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The E ×B staircase is a quasi-periodic pattern of pressure profile corrugations. In this work, we
present a new mechanism for E×B staircase formation, that involves resonant transport verses non-
resonant transport. We start from a potential vorticity evolution system and use quasi-linear theory,
a model dispersion relation, and a bi-Lorentzian spectrum approximation, to construct the relation
between the fluxes and the profiles. With these fluxes, we close the profile evolution equations and
the extended turbulence intensity evolution equation, which together constitute a turbulence-profile
evolution system. In this system, the Doppler effect from the E×B mean flow can cause resonance
between trapped ion precession motion and the trapped ion mode, which drives a resonant transport
contribution to the fluxes. The profiles will be flattened where the resonant transport is switched on.
In contrast, for the regions of non-resonant transport, profiles are steeper. A quasi-periodic pattern
of profile corrugation (the E ×B staircase) spontaneously emerges in this system, which is the two
states mentioned above, arranged as alternating layers in space. The feedback processes during the
staircase pattern formation are identified. An estimate of the critical value of the boundary heat
flux is obtained, above which staircase formation will be triggered. An estimate scaling of the step
size in the staircase pattern is obtained. The resonant turbulent transport is also a mechanism
for collisionless saturation of zonal flow. This work is related to internal transport barrier (ITB)
formation and suggests some new scenarios, such as an enhanced confined L mode.

I. INTRODUCTION

Drift wave turbulence in confined plasma is now widely
realized to be a self-regulating system. Indeed, the now
classic “drift wave turbulence” problem has, over time,
evolved into a pattern formation problem, with primary
focus on understanding secondary structure, such as
zonal flows[1, 2] and avalanches[3–5]. Interestingly, these
two structures divide the possible states of profiles and
transport into two classes, namely shearing and barrier
formation for the former; and stronger transport driven
by a scale independent distribution of mixing events for
the latter. Of course, transport barriers can be viewed
as localized regions of particularly strong enhancement of
confinement, where profiles steepen sharply, and trans-
port drops to near-neoclassical levels. Recently, aware-
ness and interest in staircases have grown[6–15]. In
contrast to single barriers, staircases are quasi-periodic
layered patterns, where regions of strong transport and
profile flattening alternative with “mini-barriers”[9, 13],
where profiles steepen. The mini-barriers are frequently
(but not always) accompanied by zonal flow shear lay-
ers. The sequence of alternating profile flattening regions
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and mini-barriers loosely resembles a staircase, and is so
named. It should be noted that staircases are a particu-
lar case of the general phenomenon of “layering”, which
appears in, and is of quite general interest to, a wide va-
riety of fields, such as double diffusive convection[16–18],
oceanic mixing[19, 20], arctic ice structures[21, 22], etc.

The central question of layering and staircase forma-
tion is that of scale selection. Indeed, the physics of
zonal flow scale is still unclear[10, 23, 24]. Staircases re-
sult form inhomogeneous mixing process (as in potential
vorticity homogenization), and are frequently linked to
anti-diffusion (as for the Cahn-Hilliard equation) [25–27]
and self-sharpening of shears(as in jet formation)[28, 29].
These processes play out in a variety of ways, in a wide
variety of models. However, one particular approach -
that of bi-stable mixing, developed by Balmforth et. al
[30] (BLY) is of particular interest and relevance to stair-
case formation in drift wave turbulence and transport.
The BLY theory is cast in a K − ε framework and aims
to calculate profiles and turbulence intensity, utilizing
ideas from mixing length theory. The simple-but-novel
feature of BLY is the interplay between mixing length
scales, one of which is linked to the scale of excitation,
and one of which is emergent and dependent upon the
local gradient of the transported quantity. Examples of
emergent scales are the Ozmidov scale[31] in mixing and
the Rhines scale[32] in beta plane turbulence. Both these
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scales are defined by dynamic balance. Of course, it is
the interplay between these two scales of mixing which
allows the modelling of a staircase pattern, consisting of
layers of two characteristic regions. In the BLY model,
the transport flux is bistable and transport bifurcations
occur at the interfaces between steps(regions of flatten-
ing) and jumps(mini-barriers). The interplay of the two
scales naturally realizes the concept of “inhomogeneous
mixing”. BLY-type models have been very successful in
describing turbulent mixing in stratified fluids and have
recently been extended to drift wave turbulence[9, 33].

Virtually all approaches to the layering problems have
been in the context of hydrodynamics models and prob-
lems. Yet confined plasms are collisionless, the turbu-
lence is kinetic and mixing can occur via resonant wave-
particle interactions. Particles orbit stochasticity is fun-
daments to mixing in such plasmas. Hence, the layering
should reflect orbit dynamics. Staircases have been ob-
served in gyro-kinetic simulations[7, 8, 11, 13]. These
considerations naturally open the door to an interesting
alternative to the BLY mechanism, namely one in which
the two states of mixing are those due to resonant and
non-resonant transport, respectively.

In this paper, we present a novel approach to stair-
case formation in a turbulent, collisionless plasma, due
to the interplay of resonant and non-resonant diffusion.
Of course, Dres ̸= Dnon−res, so the two processes mix at
different rates. We develop the theory in the context of
the Darmet model[34–36] of trapped-ion drift wave and
ion temperature gradient (ITG) turbulence. The Darmet
model is perhaps the very simplest drift wave-type model
which manifests resonant transport (due to the magnetic
precession drifts), zonal flows, resonant transport of vor-
ticity (due to wave resonance with E×B flows) as well as
the usual hydrodynamic transport mechanisms familiar
in drift wave turbulence. It is simple but representative.
A key element of the staircase formation story is that
the wave-particle resonance is set by the difference be-
tween ω and ωDi + ωZ , where ω is the wave frequency,
ωDi is the precession frequency and ωZ is the zonal or
E × B frequency. Should ωZ vary, due to the spatial
structure of the zonal flow defined by the mean vortic-
ity balance. ω − ωDi − ωZ will then vary between zero
(i.e. resonant) and finite (i.e. non-resonant) limit. Con-
sequently, heat transport then also varies between reso-
nant and non-resonant states, thus allowing layering. In
a sense, one may think of this theory as a parallel to the
two scale approach of BLY, with instead two diffusivi-
ties, resonant and non-resonant, obtained for the spec-
ified case of the Darmet model. And of course, stripe
formation - analogous to layering - is a familiar outcome
of Turing pattern formation, which involve two unequal
diffusivities[37]. Needless to say, the ratio Dres/Dnon−res

is crucial to the model we present here.
The theory consists of coupled equations for heat trans-

port, zonal vorticity and potential enstrophy (which gives
the fluctuation intensity). Transport coefficients are de-
rived by quasilinear theory. Since transport is driven

by |ϕ̃|2 which is derived from potential enstrophy by a
Green’s function and which is thus spatially smooth, we
focus on the temperature and vorticity equations as the
essential staircase model. These are solved for (fixed)
flux boundary conditions. Two types of regions emerge
form the solution:

1. Type I → peaked profile layers, manifesting non-
resonant transport

2. Type II → flat profile spots, manifesting resonant
transport

Together, these two define the staircase. The step scale
is ∝ δb, the banana orbit width. The conditions for
staircase formation are derived. The role of proximity
to marginal stability is discussed at length.

The remainder of this paper is organized as follows.
Section II presents and discusses the Darmet model as a
potential vorticity (PV) conserving system. The trans-
port fluxes, both resonant and non-resonant, are calcu-
lated in section III. The flux model is simplified in section
IV, which is where the important approximations are dis-
cussed. Section V presents the analysis of staircase for-
mation, and gives the key results. The trigger criterion
for staircase onset is derived. Key feedback loops are
traced. Section VI gives a discussion and conclusions.

II. A POTENTIAL VORTICITY CONSERVING
SYSTEM

For the study of low-frequency (ω < ωb < Ωi) turbu-
lence in a tokamak, the gyro phase and bounce phase in
the kinetic distribution function can be averaged. This
leads to a double phase averaged distribution function f̄ ,
which is three dimensional in the phase space with depen-
dence on ψ, α,E. Here ψ and α are the radial and angle
coordinates, and E is the energy or velocity coordinate.
f̄ is determined by the kinetic equation[34–36]:

∂tf̄ +ΩDE∂αf̄ − [J0ϕ, f̄ ] = 0 (1)

where [F,G] = ∂αF∂ψG − ∂ψF∂αG, and J0 is a gyro-
and bounce-averaging operator. Here ΩDE is the preces-
sion frequency of trapped particles, and ΩD is assumed
to be constant. Because the length scales after phase av-
eraging are the banana width and gyro-radius (both of
which exceed the Debye length), the Poisson equation is
replaced by the quasi-neutrality constraint ni = ne.

Then a decomposition to the phase-averaged distribu-
tion function f̄ is possible:

f̄ = ⟨f⟩ − ⟨f⟩qi,eϕ
Ti,e

+ hi,e (2)

where ⟨f⟩ is the mean distribution and varies only in
ψ, −⟨f⟩qi,eϕ/Ti,e is the adiabatic response part of f̃ ,
and hi,e is the non-adiabatic part. Here we assumed
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|qiϕ/Ti,e| ≪ 1. We also need to recognize the zonal por-
tion ϕZ ≡ ⟨ϕ⟩α, and the fluctuating portion ϕ̃, of ϕ.
The adiabatic response portion in Eq.(2) should only be
specified for the fluctuation portion, i.e. in the simple
form: ñi,e/n0 = −qi,e(ϕ − ⟨ϕ⟩α)/Ti,e. Substituting the
the decomposition of the distribution function into the
quasi-neutrality condition, we have,

2

n0
√
π

∫ ∞

0

J0

[
− q

Ti
(ϕ− ϕZ)⟨fi⟩+ hi

]√
EdE +∆i

qiϕ

Ti

=
2

n0
√
π

∫ ∞

0

J0

[
q

Te
(ϕ− ϕZ)⟨fe⟩+ he

]√
EdE −∆e

qiϕ

Te
(3)

∆s = ρ20s∂
2
α+δ

2
bs∂

2
ψ accounts for the polarization - caused

by the density difference between the double-averaged
centers and actual particles. We apply the normalization
below:

Ê =
E

T0
, t̂ = ω0t, ψ̂ =

ψ

Lψ
, ϕ̂ =

ϕ

Lψω0
, Ω̂D =

ΩDT0
ω0

where ω0 is the typical precession frequency, Lψ ≡
aR0Bθ is the box size in magnetic flux unit, ΩDT0 has
the same unit of ω0. Such normalization will not change
the essential form of Eq.(1) and Eq.(3), but change qi/Ti
to ω0Lψqi/Ti. So we will neglect the notation “ ˆ ” in the
following derivations.

Eq.(3) could be included in Eq.(5), a kinetic quasi-
neutrality equation, whose R.H.S. is determined only
by the non-adiabatic particle distribution functions hi,e.
Meanwhile, the non-adiabatic distribution function hi
satisfies the kinetic equation Eq.(4):

∂thi +ΩDE∂αhi −
[
ϕ̄,−Ci(ϕ− ϕZ)⟨fi⟩+ hi

]
= ∂t (Ci(ϕ− ϕZ)⟨fi⟩) + ∂α(ϕ− ϕZ)∂ψ⟨fi⟩

(4)

Cad (ϕ− ϕZ)− Ci∆i+eϕ

=
2

n0
√
π

(∫ ∞

0

J0hi
√
EdE −

∫ ∞

0

J0he
√
EdE

)
= ñnonad,i − ñnonad,e

(5)

Here Ci = ω0Lψqi/Ti, Cad = Ci(1+τ)/
√
2ε0, τ = Ti/Te,

∆i+e = ∆i+τ∆e. (ϕ− ϕZ) represents the double-phase-
averaged potential. ε0 = a/R is the inverse aspect ratio,
and

√
2ε0 is the fraction of trapped particles. In the ki-

netic quasi-neutrality Eq.(5), we can assume adiabatic
electrons, i.e. he = 0, and neglect the ∆e term. Eq.(4)-
(5) are called the Darmet model, and its variants are used
in reduced gyro-kinetic simulations of trapped ion mode
(TIM) and interchange-like turbulence[34–36, 38, 39].
The Darmet model can be viewed as the minimal kinetic
system for drift wave turbulence, which contains wave-
particle resonance effects. The fact that the TERESA
code (based on the Darmet model) can produce a stair-
case profile [40] is evidence that the Darmet model con-
tains the physics for staircase formation.

As we first pointed out in Ref.[41], Eq.(4)-(5) can be
written as a potential vorticity conserving system. Be-
low, we will show how.

First, taking the derivative of Eq.(5) with respect to
time, the non-adiabatic contribution in the R.H.S. be-
comes ∂thi. Using Eq.(4) to eliminate ∂thi, and doing
the energy integral, yields,

∂t
[
Ce(ϕ− ϕZ)− Ci∆iϕ

]
=

− 3

2

ΩD
T0

∂αT̃i +

[
ϕ,− Ci√

2ε0
(ϕ− ϕZ) +

ñi
n0

]
− 1√

2ε0
Ṽ (ψ)∂ψ ln⟨ni⟩

(6)

where Ce = Ciτ/
√
2ε0, and we simply take J0ϕ = ϕ̄ = ϕ.

When doing the integral of ⟨fi⟩, we encounter the factor
1/
√
2ε0, because ⟨fi⟩ is the distribution function of all

particles, including both passing and trapped. Remem-
ber that ϕZ ≡ ⟨ϕ⟩α, so we write ϕ = ϕ̃+ ϕZ , where ϕ̃ is
due to n ̸= 0 trapped ion modes. After replacing ñi with
Eq.(5), we can separate the results into two equations
according to symmetry[42–44], as below. The subscript
i in ∆i is neglected.

(
∂

∂t
+ Ṽ · ∇+ΩZ · ∇

)
(Ci∆ϕ̃) =

3

2

ΩD
T0

∂αT̃i

−iCe(ω − ωZ +
ωi∗n
τ

)ϕ̃− CiṼψ∂ψ(∆ϕZ)

(7)

∂

∂t

(
Ci∆ϕZ

)
= Ci⟨∇ϕ̃× ẑ · (∇∆ϕ̃)⟩α

≡ −Ciδ2b0∂2ψ
〈
ṼψṼα

〉
α

(8)

where Ṽ = −∇ϕ̃ × ẑ, ΩZ = −∇ϕZ × ẑ = ∂ψϕZ êα.
The Doppler shift effect terms are ωi∗n = kαc

Ci
∂ψ ln⟨ni⟩,

ωi∗T = kαc
Ci
∂ψ ln⟨Ti⟩, ωZ = kα∂ψϕZ . The magnetic field is

included in dψ = −BθR0dr, where r is the minor radius
and R0 is the major radius. It’s obvious that Eq.(7)-(8)
are the evolution equations for vorticity and “zonal vor-
ticity” (or flow shear). In Eq.(7), the second term on the
R.H.S can be combined with the L.H.S., yielding an evo-
lution equation for ϕ̃−∆ϕ̃, which has a structure similar
to the Hasegawa-Mima equation [45]. Eq.(8) shows that
zonal vorticity evolves according to Reynolds force, as ex-
pected. Clearly, Eq.(7) and (8) are not a closed system.
We need to determine how the fluctuating temperature
T̃i (on the R.H.S of eq.(7)) evolves.

An evolution equation for T̃i is required to close the
system. We can substitute the full f̄i and ϕ into the ki-
netic Eq.(1), and then obtain the temperature evolution
by taking the energy moment, i.e. 2

3
2

n0
√
π

∫∞
0
...E

√
EdE.

Then separating the result according to symmetry, we
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have:
√
2ε0

(
∂t + Ṽ · ∇+ΩZ · ∇

)
T̃i

= −i(ω − ωZ − ωi∗n − ωi∗T )⟨Ti⟩Ciϕ̃
(9)

∂

∂t
(⟨Ti⟩+ ⟨Ti⟩ ln⟨ni⟩) =

√
2ε0⟨∇ϕ̃× ẑ · ∇T̃i⟩α

≡ −
√
2ε0∂ψ⟨ṼψT̃i⟩α

(10)

From Eq.(7) to Eq.(10), the system is closed. We will
neglect ωi∗n and ln⟨ni⟩ by assuming large Ln ≡ ∂ψ ln⟨n⟩
due slow variation of mean density. In other words, the
mean density gradient is neglected in our model. Notice
the similarity between Eq.(7) and Eq.(9), which means
they can be written in a simpler form. First, multiply the
above equations (9)-(10) by τ/(

√
2ε0⟨Ti⟩). Then subtract

the two vorticity equations (7)-(8) from equations (9)-
(10), respectively. After these steps, we have:

∂

∂t

(
τ√
2ε0

ln⟨Ti⟩ − Ci∆ϕZ

)
=

〈
∇ϕ̃× ẑ · ∇

(
τ

⟨Ti⟩
∇T̃i − Ci∆ϕ̃

)〉
α

(11)

d
dt

(
τ
T̃i
⟨Ti⟩

− Ci∆ϕ̃

)

= −3

2

ΩD
T0

∂αT̃i − Ṽ · ∇
(

τ√
2ε0

ln⟨Ti⟩ − Ci∆ϕZ

)(12)

Finally, the two equations above can be written as evo-
lution equations for mean and fluctuating potential vor-
ticity (PV).

∂t⟨q⟩ =
〈
∇ϕ̃× ẑ · ∇δq

〉
α
= −∂ψ

〈
Ṽψδq

〉
α

(13)

d
dtδq = −3

2

ΩD
T0

∂αT̃i − Ṽ · ∇⟨q⟩ (14)

where the total potential vorticity ⟨q⟩+ δq is defined as,

⟨q⟩ = τ√
2ε0

ln⟨Ti⟩ − Ci∆ϕZ (15)

δq = τ
T̃i
⟨Ti⟩

− Ci∆ϕ̃ (16)

and
d
dt =

∂

∂t
+ Ṽ · ∇+ΩZ · ∇

Eq.(13)-(14) are the system for PV we first obtained in
Ref.[41], where the total PV is conserved up to the cur-
vature drift. Potential vorticity is the extension of vor-
ticity. The PV perspective is very powerful for studies of
quasi-geostrophic (QG) theory[46–49] and magnetic fu-
sion plasma[45, 50–52]. Since the goal of this paper is to
study profile evolution, we study the mean PV evolution
Eq.(13), which contains both the mean temperature and
the mean vorticity profile contributions. But Eq.(13) is

determined by the PV flux on the R.H.S., where PV flux
has contributions from both T̃i and ϕ̃. Therefore it will
connect the PV flux to the heat flux and vorticity flux,
which require the knowledge from Eq.(7) and Eq.(9). So
even though Eq.(13)-(14) are tidy, they are not very use-
ful for the study of profile evolution. The better way is to
use Eq.(7)-(10) instead. All in all, the fact that the full
evolution Eq.(7)-(10) is actually a PV-conserving system
is indeed interesting.

III. MEAN FLUXES

The ultimate goal of this paper is to study E × B
staircases, i.e. quasi-periodic patterns in ⟨T ⟩ and ϕZ .
Through our PV conserving system in the previous sec-
tion, we know that the mean profile evolution follows the
equations below:

∂

∂t
ln⟨T ⟩ = −

√
2ε0∂x⟨ṼxT̃ ⟩y (17)

∂

∂t

[
∆ϕZ

]
= −∂x

〈
Ṽx∆ϕ̃

〉
y

(18)

where we change the notation into (ψ, α) → (x, y) for the
purpose of simplicity. The evolutions of mean profiles are
determined by the fluxes on the R.H.S. A frequently used
approach for obtaining fluxes is the quasi-linear (QL) ap-
proximation, which approximates the flux by connecting
two fluctuation quantities using a (quasi-)linear relation.
Since we already included all the evolution of the fluctu-
ating quantities in the PV conserving system Eq.(7)-(10),
we can easily obtain the quasi-linear fluxes. Before the
derivation, we define some quantities as below:

Ω̄D =
3

2

ΩD
Ci

, ω∗n = 0, τ =
Ti
Te

= 1, T̃ =
T̃i
⟨Ti⟩

,

Ce =
Ciτ√
2ε0

, A = Ce/Ci =
τ√
2ε0

The first step to obtain the QL fluxes is applying
a Fourier transformation to the fluctuating evolution
Eq.(7) and Eq.(9).

For the evolution Eq.(7) related to ϕ̃, we note the pos-
sibility of writing a conservative equation for fluctuation
quantity, Ũ ≡ Aϕ̃−∆ϕ̃. This is similar to the potential
vorticity evolution defined by the Hasegawa-Mima equa-
tion [45]. Conservation of Ũ is broken by the fluctuat-
ing temperature and curvature drift, and zonal potential.
With quantities we defined above, Eq.(7) is written as:(

∂

∂t
+ Ṽ · ∇+ΩZ · ∇

)
∆ϕ̃

= Ω̄D∂yT̃ − iA(ω − ωE)ϕ̃− Ṽx∂x∆ϕZ

(19)

Writing the evolution in terms of Ũ , gives:(
∂

∂t
+ΩZ · ∇

)(
Aϕ̃−∆ϕ̃

)
− Ṽ · ∇

(
∆ϕ̃
)

= −Ω̄D∂yT̃ + Ṽx∂x∆ϕZ

(20)
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The direct Fourier transforming of Eq.(20) gives the
quasi-linear relation of ϕ̃ linking to T̃ :

(−iω + ikyΩZ) ϕ̃k = − Ω̄D

A+ k
2

⊥

ikyT̃k − ∂x∆ϕZ

A+ k
2

⊥

ikyϕ̃k

(21)

where k̄2⊥ = δ2bk
2
x + ρ2i k

2
y and we dropped the convective

nonlinear terms.
Similarly for T̃ , below:

√
2ε0

(
∂t+Ṽ·∇+ΩZ ·∇

)
T̃ = −i(ω−ωZ−ωi∗n−ωi∗T )Ciϕ̃

(22)
A trick we used here is to replace −i(ω − ωZ)ϕ̃ in the
R.H.S. of above with Eq.(21), since ΩZ = ∂xϕZ , ωZ =

kyΩZ . Then the quasi-linear form of the T̃k equation is:[
−iω + iky

(
ΩZ +

Ci√
2ε0

Ω̄D
A+ k̄2⊥

)]
T̃k

= − ikyϕ̃k√
2ε0

(
Ci
δ2b∂

3
xϕZ

A+ k̄2⊥
− ∂x ln⟨T ⟩

) (23)

where we dropped the nonlinear convective terms, too.
We now have obtained the quasi-linear expressions for
both ϕ̃k and T̃k.

In the following context, we will give the formulations
of the heat flux and the vorticity flux. The heat flux
can be easily obtained from the quasi-linear expressions
Eq.(23). But it could be risky to directly use Eq.(21)
to obtain quantities like ⟨ϕ̃2⟩, since it will eliminate the
important contribution from the zonal vorticity. So we
will use the potential vorticity flux to assist to ensure
the accuracy, since the full PV ⟨q⟩+ δq in Eq.(13)-(14) is
conserved.

A. Heat flux ⟨ṼxT̃ ⟩

The QL heat flux is easy to obtain. First, we have the
formula below, from Eq.(23):

T̃k =
iṼx(k)

ω − ky

(
ΩZ +

Ci√
2ε0

Ω̄D
A+ k̄2⊥

) 1√
2ε0

×
(
Ci
δ2b∂

3
xϕZ

A+ k̄2⊥
− ∂x ln⟨T ⟩

) (24)

Then multiply Ṽx(−k) on both sides,

⟨ṼxT̃ ⟩k ≃ i

ω − ky

(
ΩZ +

Ci√
2ε0

Ω̄D
A+ k̄2⊥

)
× ⟨Ṽ 2

x ⟩k
1√
2ε0

(
Ci
δ2b∂

3
xϕZ

A+ k̄2⊥
− ∂x ln⟨T ⟩

) (25)

The results can be separated into three parts: a response
function R = i/(ω − kyΩZ − kyΩ̄Dbk), the turbulence
intensity ⟨Ṽ 2

x ⟩, and the drive from both mean temper-
ature gradient and mean vorticity gradient. The form
of the response function shows the possibility of a res-
onant response, which occurs when the dominator van-
ishes. This will lead to resonant transport which appears
in the next section. The turbulence intensity term needs
more analysis to be determined. We will use several mod-
els and a turbulence intensity evolution equation to ad-
dress this in the next section. In the third part, since
Ci ∼ |qiϕ̃/T | ≪ 1, the contributions from the vortic-
ity gradient are seemingly small and are often neglected.
But, we keep it here. The important role it plays in E×B
staircase formation will be revealed in the following parts
of this paper.

B. Vorticity flux Ci⟨Ṽx∆ϕ̃⟩

The next flux which needs to be calculated is the vor-
ticity flux. Though we already have the ϕ̃ evolution equa-
tion, directly using ϕ̃ or Aϕ̃ − ∆ϕ̃ to obtain Ṽx∆ϕ̃ can
lose some important physics. Here we use the poten-
tial vorticity flux so as to retain the necessary physics
processes. This follows since the total PV in Eq.(13)-
(14) is conserved. We have ⟨Ṽxδq⟩ = ⟨Ṽx(T̃ − Ci∆ϕ̃)⟩ =
⟨ṼxT̃ ⟩ − Ci⟨Ṽx∆ϕ̃⟩, where we set τ = 1. So it’s natural
to obtain Ci⟨Ṽx∆ϕ̃⟩ from ⟨ṼxT̃ ⟩ − ⟨Ṽxδq⟩.

The expression of fluctuating potential vorticity δq can
be easily obtained from Eq.(14). Notice we absorbed
factors 3/2 and Ci into Ω̄D here.

δqk =
CiΩ̄Dky
ω − kyΩZ

T̃k −
i∂x⟨q⟩

ω − kyΩZ
Ṽx(k) (26)

Then multiply by Ṽx(−k) on both sides of above,

⟨Ṽxδq⟩k ≃ ky
ω − kyΩZ

CiΩ̄D⟨ṼxT̃ ⟩k

− i

ω − kyΩZ
⟨Ṽ 2
x ⟩k

(
1√
2ε0

∂x ln⟨T ⟩ − Ci∂x∆ϕZ

)

where the definition of mean PV in Eq.(15) is used. The
vorticity flux, according to the previous discussion, is ob-
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tained below:

Ci⟨Ṽx∆ϕ̃⟩ = ⟨ṼxT̃ ⟩k − ⟨Ṽxδq⟩k

= ⟨Ṽ 2
x ⟩k

∂x ln⟨T ⟩√
2ε0

(
1− 1√

2ε0

1

A+ k̄2⊥

)
× ikyCiΩ̄D

(ω − kyΩZ)

[
ω − ky

(
ΩZ +

Ci√
2ε0

Ω̄D
A+ k̄2⊥

)]
− Ci⟨Ṽ 2

x ⟩k∂x∆ϕZ
(
1− 1√

2ε0

1

A+ k̄2⊥

)
× i

ω − ky

(
ΩZ +

Ci√
2ε0

Ω̄D
A+ k̄2⊥

)
For simplicity, we let,

ak ≡ 1− 1√
2ε0

1

A+ k̄2⊥
= 1− 1√

2ε0

1
τ√
2ε0

+ k̄2⊥

> 0

bk ≡ Ci√
2ε0

1

A+ k̄2⊥

Then,

⟨Ṽx∆ϕ̃⟩k

=
∂x ln⟨T ⟩√

2ε0

ikyCiΩ̄Dak⟨Ṽ 2
x ⟩k

(ω − kyΩZ)(ω − kyΩZ − kybkΩ̄D)

− Ci∂x∆ϕZ
iak⟨Ṽ 2

x ⟩k
ω − kyΩZ − kybkΩ̄D

(27)

Equation (27) gives the vorticity flux. It contains the
response function, turbulence intensity spectrum, tem-
perature gradient and mean vorticity gradient. Notice
the response function for the temperature gradient is dif-
ferent from the response functions for the vorticity gra-
dient. It has two propagator contributions (ω − kyΩZ)
and (ω − kyΩZ − kybkΩ̄D).

• From Eq.(21), the response function for ϕ̃-like
quantities to T̃ is i/(ω − kyΩZ).

• From Eq.(23), the response function for T̃ to ϕ̃-like
quantities is i/(ω − kyΩZ − kybkΩ̄D).

In the correlation ⟨Ṽx∆ϕ̃⟩, there is a portion from the ϕ̃
linearly responds to T̃ with the propagator i/(ω−kyΩZ).
Then the T̃ linearly responds to a ϕ̃-like quantity with the
propagator i/(ω − kyΩZ − kybkΩ̄D). Finally, the linear
transfer with two propagators leads to the two contri-
butions of the response function in the first term of the
R.H.S of Eq.(27).

The quasi-linear expressions of fluxes Eq.(25) and
Eq.(27) are in k space, so we can sum them over k to
obtain the real space flux. Before summation, we notice
that the response function for the fluxes, for instance,

R = i/(ω − kyΩZ − kyΩ̄Dbk), can result in resonant
transport (when resonance conditions satisfied). This
will bring some interesting phenomena, as we will dis-
cuss later. Here we take the vorticity flux Eq.(27) as an
example to show what the fluxes in real space will be like.

C. Non-res and resonant transport

For the vorticity flux expression Eq.(27), after summa-
tion in k space, we can define two transport coefficients
as:

χ1 = ℜ
∑
k

[
Ṽx(k)

]2 ikyCiΩ̄Dak
(ω − kyΩZ)(ω − kyΩZ − kybkΩ̄D)

χ2 = ℜ
∑
k

[
Ṽx(k)

]2 iak
ω − kyΩZ − kybkΩ̄D

where ℜ represents the real part. χ1 corresponds to the
contribution from the temperature profile gradient. χ2

corresponds to the contribution from the mean vorticity
gradient. By separating ω = ωR + iγ, we can isolate
the resonant and non-resonant portions of the transport
coefficients:

χn−res
1 =

∑
k

[
Ṽx(k)

]2
ak

|γ|kyCiΩ̄D(2ωR − 2kyΩZ − kybkΩ̄D)

|ω − kyΩZ |2|ω − kyΩZ − kybkΩ̄D|2

χres
1 =

∑
k

[
Ṽx(k)

]2
ak
kyCiΩ̄Dπδ(ω − kyΩZ − kybkΩ̄D)

ω − kyΩZ

+
∑
k

[
Ṽx(k)

]2
ak
kyCiΩ̄Dπδ(ω − kyΩZ)

ω − kyΩZ − kybkΩ̄D
∼ 0

χn−res
2 =

∑
k

[
Ṽx(k)

]2
ak

|γ|
|ω − kyΩZ − kybkΩ̄D|2

χres
2 =

∑
k

[
Ṽx(k)

]2
akπδ(ω − kyΩZ − kybkΩ̄D)

Interestingly, after decomposition, we see that the res-
onant portion of χ1 has two parts with opposite sign.
The exact value of χres

1 depends on the spectrum struc-
ture and resonant wave numbers. A cancellation in χres

1

will surely make it smaller than other resonant transport
coefficients, i.e. the resonant contribution from temper-
ature gradient is small. So we assume χres

1 ∼ 0 hereafter
for simplicity, which means: in the flux of vorticity, there
is no resonant contribution from the temperature gradi-
ent. Therefore, the quasilinear form of vorticity flux may
written as:

⟨Ṽx∆ϕ̃⟩y = χn−res
1

∂x ln⟨T ⟩√
2ε0

−
(
χn−res
2 + χres

2

)
Ci∂x∆ϕZ

(28)
The heat flux can also be obtained directly – there will

be both resonant and non-resonant contributions from
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temperature gradient and mean vorticity gradient:

⟨ṼxT̃ ⟩y = −(χn−res
3 + χres

3 )
1√
2ε0

∂x ln ⟨T ⟩

+ (χn−res
4 + χres

4 )
Ci√
2ε0

∂x∆ϕZ

(29)

D. Turbulence Intensity evolution equation

In expressions Eq.(25) and Eq.(27), apart from the
contribution of profile gradient, there are also contribu-
tions from turbulence intensity

∣∣∣Ṽx(k)∣∣∣2 or equivalently
⟨ϕ̃2⟩k. In our previous study [41], we already discussed
the turbulence intensity evolution characterized by ⟨ϕ̃2⟩,
in which we first derived the evolution of ⟨Ũ2⟩, then ap-
plied the Green’s function and transformed ⟨Ũ2⟩ → ⟨ϕ̃2⟩.
We dropped the effects of ∆ϕZ and approximated the
influence of heat flux with a constant linear growth in
Ref.[41]. Now, with the quasi-linear fluxes, we can obtain
a more complete turbulence intensity evolution equation
characterized by ⟨Ũ2⟩ as below:

1

2

〈(
∂

∂t
+ VZ · ∇

)(
Aϕ̃−∆ϕ̃

)2〉
= −Ω̄D

〈
T̃
(
AṼx − δ2b∂

2
xṼx

)〉
− δ2b∂x⟨ṼxṼy⟩∂x∆ϕZ

+
1

2

[
A
〈
∇ϕ̃2 ×

(
∇∆ϕ̃

)
· ẑ
〉
+

〈
∇
(
∆ϕ̃
)2

×∇ϕ̃ · ẑ
〉]
(30)

Equation above comes from Eq.(20), which is fundamen-
tally the evolution equation for potential enstrophy ⟨Ũ2⟩
(derived from potential vorticity Ũ ≡ Aϕ̃−∆ϕ̃). The first
term in the R.H.S. of Eq.(30) is similar to the heat flux,
the second term is related to vorticity flux (or Reynolds
stress by the Taylor Identity) and mean vorticity gradi-
ent. The third term is a complex nonlinear term. Since
we already obtained the heat flux and vorticity flux in
a previous subsection, the first two terms in the R.H.S.
of Eq.(30) can be dealt using the same approach. More
details can be found in Appendix B. As for the third
term, from our previous study [41], it contains nonlinear
diffusion and nonlinear scattering effects. We apply the
model of Ref.[41] here and simplify it to a nonlinear dif-
fusion term ∂xDU∂x⟨Ũ2⟩ and a nonlinear damping term
⟨Ũ2⟩νNL/l

2
x, where DU ∝ ⟨ϕ̃2⟩, νNL is a parameter for

nonlinear damping, lx is limited by gyro-radius and ba-
nana orbit width. The damping represents transfer to
small scale dissipation. We will try to improve this ap-
proximation of the third term in future work. Applying
all these approximations to Eq.(30), we obtain Eq.(31)

as:

1

2

∂

∂t
⟨Ũ2⟩

=
∂

∂x
DU

∂

∂x
⟨Ũ2⟩ − νNL

l2x
⟨Ũ2⟩

+
Ω̄D√
2ε0

(χn−res
5 + χres

5 )
∂

∂x
⟨T ⟩

− Ω̄D√
2ε0

Ci(χ
n−res
6 + χres

6 )
∂

∂x

(
∆ϕZ

)
− 1

Ci
χn−res
1

(
∂

∂x

ln ⟨T ⟩√
2ε0

)[
∂

∂x

(
∆ϕZ

)]
+
(
χn−res
2 + χres

2

) [ ∂
∂x

(
∆ϕZ

)]2

(31)

where the expressions for χ5 and χ6 can be found in the
Appendix B. After solving Eq.(31) and obtaining ⟨Ũ2⟩,
we use the Green’s function to obtain ⟨ϕ̃2⟩ = G2 ⊗ ⟨Ũ2⟩.
This will give us the turbulence intensity we need to cal-
culate the transport coefficients.

Recalling the mean profile evolution equation at the
beginning of this section Eq.(17)-(18), we put the vortic-
ity flux and heat flux into them to obtain:

∂

∂t

(
∆ϕZ

)
= − ∂

∂x

(
1

Ci
χn−res
1

∂

∂x

ln⟨T ⟩√
2ε0

)
+

∂

∂x

[(
χn−res
2 + χres

2 + νc
) ∂

∂x
∆ϕZ

] (32)

∂

∂t
ln ⟨T ⟩ = − ∂

∂x

[
Ci
(
χn−res
4 + χres

4

) ∂

∂x

(
∆ϕZ

)]
+

∂

∂x

[(
χn−res
3 + χres

3 + χneo

) ∂

∂x
ln ⟨T ⟩

]
(33)

Here we added two terms – νc is collisional dissipation for
mean flow, and χneo is the neoclassical thermal diffusion.
In our model, both terms are small compared to turbu-
lent transport. With Eq.(31)-(33), the turbulence-profile
evolution system we need for studying the E × B stair-
case begins to take shape. But obviously, there are many
transport coefficients to be determined. The system is
not yet solvable. The next step is further simplification
of the transport coefficients.

IV. MODELLING THE TRANSPORT
COEFFICIENTS

We obtained the flux required for mean profile evolu-
tion in previous section. As we can see, there are still a lot
of transport coefficients that need to be simplified. The
goal of this section is to construct an appropriate model
of the transport coefficients and determine the resonance
condition. Let’s continue to focus on χ3 as an example.
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Results for other coefficients can be found in Appendix
B.

χn−res
3 =

∑
k

[
Ṽx(k)

]2 |γ|
|ω − kyΩZ − kybkΩ̄D|2

(34)

χres
3 =

∑
k

[
Ṽx(k)

]2
πδ(ω − kyΩZ − kybkΩ̄D) (35)

The straightforward way to simplify the expressions
above is by working out the analytical expression for the
summation or integral. To implement this approach, we
will need two ingredients: the dispersion relation ω(k)

and the spectrum ⟨ϕ̃2⟩k. Luckily, these two conditions
can be supplied by appropriate models.

The dispersion function can be obtained from the
Darmet model Eq.(4)-(5), as in Appendix A. By numeri-
cally solving this dispersion function, we then obtain the
dispersion relation, which can be modeled approximately
as below (more details in Eq.(A16), Eq.(A17) in the Ap-
pendix A):

ωR = RΩDky, γ = ΛRΩDky(ky,max − ky) (36)

Here the real frequency is simply proportional to ky, and
the growth rate is modelled as a parabolic function of ky.
R is a constant ∼ 2.3, and Λ and ky,max are parameters
fit to the numerical results. For convenience, we set Λ =
ρi/σ, ky,max = 1/(µρi). Since the effect of kx and κT on
the real frequency is small, we dropped their dependence
here, for simplicity.

For convenience, after truncating at high wave num-
bers, we can apply a bi-Lorentz spectrum[53], here:

|ϕ̃|2kx,ky =
|ϕ̃0|2

π2∆kx∆ky

× 1[
1 +

(
kx − kr0
∆kx

)2
][

1 +

(
ky − ky0
∆ky

)2
] (37)

To work out the integral, we need to connect the two
models above. There are two sets of parameters for the
models,

1. (kx,max, ky,max, Λ) for the dispersion relation

2. (kx0, ky0,∆kx,∆ky) for the spectrum
We can connect the second set of parameters to the first
set by setting:

kx0 = αxkx,max, ∆kr = βxkx,max (38)
ky0 = αyky,max, ∆ky = βyky,max (39)

We should have αx,y ≪ 1, βx,y < 1. We can take α = 0
for simplicity. These connection parameters will not af-
fect our conclusions. And again, we emphasize we set
Λ ∼ ρi/σ, ky,max = 1/(µyρi), for convenience. With
all the above, the dispersion relation model Eq.(36) and
spectrum model Eq.(37) now can be used in calculating
the transport coefficients like Eq.(34)-(35). Let’s con-
tinue our journey to simplify χ3.

A. Simplification of non-resonant coefficients

For coefficient χn−res
3 , the summation Eq.(34) in k will

be transformed into an integral, then we plug the models
Eq.(36) into it. |ϕ̃|2kx,ky is a bi-Lorentz spectrum Eq.(37).
The result reads as:

χn−res
3 = 2

∫ ky,max

0

∫ kx,max

0

|ϕ̃|2kx,ky

× Λky(ky,max − ky)

RΩD

[
1 + Λ2 (ky,max − ky)

2
]dkxdky

(40)

where we set the upper boundary of integral as kx,max

and ky,max. Then using the connection parameters we
defined, we can work out the integral analytically. The
result is long and tedious, as shown on the Appendix
B. But luckily, we find that the principal term in the
result is determined by the µ2σ2 related terms. From
the dispersion relation (in Appendix A), we know µσ is
between O(1) − O(10). So we keep the largest terms in
µ2σ2, then the ultimate approximation for χn−res

3 is:

χn−res
3 ∼ |ϕ̃0|2µ2σ2

ΩDρi

[
(µ2σ2 + 1 + β2)

2
] (41)

As for the other transport coefficients, we normalize all
of them to χn−res

3 , then we obtain the list below:

χn−res
1 = ϑχn−res

3 (42)
χn−res
2 = ϑχn−res

3 (43)
χn−res
4 =

√
2ε0(τ − ϑ)χn−res

3 (44)

χn−res
5 =

1√
2ε0

(τ + ϑ)χn−res
3 (45)

χn−res
6 = χn−res

3 (46)

Where ϑ ≡
√
2ε0ΘmaxC < 1 is a constant we defined in

Appendix B. Now, all non-resonant transport coefficients
are simplified.

B. Simplification of resonant coefficients

For the resonant transport coefficients like χres
3 , we just

need to find the resonant condition, i.e. the solution of
the δ function, and replace those resonant kres in the
spectrum function. As in the previous subsection, we
normalize all other coefficients to χres

3 .

1. Resonant condition

The resonance condition in Eq.(35) is:

δ

(
ωR − kyΩZ − CiΩDky

τ +
√
2ϵ0
(
δ2bk

2
x + ρ2i k

2
y

)) (47)
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Here ΩD = 3ΩD/(2Ci), ωR is the real frequency of
modes. We know from the dispersion relation in Ap-
pendix A, that the real frequency can be well fit by:

ωR =
R1kyΩD

1 +R2(ρ2i k
2
y + δ2bk

2
x)

≃ RkyΩD (48)

Here R2 is much smaller than 1, R ≈ 2.36, as shown
in Eq.(A16). Putting the expression for real frequency
above, into Eq.(47), we can obtain the kres that match
the resonant condition. Notice the match condition is
determined primarily by δ2bk2x + ρ2i k

2
y, so we can define it

as a quantity like:

Θres ≡ δ2bk
2
x,res + ρ2i k

2
y,res (49)

Then from the resonance condition Eq.(47), we know the
resonant wave numbers (kx, ky) must satisfy:

Θres =
ΩD(Rτ − 1.5)− τΩZ√

2ε0 (ΩZ −RΩD)
(50)

After looking carefully at the resonance condition above,
we notice all the parameters on the R.H.S. are constants,
except ΩZ = ∂xϕZ . Note here ΩZ connects the reso-
nance condition to the mean flow profile! We plot the
relation between Θres and ΩZ in FIG. 1. Different lines
in FIG. 1 represent the varying of fit parameters R, for
testing parameter sensitivity.

FIG. 1: Θres and ΩZ . On a range of ΩZ the resonance
can exist. The threshold for resonance existence is
approximately ΩZ ≳ ΩD. And when ΩZ is too big
(∼ 1.5ΩD), the resonance condition Θres > 1 is not

satisfied. Different lines represent the variation of R in
Eq.(36).

From the dispersion relation Eq.(A15), there is

Θmax ≡ δ2bk
2
x,max + ρ2i k

2
y,max =

1

µ2
x

+
1

µ2
y

∼ 1 (51)

Therefore all the other Θ must satisfy Θ < Θmax ∼ 1,
including Θres. As we show in the FIG. 1, to make reso-
nance possible, there must be 0 < Θres < 1, thus ΩZ/ΩD
must lie approximately between 1 and 1.5. So as long as

1 < ΩZ/ΩD < 1.5, there will be some (kx,res, ky,res) to
satisfy the resonance condition mentioned above. Alter-
natively, 1 < ΩZ/ΩD < 1 .5 can be regarded as the reso-
nance condition!

The mechanism to connect the resonance condition to
the E × B mean toroidal flow is simple. In this paper,
the trapped ion procession velocity ΩD is set as a con-
stant. The energy dependence is absorbed by normaliza-
tion Ω̂D = ΩDT0/ω0 in section II. The fluctuating en-
ergy dependence in precession velocity is reflected by the
terms like ΩDT̃ , for example the first term in the R.H.S.
of Eq.(7). The phase velocity of the trapped ion mode is
RΩD, where R ≃ 2.36 from Appendix A. Notice there is
a natural gap between the precession velocity and phase
velocity. When E ×B mean flow ΩZ ∼ ΩD, the trapped
ion precession will resonant with TIM with the additional
increment of the Doppler shift from the mean flow.

2. Simplification of coefficients

Returning to those resonant transport coefficients χres
3 ,

when the condition 1 < ΩZ/ΩD < 1.5 is satisfied,
there will be some (kx,res, ky,res) which fullfil the reso-
nance condition Eq.(50). Rewriting the summation in
Eq.(35) as an integral, and putting these (kx,res, ky,res)
into it, we obtain Eq.(B17) as shown in Appendix B. Let
ϑres =

√
2ε0Θres, and we finally have the list for resonant

transport coefficients, as below:

χres
2 ∼ ϑresχ

res
3 (52)

χres
3 = |ϕ̃0|2k2y,res

β2

β2 + µ2Θres

µyρi
|βy (ΩZ +ΩD)|

(53)

χres
4 ∼

√
2ε0(1− ϑres)χ

res
3 (54)

χres
5 ∼ 1√

2ε0
(1 + ϑres)χ

res
3 (55)

And remember that all the resonant transport coefficients
exist only when the condition 1 < ΩZ/ΩD < 1.5 is satis-
fied.

Now, we already have all the turbulent transport coef-
ficients that appear in the model Eq.(31)-(33). Theoret-
ically, we can solve for the profile evolution with all the
ingredients including. For the convenience of calculation,
we now introduce a unified χ model.

C. A unified χ model

Let’s extract the turbulence intensity from the coeffi-
cients. Here we still take χ3 as an example. We define
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two quantities χn and χr:

χn−res
3 =

|ϕ̃0|2µ2σ2

ΩDρi

[
(µ2σ2 + 1 + β2)

2
] ≡ χn|ϕ̃0|2 (56)

χres
3 =

|ϕ̃0|2k2y,resβ
2

β2 + µ2Θres

µyρi
|βy (ΩZ +ΩD)|

≡ χr|ϕ̃0|2 (57)

χres
3 exists if and only if ΩD < ΩZ < 1.5ΩD. As for other

coefficients, we simply set ϑ = ϑmax = ϑres. Considering
µ2σ2 ∼ 10, there should be

χr/χn ∼
(
µ2σ2 + 1 + β2

)2
µ2σ2

∼ O(10)−O(102) (58)

In another word, the resonant coefficients are approx-
imately 10 to 100 times bigger than the non-resonant
coefficients. From the definition, we know that µσ =
(Λky,max)

−1, so the ratio of resonant to non-resonant
transport is roughly the square of the ratio between real
frequency and growth rate:

χr/χn ∼ 1

Λ2k2y,max

∼ Ω2
D

Λ2Ω2
Dk

2
y,max

∼ ω2
R

γ2
(59)

Conventional wisdom would give χr/χn ∼ ωR/γ here.
The difference comes from the calculation of Lorentzian
spectrum with TIM dispersion relation, as we did, in
which the mode structure plays a larger role than for
the usual quasi-linear results. With this additional infor-
mation concerning the ratio, it would be convenient to
define a piecewise function χ ≡ (χn + χr)|ϕ̃0|2 with tanh
functions as FIG.2, where χn = 1, χr = 100. This uni-
fies the non-resonant and resonant transport coefficients
Eq.(56) and Eq.(57). For the consideration of smooth
numerical calculation, we set a “bandwidth” wΩ = 0.2
around the thresholds ΩZ = ΩD, as in FIG.2.

FIG. 2: A piecewise continuous function of χ v.s. ΩZ as
a transport coefficient model. When ΩZ is not in the

range of resonant condition, χ = χn|ϕ̃0|2; when
1 < ΩZ/ΩD < 1.5, χ = χr|ϕ̃0|2. wΩ is the “bandwidth”

of the threshold we set for convenience.

D. On the Near Marginality Hypothesis

In this subsection, we give a short discussion on the
problem of “near marginality”. The resonant transport
coefficients we defined in this paper are large enough to
quickly relax κT (or 1/LT ) to a very low level, and even
below the critical gradient κcT for TIM instability (as de-
termined in Appendix A). This brings a causality prob-
lem: when the temperature gradient is not big enough to
excite the instability and turbulence, there should be no
turbulent transport coefficients. There are two possible
ways to address this issue.

The first way is to ansatz that the physical processes
will organize a so-called near-marginal state of the profile.
When κT < κcT , all the turbulent transport coefficients
→ 0 and the neoclassical transport is not negligible. On
the contrary, when κT ≳ κcT , turbulent transport coef-
ficients increase dramatically. This is equivalent to the
oft-encountered “stiff profile state”. Then the tempera-
ture profile gradient will balance dynamically near the
critical value κcT . Of course, further detailed study is
required to determine “how near is ‘near’?”

The second way is to consider the nonlocality of turbu-
lence. Noticing the arguments above are all based upon
the picture of local turbulence – the local gradient ex-
cites local instability; local instability then evolves to
local turbulence, which feeds back upon the local gra-
dient. But there is evidence for nonlocality in plasma
turbulence[41, 54–57]. From this perspective, κT < κcT
locally will not necessarily cause a zero level of turbulence
and turbulent transport coefficients, because nonlocal ex-
citation or turbulence spreading can bring a finite level
of turbulence to regions with 1/LT → 0.

A quantitative understanding of near marginality of
profiles is an unsolved question, that requires extensive
simulation and experimental studies, which are beyond
the scope of this paper. So we introduce the hypoth-
esis in this paper that: the regions of low ∇T caused
by resonant transport in our model are actually at a near
marginal state, for which the temperature gradient is near
the threshold of instability Eq.(A14).

V. PROFILE EVOLUTION: FORMATION OF
E ×B STAIRCASES

So far, we have obtained the fluxes and transport co-
efficient models required for solving the evolution equa-
tions (31)-(33). The whole process is summarized in the
derivation flow charts FIG. 3 and FIG. 4. The next steps
are solving the system and studying the evolution of the
profiles. More specifically, we will introduce a constant
flux drive at the boundaries. This yields a so-called flux-
driven system. Under certain conditions, the system will
evolve a quasi-periodic pattern of profiles. The basic
feedback loops in this system are discussed. Then we
determine when the staircase forms and the parameters
that control the basic characteristics of staircase.
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∂

∂t
ln⟨T ⟩ = −

√
2ε0∂x⟨ṼxT̃ ⟩y + χneo∂

2
x ln⟨T ⟩

⟨ṼxT̃ ⟩k

∼ R
(
ω − kyΩZ − bkΩ̄D

)
⟨Ṽ 2

x ⟩k
[
∂x∆ϕZ(. . . )− ∂x ln⟨T ⟩(. . . )

]

(χn−res
4 + χres

4 )∂x∆ϕZ − (χn−res
3 + χres

3 )∂x ln ⟨T ⟩

Equation (61)

χ model

FIG. 3: Derivation flow chart for heat flux. From the
evolution equations of fluctuation quantities Eq.(7) and
Eq.(9), we construct the quasi-linear expression for the

heat flux. Both the mean vorticity gradient and the
temperature gradient contribute to the heat flux. Res-
and non-resonant portion of the transport coefficients
are separated. A transport coefficient model is used to

unify all coefficients and simplify the expressions.
Quasi-linear heat flux close the evolution equation of

ln⟨T ⟩ and results in Eq.(61).

A. Equations and boundary conditions

As the derivation flow charts show, we put all the sim-
plifications of coefficients Eq.(56), Eq.(57) and fluxes into
the profile evolution equations. Finally, we obtain:

∂

∂t

(
∆ϕZ

)
= − ∂

∂x

(
1

Ci
ϑχn ∂

∂x

ln⟨T ⟩√
2ε0

)
+

∂

∂x

[
ϑχδ2b

∂3

∂x3
ϕZ

]
+ νc

∂2

∂x2
∆ϕZ (60)

∂

∂t
ln ⟨T ⟩ = − ∂

∂x

[
Ci

√
2ε0(1− ϑ)χ

∂

∂x

(
∆ϕZ

)]
+

∂

∂x

[
χ
∂

∂x
ln ⟨T ⟩

]
+ χneo

∂2

∂x2
ln ⟨T ⟩ (61)

Here χ(ΩZ) is the piecewise function we defined that in-
cludes resonant and non-resonant transport, as FIG.2.
Boundary conditions are necessary for solving the equa-
tions above. Here we choose the simplest ones:

∂

∂x
∆ϕZ

∣∣∣∣
B

= 0 (62)

∂

∂x
ln⟨T ⟩

∣∣∣∣
B

≡ κBT = Const. (63)

∂

∂x
⟨Ũ2⟩

∣∣∣∣
B

= 0, or
∂

∂x
⟨ϕ̃2⟩

∣∣∣∣
B

= 0 (64)

Most gradients of quantities at boundaries (x = 0 and
x = 1) are set to 0. Notice the temperature gradient

∂

∂t

[
∆ϕZ

]
= −∂x

〈
Ṽx∆ϕ̃

〉
y
+ νc∂

2
x∆ϕZ

⟨Ṽx∆ϕ̃⟩k = −⟨Ṽxδq⟩k + ⟨ṼxT̃ ⟩k

R (ω − kyΩZ) ⟨ṼxT̃ ⟩k(· · · )
−R (ω − kyΩZ) ⟨Ṽ 2

x ⟩k×[
∂x ln⟨T ⟩(. . . )− ∂x∆ϕZ(. . . )

]

R (ω − kyΩZ)R
(
ω − kyΩZ − kybkΩ̄D

)
⟨Ṽ 2

x ⟩k∂x ln⟨T ⟩(. . . )
−R

(
ω − kyΩZ − kybkΩ̄D

)
⟨Ṽ 2

x ⟩k∂x∆ϕZ(. . . )

χn−res
1

∂x ln⟨T ⟩√
2ε0

−
(
χn−res
2 + χres

2

)
∂x∆ϕZ

Equation (60)

χ model

FIG. 4: Derivation flow chart for vorticity flux.
Quasi-linear expression for vorticity flux is constructed

from the fluctuation evolution equations Eq.(7) and
Eq.(9). Potential vorticity flux is used to assist the
derivation. Res- and non-resonant portions of the
transport coefficients are separated. A transport

coefficient model is used to unify all coefficients and
simplify expressions. Quasi-linear vorticity flux close
the evolution equation of ∆ϕZ and results in Eq.(60).

at the boundaries is set to a control parameter, i.e. κBT ,
where κT ≡ ∂x ln⟨T ⟩. So the boundary heat flux will
drive the system evolution, corresponding to a “Flux-
driven” system. The boundary temperature gradient
κBT ≡ κIT + ∆κT contains the initial value κIT and the
increment ∆κT . Since ∆κT determines the increment
of heat flux driven at the boundaries, it can be called
the “net drive” or “free energy” that passes through the
system.

Recall that we used the piecewise function χ ≡ (χn +

χr)|ϕ̃0|2 as the coefficient model, as in FIG. 2. Here, in
order to keep the notation concise, we hereafter take the
χn that appears in the following equations to be χn|ϕ̃0|2.
χ is a function of ΩZ = ∂xϕZ , therefore we need to set
boundary conditions for ΩZ , which are:

ΩZ

∣∣∣∣
B

= 0 (65)

Note that χ is a function of the turbulence intensity |ϕ̃0|2.
To obtain |ϕ̃0|2, we include the evolution equation for
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⟨Ũ2⟩ from Eq.(31):

1

2

∂

∂t
⟨Ũ2⟩ = ∂

∂x
DU

∂

∂x
⟨Ũ2⟩ − 3

2

ΩD√
2ε0

χ
∂

∂x

(
∆ϕZ

)
+

3

2

ΩD
2ε0Ci

(1 + ϑ)χ
∂

∂x
ln ⟨T ⟩

− 1

Ci
ϑχn

(
∂

∂x

ln ⟨T ⟩√
2ε0

)[
∂

∂x

(
∆ϕZ

)]
+ ϑχ

[
∂

∂x

(
∆ϕZ

)]2
− νNL

l2x
⟨Ũ2⟩2

(66)

Here νNL is a parameter for nonlinear saturation of tur-
bulence, and lx is the radial scale length of turbulence
intensity[41]. Then we obtain ⟨ϕ̃2⟩ from ⟨Ũ2⟩ by:

⟨ϕ̃2⟩ =
∫ ∞

−∞
G2(x− x′)⟨Ũ2⟩(x′) dx′ (67)

here the Green’s function is defined as:

G2(x) = F−1

{
1

(A+ k2)
2

}

=
1

2

√
π

2A3

(
e−

√
A|x| +

√
A|x|e−

√
A|x|
) (68)

with A ≡ τ/
√
2ε0. Boundary conditions for turbulence

intensity are set in Eq.(64). Then we assume |ϕ̃0|2 ∼ ⟨ϕ̃2⟩
here.

We expect the saturated turbulence intensity to be
roughly around the gyro-Bohm level, i.e. ⟨ϕ̃2⟩ ∼ δ2b and
⟨Ũ2⟩ ∼ δ2b . From the usual turbulence spreading picture,
turbulence extract energy from the gradient and satu-
rated by nonlinear damping. Such a picture corresponds
to the balance between the third and sixth terms in the
R.H.S. of Eq.(66). To satisfy the expectation of gyro-
Bohm-level turbulence, we can use this balance relation
and set the parameters in the calculation as:

lx ∼ δb (69)

νNL ∼ 3

2

ΩD
2ε0Ci

(1 + ϑ) (70)

Finally, the evolution equations for profiles Eq.(60),
Eq.(61) and the turbulence intensity evolution Eq.(66),
the boundary conditions Eq.(62)-(65) and transport co-
efficient model in FIG. 2 constitute the complete system
we study. The definitions for main quantities in Eq.(60)-
Eq.(66) are listed in Table I. We will use numerical meth-
ods to solve it.

B. Numerical results and basic behaviors of profiles

We choose the “method of lines” to discretize the equa-
tions, then solve the set of differential-algebraic equations
we obtained using the parameters listed in Table II. Here
setting νNL = 40 leads to a saturated ⟨ϕ̃2⟩ ∼ δ2b as we

mentioned in Eq.(70). Then we have χ ≃ (χn + χr)δ2b .
Both νc and χneo are set to be smaller than the non-
resonant turbulent diffusivity with fixed ratios, as shown
in Table II. The initial condition for ln⟨T ⟩ is set with a
constant gradient equal to 1. The initial conditions for
⟨Ũ2⟩ and ⟨ϕ̃2⟩ are set at a small quantity δ2b/10. Initial
values for other quantities are set to 0. The results are
given in FIG. 5. The temperature profile evolves into a
pattern of quasi-periodic corrugations in radius, which
is accompanied by patterning in the E × B mean flow
profile, i.e. the system evolves to an E × B staircase.
Since the formation of the pattern is fast, we plot the
evolution of E ×B mean flow and temperature gradient
with an extended time scale in FIG. 6 to show more de-
tails. Noticing in FIG. 5 (e)-(f), while turbulence inten-
sity characterized by ⟨Ũ2⟩ has corrugations and patterns,
the turbulence intensity characterized by ⟨ϕ̃2⟩ manifests
only slight corrugations. This is because after convolu-
tion with the Green’s function Eq.(68), the corrugations
in ⟨ϕ̃2⟩ are smoothed. And remember ⟨ϕ̃2⟩ is the actual
quantity that used in calculating transport coefficients.
So the variation of turbulence intensity is not the primary
cause of staircase formation here.

A set of time slices of the profiles are shown in FIG. 7.
We can notice there are two distinct states in the tem-
perature profile in FIG. 7(c). One is nearly flat, other
is steeper. The two states are alternatively arranged,
sequentially in space, and together form a staircase-like
pattern! We named those regions with flat temperature
profile type II regions, and the regions with steeper profile
type I regions, as we show in FIG. 7. In type II regions,
the mean vorticity profile is also flatter, and more impor-
tantly, ΩZ/ΩD is near the threshold for resonant trans-
port, as shown in FIG. 7(a). Therefore, in Region II,
resonant transport is dominant. Meanwhile, in Region I,
profiles are steepened, ΩZ doesn’t achieve the resonance
condition, and non-resonant transport is dominant.

In order to further understand the physical process be-
hind this profile patterning, we need to discuss the flow
evolution, since the resonant transport switch on depends
sensitively on the value of ΩZ . So we start from the evo-
lution equation for mean vorticity ∆ϕZ , i.e. Eq.(60).
We can integrate it and explicitly include the effects of
boundary conditions:∫ x2

x1

∂

∂t

(
δ2b

∂2

∂x2
ϕZ

)
dx = − 1

Ci

∫ x2

x1

∂

∂x

(
ϑχn ∂

∂x

ln⟨T ⟩√
2ε0

)
dx

+
1

Ci

∫ x2

x1

∂

∂x

(
ϑχδ2b

∂3

∂x3
ϕZ

)
dx+

∫ x2

x1

νc
∂2

∂x2
∆ϕZdx

=⇒ ∂

∂t

(
δ2bΩZ

) ∣∣∣∣x2

x1

= −
(

1

Ci
ϑχn ∂

∂x

ln⟨T ⟩√
2ε0

) ∣∣∣∣x2

x1

+

(
1

Ci
ϑχδ2b

∂2

∂x2
ΩZ

) ∣∣∣∣x2

x1

+

(
νcδ

2
b

∂2

∂x2
ΩZ

) ∣∣∣∣x2

x1

Then we write down the formal evolution equation of
ΩZ below according to the above expression as Eq.(71),
where the boundary conditions Eq.(62)-(65) are used.
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FIG. 5: Evolution of profiles from the system Eq.(60)-(68) with parameters in Tab. II. (a) E ×B mean flow evolve a
quasi-periodic structure in space. (b) Flow shear or mean vorticity profile evolution. (c) Temperature profile evolve

a quasi-periodic staircase-like structure. (d) Temperature gradient profile. (e) Turbulence intensity evolution
characterized by ⟨Ũ2⟩, which has clear corrugations in space. (f) Turbulence intensity evolution characterized by

⟨ϕ̃2⟩, in which corrugations are smoothed by Green’s function Eq.(68).

FIG. 6: Evolution of profiles (a) E ×B mean flow and (b) temperature gradient in Figure 5 with extended time
scale to show the onset of the pattern.

This can help us understand the staircase formation pro- cess.
∂

∂t

(
δ2bΩZ

)
= − 1

Ci
ϑχn ∂

∂x

ln⟨T ⟩√
2ε0

+
1

Ci
ϑχn ∂

∂x

ln⟨T ⟩√
2ε0

∣∣∣∣
B

+ ϑχδ2b
∂2

∂x2
ΩZ + νcδ

2
b

∂2

∂x2
ΩZ (71)
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TABLE I: Definitions of quantities in Eq.(60)-Eq.(66)

Quantity Definition

ΩD Trapped ion precession velocity
ΩZ E ×B mean flow velocity
ϕZ Mean electric potential
⟨T ⟩ Mean temperature
⟨Ũ2⟩ Turbulence intensity
⟨ϕ̃2⟩ Fluctuation electric potential intensity
Ci ω0Lψqi/Ti

ε0 Inverse aspect ratio a/R

ϑ Parameter in transport coefficient model, < 1

δb Banana orbit width

TABLE II: Parameters for numerical solving Eq.(60)-Eq.(66)

Parameters ϵ0 τ Ci ρi δb ΩD ϑ νc χneo νNL κI
T ∆κT

Values 1/4 1 0.1 10−2 0.06 1 0.2 0.1χnδ2b 0.5χnδ2b 40 1 0.3

There is a clear drive of ΩZ from the boundary temper-
ature gradient in Eq.(71), i.e. the second term in the
R.H.S. Such drive will always exist, since we have set the
boundary temperature gradient κBT as fixed. Because νc is
small and ΩZ |B = 0, to balance such constant drive and
to let ΩZ be quasi-steady, there are only two possibilities,
as shown in FIG. 8.

• One is balance with the local temperature gradient,
i.e. the first term in the R.H.S. of Eq.(71).

• Another is balance with the turbulent diffusion of
ΩZ itself, i.e. the third term in the R.H.S. of
Eq.(71).

The different balances lead to different mean profile
states. Different spatial locations can reach different bal-
ances, and therefore lead to different profile states.

Here, we explain the two states and the feedback loops
to achieve them.

• In region I, we have the usual turbulent transport
state with finite profile gradients. In this state,
since Ci

√
2ε0 ≪ 1 and ∂x ln⟨T ⟩ ≫ Ci

√
2ε0∂x∆ϕZ ,

the vorticity gradient contribution can be ne-
glected. The temperature gradient plays the cen-
tral role in Eq.(71). Of course, the temperature
profile is also determined in part by the boundary
gradient κBT . More specifically, the local tempera-
ture gradient grows toward the boundary value in a
typical time τ∇T (defined in Eq.(76)). This process
can be expressed formally as (assuming no initial
gradient):

∂x ln⟨T ⟩|(t,x) ∼
(
1− e−t/τ∇T

)
∂x ln⟨T ⟩|B

Then, the final local temperature gradient almost
reaches the boundary value. After this, in the flow
evolution Eq.(71) , the residual difference between
the κBT and κLocalT is balanced through non-resonant
turbulent transport and collisional dissipation of
ΩZ . Finally, ΩZ will reach a quasi-steady state by
balance between local and boundary temperature
gradient, as illustrated in FIG. 8. In conclusion, the
system will reach this state for which ΩZ/ΩD < 1,
which has finite gradients in both the temperature
profile and the mean vorticity profile.

• In region II, we have the resonant transport state,
with near flattened profiles. The detailed feedback
loop to reach this state is shown in FIG. 9. As the
flow ΩZ grows, if it exceeds the resonance thresh-
old, i.e. ΩZ ≳ ΩD, resonant transport is trig-
gered. From Eq.(60) and Eq.(61), we know that
the resonant transport appears in both equations.
Both local temperature and mean vorticity trans-
port are strongly enhanced by resonance. There-
fore the local temperature gradient is flattened to a
near-marginal state, as we hypothesized in section
IV D. Recall that in the mean vorticity and mean
flow evolution equation, the contribution from local
thermal transport is purely non-resonant, and the
local temperature gradient is small. The constant
boundary temperature gradient drive in the ΩZ
evolution Eq.(71) cannot be balanced by the local
temperature gradient, but rather through the en-
hanced (resonant) turbulent vorticity transport, as
indicated in FIG. 8 and FIG. 9. In conclusion, the
system will reach a state when 1 < ΩZ/ΩD < 1.5,
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FIG. 7: Time slices of profiles. We named the regions with flatter temperature profiles the type II regions, regions
with steeper temperature profiles the type I regions as in (c). (a) in type II regions, E ×B mean flow profile satisfy

the resonance condition ΩD/ΩZ ≳ 1, resonant transport is triggered. In type I regions, non-resonant transport is
dominant. (b) is the slices of mean vorticity evolution. (d) is the slices of temperature gradient, where κT ≡ ∂x ln⟨T ⟩.

∂

∂t

(
δ2bΩZ

)
= − 1

Ci
ϑχn ∂

∂x

ln⟨T ⟩√
2ε0

+

Drive Source︷ ︸︸ ︷
1

Ci

(
ϑχn ∂

∂x

ln⟨T ⟩√
2ε0

) ∣∣∣∣
B

+ ϑχ(ΩZ)δ
2
b

∂2

∂x2
ΩZ + νcδ

2
b

∂2

∂x2
ΩZ

ΩZ ≳ ΩD resonant transport switched on

I: Local Gradient Balanced II: Resonant Dissipation Balanced

FIG. 8: Different scenarios of balancing with the boundary temperature drive in the formal evolution equation of
ΩZ . Either through I: growing local temperature gradient, or II: resonant diffusion of ΩZ .

which has the marginal temperature profile and a
less steep vorticity profile.

When profiles in a domain enter the type II feedback
loop, the heat flux will be very strong and transport will
exceed that for the neighboring domains. Therefore the
κT in neighboring domains will increase (as shown in
FIG.5(d)), and so the neighboring domains will be forced
switch to the type I feedback loop. Thus, as long as res-
onant transport be triggered, the staircase pattern forms
spontaneously.

With the above understanding of the feedback loops of
two states, we can summarize the mechanism for staircase
formation in a short story: In addition to the usual non-
resonant fluid-like turbulent transport, resonant transport
leads to another possible state in both the temperature

and vorticity profiles. The two transport-dominant states
spontaneously form layers in space. Therefore a staircase
involving resonant transport is formed. The staircase pat-
tern formation mechanism in this paper is different from
those of former studies [6, 9, 24, 33, 58].

In the above story, one question still needs to be ad-
dressed: when will the staircase actually emerge? The
answer is buried in the aforementioned feedback loops
FIG. 9. We will uncover it in the following subsection.

C. Conditions for staircases to exist

From the previous discussion, we know to initiate feed-
back loop II – the most crucial step is the triggering the
resonance condition, as shown in FIG. 8. Additionally,
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∂

∂t

(
δ2bΩZ

)
= − 1

Ci
ϑχn ∂

∂x

ln⟨T ⟩√
2ε0

+
1

Ci

(
ϑχn ∂

∂x

ln⟨T ⟩√
2ε0

) ∣∣∣∣
B

+ ϑχδ2b
∂2

∂x2
ΩZ + νcδ

2
b

∂2

∂x2
ΩZ

∂

∂t
ln ⟨T ⟩ = − ∂

∂x

[√
2ε0Ci(1− ϑ)χ

∂

∂x

(
∆ϕZ

)]
+

∂

∂x

[
χ

∂

∂x
ln ⟨T ⟩

]
+ χneo

∂2

∂x2
ln⟨T ⟩

1⃝

2⃝

3⃝
4⃝

5⃝
Main Balance

FIG. 9: Detailed feedback loop in type II Regions. 1⃝ Initially, the boundary value ∂x ln⟨T ⟩|B is larger than the local
value, which drives ΩZ growing in the positive direction (since the boundary value is positive). If ΩZ ≳ ΩD,

resonant transport χr is switched on, 2⃝ diffusion of flow and 3⃝ diffusion of local temperature are enhanced. 4⃝ The
local temperature profile is flattened and feeds back on the evolution of ΩZ . Boundary temperature gradient effects
become more significant since the local gradient is getting weaker. 5⃝ The enhanced diffusion of ΩZ at step 2⃝ can

balance such an increase of drive. Eventually, ΩZ reaches a quasi-steady state.

triggering must occur before the boundary temperature
gradient drive is balanced by the local gradient, as shown
in FIG. 9. Since both the local temperature gradient and
the mean flow are driven by the boundary gradient κBT ,
the key for resonant transport to be switched on is the
time scale for ΩZ to the resonance condition must be
smaller than for the local κT to balance κBT . Based on
this simple logic, we will give an estimate of the threshold
condition for staircase formation.

Let’s start with a simple diffusion system like below,
which has a constant diffusion coefficient:

∂w

∂t
= a

∂2

∂r2
w +Φ(r, t) (72)

wr

∣∣∣∣
r=0

= wr

∣∣∣∣
r=l

= q0 (73)

w

∣∣∣∣
t=0

= f(r), 0 ≤ r ≤ l (74)

The analytical solution w(r, t) can be obtained [59]. Then
its gradient can be written as:

∂w(r, t)

∂r
= − 2

l2

∫ l

0

∫ t

0

[ ∞∑
m=1

πmΦ(ξ, τ) cos

(
πmξ

l

)
× sin

(πmr
l

)
e−

π2am2(t−τ)

l2

]
dτ dξ

− 2

l2

∫ l

0

∞∑
m=1

πmf(ξ) cos

(
πmξ

l

)
sin
(πmr

l

)
e−

π2am2t
l2 dξ

+ q0

∞∑
m=1,3,5,...

4

πm
sin
(πmr

l

)(
1− e−

π2am2t
l2

)
Retaining to our model for the temperature profile
Eq.(61), consider the case where resonant transport has
not yet been triggered. We can neglect other terms and

only consider the influence of the boundary gradient
drive. Then we apply the above conclusion from the
simple system, and obtain the expression for the local
temperature gradient below:

∂ ln⟨T ⟩
∂x

∣∣∣∣
(x,t)

∼ ∂ ln⟨T ⟩
∂x

∣∣∣∣
B

×
[
1−

∞∑
m=1,3,...

4

πm
sin (πmx) exp

(
−π2χnm2t

) ] (75)

Here we recall that x ≡ ψ/Lψ. The first part of the
series contributes 1. This expression tells us that the
local temperature gradient evolves to the boundary value
in a time scale of order

τ∇T ∼ 1

π2χnm2
(76)

Putting the estimate of the local temperature gradi-
ent above, into the evolution equation for ΩZ Eq.(71),
and keeping only the temperature-gradient-related terms
gives:

∂

∂t
ΩZ ∼ 1

Ci

ϑχn

δ2b
√
2ε0

[
∂

∂x
ln⟨T ⟩

∣∣∣∣
B

− ∂

∂x
ln⟨T ⟩

∣∣∣∣
(x,t)

]

=
1

Ci

ϑχn

δ2b
√
2ε0

∂ ln⟨T ⟩
∂x

∣∣∣∣
B

×
∞∑

m=1,3,...

4

πm
sin (πmx) e−π

2χnm2t (77)

This gives the evolution of ΩZ driven by the boundary
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heat flux, before resonant transport is triggered. Thus:

ΩZ(t, x) ∼
1

Ci

ϑχn

δ2b
√
2ε0

∂ ln⟨T ⟩
∂x

∣∣∣∣
B

∞∑
m=1,3,...

[
4

πm
sin (πmx)

× τ∇T

(
1− e−π

2χnm2t
)]

(78)

Recall the key for the switch-on of resonant transport
is for ΩZ to reach the resonance condition ΩZ ≥ ΩD be-
fore the local temperature gradient equals the boundary
gradient. The time scale for the local temperature gradi-
ent to become comparable to the boundary value is τ∇T
as shown in Eq.(75). So the condition is equivalent to
saying there is ΩZ(τ∇T , x) > ΩD, at t = τ∇T :

ΩZ(τ∇T , x) ∼
1

Ci

ϑ

δ2b
√
2ε0

∂ ln⟨T ⟩
∂x

∣∣∣∣
B

×
∞∑

m=1,3,...

4

(πm)3
sin (πmx)

(
1− 1

e

)
> ΩD

(79)

This gives the requirement for the boundary temperature
gradient scale length:

∂ ln⟨T ⟩
∂x

∣∣∣∣
B

>
eCiΩDδ

2
b

√
2ε0

(e− 1)ϑ
∑∞
m=1,3,...

4 sin (πmx)

(πm)3

(80)

The series in the dominator above is a function of x ∈
[0, 1], which has the value domain of [0, 0.125], with the
maximum value at x = 0.5. As we mentioned in the
previous subsection that as long as resonance transport
be triggered, the staircase pattern forms spontaneously.
So the trigger sign we are looking for is that any position
in space is satisfied the resonance condition. Thus we
take the maximum value of the series. We also set the
factor e/(e − 1) ∼ 1 for simplicity. Then we can write
the threshold for the resonant transport to switch on as:

∂ ln⟨T ⟩
∂x

∣∣∣∣
B

> CiΩD
8δ2b

√
2ε0

ϑ
(81)

This is the threshold for the initial value of ∂x ln⟨T ⟩ = 0.
Restoring the initial condition effect gives us the thresh-
old:

∆κcritT ≡ ∂ ln⟨T ⟩
∂x

∣∣∣∣
B

− ∂ ln⟨T ⟩
∂x

∣∣∣∣
I

> CiΩD
8δ2b

√
2ε0

ϑ
(82)

Because of x = ψ/Lψ, Lψ = −BθR0a and dψ =
−BθR0dr, we have dx = dr/a. Meanwhile, there is
Ci = qω0Lψ/Ti. We also restore ΩD and δb to the forms
before simplification as ΩDT0/ω0 and δb/a. Then the
threshold Eq.(82) can be written in the minor radius co-
ordinate as:

1

LT

∣∣∣∣
B

− 1

LT

∣∣∣∣
I

< − q

T0
ΩDT0BθR0

(
δb
a

)2
8
√
2ε0
ϑ

(83)

FIG. 10: Scan of ∆κcritT by varying δb and ∆κT with
κIT = 1. Different markers represent the number of steps

observed. When boundary drive exceeds a threshold
(from hollow circles to filled circles), step (plateau) will
form. The analytical prediction from Eq.(82) is plotted
as the dotted line, which well fits with the numerical
scan of the threshold. Larger boundary drive (∆κT )
results in more steps. Smaller δb leads to more steps.

Noticing ΩDT0 is the the precession velocity of trapped
ions in α direction, so the unit of it is rad per second.
With ΩD ∝ qs(r0)/(qr0R0B0) and safety factor qs(r0) =
r0B0/(R0Bθ) [60], we then have:

1

LT

∣∣∣∣
B

− 1

LT

∣∣∣∣
I

< −8
√
2

ϑ

1

R0

√
a

R0

(
δb
a

)2

(84)

To validate the estimate we obtained, we scan the
system by varying parameters. For instance, for Ci =
0.1,ΩD = 1, ε0 = 1/4, ϑ = 0.2, we vary δb from 0.02
to 0.1. We set κIT ≡ ∂x ln⟨T ⟩|I = 1 and scan κBT ≡
∂x ln⟨T ⟩|B = κIT + ∆κT to obtain FIG. 10. The dif-
ferent markers represent the number of steps observed.
Stronger flux drive leads to more steps. The threshold
Eq.(82) from the simple theoretical prediction is plotted
as the dotted line, which captures the actual ∆κT thresh-
old from numerical scans of the system. But we need to
keep in mind that Eq.(82) does not include the χneo and
νc effects, which can play more important roles when
∆κT is near threshold. And for the purpose of smooth
calculation, there is a “bandwidth” around ΩZ = ΩD in
the transport coefficient model in FIG.2, which can affect
the threshold too.

D. Features of staircases

From the evolution of ΩZ Eq.(71), we know that in
region II, to maintain a quasi-steady ΩZ , there should be
a balance of boundary heat flux drive and local resonant
transport of ΩZ :(

1

Ci
χn ∂

∂x

ln⟨T ⟩√
2ε0

) ∣∣∣∣
B

∼ χrδ2b
∂2

∂x2
ΩZ (85)
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ΩZ

ΩD

wII

∆ΩZ

δ2b∆ϕZ

ln⟨T ⟩

FIG. 11: A diagram for profiles. Flow ΩZ that are at
resonance and the width of plateau region wII

correspond.

Because in the L.H.S. of the relation above, ∂x ln⟨T ⟩|B is
a constant, the ΩZ in Region II should be in the form of
a quadratic function:

ΩZ(x) → −KIIx
2 (86)

where KII is a parameter. Putting this form of ΩZ into
the balance relation Eq.(85) gives:

KII ∼
1

δ2bCi
√
2ε0

χn

χr

(
∂ ln⟨T ⟩
∂x

) ∣∣∣∣
B

(87)

Recall the model of χ(ΩZ) in FIG. 2. In the half width
of the plateau region width wII, ΩZ should decrease from
the maximum value ΩMax

Z to the minimum value that can
trigger resonant transport ΩCrit

Z , as illustrated in FIG. 11.
The difference between the maximum and minimum val-
ues is defined as ∆ΩZ here. Then from FIG. 11 and
Eq.(86), we have that the variation of ΩZ in the spatial
range of wII/2 equals ∆ΩZ :

KII

(wII

2

)2
∼ ΩMax

Z − ΩCrit
Z ≡ ∆ΩZ

FIG. 12: The plateau width v.s. δb, with different ∆ΩZ
and κBT according to Eq.(88). Here κBT = κIT +∆κT . (a)
With the same boundary drive, for example ∆κT = 0.2,

a bigger initial temperature gradient can lead to a
smaller step size, therefore a larger number of steps is
possible. (b) For a set of (δb, κBT ), as the flow slightly

grows, ∆ΩZ will slightly grow, for example from 0.1 to
0.2. This is manifested as the merging of steps.

Here ∆ΩZ is related to the “bandwidth” wΩ that we
defined in the χ model in FIG. 2. Therefore combining
the expression for KII in Eq.(87), we obtain the estimate
of the plateau or step width as:

wII ∼ 2

√
∆ΩZ
KII

∼ 2δb

√
∆ΩZ

χr

χn

Ci
√
2ε0

∂x ln⟨T ⟩|B
(88)

For example, we take χ/χn = 100, Ci = 0.1, ε0 = 1/4,
and wΩ = 0.2 ∼ ∆ΩZ/ΩD from the χ(ΩZ) model. Then
the relation (Eq.(88)) between wII and δb can be plot-
ted for different ∆κT as in FIG. 12. From the numer-
ical results, we find that after ΩZ ≃ ΩD, ΩZ may still
grow slowly, therefore ∆ΩZ also grows slowly. Then the
typical size of the plateau region also increases slightly.
Since the maximum step number is limited by 1/wII, a
decreasing in 1/wII is manifested as the merging of steps,
as illustrated in FIG. 12.

In FIG. 13, we use the same ∆κT , but change the initial
value κIT . The results show that a larger initial gradient
decreases the plateau width and allow more steps to ex-
ist, just as Eq.(88) predicted. But after changing κIT , if
we want to maintain the extra steps, we need a stronger
∆κT . Otherwise, the steps will merge, as in FIG. 13II.
For more complicated initial profiles-other than with a
constant gradient-the locations of pattern and step num-
ber can change.

In conclusion, the step size is proportional to the ba-
nana width and is heavily influenced by the ratio of res-
onant to non-resonant transport coefficients. The to-
tal temperature gradient (or heat flux, since χ is al-
ways non-resonant at the boundaries) at the boundaries
κBT = κIT + ∆κT determines the typical width of the
plateau (steps) in the E×B staircase, and therefore limits
the maximum possible number of steps. The steps that
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actually appear and maintain are determined by the “free
energy” that passes through the system, i.e.the increment
of heat flux χn∆κT . Therefore, larger ∆κT allows more
steps to form. The stronger the net drive ∆κT is, the
greater the number of steps.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we studied mean profile evolution in
a potential vorticity conserving system for ITG-driven
trapped ion mode turbulence, which is derived from the
Darmet model. The Darmet model is perhaps the sim-
plest possible gyro-kinetic drift wave model, and exhibits
many generic properties. We use the quasi-linear approx-
imation to establish the relation between the heat flux,
vorticity flux, potential vorticity flux and the profiles of
mean temperature and mean vorticity. The mean pro-
file evolution equations are closed by these flux-gradient
relations. We also include the extended turbulence in-
tensity evolution equation for potential enstrophy ⟨Ũ2⟩,
and then transform from ⟨Ũ2⟩ to ⟨ϕ̃2⟩ using a Green’s
function. Taken together, these equations constitute a
turbulence and profile evolution system. In this system,
trapped ions can resonate with the (trapped ion) mode
through a Doppler shift due to E×B toroidal mean flow.
Such resonance between wave and particle leads to reso-
nant transport. Spatial variation in the flow profile then
necessarily leads to variation in the balance of resonant
and non-resonant transport.

We use the dispersion relation obtained from the
Darmet system and a bi-Lorentzian spectrum model to
simplify the transport coefficients appearing in the fluxes.
We obtain three important conclusions:

1. The resonance condition can be directly linked to
a requirement on the E × B mean flow, i.e. 1 ≲
ΩZ/ΩD ≲ 1.5.

2. The ratio between resonant and non-resonant
transport coefficients is approximately: χr/χn ∼
(ωR/γ)

2 ∼ O(10) − O(100). Here the square rela-
tion is a result of the calculating of the Lorentzian
spectrum with the TIM dispersion relation.

3. All the transport effects are condensed into coef-
ficients, so we can simplify them with a unified
model.

Based on these conclusions, we model the transport co-
efficients as piecewise functions of ΩZ , and simplify the
system. Then combining the profile evolution equation,
the turbulence intensity evolution equation, the bound-
ary conditions and the transport coefficient model, we
finally obtain a solvable turbulence-profile evolution sys-
tem which contains resonant and non-resonant turbulent
transport, as Eq.(60)-(66). We use this system to study
the profile evolution and E ×B staircase formation.

We solve this turbulence-profile evolution system with
a fixed boundary flux drive κBT ≡ ∂x ln⟨T ⟩|B. The re-
sults show that when boundary drive κBT − κIT is strong
enough (where κIT ≡ ∂x ln⟨T ⟩|(x,t=0)), the profiles will
evolve into a E × B staircase, which is a quasi-periodic
pattern in temperature gradient and E × B mean flow
shear. According to the states of the temperature profile,
we categorize the structures which occur in two regions.

• In the corrugation region (Region I), non-resonant
turbulent transport is dominant and temperature
profiles are steeper. The profiles of mean flow and
mean vorticity are determined by the remnants of
boundary gradient drive, non-resonant turbulent
diffusion and collisional dissipation of mean flow
itself.

• In the plateau regions (Region II), where mean
flow has values near precession velocity ΩD and in-
duces resonant transport, the temperature profiles
are near marginal and shallow. In the evolution
of mean flow (or flow shear, mean vorticity), the
main saturation mechanism is the resonant turbu-
lence diffusion of flow itself.

Resonant and non-resonant transport regions are deter-
mined by the E × B mean flow profile, the structure
of which forms spontaneously in space when resonant
transport is triggered. The variation of turbulence in-
tensity ⟨ϕ̃2⟩ between regions I and II is small, because
the Green’s function heavily smooths the corrugations
or patterns in the profile of ⟨Ũ2⟩. So the E × B stair-
case pattern which emerges in this system is a result of
the transition from non-resonant to resonant transport
triggered by E × B mean flow structure, and not a re-
sult from the turbulence intensity variation in space. Of
course, the E × B mean flow and thermal transport are
generated from turbulence, so the turbulence still plays
an essential role in the self-organized structure.

After studying the feedback loops of staircase forma-
tion, we conclude the condition for the staircase pattern
to form is for the boundary heat flux to be strong enough
to drive the E × B mean flow sufficiently to satisfy the
resonance condition prior to when the local temperature
gradient equals the boundary value. Eq.(82) is the esti-
mate of the required critical boundary temperature gra-
dient derived from this condition. The staircase will be
triggered when ∆κT > ∆κcritT . A scan of our turbulence-
profile evolution system Eq.(60)-(66) shows that ∆κcritT
constitutes the threshold criterion, as in FIG. 10.

For E × B mean flow ΩZ to maintain a quasi-steady
state, we need the constant boundary heat flux drive to
balance with the local resonant turbulent transport of
ΩZ . According to this, we obtain an estimate of the step
size of staircase pattern, Eq.(88). The step size is:

1. proportional to the banana orbit width δb;

2. proportional to
√
χr/χn. Since the ratio between

resonant and non-resonant transport coefficients is
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(I) κI
T = 0.5 (II) κI

T = 2

FIG. 13: The initial value of ∂x ln⟨T ⟩ can affect the step size and step number. With ∆κT = 0.2, δb = 0.06.

approximately the square of the ratio of the real
frequency and the growth rate of TIM, the step
size is proportional to |ωR/γ| > 1;

3. inversely proportional to
√
κBT , i.e. the stronger the

boundary heat flux is, the narrower the steps are.

According to the third point above, increasing κBT =

κIT + ∆κT decreases the step size, and therefore allows
more steps in a finite domain. This is because a stronger
heat flux drives the system evolution further towards the
direction of enstrophy reduction (as indicated in Eq.(C8)
shown in Appendix C), which corresponds to a more “reg-
ular” structure. But to make the pattern clearer and to
maintain more steps, a strong net boundary drive ∆κT
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is necessary.
Many assumptions and approximations have been

made in this work. The Darmet model we used is for
trapped ion mode, in which the turbulence frequency is
smaller than the bounce frequency. We dropped density
evolution effects in the derivation of total PV ⟨q⟩ + δq.
|qiϕ/T | ≪ 1 is assumed as a small parameter. Quasi-
linear approximation we used is effective when the Kubo
number Ku < 1. Models of the dispersion relation are
used. The bi-Lorentz spectrum model is used–indeed,
this approximation has a major impact on the result.
An approximate transport coefficient model is used to
unify all transport coefficients in the quasi-linear flux.
The triplet nonlinearity in turbulence intensity evolution
equation is approximated with a diffusion effect and a
nonlinear damping effect. These can be improved in the
future. We made a hypothesis on the near marginality
profile to address the issue of the flatten temperature
profile relaxed by the resonant turbulent transport. All
these approximations, assumptions and hypothesis limit
our model. Most of them can be improved in future stud-
ies.

As we have stated at the beginning of this paper, the
Darmet model applies to conditions of low turbulence
frequency, low collisionality, etc. Then the question of
how this model relates to the usual regimes where ITG
and trapped electron mode (TEM) (regarded as the basic
turbulence drives) are active is raised. First, we clarify
that the Darmet model indeed applies for different condi-
tions from the ITG/TEM, as usually discussed. But the
Darmet is perhaps the simplest kinetic model for drift
wave turbulence that manifests zonal flow, resonant par-
ticles, etc. Due to the simplicity of the Darmet model, we
can easily construct a theory that contains the interplay
between turbulence, mean flow, and wave-particle reso-
nance, as we showed in this paper. And such interplay
can generate a staircase-like pattern in profiles, which
is an interesting self-organized structure. In a sense,
the theory in this paper can be regarded as a kind of
paradigm for self-organization and pattern formation in
kinetic drift wave theory. Then, we can study whether
there exist similar patterns in the usual ITG/TEM condi-
tion. Alternatively, for the condition of a higher fraction
of trapped ion or fast ions, the question of whether the
resonance mechanism helps improve confinement is inter-
esting. Finally, it is still unknown whether the trapped
ion mode makes significant contributions in the gyro-
kinetic simulations or experiments. We will continue to
explore the limitations of our theory in the future.

In conclusion, this paper studied a turbulence-profile
evolution system with resonant and non-resonant trans-
port. This is a new realization of the general idea of inho-
mogeneous mixing and bistable transport[30]. We found
the profile staircase pattern (E ×B staircase) caused by
the onset of resonant turbulent transport and analyzed
the feedback mechanism which forms the pattern. We
obtained an estimate of the trigger condition for E × B
staircase formation and the estimate of the step size in

the staircase. This work also provides a mechanism for
collisionless saturation of the zonal flow, i.e. through the
resonant turbulent zonal vorticity flux, as did in Ref.[61].
This work also has potential connection to the studies
for ITB triggering by resonance between turbulence and
particles [62, 63]. The existence of staircase also suggests
some possible improved confinement scenarios, of an “en-
hanced L mode” type. We will continue to explore the
potential applications of the theory of E × B staircase
and resonance mechanism discussed in this paper, and
especially applications to confinement improvement.

ACKNOWLEDGMENTS

This work is supported by National Key R&D Pro-
gram of China under 2018YFE0303102, National Nat-
ural Science Foundation of China under Grant No.
U186722, 11875124, 11905051, Science and Technol-
ogy Department of Sichuan Province under Grant No.
2020JDTD0030. The work is also supported by the U.S.
Department of Energy, Office of Science, Office of Fu-
sion Energy Sciences under Award Number DE-FG02-
04ER54738.

Appendix A: Dispersion function

For the kinetic system Eq.(4)-(5), the ordering of scales
are,

ωti, ωbi > ωi∗ > ω ∼ ωDi > νieff (A1)
ωte, ωbe > νeeff > ωe∗ > ω (A2)

The quantities in the first set of relation are the tran-
sit frequency and bounce frequency of trapped ion, dia-
magnetic frequency, TIM frequency, magnetic drift fre-
quency, and collision frequency for ions. The second set is
for electrons. The kinetic equation and quasi-neutrality
equation with normalized quantities are:

∂thi +ΩDE∂yhi −
[
ϕ,−Ciϕ̃⟨fi⟩+ hi

]
= ∂t

(
Ciϕ̃⟨fi⟩

)
+ ∂y(ϕ− ⟨ϕ⟩y)∂ψ⟨fi⟩

(A3)

Cadϕ̃− Ci∆ϕ =
2

n0
√
π

∫ ∞

0

J0hi
√
EdE (A4)

where (ψ, α) → (x, y), hi is the non-adiabatic fluc-
tuation, and we already assumed adiabatic electrons.
Ω̂D = ΩDT0/ω0, Ê = E/T0, Ci = ω0Lψqi/T0, where
“ ˆ ” are neglected here and after.

Applying Fourier transformation to the kinetic equa-
tion Eq.(A3), and dropping the zonal portion in ϕ and
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the Poisson bracket, one obtains:

(−iω + ikyΩDE)hi = −iωCiϕ̃⟨fi⟩+ ikyϕ̃∂x⟨fi⟩

= −iωCiϕ̃⟨fi⟩+
iky
Ci

∂x⟨fi⟩
⟨fi⟩

Ciϕ̃⟨fi⟩

= −i[ω − ωi∗(E)]Ciϕ̃⟨fi⟩

where,

ωi∗(E) =
ky
Ci

∂x⟨fi⟩
⟨fi⟩

Then,

hi =
ω − ωi∗(E)

ω − kyΩDE
Ciϕ̃⟨fi⟩ (A5)

Let,

z ≡ ω

kyΩD
(A6)

ω∗(E) ≡ ωi∗(E)

kyΩD
=

1

CiΩD

[
κn + κT

(
E − 3

2

)]
(A7)

Assuming ⟨f⟩i = n0e
−E , then we have:

hi =
z − ω∗(E)

z − E
Ciϕ̃n0e

−E (A8)

For the interchange-like mode of TIM, the dispersion
function can be obtained by putting the expression of
hi above into Eq.(A4) and directly integrating it with E.
Notice z is assumed to be a complex number here. Now
we obtain the dispersion function for TIM:

D(k, ω) = (Cad/Ci) + ρ2i0k
2
y + δ2b0k

2
x

− 2√
π

∫ ∞

0

z − ω∗(E)

z − E
e−E

√
EdE (A9)

= (Cad/Ci) + ρ2i0k
2
y + δ2b0k

2
x

+ 2

[
z − κn

CiΩD

(
1− 3ηi

2

)]
×
[
1−

√
πe−z

√
−z − 2

√
zF
(√
z
)]

− κT
CiΩD

[
1 + 2

(√
πe−z(−z)3/2 + z

)
− 4z3/2F

(√
z
) ]

(A10)

where F (x) is the Dawson integral:

F (x) = e−x
2

∫ x

0

ey
2

dy (A11)

Using the plasma dispersion function Zp, we can write
the dispersion function as:

D(k, z) = (Cad/Ci) + ρ2i0k
2
y + δ2b0k

2
x

+ 2

[
z − κn

CiΩD
(1− 3ηi

2
)

] [
1 +

√
zZp(

√
z)
]

− κT
CiΩD

[
1 + 2z + 2z3/2Zp(

√
z)
]

(A12)

1. The linear instability threshold κc
T

Following the usual Landau’s prescription, there are
real and imaginary contributions in Eq.(A12). In the
case of marginal growth rate, where γ ≃ 0, the marginal
real frequency must keep the imaginary part of dispersion
function to be 0, i.e. ℑD(k, ωth) = 0. This corresponds
to:

ℑD(k, ωth) = 0 ⇒ z − ω∗(Eres) = 0

where Eres = ω/(kyΩD). It’s easy to obtain the marginal
real frequency from the expression above:

ωth =
κn − 3

2κT

CiΩD − κT
kyΩD (A13)

Putting ωth into the real part of D(k, ωth/(kyΩD)) and
letting it be 0, this gives the critical threshold for κT
(where κn are assumed to be 0 in this paper) as:

κcT = CiΩD
[
Cad/Ci +

(
ρ2i0k

2
y + δ2b0k

2
x

)]
(A14)

Only when the local temperature gradient is larger than
κcT , can the linear instability be excited. Besides,
Eq.(A14) also provides a limitation for wave numbers:

Θmax ≡ ρ2i k
2
y,max + δ2bk

2
x,max =

κT
CiΩD

− 1 + τ√
2ε0

(A15)

When the parameters in the R.H.S of Eq.(A15) take ϵ0,
τ , Ci in Table III, and ΩD = 1, κT = 0.4, we will have
Θmax ≃ 1.17. Eq.(A15) can well fit the numerical re-
sult in FIG. 14. κT and other parameters in criterion
Eq.(A15) can affect the value of Θmax. But as long as
parameters are around the values in Table III, we will
always have Θmax ∼ O(1). So for simplicity, we just
take Θmax ∼ 1 and use it in the calculation of transport
coefficients in section IV.

2. Real frequency and growth rate

When the parameters in dispersion function Eq.(A12)
take the values in Table III, we can numerically calculate
the dispersion relation, the results are shown in FIG. 15.
The real frequency can be well fit by the relation

ωR =
R1kyΩD

1 +R2(ρ2i k
2
y + δ2bk

2
x)

(A16)

where R1 ≃ 2.3675, R2 ≃ 0.16 ≪ 1. So there is
ωR ≃ RkyωD = 2.36kyωD. Such a model for the real fre-
quency is effective for moderately varying κT as shown
in FIG. 15(a). Notice the factor R is different from the
results in Ref.[34, 35] but fit with the result in Ref.[39],
where the former didn’t include the adiabatic response
in the dispersion function properly.

As for the growth rate, it can be roughly formulated
as

γ = ΛRΩDky(ky,max − ky) (A17)
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TABLE III: Parameters

Parameters ϵ0 τ Ci ρi δb ΩD κT κn

Values 1/4 1 0.1 2× 10−3/2 0.1 1 0.4 to 0.8 0

FIG. 14: kx,max, ky,max for different (ρi, δb) with
parameters in Table III. Data are scanned for discrete

wave numbers. We can use ρ2i k2y + δ2bk
2
r = 1.17 to fit the

data points, like the dashed lines.

Here ky,max varies with kx and κT but can always be
written as ky,max = 1/(µyρi). And because of Θmax ≲ 1,
there will be

µy > 1 (A18)

For the parameter Λ, we know it varies with kx and κT .
Since it has the unit of length, we can rewrite it as Λ =
ρi/σ for simplicity. From the fitting, we find that σ are
always bigger than 3 in the examples in FIG. 15(b). And
since Λ decreases with the increase of kx, we have:

σ > 1 (A19)

If we want to match the fact that when κT < κcT the
growth rate will vanish, we can add a simple restriction
to parameters in Eq.(A17) like below:

σ = ∞, µy = ∞, whenκT < κcT (A20)

This leads to γ = 0 when κT < κcT .
There is another useful conclusion. Using the models

Eq.(A16) and Eq.(A17) above, we know the ratio be-
tween the real frequency and the growth rate is approxi-
mately:

ωR
γmax

≃ 2

Λky,max
∼ 1

µyσ
(A21)

FIG. 15: Dispersion Relation, with
δ2b = 0.01, ρ2i = 0.004, kx = π. (a) Real frequency in

different κT , gray line 2.36ky is an approximation. (b)
Growth rate in different κT , gray lines are fit lines with
model Eq.(A17). The resulting Λ/ρi are 0.223, 0.292,

0.309.

Since µyσ > 1, we have

ωR
γmax

∼ O(1)−O(10) (A22)

which is useful in the calculation of the transport coeffi-
cients in section IV C.

Appendix B: Simplification of Transport coefficients

For the flux ⟨T̃ (A − ∆)Ṽx⟩ appeared in the intensity
evolution Eq.(31) in section III D, we can apply the quasi-
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linear approximation:

⟨T̃ (A−∆)Ṽx⟩k ∼ i(A+ k̄2⊥)

ω − ky

(
ΩZ +

Ci√
2ε0

Ω̄D
A+ k̄2⊥

)
×⟨Ṽ 2

x ⟩k
1√
2ε0

(
Ci
δ2b∂

3
xϕZ

A+ k̄2⊥
− ∂x ln⟨T ⟩

) (B1)

Then,

⟨T̃ (A−∆)Ṽx⟩ ∼ χ6
Ci√
2ε0

δ2b∂
3
xϕZ − χ5∂x

ln⟨T ⟩√
2ε0

where

χ6 =
∑
k

[Ṽx(k)]
2 i

ω − ky

(
ΩZ +

Ci√
2ε0

Ω̄D
A+ k̄2⊥

)
χ5 =

∑
k

[Ṽx(k)]
2 i(A+ k̄2⊥)

ω − ky

(
ΩZ +

Ci√
2ε0

Ω̄D
A+ k̄2⊥

)
All the non-resonant transport coefficients in Eq.(31)-

(33) are listed as follows:

χn−res
1 = 4

∫ ky,max

0

∫ kx,max

0

|ϕ̃|2kx,ky
√
2ε0(ρ

2
i k

2
y + δ2bk

2
x)

× Λky(ky,max − ky)

RΩD

[
1 + Λ2 (ky,max − ky)

2
]2 dkxdky

(B2)

χn−res
2 = 2

∫ ky,max

0

∫ kx,max

0

|ϕ̃|2kx,ky
√
2ε0(ρ

2
i k

2
y + δ2bk

2
x)

× Λky(ky,max − ky)

RΩD

[
1 + Λ2 (ky,max − ky)

2
]dkxdky

(B3)

χn−res
3 = 2

∫ ky,max

0

∫ kx,max

0

|ϕ̃|2kx,ky

× Λky(ky,max − ky)

RΩD

[
1 + Λ2 (ky,max − ky)

2
]dkxdky

(B4)

χn−res
4 = 2

∫ ky,max

0

∫ kx,max

0

|ϕ̃|2kx,ky
1

A+ ρ2i k
2
y + δ2bk

2
x

× Λky(ky,max − ky)

RΩD

[
1 + Λ2 (ky,max − ky)

2
]dkxdky

(B5)

χn−res
5 = 2

∫ ky,max

0

∫ kx,max

0

|ϕ̃|2kx,ky (A+ (ρ2i k
2
y + δ2bk

2
x))

× Λky(ky,max − ky)

RΩD

[
1 + Λ2 (ky,max − ky)

2
]dkxdky

(B6)
χn−res
6 = χn−res

3 (B7)

Using the dispersion relation Eq.(36) and the spectrum
Eq.(37), we can obtain the analytical results, for example
(letting α = 0):

χn−res
3

≃ |ϕ̃0|2

ΩD
βσ

{(
β2 + µ2σ2 + 1

)
log

[(
1 +

1

β2

)
×
(
1 +

1

µ2σ2

)]
− 2 cot−1(β)

(
β3 − βµ2σ2 + β

)
+ 2µσ

(
β2 − µ2σ2 − 1

)
cot−1(µσ)

}
/[

ρi

(
β2
(
2− 2µ2σ2

)
+ β4 +

(
µ2σ2 + 1

)2)]
∼ |ϕ̃0|2µ2σ2

ΩDρi

[
(µ2σ2 + 1 + β2)

2 − 4µ2σ2β2
]

×
[
2β cot−1(β)− 2µσ cot−1(µσ)

+ log

((
1 +

1

β2

)(
1 +

1

µ2σ2

))]
(B8)

where the predominate contributions are from µ2σ2 re-
lated terms. Collecting those terms gives Eq.(41). For
other coefficients, like χn−res

1 , we have:

χn−res
1 ≃ 2

√
2ε0(ρ

2
i ⟨k2y⟩+ δ2b ⟨k2x⟩)

∫ ky,max

0

∫ kx,max

0

|ϕ̃|2kx,ky
2Λky(ky,max − ky)

ΩD

[
1 + Λ2 (ky,max − ky)

2
]2 dkxdky

(B9)

where ⟨k2x⟩ and ⟨k2y⟩ are averaged quantities extracted
from the integral. For simplicity, we just set ⟨k2x⟩ =
Ck2x,max and ⟨k2y⟩ = Ck2y,max. With the fact that we
know from the dispersion relation (see Eq.(A15)):

Θmax ≡ ρ2i k
2
y,max + δ2bk

2
x,max ∼ 1 (B10)

where Θmax is a constant, we can write the approxima-
tion below:

χn−res
1 =

√
2ε0CΘmaxχ

n−res
3 (B11)

We can calculate all the other non-resonant transport
coefficients in the same way, from χn−res

1 to χn−res
6 . Let

ϑ ≡
√
2ε0ΘmaxC < 1 be a constant.
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For resonant transport coefficient χres
3 :

χres
3 =

∫ kx,max

0

∫ ky,max

0

|ϕ̃0|2

π2∆kx∆ky

×
k2yδ(ωR − kyΩZ − kybkΩ̄D)[

1 +

(
kx − kr0
∆kx

)2
][

1 +

(
ky − ky0
∆ky

)2
]

≃
|ϕ̃0|2k2y,res

[
|∆ky

(
ΩZ + bk,resΩ̄D

)
|
]−1[

1 +

(
kx,res
∆kx

)2
][

1 +

(
ky,res
∆ky

)2
] (B12)

Put Θres, ∆ky = βyky,max = βy/(µyρi) and ∆kx =
βxkx,max = βx/(µxρi) into equation above, and set
βx/µx = βy/µy = β/µ. Then we can approximate the
expression above as:

χres
3 ≃

|ϕ̃0|2k2y,res[
1 +

(
µx
βx

)2

δ2bk
2
x,res +

(
µy
βy

)2

ρ2i k
2
y,res

]

× 1∣∣∣∣ βyµyρi

(
ΩZ +ΩD

3/2

τ +
√
2ε0Θres

)∣∣∣∣
(B13)

We can set τ +
√
2ε0Θres ∼ 3/2 for convenience. An

approximate expression for χres
3 can be obtained as

Eq.(B17).
Other resonant coefficients can be calculated the same

way, for instance χres
2 . Integrating the expression of χres

2

gives:

χres
2 =

∫ kx,max

0

∫ ky,max

0

{
|ϕ̃0|2

π2∆kx∆ky

×
k2yδb(ωR − kyΩZ − kybkΩD)[

1 +

(
kx − kr0
∆kx

)2
][

1 +

(
ky − ky0
∆ky

)2
]

×

(
1− 1

τ +
√
2ε0
(
ρ2i k

2
y + δ2bk

2
x

))}dkxdky

≃
|ϕ̃0|2k2y,res[

1 +

(
kx,res
∆kx

)2
][

1 +

(
ky,res
∆ky

)2
]

×

(
1− 1

τ +
√
2ε0
(
ρ2i k

2
y,res + δ2bk

2
x,res

))

× 1

|∆ky (ΩZ + bk,resΩD) |
(B14)

We can approximate the expression above as:

χres
2 ≃ |ϕ̃0|2k2y,res

√
2ε0Θres[

1 +

(
µx
βx

)2

δ2bk
2
x,res +

(
µy
βy

)2

ρ2i k
2
y,res

]

× 1∣∣∣∣∣ βyµyρi

(
ΩZ +ΩD

3/2

τ +
√
2ε0(δ2bk

2
x,res + ρ2i k

2
y,res)

)∣∣∣∣∣
≃ |ϕ̃0|2k2y,res

β2
√
2ε0Θres

β2 + µ2Θres

1∣∣∣∣ βyµyρi

(
ΩZ +

3ΩD/2

τ +
√
2ε0Θres

)∣∣∣∣
(B15)

Writing down the list of resonant transport coefficients
reads:

χres
2 = |ϕ̃0|2k2y,res

β2
√
2ε0Θres

β2 + µ2Θres

µyρi
|βy (ΩZ +ΩD)|

(B16)

χres
3 = |ϕ̃0|2k2y,res

β2

β2 + µ2Θres

µyρi
|βy (ΩZ +ΩD)|

(B17)

χres
4 = |ϕ̃0|2k2y,res

β2(A−
√
2ε0Θres)

β2 + µ2Θres

µyρi
|βy (ΩZ +ΩD)|

(B18)

χres
5 = |ϕ̃0|2k2y,res

β2(A+
√
2ε0Θres)

β2 + µ2Θres

µyρi
|βy (ΩZ +ΩD)|

(B19)

Appendix C: Potential Enstrophy Budget

In this section, we discuss the potential enstrophy (PE)
budget of the potential vorticity system Eq.(13)-(14) de-
rived in section II. The potential enstrophy is defined
as
∫
⟨(⟨q⟩ + δq)2⟩dx. First, we multiply ⟨q⟩ on the both

sides of Eq.(13) and integrate it in x. Here we assume
the domain is x ∈ [L,R]. This gives:

∂t

∫ R

L

1

2
⟨q⟩2dx = −

∫ R

L

∂x⟨Ṽxδq⟩⟨q⟩dx (C1)

For the fluctuation PV Eq.(14), we multiply δq on the
both sides and integrate it in the whole space. This gives:

∂t

∫ R

L

1

2
⟨δq2⟩dx+

∫ R

L

〈
∇ ·
(
Ṽ
δq2

2

)〉
dx

= −3

2
ΩD

∫ R

L

⟨δq∂yT̃ ⟩dx− ⟨Ṽxδq⟩⟨q⟩
∣∣∣∣R
L

+

∫ R

L

∂x⟨Ṽxδq⟩⟨q⟩dx

(C2)

After adding the two equations above, we see the PE
budget is determined by three parts: the triplet nonlinear
term, the correlation of δq and T̃ , and the potential vor-
ticity flux from boundary. A quasilinear approximation
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of the PV flux can be obtained using the same method in
section III. So the second term in the R.H.S. of Eq.(C2)
becomes:

⟨Ṽxδq⟩⟨q⟩
∣∣∣∣R
L

= χ3Ci∂x∆ϕZ

[
ln⟨T ⟩√
2ε0

− Ci∆ϕZ

] ∣∣∣∣R
L

− (χ1 + χ3)
∂x ln⟨T ⟩√

2ε0

[
ln⟨T ⟩√
2ε0

− Ci∆ϕZ

] ∣∣∣∣R
L

(C3)

If we set the boundary conditions the same as Eq.(62)-
(64), then since ∂x∆ϕZ |B = 0, the first term in the R.H.S.
of Eq.(C3) is 0. Finally, for the second term in the R.H.S.
of Eq.(C2):

⟨Ṽxδq⟩⟨q⟩
∣∣∣∣R
L

= −(χ1 + χ3)
κBT√
2ε0

⟨q⟩
∣∣∣∣R
L

∼ 2χn κBT√
2ε0

⟨q⟩
∣∣∣∣R
L

(C4)

where we defined ΩZ = 0 at boundaries. So χ is always
non-resonant at boundaries. Equation above means the
constant driving heat flux from boundary times the mean
PV is a source or sink for the total PE.

The first term in the R.H.S. of Eq.(C2) is actually a
correlation between fluctuating temperature and vortic-
ity, since the averaging ⟨·⟩ is in y:∫ R

L

⟨δq∂yT̃ ⟩dx =

∫ R

L

⟨(T̃ − Ci∆ϕ̃)∂yT̃ ⟩dx

= −Ci
∫ R

L

⟨∆ϕ̃∂yT̃ ⟩dx (C5)

Here Ci⟨∆ϕ̃∂yT̃ ⟩ has the quasi-linear approximation:

⟨∆ϕ̃∂yT̃ ⟩ ≃ Θ(1−
√
2ε0Θ)χ3Ci∂x∆ϕZ −Θχ3

∂x ln⟨T ⟩√
2ε0

(C6)
where Θ = δ2bk

2
x + ρ2i k

2
y ≲ 1 and ε0 < 1, thus

√
2ε0Θ < 1

and 1 −
√
2ε0Θ ∼ 1. Putting the formula above into

Eq.(C5), integrating it and assuming the system is in an
initial state where ∂xχ3 = 0 give the result:

− 3

2
ΩD

∫ R

L

⟨δq∂yT̃ ⟩dx ≃ 3

2
ΩDCiΘχ

n⟨q⟩
∣∣∣∣R
L

(C7)

Collecting all the results above and putting them into
Eq.(C2), we have the total PE budget as:

∂t

∫ R

L

1

2

(
⟨q⟩2 + ⟨δq2⟩

)
dx ≃

(
3

2
ΩDCiΘ− 2

κBT√
2ε0

)
χn⟨q⟩

∣∣∣∣R
L

(C8)
where the nonlinear term is neglected. There is a critical
boundary gradient in PE budget Eq.(C8):

(κBT )C =
3

4
CiΩDΘ

√
2ε0 (C9)

When ⟨q⟩|RL > 0 and κBT > (κBT )C , the total potential en-
strophy of the system will decrease driving by the exist-
ing boundary heat flux. And the stronger the boundary
drive is, the further the PE evolves towards reduction.
Eq.(C9) has the same form as the criterion for staircase
pattern triggering in Eq.(81).
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