1001 and internal point n= 200 for values of τ= 0.1 and 0.5 over a range of bandwidths,

i.e., b taking values 3.7,7.4, . . . ,51.8 in steps of 3.7.

Point prediction performance values are provided for the same cases in Tables 2.6,

2.7, 2.8 and 2.9.

Estimates of the α–quantile at specific values of α are calculated using all three

distribution estimators and compared with corresponding quantiles calculated from the

available data. Plots for selected quantile values (α = 0.1 and α = 0.9) are shown in Figures

2.5, 2.6, 2.7 and 2.8 for both 1 and 2-sided cases (τ = 0.5). Note that the ’true’ quantile
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lines showed in the plots are values calculated from the available data at n = 1001 and

n = 200 over 500 realizations for the case of boundary and internal points respectively.

The bandwidths used for estimating the quantiles for LC, LLH and LLM are based on

bandwidth values where the best performance for these estimators was obtained using the

Kolmogorov-Smirnov test (refer Tables 2.3 and 2.4).

Note that the point n = 1001 is excluded from the data used for LC, LLH and LLM

estimation at the boundary point. Similarly the point n = 200 is excluded for the case of

estimation at the internal point.

It can be seen from Tables 2.1 and 2.3 that in the case of boundary point estima-

tion among the estimators based on F̄x(y), F̄LLH
x (y) and F̄LLM

x (y) the lowest value of the

Kolmogorov-Smirnov test statistic is obtained using the LLM estimator F̄LLM
x (y). In ad-

dition again for the boundary case the lowest values of MSE are obtained using the LLM

estimator as can be seen from Tables 2.6 and 2.8 which is consistent with the trend seen

from minimum values of the KS test-statistic. Minimum values of KS-statistic and MSE

are highlighted in bold in all respective tables. In addition it can be seen from the plots of

the estimated quantiles at α = 0.1 and α = 0.9 in the boundary case that the center of the

estimated quantile distribution for LLM is aligned more closely to the ’true’ quantile value

calculated from the simulated data as shown by the dotted line (Figures 2.5 and 2.6). Based

on these results it can be concluded that for boundary value estimation the estimator based

on F̄LLM
x (y) has superior performance as compared to both F̄x(y) and F̄LLH

x (y).

In the case of τ = 0.1 at the boundary point n = 1001 the LC estimator outperforms

the LLH and LLM estimators only at very low bandwidths. As can be seen from Table 2.6

for the case of τ = 0.1 with increasing bandwidth the 2 local linear estimators LLH and

LLM perform significantly better than the LC owing to lower bias. In this case over a large
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range of bandwidths from 11.1,14.8, . . . ,51.8 LLH and LLM outperform LC. In the case

of τ = 0.5 at the boundary point n = 1001 as can be seen from Table 2.8 even though the

bias of the local linear estimators are lower at higher bandwidths compared to that of the

LC estimator the latter outperforms these for a larger range of bandwidths as compared to

the case of τ = 0.1 owing to larger estimation variance for the local linear estimators. In

this case the LLM estimator outperforms the LC and LLH estimators only for the highest

bandwidths, namely 48.1,51.8. However as stated earlier the overall best performance is

obtained from the LLM estimator.

For the case of estimation at internal points no appreciable differences in performance

are noticeable between the 3 estimators using both the mean values of the Kolmogorov-

Smirnov test statistic (Tables 2.2 and 2.4) and also using mean-square error of point pre-

diction (Tables 2.7 and 2.9). Similar trends are noticeable in the quantile plots where the

estimated quantiles using LC, LLH and LLM nearly overlap for the internal case (Figures

2.7 and 2.8).

It can also be seen from Tables 2.6, 2.7, 2.8 and 2.9 that across the range of band-

widths considered there is negligible loss in best point prediction performance of LLM

versus that of LL.

We also perform a comparison of Algorithms A1, A2, A3 and A4 with this dataset

using both the Kolmogorov-Smirnov test statistic and point prediction. The overall best

performance among all bandwidths of all algorithms is nearly the same as can be seen from

the minimum KS-statistic values for each of A1,A2,A3 and A4 highlighted in bold in Table

2.5. It is only at higher bandwidths that compared to A1 algorithms A2, A3 and A4 perform

better and for the highest bandwidth of 51.8 algorithm A2 has the lowest KS-statistic value

among all 4 considered. In case of point prediction as shown in Table 2.10 the overall best
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Table 2.1: Mean values of KS test statistic over i.i.d. errors at boundary point (n =
1001,τ = 0.1)

Bandwidth KS-LC KS-LLH KS-LLM
3.7 0.23508 0.252884 0.275132
7.4 0.241992 0.233996 0.23606

11.1 0.2767 0.232064 0.218948
14.8 0.31528 0.240476 0.20744
18.5 0.349924 0.2554 0.2009
22.2 0.38438 0.273648 0.204404
25.9 0.418316 0.288032 0.21502
29.6 0.448772 0.307672 0.231588
33.3 0.474796 0.326224 0.253472
37.0 0.502768 0.342884 0.275936
40.7 0.5264 0.360888 0.2993
44.4 0.54664 0.37786 0.320348
48.1 0.56692 0.393392 0.34248
51.8 0.58646 0.407108 0.359404

performance among all bandwidths as highlighted in bold is almost equal among all methods.

However a trend similar to that of the Kolmogorov-Smirnov statistic can be observed at

higher bandwidths where the MSE of point prediction is better for algorithms A2, A3 and

A4 as compared to A1. In this case the best performance at the highest bandwidth of 51.8 is

observed from Algorithms A2 and A4.

28



Table 2.2: Mean values of KS test statistic over i.i.d. errors at internal point (n = 200,τ =
0.1)

Bandwidth KS-LC KS-LLH KS-LLM
3.7 0.212296 0.213792 0.213712
7.4 0.201892 0.203264 0.203704

11.1 0.197736 0.198904 0.197828
14.8 0.19782 0.197296 0.196772
18.5 0.19606 0.1949 0.19684
22.2 0.200164 0.198304 0.198556
25.9 0.202644 0.201472 0.202208
29.6 0.206016 0.20534 0.207628
33.3 0.21412 0.212608 0.21422
37.0 0.220084 0.221096 0.2204
40.7 0.23078 0.23064 0.231744
44.4 0.240556 0.238724 0.240032
48.1 0.250116 0.250692 0.250972
51.8 0.260864 0.260696 0.259292

Table 2.3: Mean values of KS test statistic over i.i.d. errors at boundary point (n =
1001,τ = 0.5)

Bandwidth KS-LC KS-LLH KS-LLM
3.7 0.207104 0.303696 0.352912
7.4 0.148964 0.210324 0.250856

11.1 0.125284 0.171268 0.2058
14.8 0.112412 0.15016 0.182176
18.5 0.107232 0.136612 0.16702
22.2 0.107764 0.127176 0.154944
25.9 0.111144 0.121408 0.145624
29.6 0.119836 0.115008 0.136968
33.3 0.126996 0.110716 0.128792
37.0 0.137376 0.108468 0.121452
40.7 0.14676 0.105504 0.1165
44.4 0.157364 0.107432 0.111452
48.1 0.165528 0.108692 0.107532
51.8 0.175852 0.110228 0.103772
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Table 2.4: Mean values of KS test statistic over i.i.d. errors at internal point (n = 200,τ =
0.5)

Bandwidth KS-LC KS-LLH KS-LLM
3.7 0.152968 0.15334 0.152252
7.4 0.119528 0.117216 0.118916

11.1 0.103412 0.104188 0.104388
14.8 0.097028 0.097544 0.097348
18.5 0.0897 0.089944 0.090576
22.2 0.0868 0.086116 0.087244
25.9 0.083068 0.083164 0.084304
29.6 0.082208 0.081544 0.081452
33.3 0.080592 0.081848 0.081572
37.0 0.07958 0.08006 0.078328
40.7 0.080208 0.080568 0.079604
44.4 0.08194 0.08094 0.082332
48.1 0.082628 0.08288 0.082256
51.8 0.084188 0.08518 0.086076

Table 2.5: Mean values of KS test statistic for different monotonicity correction schemes
over i.i.d. errors (n = 1001,τ = 0.1)

Bandwidth KS-A1 KS-A2 KS-A3 KS-A4
3.7 0.275132 0.275149 0.274824 0.276483
7.4 0.23606 0.235748 0.237324 0.237577

11.1 0.218948 0.218420 0.216216 0.217999
14.8 0.20744 0.206292 0.20604 0.205644
18.5 0.2009 0.196003 0.197392 0.196902
22.2 0.204404 0.191834 0.19986 0.193544
25.9 0.21502 0.195243 0.208152 0.196858
29.6 0.231588 0.199259 0.225812 0.204090
33.3 0.253472 0.211065 0.247672 0.217721
37.0 0.275936 0.228099 0.269192 0.237243
40.7 0.2993 0.242803 0.29148 0.255088
44.4 0.320348 0.263343 0.313924 0.275137
48.1 0.34248 0.281416 0.334704 0.297277
51.8 0.359404 0.299183 0.35426 0.315886
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Table 2.6: Point Prediction for Boundary Value over i.i.d. errors (n = 1001,τ = 0.1)

Ban Bias-LC MSE-LC Bias-LLH MSE-LLH Bias-LLM MSE-LLM Bias-LL MSE-LL
3.7 -0.01887676 0.01265856 -0.0087034 0.01453471 0.0004694887 0.01667712 0.00279478 0.01713243
7.4 -0.03782673 0.01261435 -0.01818502 0.0126929 0.0005444976 0.01323652 0.003247646 0.01340418

11.1 -0.05753609 0.01418224 -0.02725602 0.01232877 -0.001022256 0.01200918 0.0039133 0.01219628
14.8 -0.07724901 0.01672728 -0.03718728 0.01259729 -0.005397138 0.01148354 0.00354838 0.01167496
18.5 -0.09692561 0.0200906 -0.04758345 0.01327841 -0.01222596 0.01130622 0.002834568 0.01139095
22.2 -0.116533 0.02423279 -0.05831195 0.01431087 -0.02106315 0.01142789 0.002008806 0.01120327
25.9 -0.1359991 0.02911512 -0.06918129 0.0156254 -0.03138586 0.01185914 0.001102312 0.01106821
29.6 -0.1555938 0.03480583 -0.08021998 0.01722284 -0.04274234 0.01263368 8.912064e-05 0.01096947
33.3 -0.1752324 0.04128715 -0.09144259 0.01910772 -0.05473059 0.01375585 -0.001070282 0.01089842
37.0 -0.1947342 0.04848954 -0.1027918 0.02127558 -0.0670785 0.01521865 -0.002416635 0.01084951
40.7 -0.2145001 0.05656322 -0.1142845 0.02374615 -0.07967838 0.01704094 -0.003988081 0.01081946
44.4 -0.2343967 0.06548142 -0.1259372 0.02651703 -0.09236019 0.01919461 -0.005818943 0.01080699
48.1 -0.2543523 0.07522469 -0.1377167 0.02960364 -0.1050934 0.02168698 -0.007939144 0.01081259
51.8 -0.2740635 0.08563245 -0.1496325 0.03301117 -0.1178388 0.02451228 -0.01037417 0.01083832

Table 2.7: Point Prediction for Internal Value over i.i.d. errors (n = 200,τ = 0.1)

Ban Bias-LC MSE-LC Bias-LLH MSE-LLH Bias-LLM MSE-LLM Bias-LL MSE-LL
3.7 0.005693694 0.01026982 0.005815108 0.01027252 0.005811741 0.01027231 0.005672309 0.01027341
7.4 0.004548762 0.009868812 0.004644668 0.009871222 0.004640743 0.009871005 0.004547984 0.009883257

11.1 0.003077572 0.009736622 0.003193559 0.009739295 0.003189924 0.009738919 0.003108078 0.009754927
14.8 0.001168265 0.009684642 0.001329604 0.009685997 0.001325573 0.009685696 0.001205735 0.009703492
18.5 -0.001163283 0.009671566 -0.0009392514 0.009670138 -0.0009440976 0.009670008 -0.001162398 0.009689214
22.2 -0.003874557 0.009682447 -0.00359328 0.009680945 -0.003598744 0.009680969 -0.003997042 0.009703
25.9 -0.006944759 0.009723612 -0.006615935 0.009717111 -0.006621406 0.009717225 -0.007307346 0.009745675
29.6 -0.01035534 0.009789969 -0.009987875 0.009781065 -0.009992804 0.009781194 -0.01109961 0.009822695
33.3 -0.01407319 0.009888265 -0.01368629 0.009877023 -0.01369037 0.009877157 -0.01537421 0.009942768
37.0 -0.01808254 0.01002258 -0.01768867 0.01001026 -0.01769184 0.01001041 -0.02012788 0.01011708
40.7 -0.02234318 0.01020278 -0.02197526 0.01018668 -0.02197765 0.01018686 -0.02535515 0.01035866
44.4 -0.02686568 0.01042781 -0.02652964 0.01041258 -0.02653147 0.0104128 -0.03104801 0.0106819
48.1 -0.03163397 0.01071166 -0.03133849 0.01069454 -0.03133999 0.01069479 -0.03719388 0.01110199
51.8 -0.03662567 0.01105637 -0.03639079 0.01103926 -0.03639212 0.01103955 -0.04377252 0.0116341

Table 2.8: Point Prediction for Boundary Value over i.i.d. errors (n = 1001,τ = 0.5)

Ban Bias-LC MSE-LC Bias-LLH MSE-LLH Bias-LLM MSE-LLM Bias-LL MSE-LL
3.7 0.04888178 0.301925 0.07073083 0.3540897 0.07920865 0.384878 0.0808868 0.4035579
7.4 0.02525561 0.2802656 0.05074344 0.3037839 0.06735271 0.3233827 0.07335949 0.3276234

11.1 0.00374298 0.2731737 0.038811 0.2892723 0.06222332 0.3013529 0.07053577 0.3027942
14.8 -0.01695169 0.270537 0.02715055 0.2805281 0.05849931 0.2922475 0.06822172 0.293552
18.5 -0.03718522 0.2696291 0.01614152 0.2761872 0.05612087 0.2867147 0.06656515 0.2892179
22.2 -0.05753523 0.2699832 0.005048478 0.2739688 0.05384922 0.2829767 0.0649322 0.2860192
25.9 -0.07760465 0.271603 -0.005574987 0.2723361 0.0513094 0.2798923 0.06320544 0.2830793
29.6 -0.09765073 0.2742877 -0.01633413 0.271128 0.04834131 0.2770397 0.06143642 0.2803242
33.3 -0.1176859 0.2780296 -0.02722356 0.2704552 0.04514186 0.2748099 0.05960562 0.2778554
37.0 -0.1373472 0.2827116 -0.0383895 0.2701542 0.04137961 0.2727937 0.05763437 0.2757286
40.7 -0.1572939 0.2883236 -0.04971082 0.2703248 0.03701344 0.2709994 0.05544761 0.2739321
44.4 -0.1769863 0.294608 -0.0611495 0.2709176 0.03212707 0.2695289 0.0530012 0.2724221
48.1 -0.1965911 0.3018083 -0.07255455 0.2717088 0.02680826 0.2683285 0.05027668 0.2711495
51.8 -0.2158054 0.3097015 -0.08401642 0.2728317 0.02098977 0.2673724 0.04726651 0.2700701
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Table 2.9: Point Prediction for Internal Value over i.i.d. errors (n = 200,τ = 0.5)

Ban Bias-LC MSE-LC Bias-LLH MSE-LLH Bias-LLM MSE-LLM Bias-LL MSE-LL
3.7 0.009184716 0.2520511 0.01220923 0.2521932 0.01220434 0.2521952 0.007409901 0.2516582
7.4 0.01372525 0.2431836 0.01526585 0.2435718 0.01526117 0.2435718 0.01263826 0.2426903

11.1 0.0148307 0.2398743 0.01582708 0.2401292 0.01582349 0.2401341 0.01395436 0.2395701
14.8 0.0135934 0.2381523 0.01432564 0.2382689 0.01432314 0.2382728 0.01288775 0.2379284
18.5 0.01125721 0.236852 0.011912 0.2369737 0.01190766 0.2369759 0.01078182 0.2367428
22.2 0.008293956 0.2359636 0.008883749 0.2359976 0.008879099 0.2360007 0.007971824 0.2358225
25.9 0.004809638 0.2352631 0.005346559 0.2352719 0.005342764 0.235277 0.004580992 0.235121
29.6 0.0009735356 0.2347759 0.001361408 0.2347516 0.001357999 0.2347585 0.0006901448 0.2346118
33.3 -0.003467449 0.234453 -0.003042608 0.2344041 -0.003046705 0.2344117 -0.00365963 0.2342717
37.0 -0.008232451 0.2342181 -0.007859816 0.2342051 -0.007864671 0.2342125 -0.008456445 0.2340811
40.7 -0.01347908 0.2341583 -0.01309377 0.2341384 -0.01309954 0.234145 -0.01370081 0.2340256
44.4 -0.01912791 0.2342317 -0.01874779 0.2341951 -0.01875384 0.2342009 -0.01939379 0.2340969
48.1 -0.02516629 0.2344631 -0.0248178 0.2343727 -0.02482374 0.234378 -0.02553028 0.2342927
51.8 -0.0316367 0.2347946 -0.0312908 0.2346738 -0.03129606 0.2346788 -0.03209508 0.2346152

Table 2.10: Point prediction for different monotonicity correction schemes over i.i.d. errors
(n = 1001,τ = 0.1)

Ban Bias-LLM-A1 MSE-LLM-A1 Bias-LLM-A2 MSE-LLM-A2 Bias-LLM-A3 MSE-LLM-A3 Bias-LLM-A4 MSE-LLM-A4
3.7 0.0004694887 0.01667712 0.000841778 0.01677949 0.001150729 0.0167038 0.001141823 0.0167835
7.4 0.0005444976 0.01323652 0.0009324214 0.01327941 0.001407732 0.0132403 0.001360984 0.01327423

11.1 -0.001022256 0.01200918 -0.0003834476 0.01205771 0.0002215077 0.01200811 0.0003438006 0.01205052
14.8 -0.005397138 0.01148354 -0.004193309 0.01154498 -0.003389566 0.01146531 -0.002862872 0.0115196
18.5 -0.01222596 0.01130622 -0.009974438 0.01133137 -0.0087616 0.01123066 -0.007608046 0.01126663
22.2 -0.02106315 0.01142789 -0.01703069 0.0113444 -0.01551549 0.01122922 -0.01342514 0.01121847
25.9 -0.03138586 0.01185914 -0.02501421 0.01156919 -0.02386251 0.01144391 -0.02043524 0.01135003
29.6 -0.04274234 0.01263368 -0.03364703 0.01198791 -0.0338179 0.01194188 -0.02872835 0.01167511
33.3 -0.05473059 0.01375585 -0.04277015 0.01263349 -0.04477437 0.01275655 -0.03799226 0.01223478
37.0 -0.0670785 0.01521865 -0.05219742 0.01347599 -0.05636865 0.0138868 -0.04802831 0.01305605
40.7 -0.07967838 0.01704094 -0.06192437 0.01455663 -0.06848161 0.01537956 -0.05849318 0.01413659
44.4 -0.09236019 0.01919461 -0.07185436 0.01585587 -0.08077665 0.01719065 -0.06922099 0.0154773
48.1 -0.1050934 0.02168698 -0.08190542 0.01738198 -0.09315366 0.01932202 -0.08017627 0.01709562
51.8 -0.1178388 0.02451228 -0.09206765 0.01913345 -0.1055826 0.02178116 -0.09116538 0.0189627
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Figure 2.5: Estimated versus true quantile values (α = 0.1) for 1-sided estimation, i.i.d.
errors (τ = 0.5)
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Figure 2.6: Estimated versus true quantile values (α = 0.9) for 1-sided estimation, i.i.d.
errors (τ = 0.5)
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Figure 2.7: Estimated versus true quantile values (α = 0.1) for 2-sided estimation, i.i.d.
errors (τ = 0.5)

2.3.2 Simulation: Additive model with heteroskedastic errors

Data Yi for i = 1, . . . ,1001 were simulated as per model (2.1) with µ(xi) = sin(2πxi),

σ(xi) = τxi where xi =
i
n and the errors εi as i.i.d. 1

2χ2
2−1. Sample size n was set to 1001.

A total of 500 such realizations were generated for this study.

Results for the mean-value of the Kolmogorov-Smirnov test statistic between the LC,

LLH and LLM estimated distributions and empirical distribution calculated using available

values of the simulated data are given in Tables 2.11, 2.12, 2.13 and 2.14 for boundary

point n = 1001 and internal point n = 200 for values of τ = 0.1 and 0.5 over a range of

bandwidths, i.e., b taking values 3.7,7.4, . . . ,51.8 in steps of 3.7.

Point prediction performance values are provided for the same cases in Tables 2.15,

2.16, 2.17 and 2.18.
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Figure 2.8: Estimated versus true quantile values (α = 0.9) for 2-sided estimation, i.i.d.
errors (τ = 0.5)

Note that the point n = 1001 is excluded from the data used for LC, LLH and LLM

estimation at the boundary point. Similarly the point n = 200 is excluded for the case of

estimation at the internal point.

It can be seen from Tables 2.11 and 2.13 that in the case of boundary point esti-

mation among the estimators based on F̄x(y), F̄LLH
x (y) and F̄LLM

x (y) the lowest value of

the Kolmogorov-Smirnov test statistic is obtained using the LLM estimator F̄LLM
x (y). In

addition again for the boundary case the lowest values of MSE are obtained using the LLM

estimator as can be seen from Tables 2.15 and 2.17 which is consistent with the trend seen

from minimum values of the KS test-statistic. Minimum values of KS-statistic and MSE are

highlighted in bold in all respective tables. Based on these results it can be concluded that

for boundary value estimation the estimator based on F̄LLM
x (y) has superior performance as
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compared to both F̄x(y) and F̄LLH
x (y).

In the case of τ = 0.1 at the boundary point n = 1001 the LC estimator outperforms

the LLH, LLM and LL estimators only at very low bandwidths. As can be seen from Table

2.15 for the case of τ = 0.1 with increasing bandwidth the 2 local linear estimators LLH

and LLM perform significantly better than LC owing to lower bias. In this case over a large

range of bandwidths from 11.1, . . . ,51.8 LLH and LLM outperform LC. In the case of

τ = 0.5 at the boundary point n = 1001 as can be seen from Table 2.17, even though the

bias of the local linear estimators are lower at higher bandwidths compared to that of the

LC estimator the latter outperforms these for a larger range of bandwidths as compared to

the case of τ = 0.1 owing to larger estimation variance for the local linear estimators. In

this case the LLM and LL estimators outperform the LC and LLH estimators only for the

higher bandwidths 25.9, . . . ,51.8. However as stated earlier the overall best performance is

obtained from the LLM estimator.

For the case of estimation at internal points no appreciable differences in performance

are noticeable between the 3 estimators using both the mean values of the Kolmogorov-

Smirnov test statistic (Tables 2.12 and 2.14) and also using mean-square error of point

prediction (Tables 2.16 and 2.18).

It can also be seen from Tables 2.15, 2.16, 2.17 and 2.18 that—across the range of

bandwidths considered—there is negligible loss in best point prediction performance of

LLM versus that of LL. This finding is unexpected since it has been widely believed that the

LL method gives optimal point estimators and/or predictors. It appears that the monotonicity

correction does not hurt the resulting point estimators/predictors which is encouraging.
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Table 2.11: Mean values of KS test statistic over heteroskedastic errors at boundary point
(n = 1001,τ = 0.1)

Bandwidth KS-LC KS-LLH KS-LLM
3.7 0.361228 0.3619 0.368288
7.4 0.39358 0.3606 0.336436

11.1 0.43216 0.371372 0.326076
14.8 0.470316 0.388952 0.325116
18.5 0.506436 0.408316 0.335152
22.2 0.53998 0.42548 0.350864
25.9 0.572256 0.44356 0.371324
29.6 0.599836 0.462808 0.393896
33.3 0.6269 0.47816 0.415468
37.0 0.651132 0.499376 0.44184
40.7 0.670604 0.516304 0.462756
44.4 0.69 0.529796 0.485004
48.1 0.706968 0.545344 0.505352
51.8 0.72394 0.562432 0.5257

2.3.3 Real-life example: Wage dataset

The Wage dataset from the ISLR package (James, Witten, Hastie, & Tibshirani, 2013)

was selected as a real-life example to demonstrate the differences in estimated local densities

estimated using the LC, LLH and LLM methods. The full dataset has 3000 points and

has been constructed from the Current Population Survey (CPS) data for year 2011. Point

Prediction is used as the criterion for demonstrating performance differences between the

three distribution estimators. This dataset is an example of regression data distributed

non-uniformly and hence the local linear estimator (LL) based on equations 3.17 and 2.4

is expected to give the best performance in such cases. However our study involves using

point-prediction using the three distribution estimators F̄x(y), F̄LLH
x (y) or F̄LLM

x (y). Among

these 3 estimators LLM gives the best point prediction performance and we show that using

this estimator causes negligible loss in performance compared to using LL.
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Table 2.12: Mean values of KS test statistic over heteroskedastic errors at internal point
(n = 200,τ = 0.1)

Bandwidth KS-LC KS-LLH KS-LLM
3.7 0.459776 0.461528 0.461176
7.4 0.461872 0.462716 0.4603

11.1 0.46576 0.467308 0.464956
14.8 0.468904 0.471824 0.470172
18.5 0.47436 0.475916 0.474864
22.2 0.482716 0.482476 0.47912
25.9 0.488952 0.488444 0.486656
29.6 0.495916 0.495736 0.495056
33.3 0.503672 0.503052 0.502708
37.0 0.5105 0.513116 0.51026
40.7 0.519052 0.518104 0.518928
44.4 0.528456 0.528444 0.527104
48.1 0.537336 0.536916 0.535632
51.8 0.545264 0.545496 0.543776

Table 2.13: Mean values of KS test statistic over heteroskedastic errors at boundary point
(n = 1001,τ = 0.5)

Bandwidth KS-LC KS-LLH KS-LLM
3.7 0.208708 0.28022 0.323664
7.4 0.176304 0.210876 0.241228

11.1 0.178416 0.189656 0.206996
14.8 0.189136 0.17842 0.186628
18.5 0.204484 0.175508 0.173096
22.2 0.220652 0.177144 0.163916
25.9 0.240692 0.181092 0.158476
29.6 0.25784 0.186648 0.15736
33.3 0.277888 0.191396 0.156008
37.0 0.295264 0.20092 0.159028
40.7 0.312968 0.20922 0.163296
44.4 0.330008 0.216464 0.167872
48.1 0.345432 0.22344 0.17522
51.8 0.36082 0.234392 0.181376
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Table 2.14: Mean values of KS test statistic over heteroskedastic errors at internal point
(n = 200,τ = 0.5)

Bandwidth KS-LC KS-LLH KS-LLM
3.7 0.3289 0.329088 0.329112
7.4 0.327172 0.326072 0.3268

11.1 0.327236 0.32788 0.3275
14.8 0.331784 0.3309 0.33186
18.5 0.337856 0.337888 0.337692
22.2 0.343504 0.344328 0.343368
25.9 0.350048 0.351444 0.349592
29.6 0.3588 0.359188 0.358944
33.3 0.36826 0.368708 0.368008
37.0 0.378308 0.376472 0.377692
40.7 0.386636 0.3864 0.388256
44.4 0.39642 0.395744 0.39754
48.1 0.4055 0.408072 0.40714
51.8 0.418516 0.4171 0.41794

Table 2.15: Point Prediction for Boundary Value over heteroskedastic errors (n= 1001,τ=
0.1)

Ban Bias-LC MSE-LC Bias-LLH MSE-LLH Bias-LLM MSE-LLM Bias-LL MSE-LL
3.7 -0.01646515 0.0110308 -0.008415339 0.01301928 0.003362834 0.01521503 0.002122231 0.01532911
7.4 -0.03418985 0.01113183 -0.01803682 0.01111592 0.001465109 0.01164382 0.003045892 0.01196587

11.1 -0.05291763 0.01251871 -0.02791687 0.0110065 -0.001493594 0.01066538 0.003162759 0.01102039
14.8 -0.07217657 0.01484132 -0.03844108 0.01144334 -0.007355843 0.01025364 0.003252626 0.01051494
18.5 -0.09186859 0.0180368 -0.0493472 0.01222871 -0.01604004 0.01020275 0.003291589 0.01020678
22.2 -0.1116673 0.02205503 -0.06052473 0.01337097 -0.0266163 0.0105145 0.003183081 0.01002049
25.9 -0.1312554 0.02681084 -0.07204081 0.01484635 -0.03845618 0.01120131 0.002843088 0.009915576
29.6 -0.1512692 0.03246252 -0.08373385 0.01662921 -0.05099656 0.01226805 0.002239256 0.009858149
33.3 -0.1714417 0.03896746 -0.09557852 0.01872622 -0.06394962 0.01372077 0.00136753 0.009824624
37.0 -0.1916003 0.04627765 -0.1075785 0.02114855 -0.07708492 0.01554708 0.0002256174 0.009802568
40.7 -0.2119687 0.05448537 -0.1197012 0.02389638 -0.09028337 0.01774215 -0.001196002 0.009787441
44.4 -0.2326798 0.06368262 -0.1320067 0.02699023 -0.1035047 0.0202921 -0.002912961 0.009779257
48.1 -0.2535364 0.07381161 -0.1444581 0.03043434 -0.1167033 0.02319127 -0.004943721 0.009780505
51.8 -0.2740579 0.08462823 -0.1570383 0.03422973 -0.1299138 0.02644559 -0.007307095 0.009795173
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Table 2.16: Point Prediction for Internal Value over heteroskedastic errors (n = 200,τ =
0.1)

Ban Bias-LC MSE-LC Bias-LLH MSE-LLH Bias-LLM MSE-LLM Bias-LL MSE-LL
3.7 -0.00078446 0.0004397085 -0.001282314 0.0004403816 -0.001281847 0.0004403461 -0.001460641 0.0004417506
7.4 -0.001122367 0.0004306633 -0.001431476 0.0004311207 -0.001431238 0.0004311334 -0.001977922 0.0004335427

11.1 -0.002288569 0.0004309951 -0.002426097 0.0004313394 -0.002424798 0.0004313337 -0.003182182 0.0004360195
14.8 -0.00405804 0.0004390668 -0.004017686 0.0004388123 -0.004015654 0.0004387818 -0.004960882 0.0004476175
18.5 -0.006300199 0.0004597561 -0.006090049 0.0004573097 -0.006086971 0.0004572689 -0.007269184 0.0004732545
22.2 -0.008952297 0.0004986956 -0.00857106 0.0004917471 -0.008566653 0.0004916759 -0.01008903 0.0005201175
25.9 -0.01195461 0.0005599192 -0.0114063 0.0005469568 -0.01140055 0.0005468245 -0.01341156 0.0005966537
29.6 -0.01524307 0.000648231 -0.01455151 0.0006275842 -0.01454456 0.0006273696 -0.01723004 0.000712577
33.3 -0.0188042 0.0007686332 -0.0179713 0.0007381116 -0.01796344 0.0007378019 -0.02153766 0.0008788525
37.0 -0.02260511 0.0009254938 -0.02163909 0.0008829351 -0.02163065 0.000882528 -0.02632699 0.00110763
40.7 -0.02662906 0.001123084 -0.02553604 0.001066478 -0.02552742 0.001065985 -0.03158974 0.001412141
44.4 -0.03085926 0.001365925 -0.02964955 0.001293297 -0.02964117 0.00129274 -0.03731584 0.001806523
48.1 -0.03531386 0.001660546 -0.03397167 0.001568158 -0.03396393 0.00156757 -0.0434914 0.002305438
51.8 -0.03995794 0.002010171 -0.0384976 0.001896071 -0.03849081 0.00189549 -0.05009551 0.002923419

Table 2.17: Point Prediction for Boundary Value over heteroskedastic errors (n= 1001,τ=
0.5)

Ban Bias-LC MSE-LC Bias-LLH MSE-LLH Bias-LLM MSE-LLM Bias-LL MSE-LL
3.7 -0.01641585 0.273216 -0.01371259 0.3278422 0.01500573 0.3662851 0.01063269 0.3832281
7.4 -0.02085331 0.2520507 -0.0253276 0.274159 0.002731055 0.2896534 0.01538866 0.2991516
11.1 -0.02981426 0.2462187 -0.03060796 0.2589025 0.003270715 0.2685365 0.0163369 0.2755266
14.8 -0.04068759 0.2442488 -0.03742699 0.2526514 0.002433103 0.2586642 0.01748551 0.2629147
18.5 -0.05443176 0.2442541 -0.04586018 0.2488821 0.0005299281 0.2526573 0.01882287 0.2552529
22.2 -0.06977487 0.245767 -0.05475483 0.2474683 -0.001728694 0.248843 0.0199724 0.2506579
25.9 -0.08589639 0.2481108 -0.06470145 0.2471712 -0.005360827 0.2463975 0.02061821 0.2481124
29.6 -0.1036357 0.25121 -0.07550857 0.2474051 -0.01066184 0.2448518 0.02070028 0.2467569
33.3 -0.1221155 0.2551902 -0.08684923 0.2482818 -0.01739231 0.2440367 0.02029725 0.2459808
37.0 -0.1410488 0.2599296 -0.09877418 0.2499431 -0.02522804 0.2438554 0.01949336 0.2454429
40.7 -0.1599352 0.2653016 -0.1111362 0.252298 -0.03400529 0.2440469 0.0183332 0.2449864
44.4 -0.1798873 0.2718873 -0.1241105 0.2552008 -0.04372748 0.2444396 0.01682687 0.2445524
48.1 -0.2001088 0.2793124 -0.1376482 0.2586551 -0.05435831 0.2450597 0.01496614 0.2441256
51.8 -0.2196351 0.2872558 -0.1514669 0.2625969 -0.06555938 0.2460242 0.01273652 0.2437067

Table 2.18: Point Prediction for Internal Value over heteroskedastic errors (n = 200,τ =
0.5)

Ban Bias-LC MSE-LC Bias-LLH MSE-LLH Bias-LLM MSE-LLM Bias-LL MSE-LL
3.7 -0.005989017 0.01091506 -0.009105295 0.01090718 -0.009100397 0.01090687 -0.006151798 0.01102828
7.4 -0.004317512 0.01067232 -0.006852094 0.01066366 -0.006845515 0.01066378 -0.005549238 0.01077156
11.1 -0.004591794 0.01059617 -0.006678386 0.0105944 -0.006665835 0.01059435 -0.006333703 0.01068745
14.8 -0.005937551 0.01054613 -0.007674744 0.01055486 -0.007656429 0.01055456 -0.00795147 0.01063841
18.5 -0.007974463 0.01051967 -0.009442124 0.01053534 -0.009416436 0.01053501 -0.01019012 0.01061418
22.2 -0.01058953 0.01053145 -0.01180495 0.01054554 -0.01176999 0.01054509 -0.01297439 0.01062656
25.9 -0.01373489 0.01057533 -0.01467215 0.01059193 -0.01462675 0.01059104 -0.01627809 0.01068457
29.6 -0.01725266 0.01066128 -0.01798338 0.01067947 -0.01792693 0.01067781 -0.02008891 0.01079614
33.3 -0.02118215 0.0107964 -0.02169107 0.01081295 -0.02162338 0.01081019 -0.0243973 0.01096978
37.0 -0.02546816 0.01098609 -0.02575577 0.01099723 -0.02567729 0.01099311 -0.0291937 0.01121525
40.7 -0.03007643 0.01123397 -0.0301445 0.01123745 -0.03005627 0.01123178 -0.03446792 0.01154379
44.4 -0.03496193 0.01154587 -0.03483024 0.01153901 -0.03473374 0.01153169 -0.04020819 0.01196797
48.1 -0.04015664 0.01193249 -0.03979071 0.01190758 -0.03968792 0.01189862 -0.04639914 0.0125013
51.8 -0.04561132 0.01240015 -0.04500812 0.01234911 -0.04490124 0.01233864 -0.05301874 0.01315745
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Table 2.19: Point Prediction for ISLR Wage Dataset

Method Bias MSE
LC -0.01800635 0.08682027

LLH -0.0149775 0.08441505
LLM -0.0001609517 0.08201118
LL 0.001865924 0.0825116

From the plot of the dataset in Figure 2.9 with superimposed smoother (obtained

using loess fitting from the R package lattice) it can be noted that the regression function

is sloping upwards at the left boundary whereas it flattens out at the right boundary. Hence,

at the right boundary, local constant methods suffice and should be practically equivalent to

local linear methods. The left boundary is more interesting, and this is where our numerical

work will focus. To carry this out, we created a second version of the data where logwage

is tabulated versus decreasing age and performed point prediction over the last 231 values

of this backward dataset, i.e., the first 231 values of the original. Since this is a regression

dataset with non-uniformly distributed design points we determine bandwidths for LC, LLH

and LLM using the 2-sided predictive cross-validation procedure outlined in Section 2.2.5.

We predict the value of logwage at i and compare it with the known value at that point where

i = 2770, . . . ,3000 to determine the MSE of point prediction.

Point prediction results for all three methods over data points 2770, . . . ,3000 (log-

wage versus decreasing age) are given in Table 2.19. It can be seen from this table that LLM

has the best point prediction performance and this closely matches that of LL. As in the

case of simulated data, this is an unexpected and encouraging result indicating that the LLM

distribution may be an all-around favorable estimator both in terms of its quantiles as well

as its center of location used for point estimation and prediction purposes.
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Figure 2.9: Plot of logwage versus age from Wage dataset (ISLR package)

2.4 Conclusions

Improved estimation of conditional distributions at boundary points is possible via

local linear smoothing and other methods that, however, do not guarantee that the resulting

estimator is a proper distribution function. In this Chapter we propose a simple monotonicity

correction procedure that is immediately applicable, easy to implement, and performs well

with simulated and real data.

To elaborate, it has been shown using boundary points on simulated datasets that

the LLM distribution estimator outperforms that of LLH and LC as seen by the values

of the Kolmogorov-Smirnov test statistic, accuracy of estimated quantiles, and also by its

performance in point prediction—the latter finding being entirely unexpected. In contrast,

for internal points on these datasets there seem to be no significant differences between the

3 estimators using these performance metrics.

In addition, among all three methods over a wide range of selected bandwidths the

overall best performance is obtained using Monotone Local Linear Estimation. As can
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be seen from the point prediction tables, the predictor based on F̄LLM
x (y) has lower bias

compared to F̄x(y) and F̄LLH
x (y); this is consistent with the discussion in Section 2.2, i.e.

that F̄LLM
x (y) has improved performance because of reduced bias in extrapolation for the

boundary case. No such differences in bias are noticed for the case of internal points.

As in the case of simulated data, in the real data example as well the point prediction

performance of LLM closely matches in performance to that of LL which implies that

the LLM distribution estimator can be used for all practical applications, including point

prediction.
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Chapter 3

Predictive inference for locally

stationary time series with an

application to climate data

3.1 Introduction

Consider a real-valued time series dataset Y1, . . . ,Yn spanning a long time interval,

e.g. annual temperature measurements spanning over 100 years or daily financial returns

spanning several years. It may be unrealistic to assume that the stochastic structure of time

series {Yt , t ∈ Z} has stayed invariant over such a long stretch of time; hence, we can not

assume that {Yt} is stationary. More realistic is to assume a slowly-changing stochastic

structure, i.e., a locally stationary model – see (Priestley, 1965), (Priestley, 1988), (Dahlhaus

et al., 1997) and (Dahlhaus, 2012).

Our objective is predictive inference for the next data point Yn+1, i.e., constructing
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a point and interval predictor for Yn+1. The usual approach for dealing with nonstationary

series is to assume that the data can be decomposed as the sum of three components:

µ(t)+St +Wt

where µ(t) is a deterministic trend function, St is a seasonal (periodic) time series, and {Wt}

is (strictly) stationary with mean zero; this is the ‘classical’ decomposition of a time series

to trend, seasonal and stationary components. The seasonal (periodic) component, be it

random or deterministic, can be easily estimated and removed; see e.g. (Brockwell & Davis,

1991). Having done that, the ‘classical’ decomposition simplifies to the following model

with additive trend, i.e.,

Yt = µ(t)+Wt (3.1)

which can be generalized to accomodate a time-changing variance as well, i.e.,

Yt = µ(t)+σ(t)Wt . (3.2)

In both above models, the time series {Wt} is assumed to be (strictly) stationary, weakly

dependent, e.g. strong mixing, and satisfying EWt = 0; in model (3.2), it is also assumed

that Var(Wt) = 1. As usual, the deterministic functions µ(·) and σ(·) are unknown but

assumed to belong to a class of functions that is either finite-dimensional (parametric) or not

(nonparametric); we will focus on the latter, in which case it is customary to assume that

µ(·) and σ(·) possess some degree of smoothness, i.e., that µ(t) and σ(t) change smoothly

(and slowly) with t.

Remark 3.1.1 (Quantifying smoothness) To analyze locally stationary series it is some-
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times useful to map the index set {1, . . . ,n} onto the interval [0,1]. In that respect, consider

two functions µ
[0,1] : [0,1] 7→ R and σ

[0,1] : [0,1] 7→ (0,∞), and let

µ(t) = µ
[0,1](at) and σ(t) = σ

[0,1](at) (3.3)

where at = (t−1)/n for t = 1, . . . ,n. We will assume that µ
[0,1](·) and σ

[0,1](·) are continuous

and smooth, i.e., possess k continuous derivatives on [0,1]. To take full advantage of the

local linear smoothers of Section 3.2.2 ideally one would need k ≥ 2. However, all methods

to be discussed here are valid even when µ
[0,1](x) and σ

[0,1](x) are continuous for all x ∈ [0,1]

but only piecewise smooth.

As far as capturing the first two moments of Yt , models (3.1) and (3.2) are considered

general and flexible—especially when µ(·) and σ(·) are not parametrically specified—and

have been studied extensively; see e.g. (Zhou & Wu, 2009), (Zhou & Wu, 2010). However,

it may be that the skewness and/or kurtosis of Yt changes with t, in which case centering

and studentization alone can not render the problem stationary. To see why, note that under

model (3.2), EYt = µ(t) and VarYt = σ2(t); hence,

Wt =
Yt−µ(t)

σ(t)
(3.4)

cannot be (strictly) stationary unless the skewness and kurtosis of Yt are constant. Further-

more, it may be the case that the nonstationarity is due to a feature of the m–th dimensional

marginal distribution not being constant for some m ≥ 1, e.g., perhaps the correlation

Corr(Yt ,Yt+1) changes smoothly (and slowly) with t. Notably, models (3.1) and (3.2) only

concern themselves with features of the 1st marginal distribution.

For all the above reasons, it seems valuable to develop a methodology for the statisti-
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cal analysis of nonstationary time series that does not rely on simple additive models such as

(3.1) and (3.2). Fortunately, the Model-free Prediction Principle of (Politis, 2013), (Politis,

2015) suggests a way to accomplish Model-free inference—including the construction of

prediction intervals—in the general setting of time series that are only locally stationary.

The key towards Model-free inference is to be able to construct an invertible transformation

Hn : Y n 7→ εn where εn = (ε1, . . . ,εn)
′ is a random vector with i.i.d. components; the details

are given in Section 3.3. The next section revisits the problem of model-based inference

in a locally stationary setting, and develops a bootstrap methodology for the construction

of (model-based) prediction intervals. Both approaches, Model-based of Section 3.2 and

Model-free of Section 3.3, are novel, and they are empirically compared to each other in

Section 3.5 using finite sample experiments. Both synthetic and real-life data are used for

this purpose.

The prototype of local (but not global) stationarity is manifested in climate data

observed over long periods. In Section 3.6 we focus on the speleothem climate archive data

discussed in (Fleitmann et al., 2003) whose statistical analysis is presented in (Mudelsee,

2014). This dataset which is shown in Figure 3.1 contains oxygen isotope record obtained

from stalagmite Q5 from southern Oman over the past 10,300 years. In this figure delta-O-18

on the Y-axis is a measure of the ratio of stable isotopes oxygen-18 (18O) and oxygen-16

(16O) and Age (a B.P. where B.P. indicates Before Present) on the X-axis denotes time

before the present i.e. time increases from right to left. Details of how delta-O-18 is defined

can be found on https://en.wikipedia.org/wiki/%CE%9418O. Along the growth axis

of the nearly 1 meter long speleothem (which is in this case stalagmite), approximately

every 0.7 mm about 5 mg material (calcium carbonate) was drilled, thereby yielding n=1345

samples. This carbonate was then analyzed to determine the delta-O-18 values.

48



The oxygen isotope ratio serves as a proxy variable for the climate variable monsoon

rainfall. This data can be used for climate analysis applications such as whether there exists

solar influences on the variations in monsoon rainfall; here low values of delta-O-18 would

indicate a strong monsoon. The full dataset can be referenced at:

http://manfredmudelsee.com/book/data/1-7.txt. Previously the RAMPFIT algo-

rithm (Mudelsee, 2000) has been used to fit data that exhibit change points such as the

speleothem climate archive. However RAMPFIT was not designed to handle arbitrary

locally stationary data which maybe present in climate time series. In Section 3.6 we focus

on a part of the delta-O-18 proxy variable data that contains a linear trend and apply our

Model-Free and Model-Based algorithms over this range to estimate the performance of

both point prediction and prediction intervals. We then show that our best Model-Free point

predictor achieves superior performance in point prediction compared to RAMPFIT; notably,

RAMPFIT was not originally designed to estimate prediction intervals.

In Section 3.4 we also describe techniques for diagnostics which are useful for

Model-Free prediction in order to successfully generate both point predictors and prediction

intervals. Model-Based and Model-Free algorithms for the construction of prediction

intervals are described in detail in Appendix A. The RAMPFIT algorithm used to generate

point prediction results for comparison with our model-free and model-based methods is

described in Appendix B.

3.2 Model-based inference

Throughout Section 3.2, we will assume model (3.2)—that includes model (3.1) as

a special case—together with a nonparametric assumption on smoothness of µ(·) and σ(·)
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Figure 3.1: Oxygen Isotope Record from stalagmite Q5 from southern Oman (1345
samples)

as described in Remark 3.1.1.

3.2.1 Theoretical optimal point prediction

It is well-known that the L2–optimal predictor of Yn+1 given the data Y n =(Y1, . . . ,Yn)
′

is the conditional expectation E(Yn+1|Y n). Furthermore, under model (3.2), we have

E(Yn+1|Y n) = µ(n+1)+σ(n+1)E(Wn+1|Y n). (3.5)

For j < J, define F J
j (Y ) to be the information set {Yj,Yj+1, . . . ,YJ}, also known as

σ–field, and note that the information sets F t
−∞(Y ) and F t

−∞(W ) are identical for any t, i.e.,

knowledge of {Ys for s < t} is equivalent to knowledge of {Ws for s < t}; here, µ(·) and

σ(·) are assumed known. Hence, for large n, and due to the assumption that Wt is weakly

dependent (and therefore the same must be true for Yt as well), the following large-sample
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approximation is useful, i.e.,

E(Wn+1|Y n)' E(Wn+1|Ys,s≤ n) = E(Wn+1|Ws,s≤ n)' E(Wn+1|W n) (3.6)

where W n = (W1, . . . ,Wn)
′.

All that is needed now is to construct an approximation for E(Wn+1|W n). Usual

approaches involve either assuming that the time series {Wt} is Markov of order p as in (Pan

& Politis, 2016), or approximating E(Wn+1|W n) by a linear function of W n as in (McMurry

& Politis, 2015), i.e., contend ourselves with the best linear predictor of Wn+1 denoted by

Ē(Wn+1|W n).

Taking the latter approach, the L2–optimal linear predictor of Wn+1 based on W n is

Ē(Wn+1|W n) = φ1(n)Wn +φ2(n)Wn−1 + . . .+φn(n)W1, (3.7)

where the optimal coefficients φi(n) are computed from the normal equations, i.e., φ(n)≡

(φ1(n), · · · ,φn(n))′ = Γ−1
n γ(n); here, Γn = [γ|i− j|]

n
i, j=1 is the autocovariance matrix of the

random vector W n, and γ(n) = (γ1, . . . ,γn)
′ where γk = EYjYj+k. Of course, Γn is unknown

but can be estimated by any of the positive definite estimators developed in (McMurry &

Politis, 2015).

Alternatively, the L2–optimal linear predictor of Wn+1 can be obtained by fitting a

(causal) AR(p) model to the data W1, . . . ,Wn with p chosen by minimizing AIC or a related

criterion; this would entail fitting the model:

Wt = φ1Wt−1 +φ2Wt−2 + · · ·+φpWt−p +Vt (3.8)
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where Vt is a stationary white noise, i.e., an uncorrelated sequence, with mean zero and

variance τ2. The implication then is that

Ē(Wn+1|W n) = φ1Wn +φ2Wn−1 + · · ·+φpWn−p+1. (3.9)

As discussed in the rejoinder to (McMurry & Politis, 2015), the two methods for constructing

Ē(Wn+1|W n) are closely related; in fact, predictor (3.7) coincides with the above AR–type

predictor if the matrix Γn is the one implied by the fitted AR(p) model (3.8). We will use

the AR–type predictor in the sequel because it additionally affords us the possibility of

resampling based on model (3.8).

3.2.2 Trend estimation and practical prediction

To construct the L2–optimal predictor (3.5), we need to estimate the smooth trend

µ(·) and variance σ(·) in a nonparametric fashion; this can be easily accomplished via

kernel smoothing—see e.g. (Härdle & Vieu, 1992), (Kim & Cox, 1996), (Li & Racine,

2007). When confidence intervals for µ(t) and σ(t) are required, however, matters are

more complicated as the asymptotic distribution of the different estimators depends on

many unknown parameters; see e.g. (Masry & Tjøstheim, 1995). Even more difficult is the

construction of prediction intervals.

Note, furthermore, that the problem of prediction of Yn+1 involves estimating the

functions µ
[0,1](a) and σ

[0,1](a) described in Remark 3.1.1 for a = 1, i.e., it is essentially

a boundary problem. In such cases, it is well-known that local linear fitting has better

properties—in particular, smaller bias—than kernel smoothing which is well-known to be

tantamount to local constant fitting; (Fan & Gijbels, 1996),(Fan & Yao, 2007), or (Li &
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Racine, 2007).

Remark 3.2.1 (One-sided estimation) Since the goal is predictive inference on Yn+1, local

constant and/or local linear fitting must be performed in a one-sided way. To see why,

recall that in predictor (3.5), the estimands involve µ
[0,1](1) and σ

[0,1](1) as just mentioned.

Furthermore to compute Ē(Wn+1|W n) in eq. (3.7) we need access to the stationary data

W1, . . . ,Wn in order to estimate Γn. The Wt’s are not directly observed, but—much like

residuals in a regression—they can be reconstructed by eq. (3.4) with estimates of µ(t) and

σ(t) plugged-in. What is important is that the way Wt is reconstructed/estimated by (say)

Ŵt must remain the same for all t, otherwise the reconstructed data Ŵ1, . . . ,Ŵn can not be

considered stationary. Since Wt can only be estimated in a one-sided way for t close to n,

the same one-sided way must also be implemented for t in the middle of the dataset even

though in that case two-sided estimation is possible.

By analogy to model-based regression as described in (Politis, 2013), the one-sided

Nadaraya-Watson (NW) kernel estimators of µ(t) and σ(t) can be defined in two ways. In

what follows, the notation tk = k will be used; this may appear redundant but it makes clear

that tk is the kth design point in the time series regression, and allows for easy extension in

the case of missing data. Note that the bandwidth parameter b will be assumed to satisfy

b→ ∞ as n→ ∞ but b/n→ 0, (3.10)

i.e., b is analogous to the product hn where h is the usual bandwidth in nonparametric

regression, see e.g. We will assume throughout that K(·) is a nonnegative, symmetric kernel

function.

1. NW–Regular fitting: Let t ∈ [b+1,n], and define
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µ̂(t) =
t

∑
i=1

Yi K̂
(

t− ti
b

)
and M̂(t) =

t

∑
i=1

Y 2
i K̂(

t− ti
b

) (3.11)

where

σ̂(t) =
√

M̂t− µ̂(t)2 and K̂
(

t− ti
b

)
=

K( t−ti
b )

∑
t
k=1 K( t−tk

b )
. (3.12)

Using µ̂(t) and σ̂(t) we can now define the fitted residuals by

Ŵt =
Yt− µ̂(t)

σ̂(t)
for t = b+1, . . . ,n. (3.13)

2. NW–Predictive fitting (delete-1): Let

µ̃(t) =
t−1

∑
i=1

Yi K̃
(

t− ti
b

)
and M̃(t) =

t−1

∑
i=1

Y 2
i K̃(

t− ti
b

) (3.14)

where

σ̃(t) =
√

M̃t− µ̃(t)2 and K̃
(

t− ti
b

)
=

K( t−ti
b )

∑
t−1
k=1 K( t−tk

b )
. (3.15)

Using µ̃(t) and σ̃(t) we now define the predictive residuals by

W̃t =
Yt− µ̃(t)

σ̃(t)
for t = b+1, . . . ,n. (3.16)

Similarly, the one-sided local linear (LL) fitting estimators of µ(t) and σ(t) can be defined

in two ways.

1. LL–Regular fitting: Let t ∈ [b+1,n], and define

µ̂(t) =
∑

t
j=1 w jYj

∑
t
j=1 w j +n−2 and M̂(t) =

∑
t
j=1 w jY 2

j

∑
t
j=1 w j +n−2 (3.17)
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where

w j = K(
t− t j

b
)
[
st,2− (t− t j)st,1

]
, (3.18)

and st,k = ∑
t
j=1 K(

t−t j
b )(t− t j)

k for k = 0,1,2. The term n−2 in eq. (3.17) is just to

ensure the denominator is not zero; see Fan (1993). Eq. (3.12) then yields σ̂(t), and

eq. (3.13) yields Ŵt .

2. LL–Predictive fitting (delete-1): Let

µ̃(t) =
∑

t−1
j=1 w jYj

∑
t−1
j=1 w j +n−2

and M̃(t) =
∑

t−1
j=1 w jY 2

j

∑
t−1
j=1 w j +n−2

(3.19)

where

w j = K(
t− t j

b
)
[
st−1,2− (t− t j)st−1,1

]
. (3.20)

Eq. (3.15) then yields σ̃(t), and eq. (3.16) yields W̃t .

Using one of the above four methods (NW vs. LL, regular vs. predictive) gives estimates of

the quantities needed to compute the L2–optimal predictor (3.5). In order to approximate

E(Wn+1|Y n), one would treat the proxies Ŵt or W̃t as if they were the true Wt , and proceed

as outlined in Section 3.2.1.

Remark 3.2.2 (Predictive vs. regular fitting) In order to estimate µ(n+1) and σ(n+1),

the predictive fits µ̃(n+1) and σ̃(n+1) are constructed in a straightforward manner. How-

ever, the formula giving µ̂(t) and σ̂(t) changes when t becomes greater than n; this is due

to an effective change in kernel shape since part of the kernel is not used when t > n.

Focusing momentarily on the trend estimators, what happens is that the formulas for µ̃(t)

and µ̂(t)—although different when t ≤ n—become identical when t > n except for the
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difference in kernel shape. Traditional model-fitting ignores these issues, i.e., proceeds

with using different formulas for estimation of µ(t) according to whether t ≤ n or t > n.

However, in trying to predict the new, unobserved Wn+1 we need to first capture its statistical

characteristics, and for this reason we need a sample of Wt’s. But the residual from the

model at t = n+1 looks like W̃n+1 from either regular or predictive approach, since µ̃(t)

and µ̂(t) become the same when t = n+1; it is apparent that traditional model-fitting tries to

capture the statistical characteristics of W̃n+1 from a sample of Ŵt’s, i.e., comparing apples

to oranges. Herein lies the problem which is analogous to the discussion on prediction using

fitted vs. predictive residuals in nonparametric regression as discussed in (Politis, 2013).

Therefore, our preference is to use the predictive quantities µ̃(t), σ̃(t), and W̃t throughout

the predictive modeling.

Remark 3.2.3 (Time series cross-validation) To choose the bandwidth b for either of the

above methods, predictive cross-validation may be used but it must be adapted to the time

series prediction setting, i.e., always one-step-ahead. To elaborate, let k < n, and suppose

only subseries Y1, . . . ,Yk has been observed. Denote Ŷk+1 the best predictor of Yk+1 based

on the data Y1, . . . ,Yk constructed according to the above methodology and some choice of

b. However, since Yk+1 is known, the quality of the predictor can be assessed. So, for each

value of b over a reasonable range, we can form either PRESS(b) = ∑
n−1
k=ko

(Ŷk+1−Yk+1)
2

or PRESAR(b) = ∑
n−1
k=ko
|Ŷk+1−Yk+1|; here ko should be big enough so that estimation is

accurate, e.g., ko can be of the order of
√

n. The cross-validated bandwidth choice would then

be the b that minimizes PRESS(b); alternatively, we can choose to minimize PRESAR(b) if

an L1 measure of loss is preferred. Finally, note that a quick-and-easy (albeit suboptimal)

version of the above is to use the (supoptimal) predictor Ŷk+1 ' µ̂(k+1) and base PRESS(b)

or PRESAR(b) on this approximation.

56



3.2.3 Model-based prediction intervals

To go from point prediction to prediction intervals, some form of resampling is

required. Since model (3.2) is driven by the stationary sequence {Wt}, a model-based

bootstrap can then be concocted in which {Wt} is resampled, giving rise to the bootstrap

pseudo-series {W ∗t }, which in turn gives rise to bootstrap pseudo-data {Y ∗t } via a fitted

version of model (3.2). To generate a stationary bootstrap pseudo-series {W ∗t }, two popular

time series resampling methods are (a) the stationary bootstrap of (Politis & Romano,

1994) and (b) the AR bootstrap which entails treating the Vt appearing in eq. (3.8) as if

they were i.i.d., performing an i.i.d. bootstrap on them, and then generating {W ∗t } via the

recursion (3.8) driven by the bootstrapped innovations. We will use the latter in the sequel

because it ties in well with the AR-type predictor of Wn+1 developed at the end of Section

3.2.1, and it is more amenable to the construction of prediction intervals as discussed in (Pan

& Politis, 2016). In addition, (Kreiss, Paparoditis, & Politis, 2011) have recently shown

that the AR bootstrap—also known as AR-sieve bootstrap since p is allowed to grow with

n—can be valid under some conditions even if the Vt of eq. (3.8) are not trully i.i.d.

We will now develop an algorithm for the construction of model-based prediction

intervals; this is a ‘forward’ bootstrap algorithm in the terminology of (Pan & Politis,

2016) although a ‘backward’ bootstrap algorithm can also be concocted. To describe it in

general, let µ̌(·) and σ̌(·) be our chosen estimates of µ(·) and σ(·) according to one of the

abovementioned four methods (NW vs. LL, regular vs. predictive); also let W̌t denote the

resulting proxies for the unobserved Wt for t = 1, . . . ,n. Hence, our approximation to the

L2–optimal point predictor of Yn+1 is

Π = µ̌(n+1)+ σ̌(n+1)
[
φ̂1W̌n + · · ·+ φ̂pW̌n−p+1

]
(3.21)
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where φ̂1, . . . , φ̂p are the Yule-Walker estimators of φ1, . . . ,φp appearing in eq. (3.8).

As discussed in Chapter 2 of (Politis, 2015) the construction of prediction intervals

will be based on approximating the distribution of the predictive root: Yn+1−Π by that

of the bootstrap predictive root: Y ∗n+1−Π∗ where the quantities Y ∗n+1 and Π∗ are formally

defined in the Model-based (MB) bootstrap algorithm outlined below.

Algorithm 3.2.1 MODEL-BASED BOOTSTRAP FOR PREDICTION INTERVALS FOR Yn+1

1. Based on the data Y1, . . . ,Yn, calculate the estimators µ̌(·) and σ̌(·), and the ‘residuals’

W̌1, . . . ,W̌n using model (3.2).

2. Fit the AR(p) model (3.8) to the series W̌1, . . . ,W̌n (with p selected by AIC mini-

mization), and obtain the Yule-Walker estimators φ̂1, . . . , φ̂p, and the error proxies

V̌t = W̌t− φ̂1W̌t−1−·· ·− φ̂pW̌t−p for t = p+b+1, . . . ,n.

Here b is the bandwidth determined by the cross-validation procedure of Remark 2.3.

3. (a) Let V̌ ∗t for t = 1, . . . ,n,n+1 be drawn randomly with replacement from the set

{ ˇ̌Vt for t = p+ b+ 1, . . . ,n} where ˇ̌Vt = V̌t − (n− p− b)−1
∑

n
i=p+b+1 V̌i. Let I

be a random variable drawn from a discrete uniform distribution on the values

{p+b, p+b+1, . . . ,n}, and define the bootstrap initial conditions W̌ ∗t = W̌t+I

for t = −p+ 1, . . . ,0. Then, create the bootstrap data W̌ ∗1 , . . . ,W̌
∗
n via the AR

recursion

W̌ ∗t = φ̂1W̌ ∗t−1 + · · ·+ φ̂pW̌ ∗t−p +V̌ ∗t for t = 1, . . . ,n.
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(b) Create the bootstrap pseudo-series Y ∗1 , . . . ,Y
∗
n by the formula

Y ∗t = µ̌(t)+ σ̌(t)W̌ ∗t for t = 1, . . . ,n.

(c) Re-calculate the estimators µ̌∗(·) and σ̌∗(·) from the bootstrap data Y ∗1 , . . . ,Y
∗
n .

This gives rises to new bootstrap ‘residuals’ 1 on which an AR(p) model is again

fitted yielding the bootstrap Yule-Walker estimators φ̂∗1, . . . , φ̂
∗
p.

(d) Calculate the bootstrap predictor

Π
∗ = µ̌∗(n+1)+ σ̌

∗(n+1)
[
φ̂
∗
1W̌n + . . .+ φ̂

∗
pW̌n−p+1

]
.

[Note that in calculating the bootstrap conditional expectation of W̌ ∗n+1 given its

p–past, we have re-defined the values (W̌ ∗n , . . . ,W̌
∗
n−p+1) to make them match the

original (W̌n, . . . ,W̌n−p+1); this is an important part of the ‘forward’ bootstrap

procedure for prediction intervals as discussed in (Pan & Politis, 2016)].

(e) Calculate a bootstrap future value

Y ∗n+1 = µ̌(n+1)+ σ̌(n+1)W̌ ∗n+1

where again W̌ ∗n+1 = φ̂1W̌n + · · ·+ φ̂pW̌n−p+1 + V̌ ∗n+1 uses the original values

(W̌n, . . . ,W̌n−p+1); recall that V̌ ∗n+1 has already been generated in step (a) above.

(f) Calculate the bootstrap root replicate Y ∗n+1−Π∗.

4. Steps (a)—(f) in the above are repeated a large number of times (say B times), and

1The bootstrap estimators µ̌∗(·) and σ̌∗(·) are based on bandwidth b′ determined by Algorithm A.0.3 given
in Appendix A. This may be different from the bandwidth b found using model-based cross-validation.
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the B bootstrap root replicates are collected in the form of an empirical distribution

whose α–quantile is denoted by q(α).

5. Finally, a (1−α)100% equal-tailed prediction interval for Yn+1 is given by

[Π+q(α/2), Π+q(1−α/2)]. (3.22)

It is easy to see that prediction interval (3.22) is asymptotically valid (conditionally on

Y1, . . . ,Yn) provided: (i) estimators µ̌(n+1) and σ̌(n+1) are consistent for their respective

targets µ
[0,1](1) and σ

[0,1](1), and (ii) the AR(p) approximation is consistent allowing for

the possibility that p grows as n→ ∞. If µ̌(·) and σ̌(·) correspond to one of the above

mentioned four methods (NW vs. LL, regular vs. predictive), then provision (i) is satisfied

under standard conditions including the bandwidth condition (3.10). Provision (ii) is also

easy to satisfy as long as the spectral density of the series {Wt} is continuous and bounded

away from zero; see e.g. Lemma 2.2 of (Kreiss et al., 2011).

Although desirable, asymptotic validity does not tell the whole story. A prediction

interval can be thought to be successful if it also manages to capture the finite-sample

variability of the estimated quantities such as µ̌(·), σ̌(·) and φ̂1, φ̂2, . . .. Since this finite-

sample variability vanishes asymptotically, the performance of a prediction interval such

as (3.22) must be gauged by finite-sample simulations. Results of these simulations are

shown in Section 3.5.
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3.3 Model-free inference

Model (3.2) is a flexible way to account for a time-changing mean and variance of

Yt . However, nothing precludes that the time series {Yt for t ∈ Z} has a nonstationarity in its

third (or higher moment), and/or in some other feature of its mth marginal distribution. A

way to address this difficulty, and at the same time give a fresh perspective to the problem,

is provided by the Model-Free Prediction Principle of Politis (2013, 2015).

The key towards Model-free inference is to be able to construct an invertible transfor-

mation Hn : Y n 7→ εn where εn = (ε1, . . . ,εn)
′ is a random vector with i.i.d. components. In

order to do this in our context, let some m ≥ 1, and denote by L(Yt ,Yt−1, . . . ,Yt−m+1)

the mth marginal of the time series Yt , i.e. the joint probability law of the vector

(Yt ,Yt−1, . . . ,Yt−m+1)
′. Although we abandon model (3.2) in what follows, we still want to

employ nonparametric smoothing for estimation; thus, we must assume that

L(Yt ,Yt−1, . . . ,Yt−m+1) changes smoothly (and slowly) with t.

Remark 3.3.1 (Quantifying smoothness–model-free case) As in Remark 3.1.1, we can

formally quantify smoothness by mapping the index set {1, . . . ,n} onto the interval [0,1].

Let s = (s0,s1, . . . ,sm−1)
′, and define the distribution function of the mth marginal by

D(m)
t (s) = P{Yt ≤ s0,Yt−1 ≤ s1, . . . ,Yt−m+1 ≤ sm−1}.

Let at = (t−1)/n as before, and assume that we can write

D(m)
t (s) = D

[0,1]

at
(s) for t = 1, . . . ,n. (3.23)
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We can now quantify smoothness by assuming that, for each fixed s, the function D
[0,1]

x (s)

is continuous and smooth in x ∈ [0,1], i.e., possesses k continuous derivatives. As in

Remark 3.1.1, here as well it seems to be sufficient that D
[0,1]

x (s) is continuous in x but only

piecewise smooth.

A convenient way to ensure both the smoothness and data-based consistent estimation

of L(Yt ,Yt−1, . . . ,Yt−m+1) is to assume that, for all t,

Yt = ft(Wt ,Wt−1, . . . ,Wt−m+1) (3.24)

for some function ft(w) that is smooth in both arguments t and w, and some strictly stationary

and weakly dependent, univariate time series Wt ; without loss of generality, we may assume

that Wt is a Gaussian time series. In fact, Eq. (3.24) with ft(·) not depending on t is

a familiar assumption in studying non-Gaussian and/or long-range dependent stationary

processes—see e.g. (Samorodnitsky & Taqqu, 1994). By allowing ft(·) to vary smoothly

(and slowly) with t, Eq. (3.24) can be used to describe a rather general class of locally

stationary processes. Note that model (3.2) is a special case of Eq. (3.24) with m = 1, and

the function ft(w) being affine/linear in w. Thus, for concreteness and easy comparison with

the model-based case of Eq. (3.2), we will focus in the sequel on the case m = 1. Section

3.3.10 discusses how to handle the case m > 1.

3.3.1 Constructing the theoretical transformation

Hereafter, adopt the setup of Eq. (3.24) with m = 1, and let

Dt(y) = P{Yt ≤ y}
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denote the 1st marginal distribution of time series {Yt}. Throughout Section 3.3, the default

assumption will be that Dt(y) is (absolutely) continuous in y for all t; however, a departure

from this assumption will be discussed in Section 3.3.8.

We now define new variables via the probability integral transform, i.e., let

Ut = Dt(Yt) for t = 1, . . . ,n; (3.25)

the assumed continuity of Dt(y) in y implies that U1, . . . ,Un are random variables having

distribution Uniform (0,1). However, U1, . . . ,Un are dependent; to transform them to

independence, a preliminary transformation towards Gaussianity is helpful as discussed in

(Politis, 2013). Letting Φ denote the cumulative distribution function (cdf) of the standard

normal distribution, we define

Zt = Φ
−1(Ut) for t = 1, . . . ,n; (3.26)

it then follows that Z1, . . . ,Zn are standard normal—albeit correlated—random variables.

Let Γn denote the n×n covariance matrix of the random vector Zn = (Z1, . . . ,Zn)
′.

Under standard assumptions, e.g. that the spectral density of the series {Zt} is continuous

and bounded away from zero,2 the matrix Γn is invertible when n is large enough. Consider

the Cholesky decomposition Γn =CnC′n where Cn is (lower) triangular, and construct the

whitening transformation:

εn =C−1
n Zn. (3.27)

2If the spectral density is equal to zero over an interval—however small—then the time series {Zt} is
perfectly predictable based on its infinite past, and the same would be true for the time series {Yt}; see
Brockwell and Davis (1991, Theorem 5.8.1) on Kolmogorov’s formula.
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It then follows that the entries of εn = (ε1, . . . ,εn)
′ are uncorrelated standard normal. As-

suming that the random variables Z1, . . . ,Zn were jointly normal, this can be strenghtened to

claim that ε1, . . . ,εn are i.i.d. N(0,1); see Section 3.3.10 for further discussion. Consequently,

the transformation of the dataset Y n = (Y1, . . . ,Yn)
′ to the vector εn with i.i.d. components

has been achieved as required in premise (a) of the Model-free Prediction Principle. Note

that all the steps in the transformation, i.e., eqs. (3.25), (3.26) and (3.27), are invertible;

hence, the composite transformation Hn : Y n 7→ εn is invertible as well.

3.3.2 Kernel estimation of the ‘uniformizing’ transformation

We first focus on estimating the ‘uniformizing’ part of the transformation, i.e.,

eq. (3.25). Recall that the Model-free setup implies that the function Dt(·) changes smoothly

(and slowly) with t; hence, local constant and/or local linear fitting can be used to estimate

it. Using local constant, i.e., kernel estimation, a consistent estimator of the marginal

distribution Dt(y) is given by:

D̂t(y) =
T

∑
i=1

1{Yti ≤ y}K̃(
t− ti

b
) (3.28)

where K̃( t−ti
b ) = K( t−ti

b )/∑
T
j=1 K(

t−t j
b ). Note that the kernel estimator (3.28) is one-sided

for the same reasons discussed in Remark 3.2.1. Since D̂t(y) is a step function in y, a smooth

estimator can be defined as:

D̄t(y) =
T

∑
i=1

Λ(
y−Yti

h0
)K̃(

t− ti
b

) (3.29)
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where h0 is a secondary bandwidth. Furthermore, as in Section 3.2.2, we can let T = t or

T = t−1 leading to a fitted vs. predictive way to estimate Dt(y) by either D̂t(y) or D̄t(y).

Cross-validation is used to determine the bandwidths h0 and b ; details are described in

Section 3.3.5.

3.3.3 Local linear estimation of the ‘uniformizing’ transformation

Note that the kernel estimator D̂t(y) defined in eq. (3.28) is just the Nadaraya-Watson

smoother, i.e., local average, of the variables u1, . . . ,un where ui = 1{Yi ≤ y}. Similarly,

D̄t(y) defined in eq. (3.29) is just the Nadaraya-Watson smoother of the variables v1, . . . ,vn

where vi = Λ(y−Yi
h0

). In either case, it is only natural to try to consider a local linear smoother

as an alternative to Nadaraya-Watson especially since, once again, our interest lies on the

boundary, i.e., the case t = n.

Let D̂LL
t (y) and D̄LL

t (y) denote the local linear estimators of Dt(y) based on either

the indicator variables 1{Yi ≤ y} or the smoothed variables Λ(y−Yi
h0

) respectively. Keeping y

fixed, D̂LL
t (y) and D̄LL

t (y) exhibit good behavior for estimation at the boundary, e.g. smaller

bias than either D̂t(y) and D̄t(y) respectively. However, there is no guarantee that these will

be proper distribution functions as a function of y, i.e., being nondecreasing in y with a left

limit of 0 and a right limit of 1; see (Li & Racine, 2007) for a discussion.

There have been several proposals in the literature to address this issue. An interest-

ing one is the adjusted Nadaraya-Watson estimator of (Hall et al., 1999) which, however, is

tailored towards nonparametric autoregression estimation rather than our setting where Yt is

regressed on t. Coupled with the fact that we are interested in the boundary case t = n, the

equation yielding the adjusted Nadaraya-Watson weights do not always admit a solution.

One proposed solution put forward by (Hansen, 2004) involves a straightforward
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adjustment to the local linear estimator of a conditional distribution function that maintains

its favorable asymptotic properties. The local linear versions of D̂t(y) and D̄t(y) adjusted

via Hansen’s (2004) proposal are given as follows:

D̂LLH
t (y) =

∑
T
i=1 w�i 1(Yi ≤ y)

∑
T
i=1 w�i

and D̄LLH
t (y) =

∑
T
i=1 w�i Λ(y−Yi

h0
)

∑
T
i=1 w�i

. (3.30)

The weights w�i are defined by

w�i =


0 when β̂(t− ti)> 1

wi(1− β̂(t− ti)) when β̂(t− ti)≤ 1
(3.31)

where

wi =
1
b

K(
t− ti

b
) and β̂ =

∑
T
i=1 wi(t− ti)

∑
T
i=1 wi(t− ti)2

. (3.32)

As with eq. (3.28)and (3.29), we can let T = t or T = t−1 in the above, leading to

a fitted vs. predictive local linear estimators of Dt(y), by either D̂LLH
t (y) or D̄LLH

t (y).

3.3.4 Uniformization using Monotone Local Linear Distribution Esti-

mation

Hansen’s (2004) proposal replaces negative weights by zeros, and then renormalizes

the nonzero weights. The problem here is that if estimation is performed on the boundary

(as in the case with one-step ahead prediction of time-series), negative weights are crucially

needed in order to ensure the extrapolation takes place with minimal bias. A recent proposal

by (Das & Politis, 2017) addresses this issue by modifying the original, possibly nonmono-
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tonic local linear distribution estimator D̄LL
t (y) to construct a monotonic version denoted by

D̄LLM
t (y).

The Monotone Local Linear Distribution Estimator D̄LLM
t (y) can be constructed by

Algorithm 4.4.1 given below.

Algorithm 3.3.1 Monotone Local Linear Distribution Estimation

1. Recall that the derivative of D̄LL
t (y) with respect to y is given by

d̄LL
t (y) =

1
h0

∑
n
j=1 w jλ(

y−Y j
h0

)

∑
n
j=1 w j

where λ(y) is the derivative of Λ(y).

2. Define a nonnegative version of d̄LL
t (y) as d̄LL+

t (y) = max(d̄LL
t (y),0).

3. To make the above a proper density function, renormalize it to area one, i.e., let

d̄LLM
t (y) =

d̄LL+
t (y)∫

∞

−∞
d̄LL+

t (s)ds
. (3.33)

4. Finally, define D̄LLM
t (y) =

∫ y
−∞ d̄LLM

t (s)ds.

The above modification of the local linear estimator allows one to maintain mono-

tonicity while retaining the negative weights that are helpful in problems which involve

estimation at the boundary. As with eq. (3.28)and (3.29), we can let T = t or T = t−1 in the

above, leading to a fitted vs. predictive local linear estimators of Dt(y) that are monotone.

Different algorithms could also be employed for performing monotonicity correction

on the original estimator D̄LL
t (y); these are discussed in detail in (Das & Politis, 2017). In

practice, Algorithm 4.4.1 is preferable because it is the fastest in term of implementation;
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notably, density estimates can be obtained in a fast way (using the Fast Fourier Transform)

using standard functions in statistical software such as R. Computational speed is particularly

important in constructing bootstrap prediction intervals since a large number of estimates of

D̄LLM
t (y) must be computed; the same is true for cross-validation implementation which is

addressed next.

3.3.5 Cross-validation Bandwidth Choice for Model-Free Inference

There are two bandwidths, b and h0, required to construct the estimators D̄t(y),

D̄LLH
t (y) and D̄LLM

t (y). This discussion first focuses on choice of b as it is the most crucial

of the two. The following steps are recommended:

Algorithm 3.3.2 BANDWIDTH DETERMINATION FOR MODEL-FREE INFERENCE

1. Perform the uniformizing transform described in (3.25) over the given time-series

dataset Y1, . . . ,Yn using either of the estimators D̄t(y), D̄LLH
t (y) or D̄LLM

t (y) over q

pre-defined bandwidths that span an interval of possible values.

2. Calculate the value of the Kolmogorov-Smirnov (KS) test statistic using the uniform

distribution U [0,1] as reference for each of these q cases.

3. From the full list of q values given in step (1) above pick a pre-defined number of

bandwidths, say this is p, whose corresponding KS test statistic values are minimum.

These represent the bandwidths which achieved the best transformation to ‘uniformity’

using D̄t(y), D̄LLH
t (y) or D̄LLM

t (y).

4. Obtain the best bandwidth b among these p values by using one-sided cross-validation

in a similar manner as described for the Model-Based case in Section 3.2.2. For this
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purpose let k < n, and suppose only subseries Y1, . . . ,Yk has been observed. Denote

Ŷk+1 the best predictor of Yk+1 based on the data Y1, . . . ,Yk constructed using D̄t(y),

D̄LLH
t (y) or D̄LLM

t (y) and a value of b selected among the p values obtained above.

Since Yk+1 is known, the quality of the predictor can be assessed. So, for each

value of b we can form either PRESS(b) = ∑
n−1
k=ko

(Ŷk+1−Yk+1)
2 or PRESAR(b) =

∑
n−1
k=ko
|Ŷk+1−Yk+1|; here ko should be big enough so that estimation is accurate,

e.g., ko can be of the order of
√

n. We then select the bandwidth b that minimizes

PRESS(b); alternatively, we can choose to minimize PRESAR(b) if an L1 measure of

loss is preferred.

5. Coming back to the problem of selecting h0, as in (Politis, 2013), our final choice

is h0 = h2 where h = b/n. Note that an initial choice of h0 needed (to perform

uniformization, KS statistic generation and cross-validation to determine the optimal

bandwidth b) can be set by any plug-in rule; the effect of choosing an initial value of

h0 is minimal.

The above algorithm needs large data sizes in order to work well. In the case of

smaller data sizes of, say, a hundred or so data points, it is recommended to omit steps (1)–(3)

and directly perform steps (4) and (5) using the full range of q pre-defined bandwidths.

3.3.6 Estimation of the whitening transformation

To implement the whitening transformation (3.27), it is necessary to estimate Γn,

i.e., the n×n covariance matrix of the random vector Zn = (Z1, . . . ,Zn)
′ where the Zt are

the normal random variables defined in eq. (3.26).

As discussed in the analogous model-based problem in Section 3.2.1, there are two
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approaches towards positive definite estimation of Γn based on the sample Z1, . . . ,Zn. They

are both based on the sample autocovariance defined as γ̆k = n−1
∑

n−|k|
t=1 ZtZt+|k| for |k|< n;

for |k| ≥ n, we define γ̆k = 0.

A. Fit a causal AR(p) model to the data Z1, . . . ,Zn with p obtained via AIC minimization.

Then, let Γ̂AR
n be the n× n covariance matrix associated with the fitted AR model.

Let γ̂AR
|i− j| denote the i, j element of the Toeplitz matrix Γ̂AR

n . Using the Yule-Walker

equations to fit the AR model implies that γ̂AR
k = γ̆k for k = 0,1, . . . , p. For k > p, γ̂AR

k

can be found by solving (or just iterating) the difference equation that characterizes

the (fitted) AR model; R automates this process via the ARMAacf() function.

B. Let Γ̂n =
[
γ̂|i− j|

]n
i, j=1 be the matrix estimator of (McMurry & Politis, 2010) where

γ̂s = κ(|s|/l)γ̆s. Here, κ(·) can be any member of the flat-top family of compactly

supported functions defined in (Politis, 2001) the simplest choice—that has been

shown to work well in practice—is the trapezoidal, i.e.., κ(x) = (max{1,2−|x|})+

where (y)+ = max{y,0} is the positive part function, (Politis & Romano, 1994). Our

final estimator of Γn will be Γ̂?
n which is a a positive definite version of Γ̂n that is

banded and Toeplitz; for example, Γ̂?
n may be obtained by shrinking Γ̂n towards white

noise or towards a second order estimator as described in McMurry and Politis (2015).

Estimating the ‘uniformizing’ transformation Dt(·) and the whitening trasformation

based on Γn allows us to estimate the transformation Hn : Y n 7→ εn. However, in order to put

the Model-Free Prediction Principle to work, we also need to estimate the transformation

Hn+1 (and its inverse). To do so, we need a positive definite estimator for the matrix Γn+1;

this can be accomplished by either of the two ways discussed in the above.
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A′. Let Γ̂AR
n+1 be the (n+1)× (n+1) covariance matrix associated with the fitted AR(p)

model.

B′. Denote by γ̂?|i− j| the i, j element of Γ̂?
n for i, j = 1, . . . ,n. Then, define Γ̂?

n+1 to be the

symmetric, banded Toeplitz (n+1)× (n+1) matrix with i j element given by γ̂?|i− j|

when |i− j|< n. Recall that Γ̂?
n is banded with banding parameter l as discussed in

(McMurry & Politis, 2015), so it is only natural to assign zeros to the two i j elements

of Γ̂?
n+1 that satisfy |i− j|= n, i.e., the bottom left and the top right.

Consider the ‘augmented’ vectors Y n+1 = (Y1, . . . ,Yn,Yn+1)
′, Zn+1 = (Z1, . . . ,Zn,Zn+1)

′ and

εn+1 = (ε1, . . . ,εn,εn+1)
′ where the values Yn+1,Zn+1 and εn+1 are yet unobserved. We now

show how to obtain the inverse transformation H−1
n+1 : εn+1 7→ Y n+1. Recall that εn and Y n

are related in a one-to-one way via transformation Hn, so the values Y1, . . . ,Yn are obtainable

by Y n = H−1
n (εn). Hence, we just need to show how to create the unobserved Yn+1 from

εn+1; this is done in the following three steps.

Algorithm 3.3.3 GENERATION OF UNOBSERVED DATAPOINT FROM FUTURE IN-

NOVATIONS

i. Let

Zn+1 =Cn+1εn+1 (3.34)

where Cn+1 is the (lower) triangular Cholesky factor of (our positive definite estimate

of) Γn+1. From the above, it follows that

Zn+1 = cn+1εn+1 (3.35)
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where cn+1 = (c1, . . . ,cn,cn+1) is a row vector consisting of the last row of matrix

Cn+1.

ii. Create the uniform random variable

Un+1 = Φ(Zn+1). (3.36)

iii. Finally, define

Yn+1 = D−1
n+1(Un+1); (3.37)

of course, in practice, the above will be based on an estimate of D−1
n+1(·).

Since Y n has already been created using (the first n coordinates of) εn+1, the above completes

the construction of Y n+1 based on εn+1, i.e., the mapping H−1
n+1 : εn+1 7→ Y n+1.

3.3.7 Model-free predictors and prediction intervals

In the previous sections, it was shown how the construct the transformation Hn :

Y n 7→ εn and its inverse H−1
n+1 : εn+1 7→Y n+1, where the random variables ε1,ε2, . . . , are i.i.d.

Note that by combining eq. (3.35), (3.36) and (3.37) we can write the formula:

Yn+1 = D−1
n+1
(
Φ( cn+1εn+1)

)
.

Recall that cn+1εn+1 = ∑
n
i=1 ciεi + cn+1εn+1; hence, the above can be compactly denoted as

Yn+1 = gn+1(εn+1) where gn+1(x) = D−1
n+1

(
Φ

(
n

∑
i=1

ciεi + cn+1x

))
. (3.38)
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Eq. (3.38) is the predictive equation required in the Model-free Prediction Principle; condi-

tionally on Y n, it can be used like a model equation in computing the L2– and L1–optimal

point predictors of Yn+1. We will give these in detail as part of the general algorithms for

the construction of Model-free predictors and prediction intervals.

Algorithm 3.3.4 MODEL-FREE (MF) PREDICTORS AND PREDICTION INTERVALS FOR

Yn+1

1. Construct U1, . . . ,Un by eq. (3.25) with Dt(·) estimated by either D̄t(·) , D̄LLH
t (·) or

D̄LLM
t (·); for all the 3 types of estimators, use the respective formulas with T = t.

2. Construct Z1, . . . ,Zn by eq. (3.26), and use the methods of Section 3.3.6 to estimate

Γn by either Γ̂AR
n or Γ̂?

n.

3. Construct ε1, . . . ,εn by eq. (3.27), and let F̂n denote their empirical distribution.

4. The Model-free L2–optimal point predictor of Yn+1 is then

Ŷn+1 =
∫

gn+1(x)dFn(x) =
1
n

n

∑
i=1

gn+1(εi)

where the function gn+1 is defined in the predictive equation (3.38) with Dn+1(·)

being again estimated by either D̄n+1(·) , D̄LLH
n+1 (·) or D̄LLM

n+1 (·) all with T = t.

5. The Model-free L1–optimal point predictor of Yn+1 is given by the median of the set

{gn+1(εi) for i = 1, . . . ,n}.

6. Prediction intervals for Yn+1 with prespecified coverage probability can be constructed

via the Model-free Boootstrap of Algorithm A.0.1 based on either the L2– or L1–

optimal point predictor.
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Algorithm 3.3.4 used the construction of D̄t(·) , D̄LLH
t (·) or D̄LLM

t (·) with T = t; using

T = t−1 instead, leads to the predictive version of the algorithm.

Algorithm 3.3.5 PREDICTIVE MODEL-FREE (PMF) PREDICTORS AND PREDICTION

INTERVALS FOR Yn+1

The algorithm is identical to Algorithm 3.3.5 except for using T = t−1 instead of T = t in

the construction of D̄t(·) , D̄LLH
t (·) and D̄LLM

t (·).

Remark 3.3.2 Under a model-free setup of a locally stationary time series, (Paparoditis &

Politis, 2002) proposed the Local Block Bootstrap (LBB) in order to generate pseudo-series

Y ∗1 , . . . ,Y
∗
n whose probability structure mimics that of the observed data Y1, . . . ,Yn. The

Local Block Bootstrap has been found useful for the construction of confidence intervals;

see (Dowla A. & Politis D.N, 2003) and (Dowla, Paparoditis, & Politis, 2013). However, it

is unclear if/how the LBB can be employed for the construction of predictors and prediction

intervals for Yn+1.

Recall that when the theoretical transformation Hn is employed, the variables

ε1, . . . ,εn are i.i.d. N(0,1). Due to the fact that features of Hn are unknown and must

be estimated from the data, the practically available variables ε1, . . . ,εn are only approx-

imately i.i.d. N(0,1). However, their empirical distribution of F̂n converges to F = Φ as

n→ ∞. Hence, it is possible to use the limit distribution F = Φ in instead of F̂n in both the

construction of point predictors and the prediction intervals; this is an application of the

Limit Model-Free (LMF) approach as discussed in (Politis, 2015).

The LMF Algorithm is simpler than Algorithm 3.3.5 as the first three steps of the

latter can be omitted. As a matter of fact, the LMF Algorithm is totally based on the inverse
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transformation H−1
n+1 : εn+1 7→ Y n+1; the forward transformation Hn : Y n 7→ εn is not needed

at all. But for the inverse transformation it is sufficient to estimate Dt(y) by the step functions

D̂t(y) , D̂LLH
t (y) or D̂LLM

t (y) with the understanding that their inverse must be a quantile

inverse; recall that the quantile inverse of a distribution D(y) is defined as D−1(β) = inf{y

such that D(y)≥ β}.

Algorithm 3.3.6 LIMIT MODEL-FREE (LMF) PREDICTORS AND PREDICTION INTER-

VALS FOR Yn+1

1. The LMF L2–optimal point predictor of Yn+1 is

Ŷn+1 =
∫

gn+1(x)dΦ(x) (3.39)

where the function gn+1 is defined in the predictive equation (3.38) where Dn+1(·) is

estimated by either D̂n+1(·) , D̂LLH
n+1 (·) or D̂LLM

n+1 (·) all with T = t−1.

2. In practice, the integral (3.39) can be approximated by Monte Carlo, i.e.,

∫
gn+1(x)dΦ(x)' 1

M

M

∑
i=1

gn+1(xi)

where x1, . . . ,xM are generated as i.i.d. N(0,1), and M is some large integer.

3. Using the above Monte Carlo framework, the LMF L1–optimal point predictor of Yn+1

can be approximated by the median of the set {gn+1(xi) for i = 1, . . . ,M}.

4. Prediction intervals for Yn+1 with prespecified coverage probability can be constructed

via the LMF Boootstrap of Algorithm A.0.2 based on either the L2– or L1–optimal

point predictor.
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Remark 3.3.3 Interestingly, there is a closed-form solution for the LMF L1–optimal point

predictor of Yn+1 that can also be used in Step 5 of Algorithm 3.3.4. To elaborate, first

note that under the assumed weak dependence, e.g. strong mixing, of the series {Yt} (and

therefore also of {Zt}), we have the following approximations (for large n), namely:

Median(Zn+1|F n
1 (Z))'Median

(
Zn+1|F n

−∞(Z)
)

= Median
(
Zn+1|F n

−∞(Y )
)
'Median(Zn+1|F n

1 (Y )) .

Now eq. (3.36) and (3.37) imply that Yn+1 = D−1
n+1 (Φ(Zn+1)) . Since Dn+1(·) and Φ(·) are

strictly increasing functions, it follows that the Model-free L1–optimal predictor of Yn+1

equals

Median(Yn+1|F n
1 (Y )) = D−1

n+1 (Φ(Median(Zn+1|F n
1 (Y ))))

' D−1
n+1 (Φ(Median(Zn+1|F n

1 (Z)))) = D−1
n+1 (Φ(E (Zn+1|F n

1 (Z)))) , (3.40)

the latter being due to the symmetry of the normal distribution of Zn+1 given F n
1 (Z). But,

as in eq. (3.7), we have E
(
Zn+1|F n

1 (Z)
)
= φ1(n)Zn + φ2(n)Zn−1 + . . .+ φn(n)Z1 where

(φ1(n), · · · ,φn(n))′ = Γ−1
n γ(n). Plugging-in either D̄n+1(·) , D̄LLH

n+1 (·) or D̄LLM
n+1 (·) in place

of Dn+1(·) in eq. (3.40), and also employing consistent estimates of Γn and γ(n) completes

the calculation. As discussed in Section 3.3.6, Γn can be estimated by either Γ̂AR
n or by the

positive definite banded estimator Γ̂?
n with a corresponding estimator for γ(n); see (McMurry

& Politis, 2015) for details.

Remark 3.3.4 (Robustness of LMF approach) The LMF approach focuses completely

on the predictive equation (3.38) for which an estimate of (the inverse of) Dn+1(·) must

be provided; interestingly, estimating Dt(y) for t 6= n+ 1 is nowhere used in Algorithm
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3.3.6. In the usual case where the kernel K(·) is chosen to have compact support, estimating

Dn+1(·) is only based on the last b data values Yn−b+1, . . . ,Yn. Hence, in order for the LMF

Algorithm 3.3.6 to be valid, the sole requirement is that the subseries Yn−b+1, . . . ,Yn,Yn+1

is approximately stationary. In other words, the first (and biggest) part of the data, namely

Y1, . . . ,Yn−b, can suffer from arbitrary nonstationarities, change points, outliers, etc. without

the LMF predictive inference for Yn+1 being affected; this robustness of the LMF approach

is highly advantageous.

3.3.8 Discrete-valued time series

Untill now, it has been assumed that Dt(y) is (absolutely) continuous in y for all t; in

this subsection, we briefly discuss a departure from this assumption.

Throughout subsection 3.3.8 we will assume that the locally stationary time series

{Yt} takes values in a countable set S⊂ R; as an example, consider the case of a finite state

Markov chain whose first marginal changes smooth (and smoothly) with time. It is apparent

that Dt(y) is a step function; hence, step function estimators such as D̂t(y) , D̂LLH
t (y) or

D̂LLM
t (y) are preferable to their smoothed counterparts D̄t(y) , D̄LLH

t (y) or D̄LLM
t (y) since

the latter assign positive probabilities to values y 6∈ S.

Fortunately, the LMF methodology of Algorithm 3.3.6 can be employed based on

just the step function estimators D̂t(y) , D̂LLH
t (y) or D̂LLM

t (y). Note that with discrete data,

predicting Yn+1 by a conditional mean or median makes little sense since the latter will

likely not be in the set S; it is more appropriate to adopt a 0-1 loss function and predict Yn+1

by the mode of the conditional distribution. A prediction interval is not appropriate either

unless the set S is of lattice form—and even then, problems ensue regarding non-attainable

α–levels. It is thus more informative to present an estimate of the conditional distribution
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instead of summarizing the latter into a prediction interval.

A version of the LMF algorithm for discrete valued data is given below; (for details

see (Politis, 2015).

Algorithm 3.3.7 LMF BOOTSTRAP FOR PREDICTIVE DISTRIBUTION OF DISCRETE-

VALUED Yn+1

1. Based on the data Y n, estimate the inverse transformation H−1
n by Ĥ−1

n (say). In

addition, estimate gn+1 by ĝn+1.

2. (a) Generate bootstrap pseudo-data ε∗1, ...,ε
∗
n as i.i.d. from F = Φ.

(b) Use the inverse transformation Ĥ−1
n to create pseudo-data in the Y domain, i.e.,

let Y ∗n = (Y ∗1 , ...,Y
∗
n )
′ = Ĥ−1

n (ε∗1, ...,ε
∗
n).

(c) Based on the bootstrap pseudo-data Y ∗n, re-estimate the transformation Hn and

its inverse H−1
n by Ĥ∗n and Ĥ−1∗

n respectively. In addition, re-estimate gn+1 by

ĝ∗n+1.

(d) Calculate a bootstrap pseudo-value Y ∗∗n+1 as the point ĝ∗n+1(Y n,ε) where ε is

generated from F = Φ.

3. Steps (a)—(d) in the above should be repeated B times (for some large B), and the

B bootstrap replicates of the pseudo-values Y ∗∗n+1 are collected in the form of an

empirical distribution which is our Model-free estimate of the predictive distribution

of Yn+1; the mode of this distribution is the LMF optimal predictor of Yn+1 under 0-1

loss.
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3.3.9 Special case: strictly stationary data

It is interesting to consider what happens if/when the data Y1, . . . ,Yn are a stretch of

a strictly stationary time series {Yt}. Of course, a time series that is strictly stationary is a

a fortiori locally stationary; so all the aforementioned procedures should work verbatim.

Nevertheless, one could take advantage of the stationarity to obtain better estimators;

effectively, one can take the bandwidth b to be comparable to n, i.e., employ global—as

opposed to local—estimators.

To elaborate, in the stationary case the distribution Dt(y) does not depend on t at

all. Hence, for the purposes of the LMF Algorithm 3.3.6—as well as the discrete data

Algorithm 3.3.7—we can estimate Dt(y) by the regular (non-local) empirical distribution

D̂(y) = n−1
n

∑
t=1

1{Yt ≤ y}.

Furthermore, for the purposes of Algorithm 3.3.4 we can estimate the (assumed smooth)

Dt(y) by the smoothed empirical distribution

D̄(y) = n−1
n

∑
t=1

Λ(
y−Yt

h0
)

where h0 is a positive bandwidth parameter satisfying h0→ 0 as n→ ∞. As mentioned in

Section 3.3.5, the optimal rate is h0 ∼ n−2/5 when the estimand Dt(y) is sufficiently smooth

in y.
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3.3.10 Local stationarity in a higher-dimensional marginal

The success of the theoretical transformation of Section 3.3.1 in transforming the

data vector Y n to the vector of i.i.d. components εn hinges on two conditions: (a) the

nonstationarity of {Yt} is only due to nonstationarity in its first marginal Dt(·), and (b) the

instantaneous transformation to Gaussianity also manages to create a Gaussian random

vector, i.e., all its finite-dimensional marginals are Gaussian. Both of these conditions can be

empirically checked. For example, condition (a) can be checked by looking at some features

of interest of the mth (say) marginal, e.g., looking at the autocorrelation Corr(Yt ,Yt+m)

estimated over different subsamples of the data, and checking whether it depends on t.

Condition (b) can be checked by performing a normality test, e.g., Shapiro-Wilk test, or

other diagnostics, e.g., quantile plot, on selected linear combinations of m consecutive

components of the random vector.

Interestingly, if either condition (a) or (b) seem to fail, there is a single solution

to address the problem, namely blocking the time series. To elaborate, one would then

create blocks of data by defining Bt = (Yt , . . . ,Yt+m−1)
′ for t = 1, . . . ,q with q = n−m+1.

Now focus on the multivariate time series dataset {B1, . . . ,Bq}, and let D(m)
t (·) denote the

distribution function of vector Bt which will be assumed to vary smoothly (and slowly) with

t as in Remark 3.3.1.

Using the (Rosenblatt, 1952) transformation, we can now map Bt to a random vector

Vt that has components3 i.i.d. Uniform (0,1), and then do the Gaussian transformation and

3Recall that the (Rosenblatt, 1952) transformation maps an arbitrary random vector Y m = (Y1, . . . ,Ym)
′

having absolutely continuous joint distribution onto a random vector V m = (V1, . . . ,Vm)
′ whose entries are

i.i.d. Uniform(0,1); this is done via the probability integral transform based on conditional distributions. To
elaborate, for k > 1 define the conditional distributions Dk(yk|yk−1, . . . ,y1) = P{Yk ≤ yk|Yk−1 = yk−1, . . . ,Y1 =
y1}, and let D1(y1) = P{Y1 ≤ y1}. Then, the (Rosenblatt, 1952) transformation amounts to letting V1 =
D1(Y1),V2 = D2(Y2|Y1),V3 = D3(Y3|Y2,Y1), . . . , and Vm = Dm(Ym|Ym−1, . . . ,Y2,Y1).
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whitening as required by the Model-Free Principle. Thus, when the time series {Yt} is locally

stationary in its mth marginal, the algorithm to transform the dataset Y n = (Y1, . . . ,Yn)
′ to an

i.i.d. dataset goes as follows.

1. From the dataset Y n = (Y1, . . . ,Yn)
′, create blocks/vectors Bt = (Yt , . . . ,Yt+m−1)

′ for

t = 1, . . . ,q with q = n−m+1.

2. Use the Rosenblatt transformation to map the multivariate dataset {B1, . . . ,Bq} to the

dataset {V1, . . . ,Vq}; here Vt = (V (1)
t , . . . ,V (m)

t )′ is a random vector having components

that are i.i.d. Uniform (0,1).

3. Let Z( j)
t =Φ−1(V ( j)

t ) for j = 1, . . . ,m, and t = 1, . . . ,q where Φ is the cdf of a standard

normal. Note that, for each t, the variables Z(1)
t , . . . ,Z(m)

t are i.i.d. N(0,1).

4. Define the vector time series Zt = (Z(1)
t , . . . ,Z(m)

t )′ that is multivariate Gaussian.

Estimate the (matrix) autocovariance sequence Cov(Zt ,Zt+k) for k = 0,1, . . ., and

use it to ‘whiten’ the sequence Z1, . . . ,Zq, i.e., to map it (in a one-to-one way) to the

i.i.d. sequence ζ1, . . . ,ζq; here, ζt ∈ Rm is a random vector having components that

are i.i.d. N(0,1).

In Step 2 above, the mth dimensional Rosenblatt transformation can be estimated in practice

using a local average or local linear estimator, i.e., a multivariate analog of D̄t(·) , D̄LLH
t (·) or

D̄LLM
t (·) . Regarding Step 4, standard methods exist to estimate the (matrix) autocovariance

of Zt with Zt+k; see e.g. (Jentsch & Politis, 2015). Finally, note that the map Hn : Y n 7→

(ζ1, . . . ,ζq)
′ is invertible since all four steps given above are one-to-one. Hence, Model-free

prediction can take place based on a multivariate version of the Model-free Prediction

Principle of (Politis, 2013); the details are straightforward.
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3.4 Diagnostics for Model-Free Inference

The steps outlined in Section 3.3.1 for Model-Free inference involve generating

samples from both uniform U [0,1] and standard normal distributions. Careful analysis is

necessary to ensure that the samples generated are from the correct distributions failing which

the Model-Free point and interval predictors will be inaccurate. The following discussion

serves as an aid to the practitioner to ensure realization of optimal performance for both

point prediction and prediction interval generation using the Model-Free methodology.

3.4.1 QQ-plots after uniformization

The success of the uniformization step outlined in Section 3.3.1 can be visually

verified using QQ-plots of the obtained uniform samples versus samples obtained from an

ideal uniform distribution which is available in standard statistical software such as R. Any

deviations in these curves from linearity should be closely investigated for possible issues

wrt choice of bandwidth during cross-validation as it can impact both point prediction and

prediction interval generation.

3.4.2 Shapiro-Wilk test for joint normality

The random vector Zn = (Z1, . . . ,Zn)
′ from Section 3.3.6 should be tested for normal-

ity in order to ensure that the described whitening transformation successfully produces i.i.d.

normal samples. Marginal normality of the data Z can be verified by gauging linearity of QQ-

plots versus the standard normal distribution. Furthermore the Cramer-Wold theorem states

that any linear combination of jointly normal variables is univariate normal. This can be used

to empirically verify whether the joint normality requirement is violated by taking any linear
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combination i.e. for example a pair or triplet of variables from the set Zn = (Z1, . . . ,Zn)
′

and verify their normality using the Shapiro-Wilk test. An example of this is provided in

Figure 3.2 where for a given λ we form the linear combination (1−λ)Zi +λZi+1 over all

obtained values Zn = (Z1, . . . ,Zn)
′ and calculate the mean value of the Shapiro-Wilk test

statistic. This is done over a range of λ values. As can be seen from the plot sufficiently

high values of the test statistic are obtained which indicates that from this particular test we

cannot conclude that joint normality has been violated. Further tests can be done by forming

linear combinations over pairs of non-successive values of Z.

3.4.3 Kolomogorov-Smirnov test for i.i.d. standard normal samples

Provided that the inputs are jointly normal the whitening transformation described in

Section 3.3.6 produces i.i.d. standard normal variables. The covariance matrix used in this

step can be derived either by fitting a causal AR(p) model to Zn = (Z1, . . . ,Zn)
′ or using the

flat-top kernel banded, tapered estimator outlined in (McMurry & Politis, 2010). To verify

that the data generated after whitening are standard normal a Kolmogorov-Smirnov test can

be used with the reference distribution as N[0,1].

3.4.4 Independence test of standard normal samples

The success of the Model-Free procedure involves the ability to produce i.i.d. data

after a series of invertible transformations. In the case of Locally Stationary Time Series

independence of the data produced at the final step after applying the whitening transfor-

mation can be verified visually using an autocorrelation function (ACF) plot as the data

are approximately standard normal. An example of this is given in Figure 3.3 where it

can be noticed from the ACF plot that the Model-Free transformations were successful in
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Figure 3.2: Values of Shapiro-Wilk test statistic for joint normality test. Note that corre-
sponding p-values range from 0.09 to 0.29.

Figure 3.3: Autocorrelation plot showing decorrelation/independence of data after whiten-
ing transformation

producing decorrelated and therefore i.i.d. (normal) data.
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3.5 Model-Free vs. Model-Based Inference: empirical com-

parisons

The performance of the Model-Free and Model-Based predictors described above are

empirically compared using both simulated and real-life datasets based on point prediction

and also calculation of prediction intervals. The Model-Based local constant and local linear

methods are denoted as MB-LC and MB-LL respectively. Model-Based predictors MB-LC

and MB-LL are described in Section 3.2. The Model-Free methods using local constant, local

linear (Hansen) and local linear (Monotone) using the flat-top tapered covariance estimator

are denoted as MF-LC, MF-LLH, MF-LLM. Model-Free methods using local constant, local

linear (Hansen) and local linear (Monotone) using the covariance estimator obtained from

fitting a causal AR(p) model are denoted as MF-LC-ARMA, MF-LLH-ARMA, MF-LLM-

ARMA. Model-Free predictors are described in Section 3.3. The covariance estimators

using the flat-top tapered kernel and fitting an AR(p) model are discussed in Section 3.3.6.

Results are also shown for the LMF counterparts of these methods which are denoted as

LMF-LC, LMF-LLH, LMF-LLM and LMF-LC-ARMA, LMF-LLH-ARMA, LMF-LLM-

ARMA respectively. Results for all methods are given for both fitted (F) and predictive (P)

residuals. Following metrics are used to compare the estimators:

1. Point prediction performance as indicated by Bias and Mean Squared Error (MSE)

on simulated and real-life datasets using all Model-Based and Model-Free methods

listed above.

2. Bootstrap performance as indicated by coverage probability (CVR), mean length of

prediction intervals and standard deviation (sd) of length of prediction intervals. All

prediction interval metrics given in the following tables have been generated based on
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a nominal coverage of 90%.

3.5.1 Simulation: Additive model with stationary AR(5) errors

Data Yi for t = 1, . . . ,1000 were simulated as per model (3.1) with trend as in

eq. (3.3), i.e., µ(t) = µ
[0,1](at) with at = (t−1)/n and µ

[0,1](x) = sin(2πx). The series Wt is

constructed via an AR(5) model driven by errors Vt that are i.i.d. N(0,τ2); with τ = 0.16.

The AR(5) coefficients are set to 0.5, 0.1, 0.1, 0.1, 0.1. Sample size n is set to 1000. Point

prediction and prediction intervals are measured for boundary point n = 1000. Bandwidths

for estimating the trend are calculated using the cross-validation techniques for Model-Based

and Model-Free cases described in Sections 3.2.2 and 3.3.5 respectively.

Results for point prediction including bias and mean square error (MSE) over all

MB and MF methods are shown in Table 3.1 below. A total of 500 realizations of the dataset

were used for measuring point prediction performance.

Results for prediction intervals including CVR, length and standard deviation of the

predicted intervals over all MB and MF methods are shown in Table 3.2 below. A total of

250 realizations were used for measuring prediction interval performance. The number of

bootstrap replications B was set to 250.

From point-prediction results on this dataset it can be seen that one of the best predic-

tors is MB-LL; this is expected since the LL regression estimator is great for extrapolation,

and the innovations are generated using an AR model which is directly employed in the MB-

LL estimator. Nevertheless, predictors MF-LLM and MF-LLM-ARMA appear equally as

good which is re-assuring and surprising at the same time; it appears that—as with the case

of regression with independent errors (Das & Politis, 2017)—the monotonicity correction in

the LLM distribution estimator has minimal effect on the center of the distribution that is
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used for point prediction. The MF-ARMA and LMF-ARMA outperform their respective

MF and LMF counterparts for point prediction; this is consistent with that fact that the

data is generated by an AR process and therefore the covariance estimator using AR(p)

estimation outperforms its flat-top tapered counterpart. However the MF-LLM, LMF-LLM,

MF-LLM-ARMA and LMF-LLM-ARMA estimators give the best prediction intervals when

both coverage probabilities and mean interval lengths are considered. This is a somewhat

surprising result given the fact that the data was generated using an AR(5) model, and one

would expect that the model-based estimator MB-LL would perform comparably with its

MF counterparts, i.e., MF-LLM and MF-LLM-ARMA, in terms of prediction intervals.

Among the MF estimators it is the MF-LLM, LMF-LLM, MF-LLM-ARMA and

LMF-LLM-ARMA methods that perform better than their LC and LLH counterparts both

for the flat-top tapered and AR(p) based covariance estimators. This improvement can be

attributed to using negative weights for estimation at the boundary with the Monotone Local

Linear Distribution estimator i.e. the LLM methods.

As before prediction interval coverage is enhanced using predictive as compared to

fitted residuals which is consistent with the results of interval coverage using both types of

residuals as discussed for the regression case in (Politis, 2013).

3.5.2 Simulation: Additive model with nonlinearly generated errors

Data Yi for t = 1, . . . ,1000 were simulated from model (3.1) with trend as in eq. (3.3),

i.e., µ(t) = µ
[0,1](at) with at = (t−1)/n and µ

[0,1](x) = 5∗ sin(2πx). The series Wt is now

constructed via the nonlinear model given below:
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Table 3.1: Point Prediction performance for AR(5) dataset

Prediction Method Residual Type Bias MSE
MB-LC P -2.899e-02 2.878e-02

F -3.310e-02 2.923e-02
MB-LL P -3.031e-03 2.848e-02

F -7.315e-03 2.841e-02
MF-LC P -3.910e-02 2.955e-02

F 4.327e-02 2.949e-02
MF-LLH P -3.591e-02 2.996e-02

F -4.177e-02 3.000e-02
MF-LLM P -2.716e-02 2.832e-02

F -3.599e-02 2.909e-02
LMF-LC P -3.915e-02 2.961e-02

F -4.349e-02 2.953e-02
LMF-LLH P -3.691e-02 2.996e-02

F -4.224e-02 3.010e-02
LMF-LLM P -2.753e-02 2.855e-02

F -3.614e-02 2.915e-02
MF-LC-ARMA P -3.418e-02 2.929e-02

F -3.932e-02 2.920e-02
MF-LLH-ARMA P -3.067e-02 2.941e-02

F -3.766e-02 2.917e-02
MF-LLM-ARMA P -2.226e-02 2.829e-02

F -3.219e-02 2.876e-02
LMF-LC-ARMA P -3.452e-02 2.957e-02

F -3.968e-02 2.942e-02
LMF-LLH-ARMA P -3.141e-02 2.942e-02

F -3.776e-02 2.927e-02
LMF-LLM-ARMA P -2.229e-02 2.824e-02

F -3.300e-02 2.893e-02
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Table 3.2: Interval estimation performance using bootstrap for AR(5) dataset

Prediction Method Residual Type CVR Mean Length SD Length
MB-LC P 0.88 7.001e-01 1.781e-01

F 0.83 5.598e-01 2.013e-01
MB-LL P 0.92 7.802e-01 1.718e-01

F 0.88 7.039e-01 1.725e-01
MF-LC P 0.85 7.443e-01 1.500e-01

F 0.83 6.362e-01 1.709e-01
MF-LLH P 0.88 7.489e-01 1.422e-01

F 0.84 6.495e-01 1.234e-01
MF-LLM P 0.89 7.343e-01 1.386e-01

F 0.88 6.422e-01 1.229e-01
LMF-LC P 0.86 7.424e-01 1.515e-01

F 0.83 6.373e-01 1.492e-01
LMF-LLH P 0.88 7.582e-01 1.386e-01

F 0.85 6.534e-01 1.275e-01
LMF-LLM P 0.89 7.423e-01 1.401e-01

F 0.88 6.460e-01 1.278e-01
MF-LC-ARMA P 0.85 7.452e-01 1.485e-01

F 0.80 6.317e-01 1.421e-01
MF-LLH-ARMA P 0.85 7.474e-01 1.416e-01

F 0.84 6.569e-01 1.286e-01
MF-LLM-ARMA P 0.88 7.362e-01 1.442e-01

F 0.87 6.502e-01 1.264e-01
LMF-LC-ARMA P 0.85 7.437e-01 1.485e-01

F 0.82 6.382e-01 1.452e-01
LMF-LLH-ARMA P 0.86 7.428e-01 1.389e-01

F 0.85 6.564e-01 1.254e-01
LMF-LLM-ARMA P 0.88 7.422e-01 1.423e-01

F 0.87 6.519e-01 1.278e-01
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Wt =


1+αWt−1 + et i f Wt−1 ≤ r

−1+βWt−1 + γet i f Wt−1 > r
(3.41)

where the errors et are assumed i.i.d. N(0,τ2). Eq. (3.41) describes a TAR(1) model, i.e.,

Threshold Autoregression of order 1; see (Tong, 2011) and the references therein. For our

implementation, we chose τ = 0.4, α = 0.5, β =−0.6, r = 0.6, γ = 1; the initial value of Wt

is set to 0, and n = 1000. A scatterplot showing Wt versus Wt−1 is shown in Figure 3.4. The

process of eq. (3.41) is not zero-mean; however its mean is removed during detrending either

with Model-Based or Model-Free methods. Point prediction and prediction intervals are

measured for boundary point n = 1000. Bandwidths for estimating the trend are calculated

using the cross-validation techniques for Model-Based and Model-Free cases described in

Sections 3.2.2 and 3.3.5 respectively.

Results for point prediction including bias and mean square error (MSE) over all

MB and MF methods are shown in Table 3.3 below. A total of 500 realizations of the dataset

were used for measuring point prediction performance.

Results for prediction intervals including CVR, length and standard deviation of the

predicted intervals over all MB and MF methods are shown in Table 3.4 below. A total of

250 realizations were used for measuring prediction interval performance. The number of

bootstrap replications B was set to 250.

From point-prediction results on this dataset it can be seen that the MF-LLM-ARMA

and LMF-LLM-ARMA estimators give the best performance. The MF-ARMA and LMF-

ARMA outperform their respective MF and LMF counterparts for point prediction. This is

consistent with that fact that the data is not generated by an MA process and therefore the
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Figure 3.4: Nonlinear time series scatterplot of Wt versus Wt−1.

covariance estimator using AR(p) estimation outperforms its flat-top tapered counterpart

which assumes an MA model. The MF-LLM, LMF-LLM, MF-LLM-ARMA and LMF-

LLM-ARMA estimators give the best prediction intervals when both coverage probabilities

and mean interval lengths are considered. These results are somewhat expected since

the innovations are generated using a nonlinear model and the MB methods use a linear

predictor. Therefore MF-LLM and LMF-LLM estimators perform better than their model-

based counterparts i.e. the MB-LL methods. However it is striking to see a Model-Free

method outperform the Model-Based ones when the additive model is true.

It can also be seen that for most cases prediction interval coverage is enhanced using

predictive as compared to fitted residuals which is consistent with the results of interval

coverage using both types of residuals as discussed for the regression case in (Politis, 2013).
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Table 3.3: Point Prediction performance for nonlinear dataset

Prediction Method Residual Type Bias MSE
MB-LC P -1.894e-01 8.420e-01

F -1.897e-01 8.542e-01
MB-LL P -1.109e-01 8.003e-01

F -1.082e-01 8.048e-01
MF-LC P -1.697e-01 8.616e-01

F -1.937e-01 8.407e-01
MF-LLH P -1.134e-01 8.345e-01

F -1.193e-01 8.137e-01
MF-LLM P -2.418e-02 8.208e-01

F -1.770e-02 7.886e-01
LMF-LC P -1.631e-01 8.671e-01

F -1.858e-01 8.456e-01
LMF-LLH P -1.004e-01 8.338e-01

F -1.108e-01 8.420e-01
LMF-LLM P -1.339e-02 8.287e-01

F -8.603e-03 7.941e-01
MF-LC-ARMA P -1.151e-01 8.233e-01

F -1.308e-01 8.003e-01
MF-LLH-ARMA P -1.346e-01 8.075e-01

F -1.370e-01 7.945e-01
MF-LLM-ARMA P -9.632e-03 7.861e-01

F -5.183e-03 7.849e-01
LMF-LC-ARMA P -1.214e-01 8.290e-01

F -1.390e-01 8.140e-01
LMF-LLH-ARMA P -1.274e-01 8.225e-01

F -1.340e-01 8.008e-01
LMF-LLM-ARMA P -4.025e-03 7.945e-01

F 2.181e-03 7.966e-01
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Table 3.4: Interval estimation performance using bootstrap for nonlinear dataset

Prediction Method Residual Type CVR Mean Length SD Length
MB-LC P 0.86 3.265 3.864e-01

F 0.81 2.837 3.841e-01
MB-LL P 0.85 3.123 3.383e-01

F 0.81 2.780 3.466e-01
MF-LC P 0.88 3.999 5.874e-01

F 0.90 2.954 4.272e-01
MF-LLH P 0.88 4.051 6.745e-01

F 0.84 2.732 4.605e-01
MF-LLM P 0.89 3.891 6.956e-01

F 0.86 2.657 4.726e-01
LMF-LC P 0.87 3.987 6.052e-01

F 0.88 2.942 4.133e-01
LMF-LLH P 0.88 4.042 6.797e-01

F 0.84 2.723 4.373e-01
LMF-LLM P 0.88 3.946 6.620e-01

F 0.84 2.661 4.558e-01
MF-LC-ARMA P 0.86 3.850 5.307e-01

F 0.89 2.896 4.343e-01
MF-LLH-ARMA P 0.89 3.917 6.602e-01

F 0.88 2.694 4.719e-01
MF-LLM-ARMA P 0.86 3.794 6.319e-01

F 0.85 2.614 4.766e-01
LMF-LC-ARMA P 0.88 3.981e 5.723e-01

F 0.89 2.966 4.423e-01
LMF-LLH-ARMA P 0.90 4.022 6.889e-01

F 0.86 2.764 4.451e-01
LMF-LLM-ARMA P 0.88 3.948 6.556e-01

F 0.86 2.659 4.844e-01
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3.6 Real-life example: Speleothem data

The Speleothem dataset first discussed in (Fleitmann et al., 2003) and further ana-

lyzed in (Mudelsee, 2014) is an interesting real-life example to compare metrics of point

prediction and prediction intervals for all MB and MF estimators described before. This

dataset which is shown in Figure 3.1 contains oxygen isotope record (the ratio of 18O to 16O)

from stalagmite Q5 from southern Oman over the past 10,300 years. The oxygen isotope

ratio obtained from the speleothem climate archive serves as a proxy variable for the actual

climate variable monsoon rainfall. The full dataset has Yi for t = 1, . . . ,1345 points which

are in general obtained with unequal spacing. The following points should be noted in the

context of our analysis of the speleothem proxy dataset:

1. One important application of proxy data obtained from climate archives is prediction

of the unobserved climate variable values. This prediction is based on known values

of proxy and climate variables which in this case are the oxygen isotope ratio and

monsoon rainfall respectively. Proxy data are also useful for construction of confidence

intervals for parameter estimates of the proxy variable model. In our case we use

a part of the proxy variable dataset which contains a linear trend for estimating

the performance of Model-Based and Model-Free predictors for the proxy variable

delta-O-18.

2. Proxy data obtained from climate archives may be obtained over either even or uneven

time spacing. In case of the speleothem dataset under consideration as shown in

Figure 3.5 the spacing variations are small in general and definitely negligible over

the part of the dataset (last 62 points) where we perform prediction; see Figure 3.5

that depicts the age versus sample number. Hence we will assume even time spacing
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Figure 3.5: Age (a B.P.) of delta-O-18 versus sample number

in our analysis. No interpolation is applied i.e. the number of time-points assumed

with even spacing is the same as the number of time points which are present with

slightly uneven spacing in the original dataset. It is to be noted that several other

techniques such as Singular Spectrum Analysis, Principal Component Analysis and

Wavelet Analysis also assume even spacing for time-series analysis. Extension of our

methods to incorporate uneven time spacing will be the focus of future work.

We consider the dataset over the last 270 points as shown in Figure 3.6. This dataset

is divided into 2 parts: the first part is used to determine the bandwidths for the MB and MF

estimators using methods outlined in Sections 3.2.2 and 3.3.5 respectively; the last 62 points

are used to calculate point prediction and prediction intervals. It can be noticed from Figures

3.1 and 3.6 that this last part of the data appears to have a linear trend. A moving window

method is adopted for cross-validation i.e. for point Yt (whose metrics for point prediction

and prediction intervals are calculated) we use points [Yt−w, Yt−1] for cross-validation. Here

the value of w is set to 189. Note also that since this dataset contains a smaller number of

points, cross-validation was done over a range of bandwidths using only the last 2 steps of
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Algorithm 3.3.2.

Results for point prediction including bias and mean square error (MSE) over all

MB and MF methods are shown in Table 3.5 below.

Results for prediction intervals including CVR, length and standard deviation of the

predicted intervals over all MB and MF methods are shown in Table 3.6 below. The number

of bootstrap replications B was set to 1000.

From point-prediction results on this dataset it can be seen that the MF-LLM and

LMF-LLM estimators give the best performance. The MF-LLM and LMF-LLM estimators

also have the highest coverage probabilities for prediction interval estimation among all

estimators that are considered here. For comparison purposes we have listed the performance

of point prediction using the RAMPFIT algorithm outlined in (Mudelsee, 2000) and also

used for the speleothem dataset in (Fleitmann et al., 2003).

RAMPFIT introduced by (Mudelsee, 2000) is a popular algorithm used to fit climate

data which show transitions such as the speleothem dataset. This algorithm was designed to

handle change points in climate time-series and to the best of our knowledge cannot handle

arbitrary local stationarity which may be present in data. Hence we chose to use RAMPFIT

to compare performance of point prediction versus that obtained using our MB and MF

point predictors. The MF-LLM-ARMA and LMF-LLM-ARMA estimators outperform

RAMPFIT for point prediction as shown in Table 3.5. We attribute the superior results of

MF-LLM-ARMA and LMF-LLM-ARMA for point prediction and prediction intervals to

the most likely reason that the data is not compatible with the assumption of an additive

model. RAMPFIT was not originally designed to generate prediction interval estimates

hence comparisons of these interval metrics versus those obtained using our MB and MF

methods are not provided. The RAMPFIT algorithm is described in Appendix B.

96



Figure 3.6: Speleothem data segment used for cross-validation and prediction

For point prediction there is a difference in performance between fitted and predictive

residuals which is not the case with the simulation datasets discussed before. This is due to

finite sample effects as we use only a small part of the whole speleothem dataset to illustrate

the performance differences between the various estimators. Prediction interval coverage is

better using predictive as compared to fitted residuals which is consistent with the results

associated with i.i.d. regression (Politis, 2013).

As a final point, we consider the practical problem of out-of-sample prediction of the

next data point i.e. prediction of Y1346 using RAMPFIT and our best predictor (MF-LLM-

ARMA) chosen based on in-sample performance. The predicted values using RAMPFIT

and MF-LLM-ARMA are nearly the same (which is reassuring), and approximately equal

to -0.81. The 90% prediction interval using MF-LLM is (−1.165,−0.513); as previously

mentioned, RAMPFIT cannot be used to generate a prediction interval.
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Table 3.5: Point Prediction performance for speleothem dataset

Prediction Method Residual Type Bias MSE
MB-LC P -5.800e-03 4.248e-02

F -1.845e-02 4.081e-02
MB-LL P 1.219e-02 4.205e-02

F 1.227e-03 3.891e-02
MF-LC P -2.755e-02 4.006e-02

F -1.535e-02 3.805e-02
MF-LLH P -2.762e-02 3.683e-02

F -2.141e-02 3.925e-02
MF-LLM P -3.776e-03 3.513e-02

F -2.593e-02 3.730e-02
LMF-LC P -2.602e-02 3.959e-02

F -1.524e-02 3.815e-02
LMF-LLH P -2.672e-02 3.682e-02

F -2.060e-02 4.011e-02
LMF-LLM P 5.724e-03 3.494e-02

F -2.702e-02 3.643e-02
MF-LC-ARMA P -2.999e-02 4.171e-02

F -2.058e-02 3.874e-02
MF-LLH-ARMA P -1.8842e-02 4.242e-02

F -1.299e-02 3.894e-02
MF-LLM-ARMA P -3.235e-03 3.645e-02

F -2.077e-02 3.427e-02
LMF-LC-ARMA P -2.718e-02 4.143e-02

F -2.388e-02 3.953e-02
LMF-LLH-ARMA P -1.461e-02 4.550e-02

F -1.355e-02 4.095e-02
LMF-LLM-ARMA P 3.538e-03 3.721e-02

F -2.174e-02 3.550e-02
RAMPFIT Not Applicable 1.781e-02 3.913e-02
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Table 3.6: Interval estimation performance using bootstrap for speleothem dataset

Prediction Method Residual Type CVR Mean Length SD Length
MB-LC P 0.82 7.812e-01 2.178e-01

F 0.78 5.46e-01 1.885e-01
MB-LL P 0.87 8.731e-01 1.970e-01

F 0.84 7.254e-01 1.689e-01
MF-LC P 0.94 7.963e-01 1.631e-01

F 0.84 5.076e-01 1.525e-01
MF-LLH P 0.87 7.252e-01 1.372e-01

F 0.84 5.868e-01 1.747e-01
MF-LLM P 0.90 7.230e-01 1.914e-01

F 0.89 5.788e-01 1.774e-01
LMF-LC P 0.95 7.855e-01 1.804e-01

F 0.84 5.010e-01 1.454e-01
LMF-LLH P 0.89 7.284e-01 1.396e-01

F 0.81 5.568e-01 1.613e-01
LMF-LLM P 0.90 7.397e-01 1.946e-01

F 0.89 6.145e-01 1.814e-01
MF-LC-ARMA P 0.90 8.088e-01 1.535e-01

F 0.86 5.754e-01 1.665e-01
MF-LLH-ARMA P 0.86 7.701e-01 1.588e-01

F 0.80 5.759e-01 1.911e-01
MF-LLM-ARMA P 0.89 7.427e-01 1.715e-01

F 0.86 5.819e-01 1.973e-01
LMF-LC-ARMA P 0.89 8.213e-01 1.721e-01

F 0.84 5.690e-01 1.599e-01
LMF-LLH-ARMA P 0.87 7.783e-01 1.527e-01

F 0.78 5.772e-01 1.916e-01
LMF-LLM-ARMA P 0.91 7.780e-01 1.818e-01

F 0.87 6.234e-01 2.096e-01
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Chapter 4

Predictive inference for locally

stationary random fields

4.1 Introduction

Consider a real-valued random field dataset {Yt , t ∈ Z2} defined over a 2-D index-

set D e.g. pixel values over an image or satellite data observed on an ocean surface. It

may be unrealistic to assume that the stochastic structure of such a random field Yt has

stayed invariant over the entire region of definition D hence, we can not assume that {Yt} is

stationary. More realistic is to assume a slowly-changing stochastic structure, i.e., a locally

stationary model – see (Priestley, 1965), (Priestley, 1988), (Dahlhaus et al., 1997) and

(Dahlhaus, 2012).

Our objective is predictive inference for a previously unobserved data point Ytk , i.e.,

constructing a point predictor for Ytk . The usual approach for dealing with nonstationary
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series is to assume that the data can be decomposed as the sum of three components:

µ(t)+St +Wt

where µ(t) is a deterministic trend function, St is a seasonal (periodic) series, and {Wt} is

(strictly) stationary with mean zero; this is the ‘classical’ decomposition of a time series

to trend, seasonal and stationary components which can also be used for decomposition of

random field data. The seasonal (periodic) component, be it random or deterministic, can be

easily estimated and removed; see e.g. (Brockwell & Davis, 1991). Having done that, the

‘classical’ decomposition simplifies to the following model with additive trend, i.e.,

Yt = µ(t)+Wt (4.1)

which can be generalized to accommodate a coordinate-changing variance as well, i.e.,

Yt = µ(t)+σ(t)Wt . (4.2)

In both above models, the series {Wt} is assumed to be (strictly) stationary, weakly de-

pendent, e.g. strong mixing, and satisfying EWt = 0; in model (4.2), it is also assumed

that Var(Wt) = 1. As usual, the deterministic functions µ(·) and σ(·) are unknown but

assumed to belong to a class of functions that is either finite-dimensional (parametric) or not

(nonparametric); we will focus on the latter, in which case it is customary to assume that

µ(·) and σ(·) possess some degree of smoothness, i.e., that µ(t) and σ(t) change smoothly

(and slowly) with t.

As far as capturing the first two moments of Yt , models (4.1) and (4.2) are considered
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general and flexible—especially when µ(·) and σ(·) are not parametrically specified—and

have been studied extensively in the case of time series; see e.g. (Zhou & Wu, 2009), (Zhou

& Wu, 2010). However, it may be that the skewness and/or kurtosis of Yt changes with t, in

which case centering and studentization alone can not render the problem stationary. To see

why, note that under model (4.2), EYt = µ(t) and VarYt = σ2(t); hence,

Wt =
Yt−µ(t)

σ(t)
(4.3)

cannot be (strictly) stationary unless the skewness and kurtosis of Yt are constant. Further-

more, it may be the case that the nonstationarity is due to a feature of the m–th dimensional

marginal distribution not being constant for some m ≥ 1, e.g., perhaps the correlation

Corr(Yt j ,Ytk) changes smoothly (and slowly) with t. Notably, models (4.1) and (4.2) only

concern themselves with features of the 1st marginal distribution.

For all the above reasons, it seems valuable to develop a methodology for the statisti-

cal analysis of locally stationary random fields that does not rely on simple additive models

such as (4.1) and (4.2). Fortunately, the Model-free Prediction Principle of (Politis, 2013),

(Politis, 2015) suggests a way to accomplish Model-free inference in the general setting of

random fields that are only locally stationary. The key towards Model-free inference is to be

able to construct an invertible transformation Hn : Y n 7→ εn where εn = (ε1, . . . ,εn)
′ is a ran-

dom vector with i.i.d. components. Section 4.3 describes the methodology for Model-based

point prediction and Section 4.4 outlines the steps necessary for Model-free point prediction

in case of locally stationary random fields. The 2 approaches are empirically compared to

each other in Section 4.5 using finite sample experiments.
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Figure 4.1: Non Symmetric Half-Plane

4.2 Causality of Random Fields

Given the random field observations Yt1 , . . . ,Ytn our goal is predictive inference for

the ”next” unknown datapoint Ytn+1 . In this context a definition of causality is necessary to

specify tn+1 where predictive inference will be performed. For this purpose we consider the

region of support (ROS) of random fields discussed in this Chapter to be defined over a non

symmetric half-plane (NSHP) denoted as H∞. Figure 4.1 shows an NSHP centered at (0, 0).

The NSHP can also be defined for any other point t as follows:

NSHP(t) = t + s ∀s ∈ NSHP (4.4)

Such non symmetric half-planes have been used previously for specifying causal

2-D AR models (Choi & Politis, 2007). In such cases a causal 2-D AR model with ROS
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Hp ⊂ H∞ can be defined as:

Yt1,t2 = ∑
( j,k)∈Hp

β j,kYt1− j,t2−k + vt1,t2 (4.5)

Here vt1,t2 is a 2-D white noise process with variance σ2 > 0. Based on (Dudgeon &

Mersereau, 1984) a 2-D AR process with ROS S is causal if there exists a subset C of Z2

satisfying the following conditions:

• The set C consists of 2 rays emanating from the origin and the points between the rays

• The angle between the 2 rays is strictly less than 180 degrees

• S⊂C

In this case since Hp ⊂ H∞ satisfies these conditions the 2-D AR process satisfying

(4.5) is causal. Therefore this framework can be used to describe a causal random field

defined over the NSHP and used for construction of one-step ahead point predictors. This is

described below.

Consider random field data {Yt , t ∈ E} where E can be any finite subset of Z2 for

e.g. En = {t ∈ Z2 with 0 < t1 < n1 & 0 < t2 < n2, n = (n1,n2)}. Our goal is predictive

inference at t = (t1, t2). This ”future” value Yt1,t2 is determined using data defined over the

region:

Et,n = NSHP(t)∩En

Both model-based and model-free causal inference for Yt1,t2 are performed using the

data specified over this region Et,n. We consider predictive inference at Yt = Yt1,t2 given the

data (Ys | s≺ t & s∈Et,n) where the symbol≺ denotes lexicographical ordering on the region

of support of the random field as described in (Choi & Politis, 2007). In the subsequent
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discussion this lexicographically ordered ”past” data Ys will be denoted as Yt1, . . . ,Ytk , . . . ,Ytn

and prediction will be performed at Yt = Ytn+1 .

4.3 Model-based inference

Throughout Section 4.3, we will assume model (4.2)—that includes model (4.1) as a

special case—together with assuming that µ(·) and σ(·) change smoothly (and slowly) with

t.

4.3.1 Theoretical optimal point prediction

It is well-known that the L2–optimal predictor of Ytn+1 given the data Y tn
=(Yt1, . . . ,Ytn)

′

is the conditional expectation E(Ytn+1|Y tn
) where Y tn

indicates the data Yt1, . . . ,Ytn . Further-

more, under model (4.2), we have

E(Ytn+1|Y tn
) = µ(tn+1)+σ(tn+1)E(Wtn+1|Y tn

). (4.6)

Define F tJ
t j
(Y ) to be the information set {Yt j ,Yt j+1, . . . ,YtJ}, also known as σ–field,

and note that the information sets F t
−∞(Y ) and F t

−∞(W ) are identical for any t, i.e., knowl-

edge of {Ys for s≺ t} is equivalent to knowledge of {Ws for s≺ t}; here, µ(·) and σ(·) are

assumed known and the symbol ≺ denotes lexicographical ordering on the region of support

of the random field as described in (Choi & Politis, 2007). Hence, for large n, and due to the

assumption that Wt is weakly dependent (and therefore the same must be true for Yt as well),

the following large-sample approximation is useful, i.e.,
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E(Wtn+1|Y tn
)' E(Wtn+1 |Yts,s� n) = E(Wtn+1|Wts,s� n)' E(Wtn+1|W tn

) (4.7)

where W tn
= (Wt1, . . . ,Wtn)

′.

All that is needed now is to construct an approximation for E(Wtn+1|W tn
). We

construct this L2–optimal linear predictor of Wtn+1 by fitting a (causal) AR(p,q) model to

the data Wt1, . . . ,Wtn with p,q chosen by minimizing AIC, BIC or a related criterion as

described in (Choi & Politis, 2007); this would entail fitting the model:

Wtn1 ,tn2
= ∑

( j,k)∈Hp

β j,kWtn1− j,tn2−k + vtn1 ,tn2
(4.8)

where {vtn1 ,tn2
} is a stationary white noise, i.e., an uncorrelated sequence, with mean zero

and variance τ2 > 0 and (tn1, tn2) denote the components of tn+1. The implication then is

that

Ē(Wtn+1|W tn
) = ∑

( j,k)∈Hp

β j,kWtn1− j,tn2−k (4.9)

4.3.2 Trend estimation and practical prediction

To construct the L2–optimal predictor (4.6), we need to estimate the smooth trend

µ(·) and variance σ(·) in a nonparametric fashion; this can be easily accomplished via

kernel smoothing—see e.g. (Härdle & Vieu, 1992), (Kim & Cox, 1996), (Li & Racine,

2007). Since the goal is predictive inference on Ytn+1 , Nadaraya-Watson (NW or local

constant) and/or local linear fitting must be performed in a one-sided way i.e., it is essentially

a boundary problem. In such cases, it is well-known that local linear fitting has better
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properties—in particular, smaller bias—than kernel smoothing which is well-known to be

tantamount to local constant fitting; see Fan and Gijbels (1996), Fan and Yao (2003), or Li

and Racine (2007).

Furthermore to compute Ē(Wtn+1 |W tn
) in eq. (4.9) we need access to the station-

ary data Wt1 , . . . ,Wtn . The Wt’s are not directly observed, but—much like residuals in a

regression—they can be reconstructed by eq. (4.3) with estimates of µ(t) and σ(t) plugged-

in. What is important is that the way Wt is reconstructed/estimated by (say) Ŵt must

remain the same for all t, otherwise the reconstructed data Ŵt1, . . . ,Ŵtn can not be consid-

ered stationary. Since Wt can only be estimated in a one-sided way for t close to tn, the same

one-sided way must also be implemented for t in the middle of the dataset even though in

that case two-sided estimation is possible.

We will assume throughout that K(·) in the NW or local linear case is a nonnega-

tive, symmetric 2-D Gaussian kernel function for which the diagonal values are set to a

bandwidth value b and the off-diagonal terms are set to 0. Random field data is denoted as

Yt1, . . . ,Ytk , . . .Ytn .

NW fitting: Let tk ∈ [tb+1, tn], and define

µ̂(tk) =
k

∑
i=1

Yt i K̂
(

tk− t i
b

)
and M̂(tk) =

k

∑
i=1

Y 2
t i

K̂(
tk− t i

b
) (4.10)

where

σ̂(tk) =
√

M̂tk− µ̂(tk)
2 and K̂

(
tk− t i

b

)
=

K(
tk−t i

b )

∑
k
j=1 K(

tk−t j
b )

. (4.11)

Using µ̂(tk) and σ̂(tk) we can now define the fitted residuals by

Ŵtk =
Ytk− µ̂(tk)

σ̂(tk)
for tk = tb+1, . . . , tn. (4.12)
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Similarly, the one-sided local linear (LL) fitting estimators of µ(tk) and σ(tk) can be

defined as below.

LL–Regular fitting: Let tk ∈ [tb+1, tn], and define

µ̂(tk) =
∑

k
j=1 w jYt j

∑
k
j=1 w j +n−2

and M̂(tk) =
∑

k
j=1 w jY 2

t j

∑
t
j=1 w j +n−2 (4.13)

where

a = (a1,a2) = (t j− tk) (4.14)

st1,1 =
k

∑
j=1

K
(

t j− tk

b

)
a1 (4.15)

st2,1 =
k

∑
j=1

K
(

t j− tk

b

)
a2 (4.16)

st1,2 =
k

∑
j=1

K
(

t j− tk

b

)
a2

1 (4.17)

st2,2 =
k

∑
j=1

K
(

t j− tk

b

)
a2

2 (4.18)

st1,t2 =
k

∑
j=1

K
(

t j− tk

b

)
a1a2 (4.19)

w j = K(
t j− tk

b
)
[
st1,2st2,2− s2

t1,t2−a1(st1,1st2,2− st2,1st1,t2)+a2(st1,1st1,t2− st1,2st2,1)
]
,

(4.20)
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The term n−2 in eq. (4.13) is just to ensure the denominator is not zero; see Fan (1993).

Eq. (4.11) then yields σ̂(tk), and eq. (4.12) yields Ŵtk .

Using one of the above methods (NW vs. LL) gives estimates of the quantities needed to

compute the L2–optimal predictor (4.6). In order to approximate E(Wtn+1 |Y tn
), one would

treat the proxies Ŵtk or W̃tk as if they were the true Wtk , and proceed as outlined in Section

4.3.1.

Remark 4.3.1 (Random Field cross-validation) To choose the bandwidth b for either of

the above methods, predictive cross-validation may be used but it must be adapted to the

prediction setting, i.e., always one-step-ahead. To elaborate, let k < n, and suppose only

subseries Yt1, . . . ,Ytk has been observed. Denote Ŷtk+1 the best predictor of Ytk+1 based on

the data Yt1, . . . ,Ytk constructed according to the above methodology and some choice of b.

However, since Ytk+1 is known, the quality of the predictor can be assessed. So, for each

value of b over a reasonable range, we can form either PRESS(b) = ∑
n−1
k=ko

(Ŷtk+1−Ytk+1)
2

or PRESAR(b) = ∑
n−1
k=ko
|Ŷtk+1 −Ytk+1 |; here ko should be big enough so that estimation is

accurate, e.g., ko can be of the order of
√

n. The cross-validated bandwidth choice would then

be the b that minimizes PRESS(b); alternatively, we can choose to minimize PRESAR(b) if

an L1 measure of loss is preferred. Finally, note that a quick-and-easy (albeit suboptimal)

version of the above is to use the (supoptimal) predictor Ŷtk+1 ' µ̂(tk+1) and base PRESS(b)

or PRESAR(b) on this approximation.
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4.4 Model-free inference

Model (4.2) is a flexible way to account for a coordinate-changing mean and variance

of Yt . However, nothing precludes that the random field {Yt for t ∈ Z2} has a nonstationarity

in its third (or higher moment), and/or in some other feature of its mth marginal distribution.

A way to address this difficulty, and at the same time give a fresh perspective to the problem,

is provided by the Model-Free Prediction Principle of Politis (2013, 2015).

The key towards Model-free inference is to be able to construct an invertible trans-

formation Hn : Y tn
7→ εn where εn = (ε1, . . . ,εn)

′ is a random vector with i.i.d. components.

In order to do this in our context, let some m ≥ 1, and denote by L(Ytk ,Ytk−1 , . . . ,Ytk−m+1)

the mth marginal of the random field Yt , i.e. the joint probability law of the vector

(Ytk ,Ytk−1, . . . ,Ytk−m+1)
′. Although we abandon model (4.2) in what follows, we still want to

employ nonparametric smoothing for estimation; thus, we must assume that

L(Ytk ,Ytk−1, . . . ,Ytk−m+1) changes smoothly (and slowly) with tk. For concreteness and easy

comparison with the model-based case of Eq. (4.2), we will focus in the sequel on the case

m = 1.

4.4.1 Constructing the theoretical transformation

Let Dt(y) = P{Yt ≤ y} denote the 1st marginal distribution of random field {Yt}.

Throughout Section 4.4, the default assumption will be that Dt(y) is (absolutely) continuous

in y for all t.

We now define new variables via the probability integral transform, i.e., let

Ut = Dt(Yt) for t = t1, . . . , tn; (4.21)
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the assumed continuity of Dt(y) in y implies that Ut1 , . . . ,Utn are random variables having

distribution Uniform (0,1). However, Ut1 , . . . ,Utn are dependent; to transform them to

independence, a preliminary transformation towards Gaussianity is helpful as discussed in

(Politis, 2013). Letting Φ denote the cumulative distribution function (cdf) of the standard

normal distribution, we define

Zt = Φ
−1(Ut) for t = t1, . . . , tn; (4.22)

it then follows that Zt1 , . . . ,Ztn are standard normal—albeit correlated—random variables.

Let Γn denote the n×n covariance matrix of the random vector Ztn
= (Zt1, . . . ,Ztn)

′.

Under standard assumptions, e.g. that the spectral density of the series {Ztn} is continuous

and bounded away from zero, the matrix Γn is invertible when n is large enough. Consider

the Cholesky decomposition Γn =CnC′n where Cn is (lower) triangular, and construct the

whitening transformation:

εn =C−1
n Ztn

. (4.23)

It then follows that the entries of εn = (ε1, . . . ,εn)
′ are uncorrelated standard normal. As-

suming that the random variables Zt1, . . . ,Ztn were jointly normal, this can be strenghtened

to claim that ε1, . . . ,εn are i.i.d. N(0,1). Consequently, the transformation of the dataset

Y n = (Y1, . . . ,Yn)
′ to the vector εn with i.i.d. components has been achieved as required in

premise (a) of the Model-free Prediction Principle. Note that all the steps in the transforma-

tion, i.e., eqs. (4.21), (4.22) and (4.23), are invertible; hence, the composite transformation

Hn : Y n 7→ εn is invertible as well.
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4.4.2 Kernel estimation of the ‘uniformizing’ transformation

We first focus on estimating the ‘uniformizing’ part of the transformation, i.e.,

eq. (4.21). Recall that the Model-free setup implies that the function Dt(·) changes smoothly

(and slowly) with t; hence, local constant and/or local linear fitting can be used to estimate it.

Consider random field data denoted as Yt1, . . . ,Ytk , . . .Ytn . Using local constant, i.e., kernel

estimation, a consistent estimator of the marginal distribution Dtk(y) is given by:

D̂tk(y) =
k

∑
i=1

1{Yt i ≤ y}K̃(
tk− t i

b
) (4.24)

where K̃(
tk−t i

b ) = K(
tk−t i

b )/∑
T
j=1 K(

tk−t j
b ). Similar to the model-based case we will assume

throughout that K(·) is a nonnegative, symmetric 2-D Gaussian kernel function for which

the diagonal values are set to the bandwidth b and the off-diagonal terms are set to 0. Note

that the kernel estimator (4.24) is one-sided for the same reasons discussed in Section 4.3.2.

Since D̂tk(y) is a step function in y, a smooth estimator can be defined as:

D̄tk(y) =
k

∑
i=1

Λ(
y−Yt i

h0
)K̃(

tk− t i
b

) (4.25)

where h0 is a secondary bandwidth. Cross-validation can be used to determine the band-

widths h0 and b ; details are described in Section 4.4.5.

4.4.3 Local linear estimation of the ‘uniformizing’ transformation

Note that the kernel estimator D̂tk(y) defined in eq. (4.24) is just the Nadaraya-

Watson smoother, i.e., local average, of the variables u1, . . . ,un where ui = 1{Yt i ≤ y}.

Similarly, D̄tk(y) defined in eq. (4.25) is just the Nadaraya-Watson smoother of the variables
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v1, . . . ,vn where vi = Λ(
y−Yti

h0
). In either case, it is only natural to try to consider a local

linear smoother as an alternative to Nadaraya-Watson especially since, once again, our

interest lies in 1-sided estimation on the boundary of the random field.

Let D̂LL
tk
(y) and D̄LL

tk
(y) denote the local linear estimators of Dtk(y) based on either

the indicator variables 1{Yt i ≤ y} or the smoothed variables Λ(
y−Yti

h0
) respectively. Keeping y

fixed, D̂LL
tk
(y) and D̄LL

tk
(y) exhibit good behavior for estimation at the boundary, e.g. smaller

bias than either D̂tk(y) and D̄tk(y) respectively. However, there is no guarantee that these

will be proper distribution functions as a function of y, i.e., being nondecreasing in y with a

left limit of 0 and a right limit of 1; see (Li & Racine, 2007) for a discussion.

One proposed solution put forward by (Hansen, 2004) involves a straightforward

adjustment to the local linear estimator of a conditional distribution function that maintains

its favorable asymptotic properties. The local linear versions of D̂tk(y) and D̄tk(y) adjusted

via Hansen’s (2004) proposal are given as follows:

D̂LLH
tk

(y) =
∑

k
i=1 w�i 1(Yt i ≤ y)

∑
k
i=1 w�i

and D̄LLH
tk

(y) =
∑

k
i=1 w�i Λ(

y−Yti
h0

)

∑
k
i=1 w�i

. (4.26)

The weights w�i are derived from weights wi described in equation (4.20) where:

w�i =


0 when wi < 0

wi when wi ≥ 0
(4.27)
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4.4.4 Uniformization using Monotone Local Linear Distribution Esti-

mation

Hansen’s (2004) proposal replaces negative weights by zeros, and then renormalizes

the nonzero weights. The problem here is that if estimation is performed on the boundary

(as in the case with one-step ahead prediction of random fields), negative weights are

crucially needed in order to ensure the extrapolation takes place with minimal bias. A recent

proposal by (Das & Politis, 2017) addresses this issue by modifying the original, possibly

nonmonotonic local linear distribution estimator D̄LL
tk
(y) to construct a monotonic version

denoted by D̄LLM
tk

(y).

The Monotone Local Linear Distribution Estimator D̄LLM
tk

(y) can be constructed by

Algorithm 4.4.1 given below.

Algorithm 4.4.1 Monotone Local Linear Distribution Estimation

1. Recall that the derivative of D̄LL
tk
(y) with respect to y is given by

d̄LL
tk
(y) =

1
h0

∑
n
j=1 w jλ(

y−Yt j
h0

)

∑
n
j=1 w j

where λ(y) is the derivative of Λ(y).

2. Define a nonnegative version of d̄LL
tk
(y) as d̄LL+

tk
(y) = max(d̄LL

tk
(y),0).

3. To make the above a proper density function, renormalize it to area one, i.e., let

d̄LLM
tk

(y) =
d̄LL+

tk
(y)∫

∞

−∞
d̄LL+

tk
(s)ds

. (4.28)
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4. Finally, define D̄LLM
tk

(y) =
∫ y
−∞ d̄LLM

tk
(s)ds.

The above modification of the local linear estimator allows one to maintain mono-

tonicity while retaining the negative weights that are helpful in problems which involve

estimation at the boundary.

4.4.5 Cross-validation Bandwidth Choice for Model-Free Inference

There are two bandwidths, b and h0, required to construct the estimators D̄tk(y),

D̄LLH
tk

(y) and D̄LLM
tk

(y). This discussion first focuses on choice of b as it is the most crucial

of the two. The following steps are recommended:

Algorithm 4.4.2 BANDWIDTH DETERMINATION FOR MODEL-FREE INFERENCE

1. Perform the uniformizing transform described in (4.21) over the given random field

dataset Yt1, . . . ,Ytk , . . . ,Ytn using either of the estimators D̄tk(y), D̄LLH
tk

(y) or D̄LLM
tk

(y)

over q pre-defined bandwidths that span an interval of possible values.

2. Calculate the value of the Kolmogorov-Smirnov (KS) test statistic using the uniform

distribution U [0,1] as reference for each of these q cases.

3. From the full list of q values given in step (1) above pick a pre-defined number of

bandwidths, say this is p, whose corresponding KS test statistic values are minimum.

These represent the bandwidths which achieved the best transformation to ‘uniformity’

using D̄tk(y), D̄LLH
tk

(y) or D̄LLM
tk

(y).

4. Obtain the best bandwidth b among these p values by using one-sided cross-validation

in a similar manner as described for the Model-Based case in Section 4.3.2. For
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this purpose let j < n, and suppose only subseries Yt1, . . . ,Yt j has been observed.

Denote Ŷt j+1 the best predictor of Yt j+1 based on the data Y1, . . . ,Ytk constructed

using D̄tk(y), D̄LLH
tk

(y) or D̄LLM
tk

(y) and a value of b selected among the p values

obtained above. Since Yt j+1 is known, the quality of the predictor can be assessed.

So, for each value of b we can form either PRESS(b) = ∑
n−1
j= jo(Ŷt j+1 −Yt j+1)

2 or

PRESAR(b) = ∑
n−1
j= jo |Ŷt j+1−Yt j+1|; here jo should be big enough so that estimation

is accurate, e.g., jo can be of the order of
√

n. We then select the bandwidth b that

minimizes PRESS(b); alternatively, we can choose to minimize PRESAR(b) if an L1

measure of loss is preferred.

5. Coming back to the problem of selecting h0, as in (Politis, 2013), our final choice

is h0 = h2 where h = b/n. Note that an initial choice of h0 needed (to perform

uniformization, KS statistic generation and cross-validation to determine the optimal

bandwidth b) can be set by any plug-in rule; the effect of choosing an initial value of

h0 is minimal.

The above algorithm needs large data sizes in order to work well. In the case of

smaller data sizes of, say, a hundred or so data points, it is recommended to omit steps (1)–(3)

and directly perform steps (4) and (5) using the full range of q pre-defined bandwidths.

4.4.6 Estimation of the whitening transformation

To implement the whitening transformation (4.23), it is necessary to estimate Γn,

i.e., the n× n covariance matrix of the random vector Ztn
= (Zt1, . . . ,Ztn)

′ where the Zt

are the normal random variables defined in eq. (4.22). Let {Zt = Zt1,t2|t1 = 1, . . . ,T1, t2 =

1, . . . ,T2,n = T1T2}. The problem involves positive definite estimation of Γn based on the
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sample Zt1, . . . ,Ztn . One method to implement this involves the following steps:

• Calculate the sample autocovariance function as follows:

γ̆(i, j) = γ̆(−i,− j) = 1
T1T2

T1−i
∑

t1=1

T2− j
∑

t2=1
Zt1+i,t2+ jZt1,t2 , i, j = 0,1,2, . . .

γ̆(i,− j) = γ̆(−i, j) = 1
T1T2

T1−i
∑

t1=1

T2− j
∑

t2=1
Zt1+i,t2− jZt1,t2 , i, j = 0,1,2, . . .

• Let Γ̂n =
[
γ̂i, j
]n

i, j=1 be the banded, tapered covariance matrix where γ̂(i, j)= λ(i, j)γ̆(i, j)

and λ(i, j) is the 2-D flat-top taper defined in (Politis & Romano, 1996). The final

estimator of Γn can be Γ̂?
n which is a a positive definite version of Γ̂n that is banded

and Toeplitz.

Consider the ‘augmented’ vectors Y tn+1
=(Yt1 , . . . ,Ytn,Ytn+1)

′, Ztn+1
=(Zt1, . . . ,Ztn,Ztn+1)

′

and εn+1 = (ε1, . . . ,εn,εn+1)
′ where the values Ytn+1,Ztn+1 and εn+1 are yet unobserved. As

described before estimating the ‘uniformizing’ transformation Dt(·) and the whitening trans-

formation based on Γn allows us to estimate the transformation Hn : Y tn
7→ εn. We now show

how to obtain the inverse transformation H−1
n+1 : εn+1 7→ Y tn+1

. Recall that εn and Y tn
are

related in a one-to-one way via transformation Hn, so the values Yt1, . . . ,Ytn are obtainable

by Y tn
= H−1

n (εn). Hence, we just need to show how to create the unobserved Ytn+1 from

εn+1; this is done in the following three steps.

Algorithm 4.4.3 GENERATION OF UNOBSERVED DATAPOINT FROM FUTURE IN-

NOVATIONS

i. Let

Ztn+1
=Cn+1εn+1 (4.29)
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where Cn+1 is the (lower) triangular Cholesky factor of (our positive definite estimate

of) Γn+1. From the above, it follows that

Ztn+1 = cn+1εn+1 (4.30)

where cn+1 = (c1, . . . ,cn,cn+1) is a row vector consisting of the last row of matrix

Cn+1.

ii. Create the uniform random variable

Utn+1 = Φ(Ztn+1). (4.31)

iii. Finally, define

Ytn+1 = D−1
n+1(Utn+1); (4.32)

of course, in practice, the above will be based on an estimate of D−1
n+1(·).

Since Y tn
has already been created using (the first n coordinates of) εn+1, the above completes

the construction of Y tn+1
based on εn+1, i.e., the mapping H−1

n+1 : εn+1 7→ Y tn+1
.

4.4.7 Model-free point prediction

In the previous sections, it was shown how the construct the transformation Hn :

Y tn
7→ εn and its inverse H−1

n+1 : εn+1 7→ Y tn+1
, where the random variables ε1,ε2, . . . , are

i.i.d. Note that by combining eq. (4.30), (4.31) and (4.32) we can write the formula:

Ytn+1 = D−1
n+1
(
Φ( cn+1εn+1)

)
.
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Recall that cn+1εn+1 = ∑
n
i=1 ciεi + cn+1εn+1; hence, the above can be compactly denoted as

Ytn+1 = gn+1(εn+1) where gn+1(x) = D−1
tn+1

(
Φ

(
n

∑
i=1

ciεi + cn+1x

))
. (4.33)

Eq. (4.33) is the predictive equation required in the Model-free Prediction Principle; condi-

tionally on Y tn
, it can be used like a model equation in computing the L2– and L1–optimal

point predictors of Ytn+1 . Based on this the algorithm for constructing Model-free point

predictors is described below.

Algorithm 4.4.4 MODEL-FREE (MF) POINT PREDICTION FOR Ytn+1

1. Construct Ut1, . . . ,Utn by eq. (4.21) with Dtk(·) estimated by either D̄tk(·) , D̄LLH
tk

(·) or

D̄LLM
tk

(·); for all the 3 types of estimators, use the respective formulas with T = k.

2. Construct Zt1, . . . ,Ztn by eq. (4.22), and use the method of Section 4.4.6 to estimate

Γn by Γ̂?
n.

3. Construct ε1, . . . ,εn by eq. (4.23), and let F̂n denote their empirical distribution.

4. The Model-free L2–optimal point predictor of Ytn+1 is then

Ŷtn+1 =
∫

gn+1(x)dFn(x) =
1
n

n

∑
i=1

gn+1(εi)

where the function gn+1 is defined in the predictive equation (4.33) with Dtn+1(·)

being again estimated by either D̄tn+1(·) , D̄LLH
tn+1

(·) or D̄LLM
tn+1

(·)

5. The Model-free L1–optimal point predictor of Ytn+1 is given by the median of the set

{gn+1(εi) for i = 1, . . . ,n}.
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4.5 Model-Free vs. Model-Based Inference: empirical

comparisons

The performance of the Model-free and Model-based predictors described above are

empirically compared using simulated data based on point prediction. The Model-based

local constant and local linear methods are denoted as MB-LC and MB-LL respectively.

Model-based predictors MB-LC and MB-LL are described in Section 4.3. The Model-free

methods using local constant, local linear (Hansen) and local linear (Monotone) using the

flat-top tapered covariance estimator are denoted as MF-LC, MF-LLH, MF-LLM. Model-

free predictors are described in Section 4.4. Point prediction performance as indicated by

Mean Squared Error (MSE) are used to compare the estimators.

4.5.1 Simulation: Additive model with stationary 2-D AR errors

Let a random field be generated using the 2-D AR process as below:

y(t1, t2) = 0.25yt1−1,t2−1 +0.2yt1−1,t2+1−0.05yt1−2,t2 + v(t1, t2) (4.34)

Let this field be generated over the region defined by 0 ≤ t1 ≤ n1 & 0 ≤ t2 ≤ n2 where

n1 = 101,n2 = 101 Let t1 = 50, t2 = 50 where point prediction is performed, Here v(t1, t2)

are i.i.d. N(0,τ2) where τ= 0.1. The data Yi is generated using the additive model in eq. (4.1)

with trend specified as µ(t) = µ(t1, t2) = sin(4π
t2−1
n2−1) where 0≤ t1 ≤ n1 & 0≤ t2 ≤ n2.

Results for point prediction using mean square error (MSE) over all MB and MF

methods are shown for a range of bandwidths b in Table 4.1. A total of 96 realizations of

the dataset were used for measuring point prediction performance. From this table it can be
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Table 4.1: Point Prediction performance for 2-D AR dataset

Bandwidth MB-LC MB-LL MF-LC MF-LLH MF-LLM
1 4.456e-01 3.900e-02 3.721e-02 3.800e-02 3.778e-02

10 3.870e-02 3.777e-02 3.847e-02 3.646e-02 3.458e-02
15 3.839e-02 3.783e-02 3.900e-02 3.682e-02 3.497e-02
20 3.851e-02 3.795e-02 3.946e-02 3.721e-02 3.540e-02

seen that among the model-based methods MB-LL outperforms MB-LC. However when the

performance of all estimators are considered the MF-LLM estimator has the overall best

MSE performance across all considered bandwidths.
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Appendix A

Basic Model-free Bootstrap and Double

Bootstrap Algorithms

This section describes in detail algorithms A.0.1 and A.0.2 for the construction of

Model-Free and Limit Model-Free algorithms as described in (Politis, 2015). However note

that we also present new algorithms A.0.3 and A.0.4 to determine bandwidth inside the

bootstrap loop for the Model-Based and Model-Free cases.

Define the predictive root to be the error in prediction, i.e.,

Yn+1−Π(ĝn+1,Y n, F̂n) (A.1)

where Π(ĝn+1,Y n, F̂n) is our chosen point predictor of Yn+1, and ĝn+1 is our estimate of

function gn+1 based on the data Y n.

Given bootstrap data Y ∗n and Y ∗n+1, the bootstrap predictive root is the error in
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prediction in the bootstrap world, i.e.,

Y ∗n+1−Π(ĝ∗n+1,Y n, F̂n) (A.2)

where ĝ∗n+1 is our estimate of function gn+1 based on the bootstrap data Y ∗n.

Remark A.0.1 Note that eq. (A.2) depends on the bootstrap data Y ∗n only through the

estimated function ĝ∗n+1; both the predictor Π(ĝ∗n+1,Y n, F̂n) and the construction of future

value Y ∗n+1 in the sequel are based on the true dataset Y n in order to give validity to the

prediction intervals conditionally on the data Y n.

Algorithm A.0.1 MODEL-FREE BOOTSTRAP FOR PREDICTION INTERVALS FOR Yn+1

1. Based on the data Y n, estimate the transformation Hn and its inverse H−1
n by Ĥn and

Ĥ−1
n respectively. In addition, estimate gn+1 by ĝn+1.

2. Use Ĥn to obtain the transformed data, i.e., (ε(n)1 , ...,ε
(n)
n )′ = Ĥn(Y n). By construc-

tion, the variables ε
(n)
1 , ...,ε

(n)
n are approximately i.i.d.; let F̂n denote their empirical

distribution.

(a) Sample randomly (with replacement) the data ε
(n)
1 , ...,ε

(n)
n to create the bootstrap

pseudo-data ε∗1, ...,ε
∗
n.

(b) Use the inverse transformation Ĥ−1
n to create pseudo-data in the Y domain, i.e.,

let Y ∗n = (Y ∗1 , ...,Y
∗
n )
′ = Ĥ−1

n (ε∗1, ...,ε
∗
n).

(c) Calculate a bootstrap pseudo-response Y ∗n+1 as the point ĝn+1(Y n,ε) where ε is

drawn randomly from the set (ε(n)1 , ...,ε
(n)
n ).
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(d) Based on the pseudo-data Y ∗n, estimate the function gn+1 by ĝ∗n+1 respectively.

(e) Calculate a bootstrap root replicate using eq. (A.2).

3. Steps (a)—(e) in the above should be repeated a large number of times (say B times),

and the B bootstrap root replicates should be collected in the form of an empirical

distribution whose α—quantile is denoted by q(α).

4. A (1−α)100% equal-tailed prediction interval for Yn+1 is given by

[Π+q(α/2), Π+q(1−α/2)] (A.3)

where Π is short-hand for Π(ĝn+1,Y n, F̂n).

Sometimes, the empirical distribution F̂n converges to a limit distribution F that is of known

form (perhaps after estimating a finite-dimensional parameter). Using it instead of the

empirical F̂n results into the Limit Model-Free (LMF) resampling algorithm that is given

below. Note that now the point predictor Π is no more a function of F̂n but of F . Hence, the

LMF predictive root is denoted by

Yn+1−Π(ĝn+1,Y n,F) (A.4)

whose distribution can be approximated by that of the LMF bootstrap predictive root

Y ∗n+1−Π(ĝ∗n+1,Y n,F). (A.5)
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Algorithm A.0.2 LIMIT MODEL-FREE (LMF) BOOTSTRAP FOR PREDICTION INTERVALS

FOR Yn+1

1. Based on the data Y n, estimate the transformation Hn and its inverse H−1
n by Ĥn and

Ĥ−1
n respectively. In addition, estimate gn+1 by ĝn+1.

2. (a) Generate bootstrap pseudo-data ε∗1, ...,ε
∗
n in an i.i.d. manner from F.

(b) Use the inverse transformation Ĥ−1
n to create pseudo-data in the Y domain, i.e.,

let Y ∗n = (Y ∗1 , ...,Y
∗
n )
′ = Ĥ−1

n (ε∗1, ...,ε
∗
n).

(c) Calculate a bootstrap pseudo-response Y ∗n+1 as the point ĝn+1(Y n,ε) where ε is

a random draw from distribution F.

(d) Based on the pseudo-data Y ∗n, estimate the function gn+1 by ĝ∗n+1 respectively.

(e) Calculate a bootstrap root replicate using eq. (A.5).

3. Steps (a)—(e) in the above should be repeated a large number of times (say B times),

and the B bootstrap root replicates should be collected in the form of an empirical

distribution whose α—quantile is denoted by q(α).

4. A (1−α)100% equal-tailed prediction interval for Yn+1 is given by

[Π+q(α/2), Π+q(1−α/2)] (A.6)

where Π is short-hand for Π(ĝn+1,Y n,F).

Both Model-Based and Model-Free bootstrap algorithms enable the construction of pre-

diction intervals for a pre-determined nominal coverage level. Point-prediction can use

the bandwidth b determined by the respective cross-validation procedures outlined for the
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MB and MF cases in Sections 3.2.2 and 3.3.5 respectively. However to prevent under or

overcoverage with respect to the nominal level during calculation of prediction intervals

we recommend a double bootstrap procedure to accurately set the bandwidth b′ inside the

bootstrap loop which uses the resampled residuals from point prediction in both the MB and

MF cases. The algorithms A.0.3 and A.0.4 below enable the determination of this adjusted

bandwidth b′.

Algorithm A.0.3 MB DOUBLE BOOTSTRAP FOR BANDWIDTH IN BOOTSTRAP LOOP

1. Based on the data Y1, . . . ,Yn and the bandwidth b based on model-based cross-

validation, calculate the estimators µ̌(·) and σ̌(·), and the ‘residuals’ W̌1, . . . ,W̌n

using model (3.2).

2. Fit the AR(p) model (3.8) to the series W̌1, . . . ,W̌n (with p selected by AIC minimiza-

tion), and obtain the Yule-Walker estimators φ̂1, . . . , φ̂p, and the error proxies

V̌t = W̌t− φ̂1W̌t−1−·· ·− φ̂pW̌t−p for t = p+b+1, . . . ,n.

3. Let V̌ ∗t for t = 1, . . . ,n,n+1 be drawn randomly with replacement from the set { ˇ̌Vt for

t = p+b+1, . . . ,n} where ˇ̌Vt = V̌t − (n− p−b)−1
∑

n
i=p+b+1 V̌i. Let I be a random

variable drawn from a discrete uniform distribution on the values p+ b, p+ b+

1, . . . ,n , and define the bootstrap initial conditions W̌ ∗t = W̌t+I for t =−p+1, . . . ,0.

Then, create the bootstrap data W̌ ∗1 , . . . ,W̌
∗
n via the AR recursion

W̌ ∗t = φ̂1W̌ ∗t−1 + · · ·+ φ̂pW̌ ∗t−p +V̌ ∗t for t = 1, . . . ,(n+1).
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This is the first bootstrap loop.

4. Create the bootstrap pseudo-series Y ∗1 , . . . ,Y
∗
n+1 by the formula

Y ∗t = µ̌(t)+ σ̌(t)W̌ ∗t for t = 1, . . . ,(n+1).

5. Based on the data Y ∗1 , . . . ,Y
∗
n (first n values only) and the bandwidth b based on model-

based cross-validation, calculate the estimators µ̌(·)∗ and σ̌(·)∗, and the ‘residuals’

W ∗1 , . . . ,W
∗
n using model (3.2).

6. Fit the AR(p) model (3.8) to the series W ∗1 , . . . ,W
∗
n (with p selected by AIC minimiza-

tion), and obtain the Yule-Walker estimators φ̂∗1, . . . , φ̂
∗
p, and the error proxies

V̌ ∗t =W ∗t − φ̂
∗
1W ∗t−1−·· ·− φ̂

∗
pW ∗t−p for t = p+b+1, . . . ,n.

7. (a) Let V̌ ∗∗t for t = 1, . . . ,n,n+1 be drawn randomly with replacement from the set

{ ˇ̌V ∗t for t = p+b+1, . . . ,n} where ˇ̌V ∗t = V̌ ∗t − (n− p−b)−1
∑

n
i=p+b+1 V̌ ∗i . Let

I be a random variable drawn from a discrete uniform distribution on the values

p+b, p+b+1, . . . ,n , and define the bootstrap initial conditions W̌ ∗∗t =W ∗t+I

for t =−p+1, . . . ,0. Then, create the bootstrap data W̌ ∗∗1 , . . . ,W̌ ∗∗n via the AR

recursion

W̌ ∗∗t = φ̂1W ∗∗t−1 + · · ·+ φ̂pW ∗∗t−p +V̌ ∗∗t for t = 1, . . . ,(n+1).
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This is the second bootstrap loop.

(b) Create the bootstrap pseudo-series Y ∗∗1 , . . . ,Y ∗∗n by the formula

Y ∗∗t = µ̌(t)∗+ σ̌(t)∗W̌ ∗∗t for t = 1, . . . ,n.

(c) Re-calculate the estimators µ̌∗∗(·) and σ̌∗∗(·) from the bootstrap data Y ∗1 , . . . ,Y
∗
n .

The bootstrap estimators µ̌∗∗(·) and σ̌∗∗(·) are based on a bandwidth value

b′ which is different from the bandwidth b obtained by model-based cross-

validation. This gives rises to new bootstrap residuals W̌ ∗∗1 , . . . ,W̌ ∗∗n on which

an AR(p) model is again fitted yielding the bootstrap Yule-Walker estimators

φ̂∗∗1 , . . . , φ̂∗∗p .

(d) Calculate the bootstrap predictor

Π
∗∗ = µ̌∗∗(n+1)+ σ̌

∗∗(n+1)
[
φ̂
∗∗
1 W ∗n + . . .+ φ̂

∗∗
p W ∗n−p+1

]
.

(e) Calculate a bootstrap future value

Y ∗∗n+1 = µ̌∗(n+1)+ σ̌
∗(n+1)W ∗∗n+1

where again W ∗∗n+1 = φ̂∗1W ∗n + · · ·+ φ̂∗pW ∗n−p+1 + V̌ ∗∗n+1 uses the original values

(W ∗n , . . . ,W
∗
n−p+1); recall that V̌ ∗∗n+1 has already been generated in step (a) above.
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(f) Calculate the bootstrap root replicate Y ∗∗n+1−Π∗∗.

8. Steps (a)—(f) in the above are repeated a large number of times (say C times), and

the C bootstrap root replicates are collected in the form of an empirical distribution

whose α–quantile is denoted by q(α).

9. Finally, a (1−α)100% equal-tailed prediction interval for Y ∗n+1 (nth value of Y ∗n+1)

is given by

[Π∗+q(α/2), Π
∗+q(1−α/2)]. (A.7)

Here Π∗ is given by:

Π
∗ = µ̌∗(n+1)+ σ̌

∗(n+1)
[
φ̂
∗
1W ∗n + · · ·+ φ̂

∗
pW ∗n−p+1

]
(A.8)

where φ̂∗1, . . . , φ̂
∗
p are the Yule-Walker estimators of φ1, . . . ,φp appearing in eq. (3.8).

10. Steps (3)–(9) in the above should be repeated a large number of times (say B times) to

obtain B values of Y ∗n+1 and their corresponding (1−α)100% equal-tailed prediction

intervals as outlined by Step (9) above. This can then be used to calculate a coverage

probability (CVR) for various values of the second bootstrap loop (C iterations)

bandwidth b′ while keeping the bandwidth b of the outer bootstrap loop (B iterations)

fixed to what was obtained from cross-validation. The value of b′ that gives the target

CVR can be used as the bandwidth for the bootstrap loop in Algorithm 3.2.1.

Algorithm A.0.4 MF DOUBLE BOOTSTRAP FOR BANDWIDTH IN BOOTSTRAP LOOP

1. Based on the data Y n and the bandwidth b obtained from model-free cross-validation,
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estimate the transformation Hn and its inverse H−1
n by Ĥn and Ĥ−1

n respectively. In

addition, estimate gn+1 by ĝn+1.

2. Use Ĥn to obtain the transformed data, i.e., (ε(n)1 , ...,ε
(n)
n )′ = Ĥn(Y n). By construction,

the variables ε
(n)
1 , ...,ε

(n)
n are approximately i.i.d.

3. Sample randomly (with replacement) the data ε
(n)
1 , ...,ε

(n)
n to create the bootstrap

pseudo-data ε∗1, ...,ε
∗
n+1. This is the first bootstrap loop.

4. Use the inverse transformation Ĥ−1
n and the bandwidth b from model-free cross-

validation to create pseudo-data in the Y domain, i.e., let Y ∗n+1 = (Y ∗1 , ...,Y
∗
n+1)

′ =

Ĥ−1
n (ε∗1, ...,ε

∗
n+1).

5. Based on the data Y ∗n (first n values only) and the bandwidth b obtained from model-

free cross-validation, estimate the transformation H∗n and its inverse H∗−1
n by Ĥ∗n and

Ĥ∗−1
n respectively. In addition, estimate gn+1 by ĝ∗n+1.

6. Use Ĥ∗n to obtain the transformed data, i.e., (ε∗(n)1 , ...,ε
∗(n)
n )′ = Ĥ∗n (Y

∗
n). By construc-

tion, the variables ε
∗(n)
1 , ...,ε

∗(n)
n are approximately i.i.d; let F̂∗n denote their empirical

distribution.

(a) Sample randomly (with replacement) the data ε
∗(n)
1 , ...,ε

∗(n)
n to create the boot-

strap pseudo-data ε
∗∗(n)
1 , ...,ε

∗∗(n)
n . This is the second bootstrap loop.

(b) Use the inverse transformation Ĥ∗−1
n and a bandwidth b

′
(different from b found

from model-free cross-validation) to create pseudo-data in the Y domain, i.e., let

Y ∗∗n = (Y ∗∗1 , ...,Y ∗∗n )′ = Ĥ∗−1
n (ε∗∗1 , ...,ε∗∗n ).

(c) Calculate a bootstrap pseudo-response Y ∗∗n+1 as the point ĝ∗n+1(Y
∗
n,ε
∗) where ε∗

is drawn randomly from the set (ε∗(n)1 , ...,ε
∗(n)
n ).
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(d) Based on the pseudo-data Y ∗∗n and bandwidth b′, estimate the function gn+1 by

ĝ∗∗n+1 respectively.

(e) Calculate a bootstrap root replicate using

Y ∗∗n+1−Π(ĝ∗∗n+1,Y
∗
n, F̂
∗
n ). (A.9)

7. Steps (a)—(e) in the above should be repeated a large number of times (say C times),

and the C bootstrap root replicates should be collected in the form of an empirical

distribution whose α—quantile is denoted by q(α).

8. A (1−α)100% equal-tailed prediction interval for Y ∗n+1 (nth value of Y ∗n+1) is given

by

[Π∗+q(α/2), Π
∗+q(1−α/2)] (A.10)

where Π∗ is short-hand for Π(ĝ∗n+1,Y
∗
n, F̂
∗
n ).

9. Steps (3)–(8) in the above should be repeated a large number of times (say B times) to

obtain B values of Y ∗n+1 and their corresponding (1−α)100% equal-tailed prediction

intervals as outlined by Step (8) above. This can then be used to calculate a coverage

probability (CVR) for various values of the second bootstrap loop (C iterations)

bandwidth b′ while keeping the bandwidth b of the outer bootstrap loop (B iterations)

fixed to what was obtained from cross-validation. The value of b′ that gives the target

CVR can be used as the bandwidth for the bootstrap loop in Algorithms A.0.1 and

A.0.2.
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Appendix B

RAMPFIT algorithm for analyzing

climate data with transitions

The RAMPFIT algorithm which can handle uneven time-spacing in observations

was proposed by (Mudelsee, 2000) for performing regression on climate data which shows

transitions such as the speleothem dataset considered in Chapter 3. However RAMPFIT was

not originally designed to handle arbitrary local stationarity which may be present in data.

Here we briefly outline the steps in RAMPFIT used to obtain point prediction estimates

which are used for comparison with their Model-Based and Model-Free counterparts.

Define x(i) = X(t(i)) where (Xt , t ∈ R) is an underlying continuous-time stochastic process.

For a time series x(i) measured at times t(i), i = 1, . . . ,n, the model under consideration is

(Mudelsee, 2000):

x(i) = x f it(i)+ ε(i) (B.1)
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It is assumed that the errors ε(i) are heteroskedastic and are distributed as N(0,σ(i)2).

The fitted model is a ramp function as defined below:

x f it(t) =


x1, f or t ≤ t1,

x1+(t− t1)(x2− x1)/(t2− t1), f or t1≤ t ≤ t2,

x2, f or t ≥ t2

(B.2)

Here t1 and t2 denote the start and end of the ramp and x1, x2 denote the corre-

sponding values at those points. The regression model is fitted to data {t(i), x(i)}n
i=1 by

minimizing the weighted sum of squares as given below:

SSQW (t1,x1, t2,x2) =
n

∑
i=1

[x(i)− x f it(i)]2

σ(i)2 (B.3)

Owing to the non-differentiabilities at t1 and t2, RAMPFIT does a search over a

range of values supplied for these 2 values and chooses the values (t̂1, x̂1, t̂2, x̂2) for which

the SSQW is minimum. In addition since σ(i) is not known an initial guess of this is supplied

to the algorithm following which the σ(i) values are recalculated from the obtained residuals.

The estimates (t̂1, x̂1, t̂2, x̂2) are then regenerated. These steps are repeated till MSE values

of point prediction converge.

The full algorithm is described below:

Algorithm B.0.5 RAMPFIT REGRESSION

1. Set initial estimate of σ(i) = i with i = 1, . . . ,n
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2. Set search ranges [t1min, t1max] and [t2min,t2max] for values of t1 and t2

3. Calculate SSQW using (B.2) and (B.3) over this grid of t1 and t2 values; denote a

typical point in this grid as (t̄1, t̄2)

4. Determine (t̂1, x̂1, t̂2, x̂2) = argmin [SSQW (t̄1, x̂1, t̄2, x̂2)] and obtain x f it

5. Calculate residuals e(i) = x(t(i))− x f it(t(i))

6. Re-estimate the variance σ(i) from e(i) using k-nearest-neighbour smoothing

7. Repeat steps (2) to (6) above till MSE values converge.
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