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ABSTRACT
EffiSenseSee is a means to identify energy-inefficient lighting in-
frastructure lingering in our built environment. When light bulbs
convert incoming AC power into visible light, a carefully designed
camera can “see” some of the original AC signal in the varying
light intensity. Using a large corpus of over 60 bulbs, we show
that based solely on analysis of subtleties in observed light out-
put, previously unseen bulbs can be classified as energy-efficient
or energy-inefficient with over 95% accuracy. With 89% accuracy,
EffiSenseSee can group bulbs into incandescent, halogen, CFL, or
LED—the four primary categories measured by regulatory bod-
ies. We then investigate how to bring this technology “out of the
lab.” In an outdoor setting with a commodity camera, EffiSenseSee
identifies inefficient bulbs with 74% accuracy.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile com-
puting systems and tools; • Computer systems organization→
Embedded and cyber-physical systems; • Computing methodolo-
gies → Computer vision.
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1 INTRODUCTION
One of the greater successes in policy and global energy reduction is
the transition to energy-efficient lighting technologies. Down from
15-25% in 2011, today lighting accounts for just 8% of the energy
use across the residential and commercial sectors in the United
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States [1, 2]. For commercial buildings, their limited incandescent
population has fallen to under 5%. However, they also have a limited
LED penetration of only 17%; older, fluorescent tube lighting still
represents nearly 70% of commerical building lighting power [3].
Residential surveys suggest that 45-52% of their fixtures are now
powered by energy-efficient CFL or LED bulbs [4, 5]. At the same
time, these same studies estimate 28-43% of residential lighting still
comes from inefficient incandescent or halogen bulbs.

This lingering population of inefficient bulbs may not neces-
sarily be as bad as it sounds. The incandescent bulb in the home
attic or rarely-visited machine room likely sees well-under 1% on-
time. Replacing such bulbs would actually be an environmental
net-negative, as the carbon spent to manufacture the new bulb
would take decades to be surpassed by the efficiency gains of such
a lightly-used item [6].

Today, then, we must ask two questions to guide replacement
policies and incentives: where are the inefficient bulbs that remain,
and howmuch are they actually used? Answering this first question
is labor-intensive. The state-of-the-art approach is a mix of con-
sumer self-reporting, opaque supply-side monitoring, and costly
surveys where highly trained operators inspect representative sam-
ples of residential and commercial buildings [3–5]. Answering the
usage question is intractable with such a manual approach. Indeed,
the “uncertainty about the baseline and the need for ongoing re-
search” is explicitly identified as a challenge in NREL’s Residential
Lighting Evaluation Protocol [7].

What if instead we could automate these measures? Imagine if
all the cameras in Smart City infrastructure could tell whenever and
wherever an inefficient bulb is running. As a first step, we present
EffiSenseSee, a classification engine that uses commodity cameras to
automatically identify energy-inefficient bulbs. EffiSenseSee tackles
the first of the two challenges – autonomously identifying powered-
on inefficient bulbs. This is a critical building block towards future
wide-area measures of the penetration and longitudinal utilization
of inefficient bulbs in our built environment.

The key idea in EffiSenseSee is the analysis of “Bulb Response
Functions” (BRFs). First discussed by Sheinin et al., BRFs are a
description of how a light bulb transforms incoming AC power
into light [8]. BRFs are stable, intrinsic properties of bulbs. Prior
work has shown they can act as “fingerprints” to uniquely identify
a bulb. Indeed, if a bulb’s BRF is known, it can even be reversed to
infer properties of the incoming AC based on light output [9]. With
EffiSenseSee, we consider the case that BRFs are not known a priori.
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(a) BRF of incandescent. (b) BRF of CFL. (c) BRF of halogen. (d) BRF of LED.

Figure 1: Example of smoothed Bulb Response Functions (BRFs) for three different bulbs of each type we study: incandescent,
compact fluorescent light (CFL), halogen, and LED.While similar to the eye, differences among electronic components andmanufacturing
details can cause reliable patterns that identify bulb fingerprints.

We aim to discover new, previously unseen bulbs and autonomously
identify them as efficient or inefficient bulbs.

We posit that design of energy efficient bulbs means they will
have characteristically different BRFs. Consider the operation of
an incandescent bulb. At its heart, it is simply a resistor period-
ically impeding grid power, getting hot while doing so, and as a
consequence emitting light. In contrast, a CFL must charge a bal-
last and ionize gases, which emit ultraviolet light, which causes
the coating on the bulb to fluoresce and emit visible light. LEDs
are similarly complex, usually with solid state power electronics
converting AC into constant voltage or constant current sources.
As Figure 1 shows, BRFs of different types of bulbs do look distinct.

The next question, then, is how to build a classifier that can
autonomously label BRFs. We consider signal processing, statistical,
and machine learning methods and find that k-Nearest Neighbors
(kNN) is a suitable approach. While we are predominately inter-
ested in the binary question, ‘is this an inefficient bulb?,’ we also
attempt more nuanced bulb type detection. When the Energy In-
formation Administration (EIA) and other bodies survey lighting
infrastructure, they report four bins: incandescent, halogen, CFL,
and LED [10]. As a secondary goal then, we investigate whether our
classifier can autonomously collect this data. While it is reasonably
good at distinguishing efficient bulbs (i.e. separating CFLs from
LEDs), in outside-the-lab settings, the difference between incandes-
cent and halogen bulbs proves too subtle to reliably distinguish.

With the classifier in hand, we have two other challenges to form
a complete system. First, we must find a means to collect BRFs. Here,
we lean on prior work. To collect high-resolution BRFs for training,
we capitalize on oscilloscope-collected data from Shah et al. [9],
while for inference in the wild we leverage the rolling-shutter-
based ACam from Sheinin et al. [11]. We discuss the tradeoffs in
these two collection methods in Section 4.1. In our evaluation, we
demonstrate empirically that it is possible to harmonize these two
approaches, and that normalized BRFs can be used interchangbly,
without retraining, no matter how they were collected.

The second challenge is to adapt to new environments (i.e. pre-
vent double counting and recognize unprecedented BRFs). As a first
exploration in this space, we do not attempt to handle continuous
motion; a system to reliably extract BRFs in a moving scene is (at
least) one whole paper of its own merit. However, we do expect that
the camera may move between BRF captures. This means we must

be able to distinguish between a new bulb and one that EffiSens-
eSee has previously seen. To identify bulbs over time and across
scenes, we can use BRF fingerprints. As we do not have a database
of fingerprints a priori, however, we must construct one on-the-fly.
For this, we develop a novelty detection engine, which is able to
answer the question, ‘is this a new bulb?’ with 85% accuracy.

With these challenges addressed, we implement and evaluate
EffiSenseSee. We develop a feature-engineering-based approach to
classify and distinguish between highly similar, sinusoidal wave-
forms from light bulbs. EffiSenseSee is a methodology to distinguish
between bulb types and their relative efficiency, which no system
to-date can do from BRFs. We first establish that we can build a
classifier, which is able to accurately classify bulbs solely from
their BRFs. We then show that a model trained on in-lab, cleaned
oscilloscope data can be used directly to identify inefficient bulbs
using BRFs collected with a camera, in both indoor and outdoor
settings. Finally, we test the novelty detection engine. While it is
reasonably accurate, a system implemented at-scale will likely need
to supplement novelty detection with metadata such as GPS loca-
tion and magnetometer orientation for robustness. We then close
with a discussion of future directions for EffiSenseSee and the most
promising paths for improving performance.

In sum, this paper makes the following contributions:

• We validate prior work in BRF capture and then newly demon-
strate that captures from high-fidelity oscilloscope data and
cleaned rolling-shutter data can be interchanged in machine
learning models.

• We develop a classification engine to accurately label previously
unseen bulbs as inefficient or efficient, based solely on BRF data;
we also demonstrate type classification across incandescent, halo-
gen, CFL, and LED bulb classes.

• We create a new novelty detection algorithm, which can distin-
guish between previously unseen bulbs and bulbs which have
simply moved in the observed scene to enable robust accounting.

2 RELATEDWORK
Most prior work that analyzes light bulb output targets localization
applications. Bulbs in the built environment form a sort of star chart,
with buildings mapped and labeled during system setup. Devices
in the space extract various features as labels to infer which ‘stars’
they are looking at.
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For example, Kuo et al. label bulbs directly. They show that
“smart” LED lights can be programmed with high-frequency flicker
(2-7 kHz) which is imperceptible to the human eye but recoverable
by exploiting the “rolling shutter” used bymost CMOS cameras [12].
We do not control the bulbs we study and cannot inject such labels.

Newer approaches show that labels can be inferred from intrinsic,
physical properties unique to each bulb. Zhu et al. use RGB values
from camera sensors to fingerprint the irradiance characteristics of
light bulbs [13]. While this no longer requires bulb modifications
to provide labels, it is still only capable of re-identifying bulbs. The
approach does not provide a means to classify unseen bulbs.

While classification is not the purpose, the LiTell localization
system does give a classification primitive. Zhang et al. found that
most fluorescent bulbs have a weak-but-unique, per-bulb character-
istic flicker; the rolling shutter can be used here as well to capture
oscillations between 80 and 160 kHz as labels [14]. Unfortunately,
non-fluorescent bulbs do not have such flicker. As we are interested
in classifying all bulbs, we seek a different approach.

Ladeira et al. use and test various machine learning algorithms
to predict a light bulb’s type, brand, and power from light bulb
characteristics [15]. Here, they rely on spectrometry to capture
bulb intrinsics (and only from a range of 2-5m). This technique is
not easily adaptable to general purpose devices for cost-effective,
wide-area measurement. Additionally, the work primarily targets
mercury and sodium bulbs. Again, we seek a more general approach
across all bulb types.

3 BULB RESPONSE FUNCTIONS
At a high level, light bulbs take as input a periodic, time-varying
signal (i.e., AC power) and output a periodic, time-varying signal
(i.e., light). That is, there exists a Bulb Response Function (BRF) that
expresses how each bulb transforms input power into output light.

Sheinin et al. first described BRFs in their Computational Imaging
work, where they showed that BRFs are consistent over time and
used them to build a database of bulbs to match [8]. While used
only for fingerprinting specific bulbs, they observed that BRFs
tended to ‘look different’ for different bulb types. This observation
is the foundation of our work. As example, Figure 1 shows BRFs
we captured from four different bulb types. We ask whether there
is sufficient consistency in BRFs for a given class of bulbs that new,
previously unseen bulbs can be accurately classified.

4 EffiSenseSee DESIGN
EffiSenseSee has three steps that present design questions. The first
is BRF acquisition, where we explore both high-fidelity oscilloscope-
based capture and a rolling-shutter design suitable for commodity
cameras. The second is predictive labeling, where we identify and
select characteristics of BRFs to classify bulb type. The third is
where we must determine whether we have encountered a given
BRF before to avoid double-counting of bulbs in the real world.

4.1 BRF Capture
To capture BRFs, we explore both high-fidelity, oscilloscope-based
collection and deployment-friendly, rolling-shutter-based design.
We begin with a database of BRFs from Shah et al. [9] to simplify im-
plementation and enable reproducibility of our results. In Section 6,
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(a) Rolling shutter on an illuminated wall and recovered BRF.

(b) Video-based acquisition for when the light covers a small propor-
tion of the scene and recovered BRF.

Figure 2: Working demonstration of BRF extraction using a
rolling shutter camera in two different scenarios. In (a), the
BRF is extracted from the image of a smooth wall illuminated by a
bulb [9, 11]. In (b), a video-based approach enables BRF recovery
when the bulb is in the scene through temporal sampling [11].

we discuss our process for transitioning from indoor to outdoor
data collection and analysis with Sheinin et al.’s camera setup [11].

4.1.1 Oscilloscope. We discuss in detail how Shah et al. extracts
BRFs, which is originally based on Sheinin et al.’s work [11]. To
"see" AC, the system must capture the fluctuations in light emitted
by a bulb. This requires quantizing the analog intensity of a light
bulb powered by the electric grid. A phototransistor-based chip—
Sparkfun’s TEMPT6000—can convert light into voltage. This voltage
is then sampled through an oscilloscope to quantize the light.

The post-bulb views of an AC waveform are Bulb Response
Functions (BRFs). This is shown in the incandescent, CFL, halogen,
and LED examples in Figure 1. Each waveform shown in Figure 1
represents two and a half cycles; each color represents a unique
bulb. For each unique light bulb, the dataset contains approximately
ten different instances of two-and-a-half cycle waveforms. There
are over 60 unique light bulbs recorded [9], which we utilize in this
study. In total, the dataset contains over 600 waveforms.

4.1.2 Rolling Shutter Camera. High fidelity collection of BRFs is
also possible using images captured by a rolling shutter camera.
In a rolling shutter camera, consecutive rows of the image sensor
are exposed after a specific inter-row delay, which is of the order
of 20-30 microseconds. This inter-row delay provides a temporal
sampling rate high enough to capture a bulb’s BRF in a single image
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as shown in Figure 2. This figure shows an image of a smooth wall
illuminated by a CFL bulb, which is captured using a rolling shutter
camera. The vertical wave pattern in the image corresponds to the
BRF of the bulb illuminating the scene and can be recovered by
extracting a single column of pixels as shown in Figure 2. However,
the method in Figure 2 cannot collect BRF data without a large,
diffuse surface; i.e., it cannot look straight at a bulb or small fixture.

Instead, we build on the capability of another imaging model
proposed by Sheinin et al. [11], which also leverages the high frame
rate capturing mechanism of imaging devices—video. A working
demonstration of the new technique is shown in Figure 2, where a
bulb is directly visible in the scene. We can now recover the BRF of
that bulb using multiple images captured at a high frame rate. The
new technique allows us to record BRFs of street lights and distant
light sources present as small, point sources in a scene.

4.1.3 Data Cleaning. We perform all our initial tests and experi-
mentation on Shah et al.’s oscilloscope-collected BRFs. While the
oscilloscope offers the capture of high resolution data, the BRFs
are not noise free. To generate clean BRFs, we apply a Savitzky-
Golay filter, apply a moving average filter, an finally normalize
each BRF. The Savitzky-Golay filter mitigates noise and retains
the relative "shape" of each waveform. The moving average filter
further smooths noise, and normalization ensures equivalent BRF
intensity for the classification process. We found that the window
sizes of 31 and 50 samples work well for the Savitzky-Golay and
moving average filters, respectively. Each oscilloscope-based wave-
form is roughly 2,000 samples long. We truncate the waveforms to
approximately begin and end at the nadir.

4.2 Bulb Classification
To detect energy inefficient bulbs, we first need to acquire knowl-
edge of what type of BRFs we are looking at. We attempted a variety
of approaches before arriving at a feature engineering solution for
light bulb classification. This section first discusses approaches
which did not work (i.e. direct statistics, signal processing, and Prin-
cipal Component Analysis) and why. We show how pieces of these
techniques were incorporated in our final feature-engineering.

4.2.1 Statistics & Signal-Processing. We first considered classifying
bulb types via statistical and signal processing methods. For our sta-
tistical approach, we compute the cross correlation of the unknown
BRF with reference bulbs of each type. The resulting correlation
coefficient should show how closely related two compared wave-
forms are. However, this method was not useful. The correlation
coefficients between similar and dissimilar waveforms overlapped;
no threshold value could accurately distinguish between identical
or different bulb types (e.g. comparing two incandescent waveforms
versus an incandescent and a halogen waveform). Indeed, as seen
in Figure 1, the waveforms between similar bulb types—especially
halogen and incandescent—are challenging to distinguish.

Our second approach tries classic signal processing with fre-
quency analysis. We sought to find characteristic frequencies in the
upper kHz range after computing the Fast Fourier Transform on a
BRF, as done by Zhang et al. to label lights [14]. We discovered no
characteristic frequencies in our data. We theorized that double the
grid frequency (i.e. 120Hz in the United States) and its harmonics

dominate all other possible characteristic frequencies. To remedy,
we added a band-stop filter for 120Hz and its harmonics and then
take the inverse Fourier transform to yield new, time-series data.
However, the resulting waveforms were identical; removing the
120Hz signal and its harmonics removed the characteristic pattern
of each waveform. We believe this is because light bulbs behave
as transfer functions, such that the amplitude of the 120Hz sinu-
soidal frequency—or shape of the waveform—is modulated. Thus,
removing the 120Hz frequency and its harmonics would remove
the component that characterizes and displays the unique pattern
of each waveform.We then tried to subtract a normalized sinusoidal
waveform at 120Hz from BRFs. This attempt did not work either
because resulting BRFs are not perfectly periodic like a synthesized
sinusoid; alignment with a BRF and a 120Hz sinusoid is imperfect.

4.2.2 Feature Engineering with PCA. As signal processing tech-
niques do not distinguish light bulbs given our BRF data, we next
try a feature engineering approach. A typical approach to feature
engineering uses a methodology called Principal Component Anal-
ysis (PCA) [16]. This is the dimensionality reduction of the number
of samples, or dimensions. For our dataset, this reduced roughly
1600 dimensions into 10 features. However, our initial results from
PCA were not promising. From dimensionality reduction, the re-
sulting features could not accurately distinguish between different
bulb types. While there is potential with a PCA-based approach,
we instead find success with handpicked features.

4.2.3 Manual Feature Extraction. In lieu of autonomous feature ex-
traction, we can use domain-specific knowledge to manually derive
features that describe and characterize each BRF. To classify BRFs,
we devise a small set of features that describe BRF waveforms via
statistical analyses. We use these features for supervised learning
to classify BRF bulb types. These features are:
• Integral Average: The integral of a single cycle divided by the
length of the cycle.

• Rising-Falling Ratio: The quotient of the rising-edge sum divided
by the number of samples in the rising edge, divided by the quo-
tient of the falling-edge sum divided by the number of samples
in the falling edge.

• Angle of Inflection: The angle measurement of the nadir.
• Peak Location: The relative position of the peak with respect to
the length of the cycle.

• Crest Factor : The ratio of the peak value to the RMS value.
• Kurtosis: Measurement of the waveform’s tail distribution.
• Skew: The deviation of the waveform’s distribution with respect
to the normal distribution.

Using a supervised learning approach, we found that these features
perform well and use them for the analyses presented next. The
only other feature that we experimented with was the linearity
measurement of the rising or falling edge; we omit this feature due
to imperfections in the measurement process.

4.2.4 Supervised Classification Approach. A primary contribution
of this remaining work is to distinguish between energy-efficient
and energy-inefficient light bulbs. From the data collected by Shah
et al. in 2019, we perform some brief wattage statistics of the four
primary light bulbs listed in Table 1. While this does not represent
the real-world distribution of light bulbs, we use these statistics to
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Table 1: Light bulb wattage statistics from the light bulb data-
base by Shah et al.We can observe that halogen and incandescent
bulbs generally consume more energy than CFL and LED bulbs.

# Unique Bulbs Mean STD Min Max
Halogen 9 69.89 33.03 39 150

Incandescent 10 87.6 43.57 60 200
CFL 16 19.25 7.34 9 32
LED 36 10.65 4.15 4 23

Figure 3: Confusion matrix of bulb-type detection for our
kNN model on a held out test dataset. Color-bar and numbers
inside the matrix denote prediction accuracy values.

bolster our distinction between energy-inefficient bulbs (i.e. halogen
and incandescent) and energy-efficient bulbs (i.e. CFL and LED).

To distinguish between the energy efficiency of certain bulbs,
we classify bulb type. To do so, we implement k-Nearest Neighbors
(kNN) to detect a bulb’s type using the features computed on a BRF
as input. kNN is straightforward to implement and is robust to noise
in the training data. An observation with 𝑁 different features or
variables is represented as a single data point in an 𝑁 -dimensional
space. The underlying assumption of kNN is that the observations
near one another—in this 𝑁 -dimensional space—have similar char-
acteristics and hence similar outcomes or labels [17]. Since kNN
leverages the "closeness" of observations, a new data point in the
high-dimensional space is assigned the same label as its 𝑘 closest
neighbors [17]. Assuming that bulbs in the same class—CFL, halo-
gen, incandescent, or LED—have similar characteristics, we train,
validate, and test a kNN classifier to detect bulb type.

As described in Section 4.2.3, we compute the following six of
the seven features for every BRF – integral average, angle of inflec-
tion, peak location, crest factor, kurtosis and skew. We use these six
features as training variables and the corresponding bulb types as
labels to train our kNN model. The database was split into train and
test sets using a 90/10 split; 90% of our database is used for training,
and 10% is held-out for testing. To ensure that the held-out test set
represents the entire database, we make sure it contains at least one
BRF per unique bulb in the database. Furthermore, we implement a
10-fold cross validation to tune our model’s hyperparameter—𝑘—to
evaluate prediction errors [18]. In each fold, we randomly divide the

train set into an 80/20 split; of the training data set (i.e. 90% of the
entire database), 80% of the set is used for training the model and
20% is used for validation. We also use stratified sampling to ensure
that, in each fold, the training and validation sets contain a similar
data distribution for each bulb type so that the random splitting
process did not introduce any bias [19]. For our kNN model, the
training and validation accuracy tuple that corresponds to the most
optimum hyperparameter—k=4—is (91%, 90.6%).

To test the generalizability of our model, we test it on the held-
out test dataset. After retraining our model on the entire dataset
with our 𝑘=4 hyperparameter, we find that kNN is able to detect
the right bulb types with 89% overall accuracy. Furthermore, we
analyze the performance of our kNNmodel on individual bulb types
in the held-out dataset. These results are shown in Figure 3. At the
bulb-type level, kNN shows prediction accuracy of approximately
90% for LEDs and 100%CFLs. On the other hand, we see a significant
difference in performance of our kNN model in predicting halogen
and incandescent classes. kNN is able to correctly predict halogen
and incandescent bulbs 67% and 73% of the time, respectively. This
can be attributed to the observation that halogen and incandescent
BRF waveforms are very similar, while the waveforms of CFLs and
LEDs are notably more distinct, as shown in Figure 1.

However, while we notice poorer type classification for incan-
descent and halogen bulbs, we observe that we have achieved our
initial goal. In Figure 3, we can see that if we sum up the rows of
the true labels for halogen and incandescent bulbs, we achieve an
accuracy of 100%. While individual bulb-type classification remains
a challenge for halogen and incandescent types, the classification
of halogen and incandescent bulbs as “energy inefficient” bulbs is
effective. From these results on our supervised learning implemen-
tation, we believe we have a good capability to distinguish between
energy efficient and energy inefficient bulbs.

4.3 Novelty Detection
We now consider how to bring our methodology into the real world.
For EffiSenseSee to accurately inventory bulbs in the built environ-
ment, it must avoid double-counting, asses whether it has extant
information of that BRF, and continuously build and updates its
database of previously encountered bulbs. As the camera moves
through space, it is likely to capture the same bulb multiple times.
When EffiSenseSee encounters a bulb for a second time, it would
report this as a known bulb, rather than over-counting actual bulbs.
Location data (for a non-stationary camera) is not sufficiently pre-
cise to distinguish bulbs. Novelty provides an additional dimension.
We must build a database of seen bulbs, as well as a capability to
identify whether a BRF recorded in the real world is new or extant.

Novelty detection refers to techniques used for identifying ob-
servations that are “novel” compared to the main data distribution.
Researchers have used novelty detection for multiple purposes,
such as personal risk detection using wearable sensors [20], miRNA
detection [21], time-series anomaly detection [22], outlier detection
in time-series power systems data [23], outlier identification events
in power distribution networks [24], novel phase-identification in
large X-ray diffraction datasets [25], and structural damage localiza-
tion through detection of abnormal data points in structural health
data [26]. This novelty detection problem belongs to a sub-category
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of unsupervised outlier detection called one-class classification,
where the goal is to identify whether the new observation belongs
to the main class or not. A one-class classifier learns the distribu-
tion of the training dataset and then labels a new observation as
belonging to the distribution or not just like a binary classifier [27].

4.3.1 Single Stage Sum. First, we implement a One-class Support
Vector Machine (SVM) algorithm, which is a modification of the
supervised binary-classification algorithm and is one of the most
popular algorithms for one-class classification problems [28]. One-
class SVM learns the distribution of the training set and then labels
the test set data points as (1) inliers if they belong to the distribution
or (2) outliers if they do not [28].

For novelty detection, we use a different approach to train, vali-
date, and test the model. Test sets contain all the BRFs correspond-
ing to one specific bulb, and the data related to that bulb is not used
in the training and validation process at all. Training and validation
sets each contain BRF data from the remaining 64 bulbs and are
used to tune a single hyperparameter: sensitivity. We train, validate,
and test the model 65 times by holding out data of one unique bulb
in every iteration for testing, such that the model never gets trained
on the held-out dataset.

Performance with this approach is mediocre – the model is only
able to label 8 out of 65 bulbs as outliers correctly; the other 57
bulbs were labeled as inliers even though the trained model had
never seen their data. Based on our domain knowledge, we suspect
that the low performance is a result of BRFs—of different bulbs of
the same type—being highly similar. This leads the model to label
an unseen bulb’s BRF as an inlier incorrectly.

4.3.2 Adding a Random Forests Stage. To address the highly similar
nature of BRF signals, we develop a custom technique for one-class
classification of time-series data. Our technique is a two-stage clas-
sification model, which uses a Random Forests model as stage 1
and then a similarity threshold-based classifier as stage 2. Stage
1 provides us with the three most probable bulbs corresponding
to a newly encountered BRF. However, it is probable that the en-
countered BRF belongs to a bulb never seen before. So, the goal of
stage 2 is to compare the newly-encountered BRF more closely with
BRFs of the most similar bulbs, which then evaluates similarities
and outputs whether the encountered BRF is an inlier or an outlier.

For the stage 2 classifier, we create a database of similarity met-
rics by computing a centroid BRF for every bulb. Then, we measure
twelve different similarity metrics of all the raw BRFs of a bulb
with respect to its centroid BRF. Each similarity metric tells us how
similar a signal is to its centroid. We pick the twelve time-series
similarity metrics discussed, reviewed, and evaluated by Mauceri
et al. [29], which were: L1 (Manhattan) distance, L2 (Euclidean)
distance, 𝐿 inf (Chebyshev), dynamic time warping (DTW) [30],
Wasserstein or earth mover’s distance (WSD) [31], Kullback-Leibler
divergence (KLD) [32], cosine similarity [33], edit distance on real
sequences (EDR) [34], move split merge metric (MSM) [35], auto-
correlation [36], Gaussian kernel-based similarity [37], and Sigmoid
kernel-based similarity [28]. Once we measure the twelve similarity
metrics per BRF per bulb, we extract the range of each metric for a
given bulb (i.e., the minimum and maximum value of each metric
for a given bulb). The underlying assumption here is that if a new
BRF’s similarity metrics fall within their respective ranges—with

respect to centroid signal of any specific bulb—then the BRF is
highly likely from the same bulb and is thus an inlier.

In practice, the utility of similarity metrics varies based on BRF
shape. For each similarity metric, we process its min-max range
from the three candidate bulbs. We then count the number of simi-
laritymetrics of the encountered BRF that falls within the acceptable
ranges of similarity metrics from the three candidate bulbs. If that
count value falls below a minimum threshold, then that BRF is then
labeled as an outlier; a new is bulb encountered. If the count value
is equal to or greater than the minimum threshold for at least one
bulb, it means that the encountered BRF is highly similar and is
then labeled as an inlier; an existing bulb is encountered.

5 IMPLEMENTATION
To test on oscilloscope-based BRFs, we use the data collected by
Shah et al. [9]. For the camera-based collection, we use the IDS UI-
3480LE-M-GL monochrome camera with the Fujinon HF9HA-1B
9mm f/1.4 lens. For details on extracting BRF data with a rolling
shutter camera, we refer to the work done by Sheinin et al. [11].

All of our data is processed and analyzed via Python. Each BRF
data—from the oscilloscope or camera—is recorded in the form of
a CSV file, which we load in Python. To pre-process our data, we
use the “scipy” library for the Savitsky-Golay filter. We implement
our own moving average filter. We then normalize each BRF and
also truncate the data to contain two full cycles, beginning and
ending at nadirs. We write and compute our own features outlined
in Section 4.2.3. We use the resulting computed features with their
associated labels for training, validating, and testing our kNNmodel.
We use the “sklearn” library to run k-fold cross validation and create
our model with kNN on Shah et al.’s BRF database.

We also note that we make a couple changes to the model de-
scribed in Section 4.2.4. We first supersede the “Angle of Inflection”
feature—discussed in Section 4.2.3—with the “Rising-Falling Ratio”
feature. We make this change because it is easier to compute for
both oscilloscope-based and camera-based BRF data, which facil-
itates better comparison. We also use unprocessed BRFs for all
features except “Rising-Falling Ratio” to train this new model. Our
method of smoothing BRFs slightly distorts the waveform, and we
find that we are able to train our new model with unprocessed, os-
cilloscope BRFs with the exception of “Rising-Falling Ratio,” which
requires knowledge of the peak location to determine the rising
and falling edges. Lastly, our evaluation model is trained on all
the oscilloscope-collected BRFs. As we now have camera-collected
BRFs as test data, we use this new data as our test set for evaluation.
All artifacts are available on Github at
https://github.com/alwyen/LightsCameraGrid.

6 EVALUATION
As quality BRF capture is fundamental, we first evaluate the perfor-
mance of EffiSenseSee’s camera-based data collection. After estab-
lishing that the BRFs are of sufficient quality, we then consider the
performance of the end-to-end system in both indoor and outdoor
contexts. While this work focuses on the detection of inefficient
bulbs, we also report EffiSenseSee’s accuracy in the more special-
ized type-classification task. Most confusion is between halogen
and incandescent bulbs; CFLs and LEDs are better separated. This

https://github.com/alwyen/LightsCameraGrid
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Figure 4: Example indoor setup of imaging a CFL bulb.

suggests that in addition to detecting inefficient bulbs, EffiSenseSee
could estimate the penetration rate of replacement technologies.

We then evaluate the performance of our novelty detection
methodology to distinguish between previously seen bulbs ver-
sus novel, newly encountered bulbs. When classifying bulbs, we
ideally only want to count them as efficient or inefficient once in
the real world. We find that this becomes more difficult when BRFs
have very similar shapes.

6.1 Methodology: ACam-Based BRF Collection
The first question is whether comparatively noisy camera-collected
BRFs can be classified by a network trained on oscilloscope-collected
data. We use the “ACam” camera with the rolling shutter technique
from Sheinin et al.—as described in Section 4.1.2—to collect BRFs.

We begin with indoor data collection.We use the ACam to collect
traces of a single halogen, incandescent, CFL, and LED light bulb.
Later, we will collect data on a second CFL bulb in our outdoor
testing to support our observation that CFL bulb types can be
generally classified with EffiSenseSee.

We image each light bulb directly and extract BRFs from selected
pixels surrounding the light through a live-capture video stream.
The ACam is calibrated to record at a certain fps depending on the
grid frequency. This is about 58 fps in our work, which is a small
offset from the nominal AC frequency. This allows ACam to act
effectively as a sampling mixer, where a different point on the 60Hz
wave is captured every frame. Post-processing then collects pixel
intensity over time and reconstructs a normalized BRF for analysis.

It is important to select pixels ‘near’ the bulb to recover a clean
BRF. Using a pixel too close to the brightest area at the center of
the bulb will result in clipping, while a pixel too far away will not
have sufficient variation in illuminance to extract a BRF. As we are
primarily interested in classification, we manually select pixels to
extract BRFs via qualitative analysis of our prior BRF knowledge;
we leave automation of this task to future work.

For our indoor testing, we collect between 30-40 waveforms
for each bulb type; for our outdoor testing, we collect roughly 80
waveforms for each bulb type. For each waveform, we then extract
the features discussed and outlined in Section 4.2.3 and Section 5
and perform kNN classification on the resulting extracted features.
We also experiment with both close (i.e. 3m) and far (i.e. 30m)
distances for data collection. While near-captured BRFs are slightly
more consistent than far-captured BRFs for data collection, there is
no noticeable degradation in the quality of data that we collect with
respect to distance. An example of our indoor setup is shown in
Figure 4, and an example of our outdoor setup is shown in Figure 5.

Table 2: Accuracy results of indoor classification for different
types of bulbs. The bulb type is bolded in the "Bulb Label" column.

Bulb Label # Waveforms Binary Accuracy Type Accuracy
Phillips Halogen 39W 37 100% 16.2%
GE Incandescent 40W 30 100% 40%
Sylvania CFL 13W 40 100% 95%

Westinghouse LED 9W 30 100% 100%

Figure 5: Outdoor setup. The dotted red annotation indicates the
light bulbs of interest from the camera’s point of view. The LED and
CFL bulbs in the image are more than 30m away from the camera.

6.2 Indoor Results
Results on type-accuracy and binary-accuracy are shown in Ta-
ble 2. We use “Binary Accuracy” to refer to the binary classification
accuracy on energy efficiency (i.e. incandescent and halogen as
inefficient and CFL and LED as efficient) and “Type Accuracy” to
refer to the accuracy of bulb-type classification.

We observe that halogen and incandescent bulbs perform well
in binary classification but exhibit higher type-classification error.
This suggests they are often identified as each other, an observation
we explore further in Section 7. Our initial results show that while
individual type-classification is still difficult for certain bulb types,
we are able to distinguish between energy efficient and energy
inefficient light bulbs in an indoor setting.

The type-accuracy for CFL and LED bulbs is higher due to the
more unique shapes that their waveforms exhibit. CFL bulbs partic-
ularly have a characteristic waveform to CFLs only, making them
easier to classify compared to halogen, incandescent, and LED bulbs.
On the other hand, LED BRFs can be too unique. This can make
it hard to classify new LEDs as their BRFs are not similar to any
of the training data. At the same time, these highly unique BRFs
present an opportunity to uniquely identify bulbs.

Overall, the transition from analyzing oscilloscope-based data
to camera-based data does not pose a significant difference in the
quality of our classifier. We thus proceed to data collection and
analysis in an outdoor setting to evaluate the performance of our
technology in the real world.

6.3 Outdoor Results
Wenowmove from indoor testing with the ACam to outdoor testing
and experimentation. We attempt to add variability to our data
collection by collecting data over multiple days at different views.
We collect BRF data of halogen, incandescent, CFL, and LED bulb
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Table 3: Accuracy results of outdoor classification for differ-
ent types of bulbs.

Bulb Label # Waveforms Binary Accuracy Type Accuracy
Phillips Halogen 39W 83 89.1% 13.2%
GE Incandescent 40W 80 83.7% 58.7%
Sylvania CFL 13W 80 100% 97.5%
Halco CFL 13W 80 98.7% 97.5%

Westinghouse LED 9W 80 100% 75%

types with the ACam. Specifically, we image light bulbs inside a
building as shown in Figure 5.

We show our results in Table 3. We first note that CFL bulbs
continue to perform particularly well. In our indoor testing, we test
only with the “Sylvania CFL 13W” bulb. For our outdoor testing,
we test with a new bulb—“Halco CFL 13W”—to show that the high
accuracy for CFL binary- and type-classification is not the result
of a specific bulb. We also observe that while the type-accuracy
for LEDs is lower from indoor versus outdoor classification, its
binary-accuracy is still high.

The outdoor accuracy results for halogen and incandescent bulbs
are generally worse compared to the indoor accuracy results. Our
primary efficiency classification task continues to perform well,
yielding almost 90% accuracy for halogen buls. The halogen bulb-
type classification particularly suffers with only 13% accuracy.Many
of the waveforms are misclassified as incandescent bulbs. In com-
parison, incandescent bulbs yield close to 80% accuracy for binary-
classification and 60% accuracy for type-classification.

6.4 Evaluation of Novelty Detection
We run two sets of experiments to evaluate this method: assessment
of the model performance to detect a new bulb (outlier) and assess-
ment of the model’s performance to detect a native bulb (inlier).
Results of these experiments are shown in Figure 6 and Figure 7. In
both the experiments, we evaluate the performance of our classifi-
cation pipeline at different thresholds (i.e., the minimum number of
similarity metrics required to classify a bulb as an outlier or not).

In the first experiment, the stage 1 model is trained on data from
all of the bulbs except for one held-out bulb, and then stage 2 is used
to classify whether the held-out bulb is an outlier or not. Prediction
is considered correct only if the bulb is labeled as an outlier. For a
given threshold value, the entire model is run 65 times with every
iteration using a different held-out bulb.

In the second experiment, stage 1 is trained on data from raw
BRFs of all the 65 bulbs except for one held-out BRF, and stage 2 is
made to predict whether the held-out BRF belongs to an existing
bulb or not. In this case, a prediction is marked correct only if the
bulb is labeled as an inlier. The second experiment is run 65 times
for each threshold value with every iteration using a randomly
selected BRF of a different bulb.

Figure 6 shows the overall performance of novelty detection. We
can see that as the threshold value increases, the model’s accuracy
of identifying outliers increases, and its performance of identifying
inliers decreases. A threshold value of 11 gives the best results
with 85% and 71% accuracy in distinguishing a new bulb versus an
existing bulb, respectively. We choose higher accuracy for detecting
a new bulb because it is more important to identify an unseen bulb

Figure 6: Accuracy of novelty detection based on threshold.
This figure shows the changes in accuracy of the novelty detection
model in detecting an outlier (new) bulb and a native (existing)
bulb as the minimum number of matching similarity metrics (i.e.
threshold) increases.

Figure 7: Performance of novelty detection model by bulb
type. For CFL and LED bulbs, the novelty detection model performs
better in terms of detecting outlier bulbs compared to native bulbs.
In the case of halogen and incandescent bulbs, the model is better
able to detect native bulbs versus outlier bulbs.

than an already seen bulb; it is worse to miss collecting new data
and falsely mislabel BRFs our model has never seen before.

7 DISCUSSION
In this section, we briefly discuss other options for bulb-type clas-
sification. We then discuss the challenges with outdoor BRF data
collection and analysis with the ACam. Lastly, we discuss the chal-
lenges of novelty detection with our oscilloscope-based data and
provide future directions for this work.

7.1 Improving Classification
Our work with indoor and outdoor BRF analysis is done solely
through the k-Nearest Neighbor supervised learning algorithm. We
experiment with another supervised learning algorithm—Random
Forests (RF)—to see how that compares to kNN. We use the same
approach outlined in Section 4.2.4 to train and test our RF model.
The hyperparameters for this new model are the number of esti-
mators (i.e. trees) and the maximum depth of a tree. We show the
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Figure 8: Confusion matrix for bulb-type detection with Ran-
dom Forests on a held out test dataset. Overall accuracy is
slightly better (92% versus 89%) than the kNN model.

Figure 9: Visual similarity between halogen and incandescent
BRFs from the ACam. In this example, the labeled halogen BRFs
were misclassified as incandescent BRFs and vice versa.

resulting performance of RF in Figure 8 and find that RF performs
slightly better than kNN with an overall accuracy of 92% compared
to kNN’s 89%. We note that further exploration of other supervised
learning algorithms might induce better accuracy performance.

For classifying bulb types, our kNN and RF models work well
for CFL and LED bulbs but perform worse with halogen and incan-
descent bulbs. Our hand-picked features are currently unweighted.
Carefully weighted features might better distinguish incandescent
from halogen bulbs. Of course, our feature set is not exhaustive
either, and the creation and use of additional features could help
distinguish between halogen and incandescent bulbs too.

7.2 Challenges with Similar Bulb Types
Our approach to classify inefficient bulbs types works, though there
are still many challenges to solve. Energy-inefficient classification
stems from bulb-type classification, and we find that halogen, in-
candescent, and some LED bulbs behave very similarly. This is first
shown in Figure 3 and reaffirmed in Figure 8, in which we see that

Figure 10: Visual similarity between halogen, incandescent,
and LED BRFs. The halogen and incandescent BRFs shown in this
figure were collected from the ACam and were mislabelled as LEDs.
Each LED BRF is from a unique bulb in Shah et al.’s database and
are smoothed and downsampled for visual display.

halogen, incandescent, and LEDs are commonly confused with each
other. As shown in Figure 9, halogen and incandescent BRFs look
very similar and are hard to distinguish even to the human eye; this
can also be seen by the example BRFs of incandescent and halogen
bulbs in Figure 1. In Figure 10, this issue is extended to similarity
between halogen, incandescent, and LED bulbs.

7.3 Camera-based Collection Challenges
There are some limitations with the current camera technology and
setup. The first is that BRF data collection with the ACam is still
highly manual. In practice, this limits the number of BRFwaveforms
that can be collected with the ACam. Recall, we cannot simply
select the brightest pixels of an imaged bulb due to oversaturation.
This is the reason why we record BRFs from neighboring pixels
surrounding the light. While there are computer vision techniques
(i.e blob detection) that can help us automate this process, choosing
the right pixel at blob edges is a harder engineering problem. We
also mention that there are various real-world situations for data
collection that we have not yet considered, such as imaging lights
with lampshades or imaging multiple lights stacked behind one
another. While we believe that the ACam will function in a variety
of different scenarios, we have yet to explore many of the situations
situations that we might encounter data collection at scale.

In addition, because BRFs are recovered from many frames, they
are highly sensitive to small vibrations. In an outdoor setting, there
are a few environmental factors (i.e. wind) that can shake the cam-
era enough to disrupt BRF capture. Eventually, we envision Eff-
iSenseSee operating on mobile platforms, which will require pixel-
tracking to recover BRFs from bulbs moving through the scene.

7.4 Metadata to Augment Novelty Detection
Our novelty detection methodology is not consistent across bulb
types and particularly struggles with halogen and incandescent
BRFs. It performs better, however, as the database of prevously
seens bulbs gets smaller. We plan to incorporate additional in situ
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metadata to assist with the novelty detection task (e.g. using GPS
data to only include bulbs within 20m).

7.5 Future System Discussion
In Section 1, we posed two questions: where are the inefficient bulbs
that remain, and how much are they actually used? EffiSenseSee
brings us one step closer to answer the first question; the second
question still remains unanswered. To target this second question,
we discuss a variety of future trajectories. We briefly mentioned
mobile platforms; this allows us to observe and record a larger
variety of bulbs that a static platformwould offer. However, a mobile
solution inherently eschews longitudinal measure.

We then consider stationary deployment. While this enables
long, temporal readings, it is impossible to observe the majority of
lights in comparison to a mobile deployment. However, stationary
deployment is currently the best solution to on-time measurement.
Perhaps hybrid stationary-mobile deployment will be adequate,
though this vision is unclear. In either deployment scenario, we
imagine scaling up with (1) multiple camera modules roaming
through an area via person or vehicle or (2) multiple camera mod-
ules statically viewing an area over many vantage points.

There are also privacy concerns from imaging various places and
landmarks. Fortunately, the ACam uses very short exposure and is
naturally privacy-preserving; only point sources of light are visible
[11]. This holds true video-based data acquisition, in which the low
exposure prevents identification of nearby surroundings. As such,
we believe that there should be few privacy concerns; information
obtained other than the lights themselves are obscured.

8 CONCLUSION
We present EffiSenseSee, which provides a methodology to auto-
matically identify inefficient light bulbs in the built environment
through predictive labeling with supervised learning. We further
show how to autonomously classify bulbs as halogen, incandescent,
CFL, or LED. We find that classifying CFL and LED bulb types are
easier due to their characteristic light behavior; classifying and dis-
tinguishing between halogen and incandescent bulb types remains
a challenge because of their highly similar light responses. While
imperfect in an outdoor setting, we show the ability to classify
energy-efficient (i.e. CFL, LED) and energy-inefficient (i.e. halogen,
incandescent) light bulbs; this is achieved with camera-collected
data of light bulbs and the supervised learning algorithm, k-Nearest
Neighbor. Our work provides one step towards cataloging light
bulbs in the real world with camera-based sensing.
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