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Abstract

3D Geometric Deep Learning and its Engineering Applications

by

Chiyu Jiang

Doctor of Philosophy in Mechanical Engineering

University of California, Berkeley

Professor Philip S. Marcus, Chair

The physical world is spatially three dimensional, hence understanding the physical and semantic
properties of the three dimensional world is crucial to designing engineering systems that oper-
ate in and interact with its three dimensional surroundings. Recent advances in Deep Learning
has shown great promise in offering a general methodology for creating algorithms that learns to
map sensory inputs to desired outcomes by training on a repository of data. Such advances have
been particularly salient in fields such as computer vision, where algorithms have achieved near-
human or super-human performance in a range of traditionally difficult problems such as image
classification, object detection and segmentation. However very often three dimensional problems
have been reduced to two dimensional ones for simplicity. In traditional computer vision, inher-
ently three dimensional objects are instead represented by images of their projections onto the
two dimensional plane. In computational physics, three dimensional simulations are often simpli-
fied as two dimensional counterparts as the computational cost of 3D simulations are often times
intractable for many applications. Such simplifications leave out essential information about the
actual spatial relationships between objects and can result in inaccurate or erroneous predictions.

The focus of this dissertation is to address the challenges in designing deep learning algorithms
and architectures that interact with three dimensional data. Conventional data representation and
neural architectures in computer vision do not directly extend to three dimensional counterparts
for various reasons. First, data representation for 3D objects is varied and diverse. For instance,
in computer graphics and computation physics, geometries are usually represented as simplicial
complexes (point clouds, wire frames, triangular meshes, volumetric tetrahedral meshes etc.) for
efficiency. In robotics, however, the data representation is mainly determined by the form of the
raw sensory inputs to the system, such as point clouds resulting from Lidar scans or Kinect sensors,
RGB-D images from depth-enabled cameras, multiview images from binocular or multi-camera
setup of the system. Panoramic or fisheye images are also becoming increasingly prevalent in
UAVs (Unmanned Aerial Vehicles) and self-driving cars. Second, three dimensional data tend to
be orders of magnitudes greater that its two dimensional counter part. Using Cartesian grid repre-
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sentation as an example, the storage complexity for 2D images is O(n2) whereas for 3D objects
that would be O(n3). Therefore more efficient encoding and representation methods need to be
brought forward to address such challenges. Last but not least, three dimensional data is much
more costly to acquire (due to much higher costs of collection, and inaccessibility of such sen-
sors), label (orienting and navigating 3D data on 2D screens requires engineering effort), store and
process. In the sections that follow, I will discuss novel methodologies that address these aforemen-
tioned challenges, and present various useful applications in computer vision and computational
physics that benefit from such methodologies.

In Chapter One, I will present an in-depth overview of these challenges that arise from 3D data, as
well as a detailed discussion of existing disciplines from computational physics, climate science, to
computer vision that can benefit from progress in 3D Geometric Deep Learning. In Chapter Two, I
will present a novel and general methodology for differentiably rasterizing unstructured geometric
representations in the form of simplicial complexes. This can serve as a geometry layer within
deep neural networks that allows a natural extension of Convolutional Neural Network (CNN)
based architectures to a vast collection of 3D representations. In Chapter Three, I will introduce
a methodology for natively performing convolutions on the spherical manifold, which is the un-
derlying geometric representation for signals from a range of disciplines, from climate science to
panoramic vision. Our methodology is efficient to compute, and naturally prevents the distortion
related problems that arise from directly using CNNs on equirectangular projections of spherical
signals. Finally, in Chapter Four, I will present a novel continuous implicit 3D representation for
large scenes and large physical systems that can allow us to leverage localized learned geometric
priors for 3D reconstruction tasks. Moreover, a simple extension to this representation allows us to
inject Partial Differential Equation (PDE) constraints within physical systems, in order to facilitate
a physics-informed and physics-abiding deep learning architecture.
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The formulation of a problem is often more essential than its solution, which may be merely a
matter of mathematical or experimental skills.

Albert Einstein
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Chapter 1

3D Geometric Deep Learning

Geometry plays a central role in a range of Engineering applications. Physical objects are ge-
ometrical, and more importantly, three dimensional in nature. Inferring semantic and physical
properties about geometrical objects is a unified theme across various branches of science and en-
gineering. For instance, aerodynamicists are primarily concerned with the aerodynamic properties
of structures such as lift and drag. Structural and civil engineers are interested in the mechanical
properties of solid 3D structures, or the interaction between fluid and solid structures. Molecular
biologists study the relationship between 3D structures of proteins and its biophysical properties.
Robotics engineers are interested in inferring semantic properties from structures to better design
machines that interact with structures: If you see a rope, pull. If you see a snake, run. Climate sci-
entists are concerned about the impacts of structures that are orders of magnitudes greater: extreme
weather events, such as tropical cyclones and extreme weather events. Predictions made about such
structures can impact the lives of many, with long lasting social economic consequences.

Conventionally, such predictions can be made through underlying domain-specific knowledge
about these geometric objects and its physical surroundings. The aerodynamics of an airfoil can be
inferred through Computational Fluid Dynamics (CFD) simulations, by first modeling the physical
laws in the form of governing equations, digitizing and discretizing the geometry of interest in the
form of a mesh, then solving for a solution using a numerical algorithm. Similarly, a range of
scientific and engineering problems can be tacked in this manner: finite element simulation to
structural-mechanical properties, molecular dynamics simulation for protein folding. Even planet
scale systems such as the climate system can be simulated at scale through atmospheric modeling.
Such an approach, inference via simulation, are successful in some case, but fails in others. Some
problems could be too complex, such as modeling the global climate system. Unknown physical
dynamics across various levels of the system accumulate error. Some problems require too much
compute, at a level that is prohibitively expensive. Turbulence is a good example. The governing
equations (Navier-Stokes) are well understood, but an accurate simulation of turbulence requires
resolving the simulation at an extremely fine scale (the Komogorov scale) can be prohibitively
expensive and impractical. For some problems, we simply do not know what the physical laws
should be - such as inferring semantic properties of objects in 3D or 2D images. Many conventional
methods that utilize hand-crafted image features perform poorly for high level tasks that require
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semantic understanding of scenes and images.
Machine Learning, in particular Deep Learning, has become a rapidly emerging and growing

field, for its ability in solving a wide range of problems with very little domain specific knowledge
about such problems to begin with. Deep Learning algorithms utilize artificial neural networks, a
class of algorithms that contain learnable parameters that can be mathematically optimized to fit
training data. This framework has been very successful at solving a range of engineering problems,
from computer vision to natural language processing. This method is extremely general and flex-
ible, and does not require much domain specific knowledge about underlying mechanisms. Such
properties can be ideal for problems that are vague in nature, where providing examples are much
easier than abstracting general rules and patterns. For instance, it is very easy to give examples of
what is a cat, but extremely difficult to abstract a general rule for recognizing cats. Deep Learning
as a general methodology shows incredible promise at tackling the aforementioned important yet
difficult problems that involve performing inference on 3D geometric instances.

Extending existing methods in Deep Learning for 3D data is, however, far from being a straight-
forward process. First, data representation for 3D objects is varied and diverse. For instance, in
computer graphics and computation physics, geometries are usually represented as simplicial com-
plexes (point clouds, wire frames, triangular meshes, volumetric tetrahedral meshes etc.) for effi-
ciency. In robotics, however, the data representation is mainly determined by the form of the raw
sensory inputs to the system, such as point clouds resulting from Lidar scans or Kinect sensors,
RGB-D images from depth-enabled cameras, multiview images from binocular or multi-camera
setup of the system. Panoramic or fisheye images are also becoming increasingly prevalent in
UAVs (Unmanned Aerial Vehicles) and self-driving cars. Second, three dimensional data tend to
be orders of magnitudes greater that its two dimensional counter part. Using Cartesian grid repre-
sentation as an example, the storage complexity for 2D images is O(n2) whereas for 3D objects
that would be O(n3). Therefore more efficient encoding and representation methods need to be
brought forward to address such challenges. Last but not least, three dimensional data is much
more costly to acquire (due to much higher costs of collection, and inaccessibility of such sen-
sors), label (orienting and navigating 3D data on 2D screens requires engineering effort), store and
process.

New work in the 3D Learning literature have emerged to address these aforementioned chal-
lenges to 3D learning. Concerning the various modes of representation, different neural architec-
tures have been designed to address the varied input and output structures. A host of deep neural
architectures have been designed to process point cloud data [84, 82, 107, 83], generate point cloud
data [30, 63], process mesh data [42, 36], generate mesh data [103, 102], process octree structured
voxelized data [105], generate mesh structured data [98].

This dissertation attempts to address the following aspects in 3D Deep Learning:
In Chapter 2, I will present a novel framework for differentiably rasterizing arbitrary 2D or 3D

geometries represented as a simplicial complex, which we call the Deep Differentiable Simplex
Layer (DDSL). A simplicial complex is a superposition of arbitrary simplicies of arbitrary degrees.
Many well known geometric representations are inherently simplicial complexes. For example,
point clouds (0-simplex), wireframes (1-simplex), triangular meshes (2-simplex), and tetrahedral
meshes (3-simplex). The generalizability of such a layer allows for a unified framework across
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different geometry representations. The differentiability of such a layer allows its natural use as a
layer within an end-to-end trainable neural network. I will show various engineering applications
of such a differentiable simplex layer, including its use in aerodynamic design optimization, and
image segmentation.

In Chapter 3, I will present a novel framework that naturally extends CNNs to spherical mani-
folds. We generalize the convolution kernel to be a parameterized linear combination of differen-
tial operators, such that it can be efficiently computed and implemented on meshes. Using such
a reparameterized convolution kernel, we can acquire a much more parameter efficient network
architecture that enables state-of-the-art performance in classification and segmentation tasks for
spherical signals. As an application for this approach, we use the network for performing semantic
segmentation of indoor scenes from panoramic images. We also utilized this spherical network for
a climate science application, where we achieved good performance in segmenting and detecting
various extreme weather events (atmospheric rivers, tropical cyclones) in climate simulations.

In Chapter 4, I present an efficient 3D representation for large 3D scenes, which we call the
Local Implicit Grid (LIG) representation. LIG is a new 3D shape representation designed for
scalability and generality. The motivating idea is that most 3D surfaces share geometric details
at some scale – i.e., at a scale smaller than an entire object and larger than a small patch. We
train an autoencoder to learn an embedding of local crops of 3D shapes at that size. Then, we
use the decoder as a component in a shape optimization that solves for a set of latent codes on a
regular grid of overlapping crops such that an interpolation of the decoded local shapes matches a
partial or noisy observation. We demonstrate the value of this proposed approach for 3D surface
reconstruction from sparse point observations, showing significantly better results than alternative
approaches.



4

Chapter 2

Deep Learning on Simplicial Complexes

2.1 Introduction
The simplicial complex (i.e., simplex mesh) is a flexible and general representation for non-
uniform geometric signals. Various commonly-used geometric representations, including point
clouds, wire-frames, polygons, triangular mesh, tetrahedral mesh etc., are examples of simplicial
complexes. Leveraging deep learning architectures for such non-uniform geometric signals has
been of increasing interest, and varied methodologies and architectures have been presented to
deal with varied representations [8].

In this study, we propose a Deep Differentiable Simplex Layer (DDSL), which performs dif-
ferentiable rasterization of arbitrary simplex mesh-based geometric signals. The DDSL is based
upon simplex Non-Uniform Fourier Transform (NUFT) [45] for the forward-pass, which is highly
generalizable across arbitrary topologies. Furthermore, we find the general differential form of the
simplex NUFT, allowing for an efficient backward pass. Our work differs from previous work in
the literature on differentiable rendering in two major ways. First, our network is generalizable
across arbitrary simplex degrees and dimensions, making it a unified framework for a range of
geometric representations. Second, while other differentiable renderers are specifically posed for
projective-rendering by projecting 3D meshes to 2D grids, the DDSL is capable of in-situ rasteri-
zation in the original dimension. Building on the differentiable nature of the rasterizer, we explore
two unique use cases. First, using the differentiablity of the DDSL, we can utilize Convolutional
Neural Network (CNN) based deep learning models as surrogate models of physical properties
for shape optimization, which is useful in a range of engineering disciplines. Secondly, using the
DDSL as a neural network layer, we can formulate a differentiable rasterization loss that allows
for end-to-end generation of shapes using a direct supervised approach, which can be useful in a
range of computer vision problems.

As an example of the two use cases, we perform three experiments. First, to validate the effec-
tiveness of gradient propagation through the layer, we illustrate with the toy problem of MNIST
shape optimization, where we can use gradients propagated through the neural network and DDSL
to manipulate and transform the input polygon mesh into a target digit (Sec. 4.3). Next, to further



CHAPTER 2. DEEP LEARNING ON SIMPLICIAL COMPLEXES 5

DDSL

forwardj = 1
line

mesh

j = 0
point
cloud

j = 2
polygon

gradient backward
∂pixel
∂vertex

DDSL(V, E, D)

Simplex
NUFT

Filter iFFT

Figure 2.1: A schematic of the DDSL layer with 2D simplex meshes. The DDSL algorithm is
general for handling simplex meshes of arbitrary dimensions and simplex degrees. The input to
DDSL is a simplex mesh described by three matrices: float matrix V for vertex coordinates, uint
matrix E for simplex connectivity, and float matrix D for per-simplex density (constant density of
1 in the example above). A raster image of arbitrary resolution can be produced. The gradient of
per-pixel intensity with respect to each spatial coordinate in V can be computed analytically within
the DDSL layer.

illustrate potential applications of neural shape optimization enabled by the DDSL, we investi-
gate the classic engineering problem of airfoil optimization and show that the shape optimization
pipeline effectively manipulates the input shape into a desired lift-drag ratio (Sec. 4.3). Finally,
to illustrate the effectiveness of the differentiable rasterization loss, we train a polygon generating
neural network end-to-end with direct supervision to generate polygonal segmentation masks for
image segmentation (Sec. 2.4). With the novel rasterization loss, we surpass state-of-the-art in the
polygon segmentation task, with a much simpler network architecture and training scheme.

In summary, we contribute the following:

• We propose the DDSL, which is a differentiable rasterizer for arbitrary simplex-mesh based
geometries. Its differentiable nature allows for its effective integration in deep neural net-
works.

• We show that the DDSL effectively facilitates shape optimization for engineering applica-
tions such as aerodynamic optimzation of airfoils, using neural networks as surrogate mod-
els.

• We show that the DDSL can be used to produce a differentiable rasterization loss, which can
be used to create direct supervision to facilitate end-to-end training of shape generators, with
applications in polygonal segmentation mask generation.
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• We develop and release code for effectively integrating the DDSL into deep neural net-
works∗, with compelling computational performance benchmarks.

2.2 Related Work
We present a brief overview of geometric representations for deep learning, various related differ-
entiable renderers, and related work in the space of our two exemplary applications.

Geometric Representations for Deep Learning In general, there are two classes of geometric
representations, either in its native form of simplex meshes, or in a raster form which can be effi-
ciently processed with grid-based network architectures such as CNNs. As simplex meshes come
in various forms and dimensions (point clouds, meshes etc.), there is a vast body of literature for
different geometric signals of different simplex degrees and dimensions. For example, PointNets
have been specially designed for point clouds [84, 82], various algorithms perform convolutions
natively on the mesh manifold, [46, 41, 7], the graph [27, 59, 113] etc.

Grid-based algorithms on the other hand require the rasterization of a simplex-mesh based
geometric signal for further processing by CNNs. Examples of such include binary-voxel based
algorithms [73, 109], Truncated Signed-Distance Function (TSDF) based algorithms [21, 115, 94,
23], multi-view image based algorithms [96, 52], and hybrids [50, 19]. Compared to deep learning
methods that directly perform convolutions on the simplex mesh, grid-based methods are more
generalizable across shape topologies and computationally easier to implement, since it leverages
highly efficient tensor operators such as 2D/3D convolution kernels for rasterized data. However,
conventional voxelization methods are not differentiable with respect to the input mesh, and differ-
entiable rasterizers have been proposed to close the gap between simplex and grid representations.

Differentiable Rasterization in Deep Learning Recently, a series differentiable projective ren-
derers have been proposed. [69] proposed an approximate differentiable rasterizer for inverse
graphics. [53] proposed a deep neural renderer that uses linear approximations for the gradients of
the pixel intensity with respect to the vertex positions. [64] introduced a differentiable ray-tracer
for differentiability of additional rendering effects. Very recently, [67] proposed a differentiable
rasterizer that approximates rendering derivatives with soft boundaries. Various studies in face
mesh reconstruction applications [33, 101, 100, 87] and general mesh reconstruction tasks [51, 61]
utilize some form of differentiable rasterization to facilitate gradient flows in neural networks.

Shape Optimization Shape optimization is essential in a broad range of engineering fields, in-
cluding aerodynamic, mechanical, structural, and architectural designs. Traditionally, shape op-
timization algorithms couple gradient-based or gradient-free optimizers (e.g., genetic algorithms,
simulated annealing) with physics simulators, e.g., Computational Fluid Dynamics (CFD) and
multiphysics software for evaluation. For aerodynamic shape optimization, the adjoint method

∗Code available: https://github.com/maxjiang93/DDSL

https://github.com/maxjiang93/DDSL
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Notation Description

d Dimension of Euclidean space Rd

j Degree of simplex. Point j = 0,
Line j = 1, Tri. j = 2, Tet. j = 3

n,N Index of the n-th element among a
total of N elements

Ωj
n Domain of n-th element of order j
x Cartesian space coordinate vector.

x = (x, y, z)
k Spectral domain coordinate vector.

k = (u, v, w)
p Index of a point in a simplex ele-

ment. p ∈ N, p ≤ j + 1
i Imaginary number unit

Table 2.1: List of math symbols in our method.

has been used for gradient-based optimizations with sensitivities acquired from physics simula-
tors [81, 43]. Recently, machine learning algorithms such as multilayer perceptrons have been
used as surrogate models for the response surface to speed up evaluation and optimization [56,
70]. More recently, CNNs have been used for the evaluation of aerodynamic properties [116],
and gradient-based optimization methods coupled with CNNs have been explored [39]. However,
direct manipulation of input mesh has not been achieved due to the lack of in-situ differentiable
rasterization of polygons and 3D meshes.

Image Segmentation with Polygon Masks Image segmentation is a central task in computer
vision, and has been thoroughly studied. Much of the work in the image segmentation literature
creates pixel-level masks [68, 88, 104, 38, 26, 65]. However, more recently, to address the need of
assisting human annotators to create ground-truth segmentation labels, new network architectures
such as PolygonRNN [10] and PolygonRNN++ [1] have been proposed for creating polygonal seg-
mentation masks given ground-truth bounding boxes. Our work targets this application to explore
a more effective and efficient polygon generating network using our DDSL-enabled rasterization
loss.

2.3 Method

DDSL Overview
A schematic of the DDSL layer is presented in Fig. 2.1. The DDSL layer consists of three consec-
utive mathematical operations, first computing the Fourier transform of the simplicial complex by
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uniformly sampling it in the spectral domain, followed by a spectral filtering step by multiplying
the spectral signal with a Gaussian filter to eliminate ringing effects. Lastly, we use the inverse
Fourier Transform (iFFT) to acquire the physical raster image corresponding to the input. Since
the forward and backward methods of the filtering step (an element-wise product) and iFFT are
well known, we focus our analysis on the simplex NUFT, which we derive and detail below.

Mathematical Description
We represent discrete geometric signals as weighted simplicial complexes. We provide the follow-
ing definitions for a j-simplex and a j-simplex mesh:

Definition 2.3.1 (j-simplex). A simplex is the generalization of the two-dimensional triangle in
other dimensions. The j-simplex determined by j + 1 affinely independent points v0, . . . , vj ∈ Rn

is

C = conv{v0, . . . , vj}
= {θ0v0 + · · ·+ θjvj | θ � 0, 1Tθ = 1} (2.1)

where 1 is the vector with all entries one.

Definition 2.3.2 (j-simplex mesh). A simplicial complex consisting only of j-simplices is a ho-
mogeneous simplicial j-complex, or a j-simplex mesh.

Example 2.3.1 (Examples of simplices and simplex meshes). A 0-simplex is a point, a 1-simplex
is a line, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron. The 0-, 1-, 2-, and 3-simplicial
complexes are the point cloud and linear, triangular, and tetrahedral meshes, respectively.

Definition 2.3.3 (Functions over a j-simplex element and a j-simplex mesh). The Piecewise-
Constant Function (PCF) over a j-simplex mesh consisting of N simplices is the superposition
of the density functions f jn(x) for each j-simplex with domain Ωj

n and signal density ρn:

f jn(x) =

{
ρn,x ∈ Ωj

n

0,x /∈ Ωj
n

, f j(x) =
N∑
n=1

f jn(x) (2.2)

For the forward pass, we use the NUFT of a PCF over a j-simplex mesh.

Proposition 2.3.1 (Forward pass). The NUFT of a PCF over a simplex in a mesh is

F j
n(k) = ρni

jγjnS (2.3)

S :=

j+1∑
t=1

e−iσt∏j+1
l=1,l 6=t(σt − σi)

, σt := k · xt (2.4)
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input shape DDSL
Pretrained

CNN

cross
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Figure 2.2: Schematic of deep learning model driven shape optimiza-
tion pipeline.
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Figure 2.3: Schematic
for the hierarchical poly-
gon generation process in
PolygonNet. New nodes
in the next hierarchy are
generated by offsetting
edge center in normal di-
rection by δ.

where γjn is the content distortion factor, which is the ratio between the simplex content and the
unit orthogonal simplex content. The simplex content Cj

n is computed using the Cayley-Menger
determinant:

Cj
n =

√
(−1)j+1

2j(j!)2
det(B̂j

n) (2.5)

B̂j
n :=


0 1 1 1 . . .
1 0 d212 d213 . . .
1 d221 0 d223 . . .
1 d231 d232 0 . . .
...

...
...

...

 (2.6)

where each element d2st of B̂j
n is the squared distance between points s and t. The content of the

unit orthogonal simplex Cj
I is 1/j!, so the content distortion factor is

γjn =
Cj
n

Cj
I

= j!Cj
n (2.7)

From the linearity of the Fourier transform, the NUFT of a PCF over an entire j-simplex mesh
is

F j(k) =
N∑
n=1

F j
n(k) =

N∑
n

ρni
jγjnS (2.8)
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Figure 2.4: Schematic of the deep learning architecture for polygon segmentation (PolygonNet).
All intermediate layers are followed by BatchNorm and ReLU. A Periodic Upsampling Convolu-
tion (PUConv) is used to generate vertex offsets (δ) at the consecutive level. For each level, we
learn a learnable scale factor for all offsets.

For efficient computing, we use the auxiliary node method (AuxNode), which utilizes signed
content.

Corollary 2.3.1 (AuxNode). To compute the Fourier transform of uniform signals in j-polytopes
represented by its watertight (j − 1)-simplex mesh using AuxNode, Eqn. (2.3) is modified as
follows:

F j
n(k) =ij

N ′
n∑

n′=1

sn′γjn′

(
(−1)j∏j
l=1 σl

+

j∑
t=1

e−iσt

σt
∏j

l=1,l 6=t(σt − σl)

)
(2.9)

where sn′γjn′ is the signed content distortion factor for the n′th auxiliary j-simplex where sn′ ∈
{−1, 1}. For practical purposes, assume that the auxiliary j-simplex is in Rd where d = j. The
signed content distortion factor is computed using the determinant of the Jacobian matrix for
parameterizing the auxiliary simplex to a unit orthogonal simplex:

sn′γjn′ = j! det(J) = j! det([x1,x2, · · · ,xj]) (2.10)

Proof. Refer to [45].

For the backward pass, we derive the analytic derivative of the NUFT with respect to the vertex
coordinates of a j-simplex mesh. Following from the product rule, we require the derivatives of the
content distortion factor γjn and the summation term S to obtain the entire derivative of F j

n(k).
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Figure 2.5: Comparison of the analytic (pink) and numeric (blue) derivative runtimes for the (a)
mesh size and (b) resolution tests. All rasters are computed for a square cube, and resolution is per
dimension.

Lemma 2.3.1 (Derivative of the content distortion factor). The derivative of γjn with respect to
vertex coordinate xp is

∂γjn
∂xp

=
(−1)j+1/2j

γjn

j+1∑
m=1
m 6=p

ApmDpm (2.11)

where Dpm = 2(xp − xm) and Apm is the element in the (p + 1)th row and (m + 1)th column of

adj(B̂j
n).

Lemma 2.3.2 (Derivative of the summation term). Let St be one term in the summation term S:

St :=
e−iσt∏j+1

l=1,l 6=t(σt − σl)
(2.12)

The derivative of the summation term with respect to xp is

∂S

∂xp
=

(
−iSp +

j+1∑
t=1,t6=p

St + Sp
σt − σp

)
k (2.13)
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where k is the spectral domain coordinate vector.

Proposition 2.3.2 (Backward pass). Following from Lemmas 2.3.1 and 2.3.2, the derivative of
F j
n(k) with respect to a point xp in the simplex element n is

∂F j
n(k)

∂xp
= ρni

j

Λk + Γ

j+1∑
m=1
m 6=p

ApmDpm

 (2.14)

where Apm is the element in the pth row and mth column of adj(B̂j
n) starting at p = 0 and m = 0,

Λ :=γjn

(
−iSp +

j+1∑
t=1,t 6=p

St + Sp
σt − σp

)
(2.15)

Γ :=
(−1)j+1/2j

γjn
S (2.16)

We provide a detailed derivation of Eqn. 2.14 as well as proofs of Lemmas 2.3.1 and 2.3.2 in
Sec. A.1 of the Appendix.

Deep Learning Architectures and Pipelines
We present the a schematic of the deep learning model-driven shape optimization (Sec. 4.3) in Fig.
2.2, and a schematic of the polygon segmentation network (PolygonNet) in Figs. 2.3 and 2.4. A
detailed description of the architectures is presented in Appendix A.2.

2.4 Experiments

Performance Benchmarking
We compare the runtime of our implementation of the backward pass over the DDSL with that of
the numeric derivatives calculated using the finite difference method.

Experiment Setup We perform tests for the 0-, 1-, 2-, and 3-simplex meshes in 3-dimensional
space and examine the effects of mesh size (number of points in the mesh) and image resolution.
We test mesh sizes ranging from 5 to 50 points and resolutions ranging from 4 to 32, and we
run each test 100 times to acquire a distribution of data. For each run, we randomly generate a
3-dimensional simplex mesh of varied simplex degrees, varied densities, with random gradient
values on each raster pixel. We then calculate the analytic and numeric derivatives for the DDSL
using our implementation of Eqn. 2.14 and the finite difference method, respectively, and time
each calculation.
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Analysis of complexity Since the analytic finite difference backward pass for computing the
gradients using Eqn. 2.14 requires computing each pair of spectral coefficient and each vertex in a
j-simplex, the computational complexity for the finite difference backward pass is the same as the
forward pass, O((j + 1)nem), for a mesh of ne simplices and a raster of m degrees of freedom.
Finite difference, on the other hand, requires nv forward computations, each of complexityO((j+
1)nem). Assuming nv ∝ ne, the Finite Difference evaluation is of complexity O((j + 1)n2

em).

Results The results of our mesh size and resolution runtime tests are shown in Fig. 2.5. In both
tests and for all j-simplices, our implementation of the analytic derivative consistently outperforms
the numerical method for calculating the derivative by 10 ∼ 100× in the range we tested.

Shape Optimization
We demonstrate the utility of the DDSL through the task of shape optimization. Since many
physical characteristics depend on shape, shape optimization is an important and challenging task
across many fields of science and engineering. We show that the DDSL allows us to accomplish
this shape optimization task due to the analytic nature of its derivative.

General Experiment Setup We pre-process each shape into a polygon of the shape’s boundary.
The polygons are rasterized using the DDSL. We train neural networks on the raster images, and
we use the gradients out of these neural networks for the shape optimization task.

Using gradient descent, we optimize a shape to a prescribed target value, which can be a shape
classification or a physical quantity. Since we implemented the DDSL as a differentiable neural
network layer, we can obtain the gradient of the target value with respect to the original shape
directly from the neural network. Rather than directly manipulating vertices, we further propagate
this gradient to control points attached to the original shape for enhanced robustness. Each control
point has 3 degrees of freedom: translation in the x and y directions, and rotation about the point.
More details about the control points are given in Sec. A.1. We iterate the shape optimization
process until the loss converges to zero.

MNIST We first demonstrate shape optimization using the DDSL with the MNIST dataset of
handwritten digits. Rather than using the traditional pixel images, we use polygons of the digits
as inputs. The polygon form of MNIST digits can be acquired by contouring the original images.
The objective of this experiment is to optimize a digit in the MNIST dataset to a target digit.

Airfoils We further illustrate the functionality of the DDSL with the more practical task of aero-
dynamic shape optimization. For this experiment, we optimize an airfoil to a prescribed lift-drag
ratio, which is related to the efficiency of an aerodynamic body. We use the airfoiltools.
com database of consisting of 1,636 airfoils of aircraft wings and turbine blades, along with pre-
computed physical quantities such as drag and lift coefficients at different angles of attack and

airfoiltools.com
airfoiltools.com
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Figure 2.6: Optimization of (a), (b): a ‘1’ from the MNIST dataset to a ‘3’ by minimizing the
cross-entropy between the input and the target class. (c), (d): the NACA 0012 airfoil (with an
original lift-drag ratio of 0) to a lift-drag ratio of 95.9. The airfoil is set at an angle of attack of
zero, and the Reynolds number is set to 1× 106.

Polygon-RNN Polygon-RNN++ PolygonNet (Ours) Ground Truth

Figure 2.7: Visualization of image segmentation results. Ground-truth bounding boxes are given
for all models to create image crops as inputs to the networks.

Reynolds numbers, acquired from CFD simulations. Airfoils are originally represented as poly-
gons and rasterized using the DDSL. We then train a neural network to predict lift-drag ratios of
airfoils at specific angles of attack and Reynolds numbers and use this neural network for the shape
optimization task. When optimizing the airfoil shape, we specify the angle of attack of the airfoil
and the Reynolds number of the flow.

Results We show some iterations of the shape optimization process for the MNIST and airfoil
experiments as well as graphs showing the loss over each iteration in Figs. 4.4, respectively.
The success of the DDSL in the shape optimization task is most intuitively clear in the MNIST
experiment, where the original digit, ‘1,’ is transformed into a ‘3.’ In the airfoil experiment, the
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Model Bicycle Bus Person Train Truck Motorcycle Car Rider Mean

SquareBox [10] 35.41 53.44 26.36 39.34 54.75 39.47 46.04 26.09 40.11
Dilation10 [114] 46.80 48.35 49.37 44.18 35.71 26.97 61.49 38.21 43.89
DeepMask [79] 47.19 69.82 47.93 62.20 63.15 47.47 61.64 52.20 56.45
SharpMask [80] 52.08 73.02 53.63 64.06 65.49 51.92 65.17 56.32 60.21
Polygon-RNN [10] 52.13 69.53 63.94 53.74 68.03 52.07 71.17 60.58 61.40
Polygon-RNN++ [1] 63.06 81.38 72.41 64.28 78.90 62.01 79.08 69.95 71.38

PolygonNet (Ours) 62.26 84.38 68.62 82.42 76.57 63.57 78.08 64.10 72.50

Table 2.2: Comparison of Cityscape image segmentation IoU against baseline algorithms on test
set.

lift-drag ratio increased, as desired. The optimized shape is an airfoil with its trailing edge deflected
downwards, resembling an aircraft deploying its flaps at takeoff to increase lift. Both experiments
exhibit a monotonic decrease in loss, which converges to zero, confirming that optimization was
achieved.

Segmentation Mask Generation
To further illustrate applications of the DDSL layer in deep learning applications, we experiment
on the task of image segmentation by generating polygonal masks. In contrast to conventional
segmentation frameworks that output pixel masks, directly predicting polygons allows for a more
efficient and flexible output structure, and has been shown to be effective in assisting human anno-
tators in labeling new datasets [10, 1].

Experiment Setup For direct comparison with state-of-the-art, we follow the experiment setup
of [10] and [1] for predicting polygonal masks. In contrast to the conventional setup of instance
segmentation, we assume crops of input images given ground-truth bounding boxes, and we output
the corresponding polygonal masks using our neural network. Following the two studies, we train
and test our model on the Cityscapes dataset [18]. The Cityscapes dataset is one of the most
comprehensive benchmarks for instance segmentation, containing 2975 training, 500 validation,
and 1525 test images labeled with 8 semantic classes. We follow the two studies for an alternative
split of the original dataset, since the original test images do not provide ground-truth instances.
The new partitions consists of 40174 / 3448 / 8440 image crops of train/validation/test sets, each
of size 224× 224.
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Training We use two losses for training the model, a multi-resolution rasterization loss, and a
smoothness loss. The losses are defined as:

Lmres =
∑
i,res

||Dres(G
(i)
θ (x))−Dres(y)||1 (2.17)

i ∈ {0, 1, 2, 3}, res ∈ {224, 112, 56, 28}

Lsmooth =
1

n

n∑
j

(
Aj(G

(3)
θ (x))

π
− 1)2 (2.18)

L = Lmres + λLsmooth (2.19)

where Dres is DDSL rasterization at resolution res, G(i)
θ is the polygon output from the polygon

generator network parameterized by θ, up to level i, x and y are the input images and the ground-
truth polygons, Aj is the j-th angel of the polygon, and λ is the smoothness penalty term. We train
the model (see Fig. 2.4) end-to-end using the loss defined above. We weight the loss of each class
inversely proportional to the label frequencies in the training set. See more details in Appendix
A.2.

Results We evaluate our model against state-of-the-art models and detail the results in Table 2.2,
where we evaluate runtime on a single Titan X (Pascal) GPU. We provide a visual comparison in
Fig. 2.7. Our model surpasses state of the art for class-averaged IoU. In particular, the simplicity of
our network architecture is highlighted in Table 2.3. While Polygon-RNN++ was unable to propa-
gate gradients through IoU scores, it uses IoU as a reward to an additional reinforcement learning
model, which adds additional complexities to the overall architecture. It also uses additional graph
neural network to upsample and finetune the polygons. Due to the differentiable rasterization loss,
our model uses a single CNN-based polygon generator. In comparison to Polygon-RNN++, our
model achieves a 100x speed-up with a quarter of the total model parameters.

Model # Params Runtime (s)

Polygon-RNN 58M 2.0332± 0.0168
Polygon-RNN++ 100M 2.3241± 0.0181
PolygonNet (Ours) 24M 0.0287± 0.0022

Table 2.3: Comparison of network parameters and evaluation time for a batch of 16 image crops.

2.5 Conclusion
We propose the DDSL as a differentiable simplex layer for neural networks. We present a uni-
fying framework for differentiable rasterization of arbitrary geometrical signals represented on a
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simplicial complex. We further show two geometric applications of this method: we can effec-
tively propagate gradients across the DDSL for shape optimization, and we can utilize the DDSL
to construct a differentiable rasterization loss that allows for a simple, yet effective, polygon gener-
ating network that surpasses state of the art in segmentation IoU as well as runtime and parameter
efficiency.
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Chapter 3

Deep Learning on the Spherical Manifold

3.1 Introduction
A wide range of machine learning problems in computer vision and related areas require pro-
cessing signals in the spherical domain; for instance, omnidirectional RGBD images from com-
mercially available panorama cameras, such as Matterport [13], panaramic videos coupled with
LIDAR scans from self-driving cars [31], or planetary signals in scientific domains such as climate
science [86]. Unfortunately, naively mapping spherical signals to planar domains results in un-
wanted distortions. Specifically, projection artifacts near polar regions and handling of boundaries
makes learning with 2D convolutional neural networks (CNNs) particularly challenging and ineffi-
cient. Very recent work, such as [16] and [29], propose network architectures that operate natively
in the spherical domain, and are invariant to rotations in the SO(3) group. Such invariances are
desirable in a set of problems – e.g., machine learning problems of molecules – where gravitational
effects are negligible and orientation is arbitrary. However, for yet a different class of problems
at large, assumed orientation information is crucial to the predictive capability of the network. A
good example of such problems is the MNIST digit recognition problem, where orientation plays
the dominant role in distinguishing digits “6” and “9”. Other examples include omnidirectional
images, where images are naturally oriented by gravity; and planetary signals, where planets are
naturally oriented by their axis of rotation.

In this work, we present a new convolutional kernel for CNNs on arbitrary manifolds and
topologies, discretized by an unstructured grid (i.e., mesh), and focus on its applications towards
the spherical domain approximated by an icosahedral spherical mesh. We propose and evaluate
the use of a new parameterization scheme for CNN convolution kernels, which we call Param-
eterized Differential Operators (PDOs), which is easy to implement on unstructured grids. This
parameterization scheme utilizes only 4 parameters for each kernel, and achieves significantly bet-
ter performance than competing methods, with a much smaller parameter budget. In particular,
we illustrate its use towards various machine learning problems in computer vision and climate
science.
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Figure 3.1: Illustration for the MeshConv operator using parameterized differential operators to
replace conventional learnable convolutional kernels.

In summary, our contributions are as follows:

• We present a general approach for orientable CNNs on unstructured grids using parameter-
ized differential operators.

• We show that our spherical model achieves significantly higher parameter efficiency com-
pared to state-of-the-art network architectures for 3D classification tasks and spherical image
semantic segmentation.

We organize the structure of the paper as follows. We first provide an overview of related studies in
the literature in Sec.3.2; we then introduce details of our methodology in Sec.3.3, followed by an
empirical assessment of the effectiveness of our model in Sec.3.4. Finally, we evaluate the design
choices of our kernel parameterization scheme in Sec.3.5.

3.2 Background
Spherical CNNs A first and foremost concern for processing spherical signals is regarding dis-
tortions introduced by the curved spherical surface. [95] process equirectangular images with
regular convolutions with increased kernel sizes near polar regions where greater distortions are
introduced by the planar mapping. [17] and [117] use a constant kernel that samples points on
the tangent plane of the spherical image to reduce distortions. A slightly different line of litera-
ture explores rotational-equivariant implementations of spherical CNNs. [16] proposed spherical
convolutions with intermediate feature maps in SO(3) that are rotational-equivariant. [29] used
spherical harmonic basis to achieve similar results.

Reparameterized Convolutional Kernel Related to our approach in using parameterized dif-
ferential operators, several works utilize the diffusion kernel for efficient Machine Learning and
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CNNs. [60] was among the first to suggest the use of diffusion kernel on graphs. [3] propose
Diffusion-Convolutional Neural Networks (DCNN) for efficient convolution on graph structured
data. [7] introduce a generalization of classic CNNs to non-Euclidean domains by using a set of
oriented anisotropic diffusion kernels. [89] explore the reparameterization of convolutional kernels
using parabolic and hyperbolic differential basis with regular grid images.

Non-Euclidean Convolutions Related to our work on performing convolutions on manifolds
represented by an unstructured grid (i.e., mesh), works in geometric deep learning address sim-
ilar problems [8]. Other methods perform graph convolution by parameterizing the convolution
kernels in the spectral domain, thus converting the convolution step into a spectral dot product
[9, 27, 58, 113]. [72] perform convolutions directly on manifolds using cross-correlation based
on geodesic distances and [71] use an optimal surface parameterization method (seamless toric
covers) to parameterize genus-zero shapes into 2D signals for analysis using conventional planar
CNNs.

Image Semantic Segmentation Image semantic segmentation is a classical problem in com-
puter vision, and there has been an impressive body of literature studying semantic segmentation
of planar images ([88, 5, 68, 44, 104]). [92] study semantic segmentation of equirectangular om-
nidirectional images, but in the context of image inpainting, where only a partial view is given as
input. [2, 13] provide benchmarks for semantic segmentation of 360 panorama images. In the 3D
learning literature, researchers have looked at 3D semantic segmentation on point clouds or voxels
[25, 84, 106, 99, 24]. Our method also targets the application domain of image segmentation by
providing a more efficient convolutional operator for spherical domains, for instance, focusing on
panoramic images [13].

3.3 Method

Parameterized Differential Operators
We present a novel scheme for efficiently performing convolutions on manifolds approximated by
a given underlying mesh, using what we name as Parameterized Differential Operators. To this
end, we reparameterize the learnable convolution kernel as a linear combination of differential
operators. Such reparameterization provides two distinct advantages: first, we can drastically
reduce the number of parameters per given convolution kernel, allowing for an efficient and lean
learning space; second, as opposed to the cross-correlation type convolution on mesh surfaces [72],
which requires large amounts of geodesic computations and interpolations, first and second order
differential operators can be efficiently estimated using only the one-ring neighborhood.

In order to illustrate the concept of PDOs, we draw comparisons to the conventional 3 × 3
convolution kernel in the regular grid domain. The 3 × 3 kernel parameterized by parameters θ:
G3×3θ can be written as a linear combination of basis kernels which can be viewed as delta functions



CHAPTER 3. DEEP LEARNING ON THE SPHERICAL MANIFOLD 21

at constant offsets:

G3×3θ (x, y) =
1∑

i=−1

1∑
j=−1

δ(x− i, y − j) (3.1)

Due to the linearity of the cross-correlation operator (∗), the output feature map can be expressed as
a linear combination of the input function cross-correlated with different basis functions. Defining
the linear operator ∆ij to be the cross-correlation with a basis delta function, we have:

∆ijF(x, y) :=F(x, y) ∗ δ(x− i, y − j) (3.2)

F(x, y) ∗ G3×3θ (x, y) =
1∑

i=−1

1∑
j=−1

θij∆ijF(x, y) (3.3)

In our formulation of PDOs, we replace the cross-correlation linear operators ∆ij with differ-
ential operators of varying orders. Similar to the linear operators resulting from cross-correlation
with basis functions, differential operators are linear, and approximate local features. In contrast
to cross-correlations on manifolds, differential operators on meshes can be efficiently computed
using Finite Element basis, or derived by Discrete Exterior Calculus. In the actual implementation
below, we choose the identity (I , 0th order differential, same as ∆00), derivatives in two orthogo-
nal spatial dimensions (∇x,∇y, 1st order differential), and the Laplacian operator (∇2, 2nd order
differential):

F(x, y) ∗ Gdiffθ = θ0IF + θ1∇xF + θ2∇yF + θ3∇2F (3.4)

The identity (I) of the input function is trivial to obtain. The first derivative (∇x,∇y) can be
obtained by first computing the per-face gradients, and then using area-weighted average to obtain
per-vertex gradient. The dot product between the per-vertex gradient value and the corresponding
x and y vector fields are then computed to acquire ∇xF and ∇yF . For the sphere, we choose the
east-west and north-south directions to be the x and y components, since the poles naturally orient
the spherical signal. The Laplacian operator on the mesh can be discretized using the contangent
formula:

∇2F ≈ 1

2Ai

∑
j∈N (i)

(cotαij + cot βij)(Fi −Fj), (3.5)

whereNi is the nodes in the neighboring one-ring of i,Ai is the area of the dual face corresponding
to node i, and αij and βij are the two angles opposing edge ij. With this parameterization of the
convolution kernel, the parameters can be similarly optimized via backpropagation using standard
stochastic optimization routines.
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Figure 3.2: Schematics for model architecture for classification and semantic segmentation tasks,
at a level-5 input resolution. Ln stands for spherical mesh of level-n as defined in Sec. 3.3. Mesh-
Conv is implemented according to Eqn. 3.4. MeshConvT first pads unknown values at the next
level with 0, followed by a regular MeshConv. DownSamp samples the values at the nodes in the
next mesh level. A ResBlock with bottleneck layers, consisting of Conv1x1 (1-by-1 convolutions)
and MeshConv layers is detailed above. In the decoder, ResBlock is after each MeshConvT and
Concat.

Icosahedral Spherical Mesh
The icosahedral spherical mesh [6] is among the most uniform and accurate discretizations of
the sphere. A spherical mesh can be obtained by progressively subdividing each face of the unit
icosahedron into four equal triangles and reprojecting each node to unit distance from the origin.
Apart from the uniformity and accuracy of the icosahedral sphere, the subdivision scheme for the
triangles provides a natural coarsening and refinement scheme for the grid that allows for easy
implementations of pooling and unpooling routines associated with CNN architectures. See Fig.
3.1 for a schematic of the level-3 icosahedral spherical mesh.

For the ease of discussion, we adopt the following naming convention for mesh resolution:
starting with the unit icosahedron as the level-0 mesh, each progressive mesh resolution is one
level above the previous. Hence for a level-l mesh:

nf = 20 · 4l;ne = 30 · 4l;nv = ne − nf + 2 (3.6)

where nf , ne, nv stands for the number of faces, edges, and vertices of the spherical mesh.
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Model Accuracy(%) Number of Parameters

S2CNN [16] 96.00 58k
SphereNet [17] 94.41 196k

Ours 99.23 62k

Table 3.1: Results on the MNIST dataset for validating the use of Parameterized Differential Op-
erators. Our model achieves state-of-the-art performance with comparable number of training
parameters.

Model Architecture Design
A detailed schematic for the neural architectures in this study is presented in Fig. 3.2. The
schematic includes architectures for both the classification and regression network, which share a
common encoder architecture. The segmentation network consists of an additional decoder which
features transpose convolutions and skip layers, inspired by the U-Net architecture [88]. Minor
adjustments are made for different tasks, mainly surrounding adjusting the number of input and
output layers to process signals at varied resolutions. A detailed breakdown for model architec-
tures, as well as training details for each task in the Experiment section (Sec. 3.4), is provided in
the appendix (Appendix Sec. B.1).

3.4 Experiments

Spherical MNIST
To validate the use of parameterized differential operators to replace conventional convolution op-
erators, we implemented such neural networks towards solving the classic computer vision bench-
mark task: the MNIST digit recognition problem [62].

Experiment Setup We follow [16] by projecting the pixelated digits onto the surface of the unit
sphere. We further move the digits to the equator to prevent coordinate singularity at the poles. We
benchmark our model against two other implementations of spherical CNNs: a rotational-invariant
model by [16] and an orientable model by [17]. All models are trained and tested with non-rotated
digits to illustrate the performance gain from orientation information.

Results and Discussion Our model outperforms its counterparts by a significant margin, achiev-
ing the best performance among comparable algorithms, with comparable number of parameters.
We attribute the success in our model to the gain in orientation information, which is indispensable
for many vision tasks. In contrast, S2CNN [16] is rotational-invariant, and thus has difficulties
distinguishing digits “6” and “9”.
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Figure 3.4: Parameter efficiency study on
2D3DS semantic segmentation task. Our
spherical segmentation model outperforms the
planar and point-based counterparts by a signif-
icant margin across all parameter regimes.

3D Object Classification
We use the ModelNet40 benchmark [110], a 40-class 3D classification problem, to illustrate the
applicability of our spherical method to a wider set of problems in 3D learning. For this study, we
look into two aspects of our model: peak performance and parameter efficiency.

Experiment Setup To use our spherical CNN model for the object classification task, we pre-
process the 3D geometries into spherical signals. We follow [16] for preprocessing the 3D CAD
models. First, we normalize and translate each mesh to the coordinate origin. We then encapsulate
each mesh with a bounding level-5 unit sphere and perform ray-tracing from each point to the
origin. We record the distance from the spherical surface to the mesh, as well as the sin, cos of
the incident angle. The data is further augmented with the 3 channels corresponding to the convex
hull of the input mesh, forming a total of 6 input channels. An illustration of the data preprocess-
ing process is presented in Fig. 3.5. For peak performance, we compare the best performance
achievable by our model with other 3D learning algorithms. For the parameter efficiency study, we
progressively reduce the number of feature layers in all models without changing the overall model
architecture. Then, we evaluate the models after convergence in 250 epochs. We benchmark our
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Model Input Accu.
(%)

3DShapeNets [110] voxels 84.7
VoxNet [73] voxels 85.9
PointNet [84] points 89.2
PointNet++ [82] points 91.9
DGCNN [106] points 92.2
S2CNN [16] spherical 85.0
SphericalCNN [29] spherical 88.9

Ours spherical 90.5

Table 3.2: Results on ModelNet40 dataset. Our method
compares favorably with state-of-the-art, and achieves
best performance among networks utilizing spherical in-
put signals.

(a) Original
CAD model and
spherical mesh.

(b) Resulting
surface distance
signal.

Figure 3.5: Illustration of spherical sig-
nal rendering process for a given 3D
CAD model.

results against PointNet++ [84], VoxNet [85], and S2CNN∗[16].

Results and Discussion Fig. 3.3 shows a comparison of model performance versus number
of parameters. Our model achieves the best performance across all parameter ranges. In the
low-parameter range, our model is able to achieve approximately 60% accuracy for the 40-class
3D classification task with a mere 2000+ parameters. Table 3.2 shows a comparison of peak
performance between models. At peak performance, our model is on-par with comparable state-
of-the-art models, and achieves the best performance among models consuming spherical input
signals.

Omnidirectional Image Segmentation
We illustrate the semantic segmentation capability of our network on the omnidirectional image
segmentation task. We use the Stanford 2D3DS dataset [2] for this task. The 2D3DS dataset
consists of 1,413 equirectangular images with RGB+depth channels, as well as semantic labels
across 13 different classes. The panoramic images are taken in 6 different areas, and the dataset
is officially split for a 3-fold cross validation. While we are unable to find reported results on the
semantic segmentation of these omnidirectional images, we benchmark our spherical segmentation
algorithm against classic 2D image semantic segmentation networks as well as a 3D point-based
model, trained and evaluated on the same data.

∗We use the author’s open-source implementations: PointNet++, VoxNet, S2CNN. We run PointNet++ with stan-
dard input of 1000 points with xyz coordinates.

https://github.com/charlesq34/pointnet2
https://github.com/charlesq34/3dcnn.torch
https://github.com/jonas-koehler/s2cnn
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Experiment Setup First, we preprocess the data into a spherical signal by sampling the original
rectangular images at the latitude-longitudes of the spherical mesh vertex positions. Input RGB-
D channels are interpolated using bilinear interpolation, while semantic labels are acquired using
nearest-neighbor interpolation. We input and output spherical signals at the level-5 resolution. We
use the official 3-fold cross validation to train and evaluate our results. We benchmark our seman-
tic segmentation results against two classic semantic segmentation networks: the U-Net [88] and
FCN8s [68]. We also compared our results with a 3D point-based method, PointNet++ [82] using
(x, y, z,r,g,b) inputs reconstructed from panoramic RGBD images. We evaluate the network per-
formance under two standard metrics: mean Intersection-over-Union (mIoU), and pixel-accuracy.
Similar to Sec. 3.4, we evaluate the models under two settings: peak performance and a parameter
efficiency study by varying model parameters. We progressively decimate the number of feature
layers uniformly for all models to study the effect of model complexity on performance.

Results and Discussion Fig. 3.4 compares our model against state-of-the-art baselines. Our
spherical segmentation outperforms the planar baselines for all parameter ranges, and more signif-
icantly so compared to the 3D PointNet++. We attribute PointNet++’s performance to the small
sample size of the training data. Fig. 3.6 shows a visualization of our semantic segmentation
performance compared to the ground truth and the planar baselines.

Climate Pattern Segmentation
To further illustrate the capabilities of our model, we evaluate our model on the climate pattern seg-
mentation task. We follow [75] for preprocessing the data and acquiring the ground-truth labels for
this task. This task involves the segmentation of Atmospheric Rivers (AR) and Tropical Cyclones
(TC) in global climate model simulations. Following [75], we analyze outputs from a 20-year run
of the Community Atmospheric Model v5 (CAM5) [76]. We benchmark our performance against
[75] for the climate segmentation task to highlight our model performance. We preprocess the data
to level-5 resolution.

Results and Discussion Segmentation accuracy is presented in Table 3.3. Our model achieves
better segmentation accuracy as compared to the baseline models. The baseline model [75] trains
and tests on random crops of the global data, whereas our model inputs the entire global data and
predicts at the same output resolution as the input. Processing full global data allows the network
to acquire better holistic understanding of the information, resulting in better overall performance.

3.5 Ablation Study
We further perform an ablation study for justifying the choice of differential operators for our
convolution kernel (as in Eqn. 3.4). We use the ModelNet40 classification problem as a toy
example and use a 250k parameter model for evaluation. We choose various combinations of
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Figure 3.6: Visualization of semantic segmentation results on test set. Our results are generated
on a level-5 spherical mesh and mapped to the equirectangular grid for visualization. Model un-
derperforms in complex environments, and fails to predict ceiling lights due to incomplete RGB
inputs.

Model Background (%) TC (%) AR (%) Mean (%)

[75] 97 74 65 78.67
Ours 97 94 93 94.67

Table 3.3: We achieve better accuracy compared to our baseline for climate pattern segmentation.
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Convolution kernel Accuracy

I + ∂
∂y

+∇2 0.8748
I + ∂

∂x
+∇2 0.8809

I +∇2 0.8801
I + ∂

∂x
+ ∂

∂y
0.8894

I + ∂
∂x

+ ∂
∂y

+∇2 0.8979

Table 3.4: Results for the ablation study.
The choice of kernel that includes all differ-
ential operator components achieve the best
accuracy, validating our choice of kernel in
Eqn.3.4.

(a) Ground Truth (b) Predictions

Figure 3.7: Visualization of segmentation for At-
mospheric River (AR). Plotted in the background
is Integrated Vapor Transport (IVT), whereas red
masks indicates the existance of AR.

differential operators, and record the final classification accuracy. Results for the ablation study
is presented in Table 3.4. Our choice of differential operator combinations in Eqn. 3.4 achieves
the best performance among other choices, and the network performance improves with increased
differential operators, thus allowing for more degrees of freedom for the kernel.

3.6 Conclusion
We have presented a novel method for performing convolution on unstructured grids using param-
eterized differential operators as convolution kernels. Our results demonstrate its applicability to
machine learning problems with spherical signals and show significant improvements in terms of
overall performance and parameter efficiency. We believe that these advances are particularly rel-
evant with the widespread of omnidirectional signals, for instance, as captured by real-world 3D
or LIDAR panorama sensors.
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Chapter 4

Deep Learning on Implicit 3D
Representations

4.1 Introduction
Geometric representation for scenes has been central to various tasks in computer vision and graph-
ics, including geometric reconstruction, compression, and higher-level tasks such as scene under-
standing, object detection and segmentation. An effective representation should generalize well
across a wide range of semantic categories, scale efficiently to large scenes, exhibit a rich expres-
sive capacity for representing sharp features and complex topologies, and at the same time leverage
learned geometric priors acquired from data.

In the last years, several works have proposed new network architectures to allow conventional
geometric representations such as point clouds [84, 30, 112], meshes [103, 34], and voxel grids
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(a) Training parts (ShapeNet). (b) t-SNE of part embeddings. (c) Reconstructing scenes w/ Local Implicit Grids

Figure 4.1: We learn an embedding of parts from objects in ShapeNet [11] using a part autoencoder with
an implicit decoder. We show that this representation of parts is generalizable across object categories, and
easily scalable to large scenes. By localizing implicit functions in a grid, we are able to reconstruct entire
scenes from points via optimization of the latent grid.
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[22, 109] to leverage data priors. More recently, a neural implicit representation [14, 74, 77] has
been proposed as an alternative to these approaches for its expressive capacity for representing
fine geometric details. However, the aforementioned works focus on learning representations for
whole objects within one or a few categories, and they have not been studied in the context of
generalizing to other categories, or scaling to large scenes.

In this paper we propose a learned 3D shape representation that generalizes and scales to arbi-
trary scenes. Our key observation is that although different shapes across different categories and
scenes have vastly different geometric forms and topologies on a global scale, they share similar
features at a certain local scale. For instance, sofa seats and car windshields have a similar curved
parts, tabletops and airplane wings both have thin sharp edges, etc.. While no two shapes are the
same at the macro scale, and all shapes on a micro-scale can be locally approximated by an angled
plane, there exists an intermediate scale (a “part scale”), where a meaningful shared abstraction for
all geometries can be learned by a single deep neural network. We aim to learn shape priors at that
scale and then leverage them in a scalable and general 3D reconstruction algorithm.

To this end, we propose the Local Implicit Grid (LIG) representation, a regular grid of over-
lapping part-sized local regions, each encoded with an implicit feature vector. We learn to en-
code/decode geometric parts of objects at a part scale by training an implicit function autoencoder
on 13 object categories from ShapeNet [11]. Then, armed with the pretrained decoder, we pro-
pose a mechanism to optimize for the Latent Implicit Grid representation that matches a partial or
noisy scene observation. Our representation includes a novel overlapping latent grid mechanism
for confidence-weighted interpolation of learned local features for seamlessly representing large
scenes. We illustrate the effectiveness of this approach by targeting the challenging application
of scene reconstruction from sparse point samples, where we are able to faithfully reconstruct en-
tire scenes given only sparse point samples and shape features learned from ShapeNet objects.
Such an approach requires no training on scene level data, where data is costly to acquire. We
achieve significant improvement both visually and quantitatively in comparison to state-of-the-art
reconstruction algorithms for the scene reconstruction from point samples task (Poisson Surface
Reconstruction [54, 55], or PSR).

In summary, the main contributions of this work are:

• We propose the Local Implicit Grid representation for geometry, where we learn and leverage
geometric features on a part level, and associated methods such as the overlapping latent grid
mechanism and latent grid optimization methods for representing and reconstructing scenes
at high fidelity.

• We illustrate the significantly improved generalizability of our part-based approach in com-
parison to related methods that learn priors for entire objects – i.e., we can reconstruct shapes
from novel object classes after training only on chairs, or construct entire scenes after train-
ing only on ShapeNet parts.

• We apply our novel shape representation approach towards the challenging task of scene
reconstruction from sparse point samples, and show significant improvement over the state-
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of-the-art approach (For Matterport reconstruction from 100/m2 input points, an F-Score of
0.8894 versus 0.4550).

4.2 Related Work

Geometric representation for objects
In computer vision and graphics, geometric representations such as simplicial complexes (point
clouds, line meshes, triangular meshes, tetrahedral meshes) have long been used for represent-
ing geometries for its flexibility and compactness. In recent years, various neural architectures
have been proposed for analyzing or generating such representations. For instance for [84, 107]
have been proposed for analyzing point cloud representations, and [30, 112] for generating point
clouds. [72, 36, 49, 42] have been proposed for analyzing signals on meshes, and [103, 34, 20] for
generating mesh representations. [48] proposed a general framework for analyzing arbitrary sim-
plicial complex based geometric signals. Naturally paired with 3D Convolutional Neural Networks
(CNNs), voxel grids have also been extensively used as a 3D representation [110, 23, 15].

More recently, alternative representations have been proposed in the context of shape genera-
tion. Most related to our method are [74, 77, 14], where the implicit surfaces of geometries are
represented as spatial functions using fully-connected neural networks. Continuous spatial coor-
dinates are fed as input features to the network which directly produces the values of the implicit
functions, however these methods encode the entire shape using a global latent code. [91] used
such implicit networks to represent neural features instead of occupancies that can be combined
with a differentiable ray marching algorithm to produce neural renderings of objects. Rather than
learning a single global implicit network to represent the entire shape, [90] learns a continuous
per-pixel occupancy and color representation using implicit networks. Other novel geometric rep-
resentations in the context of shape reconstruction include Structured Implicit Functions that serves
as learned local shape templates [32], and CvxNet [28] which represents space as a convex com-
bination of half-planes that are localized in space. These methods represent entire shapes using
a single global latent vector, which can be decoded into continuous outputs with the associated
implicit networks.

Localized geometric representations
Though using a single global latent code to represent entire geometries and scenes is appealing for
its simplicity, it fails to capture localized details, and scales poorly to large scenes with increased
complexities. [111] proposes to address the localization problem in the context of image to 3D
reconstruction by first estimating a camera pose for the images followed by the projection of local
2D features to be concatenated with global latents for decoding. However, the scalability of such
hybrid representations beyond single objects has yet to be shown. Similar to our approach, [108]
uses a local patch based representation. However it is not trained on any data, hence is not able
to leverage any shape priors from 3d datasets. [78] combines shape patches extracted directly
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from a set of examples, which limits the shape expressibility. Similar to our spatial partitioning of
geometries into part grids, [97] uses PCA-based decomposition to learn a reduced representation
of geometric parts within TSDF grids of a fixed scale for the application of real-time geometry
compression. These methods do not support scalable reconstruction with learned deep implicit
functions.

Scene-level geometry reconstruction
Most deep learning studies have investigated object reconstruction, with input either as an RGB/D
image [15, 103, 74, 14, 30, 28, 32] or 3D points [77, 66, 47], and yet few have considered learning
to reconstruct full scenes. Scene level geometry reconstruction is a much more challenging task
in comparison to single objects. [94] performs semantic scene completion within the frustum of a
single depth image. [23] uses a 3D convolutional network with a coarse-to-fine inference strategy
to directly regress gridded Truncated Signed Distance Function (TSDF) outputs from incomplete
input TSDF. [4] tackles the scene reconstruction problem by CAD model retrieval, which pro-
duces attractive surfaces, at the expense of geometric inaccuracies. However, all of the methods
require training on reliable and high-quality scene data. Though several real and synthetic scene
datasets exist, such as SunCG [93], SceneNet [35], Matterport3D [12] and ScanNet [25], they are
domain-specific and acquiring data for new scenes can be costly. In contrast to methods above
that require training on scene dataset, our method naturally generalizes shape priors learned from
object datasets and does not require additional training on scenes.

4.3 Methods

Method overview
We present a schematic overview of our method in Figure 4.1. We first learn an embedding of shape
parts at a fixed scale from objects in a synthetic dataset using part autoencoders (see Sec. 4.3).
We show two interesting properties of such a latent embedding: (1) objects that originated from
different categories share similar part geometries, validating the generalizability of such learned
representations, and (2) parts that are similar in shape are close in the latent space. In order to
scale to scenes of arbitrary sizes, we introduce an overlapping gridded representation that can
layout these local representations in a scene (Sec. 4.3). Using such part embeddings that can be
continuously decoded spatially using a local implicit network, we are able to faithfully reconstruct
geometries from only sparse oriented point samples by searching for a corresponding latent code
using gradient descent-based optimization to match given observations (Sec. 4.3), thus efficiently
leveraging geometric priors learned from parts from the ShapeNet dataset.
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Figure 4.2: A schematic of the part autoencoder. At train time, crops of the TSDF grid from
the ShapeNet dataset are used to train a part autoencoder, with a 3D CNN encoder and implicit
network decoder. Interior and exterior points are sampled to supervise the network during training.
At inference time, the pre-trained implicit network is attached to a Local Implicit Grid, and the
corresponding latent values are optimized via gradient descent on observed interior/exterior points.

Learning a latent embedding for parts
Data Our part embedding model is learned from a collection of 20 million object parts culled
from 3D-R2N2 [15], a 13-class subset of ShapeNet. As preprocessing, we normalize watertight
meshes (generated with tools from [74]) into a [0, 1] unit cube, leaving a margin of 0.1 at each
side. To maintain the fidelity of the parts, we compute a signed distance function (SDF) at a grid
resolution of 2563. Starting from the origin and with a stride of 16, all 323 patches that have at
least one point within 3/255 of the shape surface are extracted as parts for training.

Part Autoencoder We use a 3D CNN decorated with residual blocks for encoding such local
TSDF grids, and a reduced IM-NET [14] decoder for reconstructing the part. An IM-NET decoder
is a simple fully connected neural network with internal skip connections that takes in a latent
code concatenated with a 3D point coordinate, and outputs the corresponding implicit function
value at the point. We train the network using point samples with binary in/out labels so that
the network learns a continuous decision boundary of the binary classifier as the encoded surface.
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Since decoding a part is a much more simplified task than decoding an entire shape, we reduce
the number of feature channels in each hidden layer of IM-NET by 4 fold, obtaining a leaner and
more efficient decoder. To acquire a compact latent representation of parts, we further reduce the
number of latent channels for each part to 32. We train the part autoencoder with 2048 random
point samples that we sample from the SDF grid on-the-fly during training, where we sample points
farther from the boundary with Gaussian-decaying probabilities. The sign of the sample points is
interpolated from the sign of the original SDF grid. Furthermore, we truncate the input SDF grids
to a value of 3/255 and renormalize the grid to [0, 1] for stronger gradients near the boundary.

We train the part autoencoder with binary cross entropy loss on the point samples, with an
additional latent regularization loss to constrain the latent space of the learned embeddings. The
loss is given as:

L(θe, θd) =
1

|P||B|
∑
i∈P

∑
j∈B

Lc(Dθd(xi,j, Eθe(gi)), sign(xi,j))

+ λ||Eθe(gi)||2 (4.1)

where P is the set of all training parts in a given mini-batch, B is the set of point samples sam-
pled per part, Lc(·, ·) is the binary cross-entropy loss with logits, Eθe is the convolutional encoder
parameterized by trainable parameters θe, Dθd is the implicit decoder parameterized by trainable
parameters θd, and gi is the input tsdf grid for the i-th part, sign(·) takes the sign of the correspond-
ing point xi,j .

Local implicit grids
In order to use the learned part representations for representing entire objects and scenes, we lay
out a sparse latent grid structure, where within each local grid cell the surface is continuously
decoded from the local latent codes within the cell. In world coordinates, when querying for the
implicit function value at location x against a single voxel grid cell centered at xi, the implicit
value is decoded as:

f(x, ci) = Dθd(ci,
2

s
(x− xi)) (4.2)

where ci is the latent code corresponding to the part in cell i, and s is the part scale. The coordinates
are first being transformed into normalized local coordinates within the cell to [−1, 1], before being
queried against the decoder.

Though directly partitioning space into a voxel grid with latent channels within each cell gives
decent performance, there will be discontinuities across voxel boundaries. Hence we propose the
overlapping latent grid scheme, where each grid cell for a part overlaps with its neighboring cells
by half the part scale. When querying for the implicit function value at an arbitrary position x
against overlapping latent grids, the value is computed as a trilinear interpolation of independent
queries to all cells that overlap at this position, which is 4 in 2 dimensions and 8 in 3 dimensions:

f(x, {cj|j ∈ N}) =
∑
j∈N

wjDθd(cj,
2

s
(x− xj)) (4.3)
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Part Scale

Figure 4.3: 2D schematic for representing geometries with overlapping latent grids. The implicit
value at any point is an bilinear/trilinear interpolation of implicit values acquired by querying 4/8
(2D/3D) neighbors with respect to each cell center.

where Nj is the set of all neighboring cells of point x, and wj is the trilinear interpolation weight
corresponding to cell j. Under such an interpolation scheme, the overall function represented
by the implicit grid is guaranteed to be C0 continuous. Higher-order continuity could be similarly
acquired with higher degrees of polynomial interpolations, though we do not explore it in the scope
of this study. For additional efficiency, since most grid cells do not have any points that fall into
them, we use a sparse data structure for storing latent grid values, optimization, and decoding for
the reconstructed surface, where empty space is assumed to be exterior space.

Geometric encoding via latent optimization
At inference time, when presented with a sparse point cloud of interior/exterior samples as in-
put, we decompose space into a coarse grid and then perform optimization for the latent vectors
associated with the grid cells in order to minimize the cost function for classifying sampled inte-
rior/exterior points. The initial values within the latent grid is initialized as random normal with a
standard deviation of 10−2. If we denote the set of effective latent grid cells as G, the corresponding
latent code in each grid cell cj , and the set of all sampled interior/exterior input points as B, we
optimize the latent codes for the minimal classification loss on the sampled points:

arg min
c∈G

∑
i∈B

∑
j∈Ni

Lc(f(xi, {cj|j ∈ N}), sign(xi)) + λ||cj||2 (4.4)

How do we acquire the signed point samples for performing this latent grid optimization?
For autoencoding a geometry with a latent grid, the signed point samples are densely sampled
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Figure 4.4: Schematic for reconstructing shapes based on sparse oriented point samples. Given
original point samples on the surface with normals, we randomly sample k samples along both
sides of each normal vector and assign signs for these samples accordingly. The points are sampled
with a Gaussian falloff probability, with a given standard deviation σ. The latent codes within the
overlapping latent grids are updated via optimization for minimizing classification loss as in Eqn.
4.4. The surface of the shape is reconstructed by densely querying the latent grid and extracting
the zero-contour of the output logits.

near the surface of the given shape to be encoded. However, for the application of recovering
surface geometry from sparse oriented point samples, we randomly sample interior and exterior
points for each point sample along the given normal direction, with a Gaussian falloff probability
parameterized by a standard deviation of σ. See Fig. 4.4 for details.

As our method requires optimizing over the learned latent space, it is reasonable to wonder
if alternate models such as a variational autoencoder [57] or autodecoder [77] would be a more
appropriate choice, as both formulations incorporate a latent distribution prior. However, [77]
observed the stochastic nature of the VAE made training difficult. Also, the autodecoder is funda-
mentally unable to scale to large numbers of parts at training as it requires fast storage and random
access to all latent embeddings during training. These concerns motivated our decision to adopt an
autoencoder formulation with a regularization loss to constrain the latent space.

4.4 Experiments
We ran a series of experiments to test the proposed LIG method. We focus on two properties of
our method: the generalization of our learned part representation, and the scalability of our learned
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Category IM-NET Ours

CD (↓) Normal
(↑)

F-Score (↑) CD (↓) Normal
(↑)

F-Score
(↑)

chair 0.1813 0.819 0.5054 0.0988 0.917 0.7095

airplane 0.6975 0.5503 0.1509 0.1503 0.8174 0.5641
bench 0.2294 0.7189 0.4327 0.0543 0.9048 0.8569
cabinet 0.3428 0.7004 0.2302 0.1182 0.9479 0.7331
car 0.3543 0.6456 0.238 0.1518 0.8251 0.4723
display 0.6013 0.5738 0.1302 0.1703 0.9259 0.5514
lamp 0.8356 0.5923 0.119 0.1141 0.8819 0.624
loudspeaker 0.3772 0.7017 0.2462 0.1385 0.9369 0.7114
rifle 0.9017 0.4002 0.0798 0.1126 0.8242 0.6932
sofa 0.199 0.8116 0.484 0.0767 0.9435 0.8218
table 0.4253 0.681 0.2424 0.0659 0.9363 0.8443
telephone 0.6232 0.5471 0.12 0.0371 0.9842 0.9621
vessel 0.5914 0.5743 0.1473 0.1782 0.8474 0.4667

mean* 0.435 0.6663 0.2738 0.1140 0.8980 0.6918

Table 4.1: Shape autoencoding for autoencoders trained on only chairs and evaluated on all 13
categories. The mean corresponds to class-averaged mean of all out-of-training object categories.

shape representation to large scenes. Our target application is reconstructing scenes from a sparse
set of oriented point samples, a challenging task that requires learned part priors for detailed and
accurate reconstruction.

Metrics In all of our experiments, we evaluate geometric reconstruction quality with Chamfer
Distance (CD), Normal Alignment (Normal), and F-Score. For Chamfer Distance and Normal
Alignment, we base our implementation on [74] with small differences. For object-level autoen-
coding experiments, we follow [30, 74] and normalize the unit distance to be 1/10 of the maximal
edge length of the current object’s bounding box. We estimate CD and Normal Alignment us-
ing 100,000 randomly sampled points on the ground truth and reconstructed meshes. For the two
scene-level experiments, we randomly sample 2 million points on each mesh when estimating CD
and Normal Alignment. When evaluating scene reconstructions, we use world coordinate scales
(meters) for computing CD, since data is provided in a physically-meaningful scale. Additionally,
in all experiments, we compute the F-Score at a threshold of τ , as F-Score is a metric less sensitive
to outliers. F-Score is the harmonic mean of recall (percentage of reconstruction to target distances
under τ ) and precision (vice versa). For object reconstruction (Sec. 4.3) we use τ = 0.1 and for
scene reconstruction, we use τ = 0.025 (i.e., 2.5cm).
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Metrics CD(↓) Normal(↑) F-Score(↑)

IM-NET 0.1825 0.8267 0.6472
Ours 0.007 0.9451 0.9853

Table 4.2: Qualitative comparison of scene representational performance for IM-NET versus our
method.

Generalization of learned part representation
Task In order to investigate the generalization of the learned embedding by reducing the scale
of the learned shape from object scale to part scale, we construct an investigative experiment of
training the models to learn a shape autoencoder on a single category of objects (in this case, chairs
in the training set of ShapeNet), and reconstructing examples from the all 13 object categories,
including the other 12 unseen categories.

Baseline As our main objective is to explore the gain in generalizability from learning an embed-
ding of part scales, we benchmark our method against the original IM-NET decoder with a similar
3D convolution based encoder as the encoder part of our part autoencoder. To implement autoen-
coding for our method, we train our autoencoder on all the parts we extract from the training split
of the chair category in ShapeNet. We then “encode” the geometries of the unseen shapes using
the latent optimization method that is described in Sec. 4.3.

Results Discussion We quantitatively and qualitatively compare reconstruction performances in
Table 4.1 and Figure 4.5, respectively. Given an IM-NET that is trained to learn a latent represen-
tation of objects (in this scenario, chairs), the learned representation does not generalize to classes
beyond the source class. Visually, IM-NET achieves good reconstructions on the source class as
well as related classes (e.g., sofa), but performs poorly on semantically different classes (e.g., air-
plane). In contrast, the part representation learned by our local implicit networks is transferable
across drastically different object categories.

Scalability of scene representational power
Task As a second experiment, we investigate the increased representational power and scalability
that we gain from learning a part-based shape embedding. The definition of the task is: given
one scene, what is the best reconstruction performance we can get from either representation for
memorizing and overfitting to the scene.

Baseline Similar to the previous experiment, we compare directly with IM-NET for represen-
tational capacity towards a scene, as it is the decoder backbone that our method is based on, to
investigate the improvement in scalability that we are able to gain by distributing geometric infor-
mation in spatially localized grid cells versus a single global representation. For this task, as the
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Figure 4.5: Qualitative comparison of autoencoded shape from in-category (chair) and out-of-
category shapes. IM-NET trained to learn embeddings of one object category does not transfer
well to unseen categories, while the part embedding learned by our local implicit networks is
much more transferable across unseen categories.

objective is to encode one scene, we use the encoderless version of IM-NET, where during training
time, the decoder only receives spatial coordinates of point samples (not concatenated with a latent
code) that are paired with the signs of these points. For our method, we use latent optimization
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Figure 4.6: Qualitative comparison of the scene representational performance: Left to right:
Ground truth scene, our reconstruction using sampling density 500 points/m2, and IM-NET. First
two rows from Matterport, last row from SceneNet.

against the pretrained decoder for encoding the scenes, using 100k surface point samples from the
scene, with a sampling factor of k = 10 per point along the normal direction.

Data We evaluate the representational qualities of the two methods on the meshes from the vali-
dation set of the Matterport 3D [12] scene dataset. We perform the evaluations at the region level
of the dataset, requiring the models to encode one region at a time. Additionally, we provide one
example from SceneNet for visual comparison in Fig. 4.6.

Results Discussion The quantitative (Table 4.2) and qualitative (Fig. 4.6) results are presented.
While IM-NET is able to reconstruct the general structure of indoor scenes such as smooth walls
and floors, it fails to capture fine details of objects due to the difficulty of scaling a single implicit
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Figure 4.7: Qualitative comparisons of scene reconstruction performance from sparse oriented
point samples. Left: Ground truth scene mesh, with input point cloud overlay. Middle: Our
reconstruction. Right: Reconstruction using PSR10. Top row: Scene from Matterport 3D dataset.
Bottom row: SceneNet dataset. Our method is significantly better at reconstructing sharp edges
and thin structures.

network to an entire scene. Our Local Implicit Grids are able to capture global structures as well
as local details.

Scene reconstruction from sparse oriented points
Task As a final task and our main application, we apply our reconstruction method to the clas-
sic task in computer graphics to reconstruct geometries from sparse points. This is an important
application since surface reconstruction from points is a crucial step in the process of digitizing
the 3-dimensional world. The input to the reconstruction pipeline is the sparse point samples that
we randomly sample from the surface mesh of the scene datasets. We study reconstruction perfor-
mances with a varied number of input point samples and point densities.

Baseline We compare our method to the traditional Poisson Surface Reconstruction (PSR) method [54,
55] with a high octree depth value (depth=10) for the scene reconstruction experiment, which re-
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mains the state-of-the-art method for surface reconstruction tasks. For one scenario (see Table 4.3
we also compare with PSR at depths 8 and 9, which produces similar results to PSR-10). While
various deep learning based methods [77, 66, 47] have been proposed for surface reconstruction
from points in a similar setting, all of the deep learning based methods are object-specific, trained
and tested on specific object categories in ShapeNet, with no anticipated transferability to unseen
categories or scenes, as we have shown in the experiment in Sec. 4.4. Furthermore, as both PSR
and our method require no training/finetuning on the scene level datasets, the task is based on the
premise that high-quality 3D training data is costly to acquire or unavailable for scenes. For our
method, we adaptively use different part sizes for different point densities. We use 25cm (1000
pts/m2), 35cm (500 pts/m2), 50cm (100 pts/m2) and 75cm (20 pts/m2) corresponding to different
point densities for optimal performance.

Data We evaluate the reconstruction performance of the methods on a synthetic dataset: SceneNet
[35], and a high quality scanned dataset: Matterport 3D [12] (validation split). As both SceneNet
and Matterport 3D datasets are not watertight, and in addition to that, SceneNet dataset has var-
ious artifacts such as double-sided faces that produce conflicting normal samples, we preprocess
both datasets using the watertight manifold algorithm as describe in [40]. For both datasets, as
the scenes vary in sizes, we sample a constant density of points on mesh surfaces (20, 100, 500
and 1000 points per m2). As preprocessing produces large empty volumes for SceneNet, we drop
scenes that have a volume-to-surface-area ratio lower than 0.13.

Results Discussion We compare the reconstruction performances in Table 4.3 and 4.4, and Fig.
4.7. With a high number of input point samples, both PSR10 and our method are able to recon-
struct the original scene with high fidelity. However, with a low number of point samples, our
method is able to leverage geometric priors to perform a much better reconstruction than PSR.
Additionally, our method is able to reconstruct thin structures very well whereas PSR fails to do
so. However, since our method only reconstructs finite thickness surfaces as determined by finite
part size, it creates double sided surfaces on the enclosed non-visible interiors, leading to degraded
performance in F-Score for the 500 and 1000 pts/m2 scenarios in Table 4.3.

4.5 Ablation Study
Additionally, we study the effects of two important aspects of our method: the part scale that we
choose for reconstructing each scene, and overlapping latent grids. We choose SceneNet recon-
struction from 100 point samples / m2 as a representative case for the ablation study. See Table 4.5
for a comparison. As seen from the results, the reconstruction results are affected by the choice
of part scale, albeit not very heavily influenced. Overlapping latent grids significantly improves
the quality of the overall reconstruction. With a smaller latent code size of 8, the performance is
slightly deteriorated due to more limited expressivity for part geometries.
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points/m2 Method CD(↓) Normal(↑) F-Score(↑)

20
PSR10 0.0768 0.8023 0.3172
Ours 0.0181 0.9194 0.8540

100

PSR8 0.0310 0.8913 0.7207
PSR9 0.0353 0.8899 0.7205
PSR10 0.0354 0.8896 0.7250
Ours 0.0132 0.9594 0.9356

500
PSR10 0.0235 0.9587 0.9570
Ours 0.0130 0.9742 0.9258

1000
PSR10 0.0258 0.9752 0.9837
Ours 0.0132 0.9774 0.8961

Table 4.3: Reconstruction performance on SceneNet dataset.

points/m2 Method CD(↓) Normal(↑) F-Score(↑)

20
PSR10 0.1665 0.6549 0.2759
Ours 0.0283 0.8134 0.6913

100
PSR10 0.1064 0.7567 0.4550
Ours 0.0134 0.8829 0.8894

500
PSR10 0.1029 0.8710 0.7776
Ours 0.0083 0.9279 0.9703

1000
PSR10 0.1015 0.9101 0.8619
Ours 0.0070 0.9451 0.9853

Table 4.4: Reconstruction performance on Matterport dataset.

CL PS Overlap CD(↓) Normal(↑) F-Score(↑)

32 25cm Yes 0.0142 0.9484 0.8713
32 50cm Yes 0.0132 0.9594 0.9356
32 75cm Yes 0.0139 0.9440 0.9212

32 50cm No 0.0247 0.8853 0.8423

8 50cm Yes 0.0181 0.9238 0.8516

Table 4.5: Ablation study on the effects of the choice of latent code length (CL), part scale (PS)
and overlapping latent grid design on the reconstruction performance for scenes.
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4.6 Discussion and Future Work
The Local Implicit Grid (LIG) representation for 3D scenes is a regular grid of overlapping part-
sized local regions, each encoded with an implicit feature vector. Experiments show that LIG is
capable of reconstructing 3D surfaces of objects from classes unseen in training. Furthermore, to
our knowledge, it is the first learned 3D representation for reconstructing scenes from sparse point
sets in a scalable manner. Topics for future work include ways to constrain the LIG optimization
to produce latent codes near training examples, explore alternate implicit function representations
(eg. OccNet), and to investigate the best ways to use LIG for 3D reconstruction from image(s).
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Appendix A

Additional Details for DDSL

In the appendix we provide additional details for deriving the derivative of the NUFT process as
well as control point methods (Sec. A.1), network architecture and training details (Sec. A.2). In
Sec. A.3 we provide additional computational performance benchmarks for the DDSL layer. In
Sec. A.4 we showcase additional applications of the DDSL towards 3D applications besided the
2D examples in the main paper. In Sec. A.5 we provide additional visualizations for the DDSL
rasterization of 3D meshes.

A.1 Mathematical Derivations

NUFT Derivative Derivation
Proof of Lemma 2.3.1. Using Jacobi’s formula and chain rule,

∂γjn
∂xp

=
(−1)j+1

2

√
2j(−1)j+1det(B̂j

n)
tr

(
adj(B̂j

n)
∂B̂j

n

∂xp

)
(A.1)

=
(−1)j+1/2j

2γjn

j+2∑
m=1

j+2∑
n=1

ÃmnD̃nm (A.2)

where Ã is adj(B̂j
n) and D̃ is ∂B̂j

n

∂xp
. Since B̂j

n is symmetric, its adjunctive and derivative with respect

to xp are also symmetric. The elements on the diagonal and the first row and column of D̃ are zero,
since the elements in the same positions in B̂j

n are constant. The elements not in the (p+ 1)th row
or the (p + 1)th column of D̃ are also zero, since the elements in these positions in B̂j

n do not
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depend on xp. Thus,

D̃ =



0 . . . 0 0 0 . . .
... . . . ...

...
...

0 . . . 0 D̃p,p+1 0 . . .

0 . . . D̃p+1,p 0 D̃p+1,p+2 . . .

0 . . . 0 D̃p+2,p+2 0 . . .
...

...
...

... . . .


(A.3)

Each nonzero element of D̃ is computed as follows:

D̃p+1,n =
∂d2p,n−1
∂xp

= 2(xp − xn−1) (A.4)

D̃m,p+1 =
∂d2m−1,p
∂xp

= 2(xp − xm−1) (A.5)

It follows that the double summation term in Eqn. A.2 simplifies to

j+2∑
m=1

j+2∑
n=1

ÃmnD̃nm = 2

j+2∑
m=2
m 6=p+1

Ãp+1,mD̃p+1,m (A.6)

For clarity and ease of implementation, we modify the indexing in Eqn. A.6 and the derivative
of the content distortion factor is finally

∂γjn
∂xp

=
(−1)j+1/2j

γjn

j+1∑
m=1
m6=p

ApmDpm (A.7)

Proof of Lemma 2.3.2. By the sum rule,

∂S

∂xp
=

j+1∑
t=1

∂St
∂xp

(A.8)



APPENDIX A. ADDITIONAL DETAILS FOR DDSL 56

We examine two cases, when t = p and when t 6= p. For t = p,
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For t 6= p,
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Thus,
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Derivation of Eqn. 2.14. Using the product rule,

∂F j
n(k)

∂xp
= ρni

j

(
∂γjn
∂xp

S +
∂S

∂xp
γjn

)
(A.19)

We obtain Eqn. 2.14 by substituting Eqns. 2.11 and 2.12 into Eqn. A.19.

Control Points
We use linear blend skinning to control mesh deformation using control points. The new position
of a point v′ on the shape is computed as the weighted sum of handle transformations applied to
its rest position v:

v′ =
m∑
j=1

wj(v)Tj

(
v
1

)
Where Tj is the transformation matrix for the j-th control point, wj(v) is the normalized weight
on vertex v corresponding to control point j. The transformation is represented in homogeneous
coordinates, hence the extra dimension.
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Consider control points with 3 degrees of freedom: (tx, ty, θ) where tx and ty represent trans-
lations in x and y and θ represents rotation around that control point. Hence we have

v′x =
∑N

j=1wj(v)
(

cos(θj − θ̃j)vx − sin(θj − θ̃j)vy
− cos(θj − θ̃j)cx + sin(θj − θ̃j)cy
+cx + vx + tx

)
v′y =

∑N
j=1wj(v)

(
sin(θj − θ̃j)vx + cos(θj − θ̃j)vy

− sin(θj − θ̃j)cx − cos(θj − θ̃j)cy
+cy + vy + ty

)
Where θ̃j is the original orientation of the control points. It does not matter since we will be taking
the derivatives with respect to θ, and θ̃j terms will disappear. The jacobian of v with respect to the
three degrees of freedom is:

J =

[
∂v

∂tx
,
∂v

∂ty
,
∂v

∂θ

]
=

[
wj(v) 0 wj(v)(−vy + cy)

0 wj(v) wj(v)(vx − cx)

]

A.2 Network Architecture and Training Details
In this section, we detail all the network architectures and training routines for the reader’s refer-
ence.

Notation Meaning

Conv(a, b, c, d) Convolutional layer with a input
channels, b output channels, kernel
size c, and stride d.

MaxPool(a) Maximum Pooling with a kernel
size of a.

ReLU Rectified Linear Unit activation
function.

FC(a, b) Fully connected layer with a input
channels and b output channels.

ResNet-50(a) ResNet-50 architecture with a out-
put channels.

BN Batch Normalization.

Table A.1: Network architecture notation list.
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MNIST
We use a standard LeNet-5 architecture with 3 convolutional layers and 2 fully connected layers.

Network Architecture The input is a 28x28 pixel image, which is normalized according to the
mean and standard deviation of the entire dataset. The network architecture is as follows:

Conv(1, 10, 5, 1) + MaxPool(2) + ReLU → Conv(10, 20, 5, 1) + Dropout + MaxPool(2) +
ReLU→ FC(320, 250) + ReLU→ Dropout→ FC(250, 10)

Total number of parameters: 88,040

Training Details We train the neural network with a batch size of 64 and an initial learning rate
of 1× 10−2 with a decay of 0.5 per 10 epochs. We use the Stochastic Gradient Descent optimizer
with a momentum of 0.5 and a cross entropy loss.

Airfoil
We use ResNet-50 [37] followed by three fully connected layers to predict the lift-drag ratio on the
airfoil.

Network Architecture The input is a 224x224 pixel image of the airfoil. For each piece of
data, we append the Reynolds number and angle of attack after ResNet-50 and before the fully
connected layers. The network architecture is as follows:

ResNet-50(1000) + BN + ReLU→ append Reynolds number and angle of attack→ FC(1002,
512) + BN + ReLU→ FC(512, 64) + BN + ReLU→ FC(64, 32) + BN

Total number of parameters: 26,100,345

Training Details We train the neural network with a batch size of 240 and an initial learning rate
of 1 × 10−2 with a decay of 1 × 10−1 per 20 epochs. We use the Adam optimizer and a mean
squared error loss.

Polygon Image Segmentation
We present a novel polygon decoder architecture that is paired with a standard pre-trained ResNet50
as input.

Network Architecture The model architecture is detailed in Fig. 2.4. All ground-truth poly-
gons are normalized to the range [0,1) corresponding to the relative positions within the bounding
boxes. Using this network architecture, we first predict the three (x, y) coordinates associated with
the base triangle. Then, we progressively predict the offsets of the vertices in the next polygon
hierarchy (See Fig. 2.3). The resulting polygon is rasterized with the DDSL to compute the raster-
ization loss compared with the rasterized target. Smoothness loss can be directly computed based
on the vertex positions and does not require rasterization.
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Total number of parameters: 24,274,426

Training Details We train the network end-to-end, with a batch size of 48, learning rate of 10−3

for 200 epochs. We use a smoothness penalty of λ = 1. We use the Adam optimizer.

A.3 Additional Computational Efficiency Tests
In addition to the computational speed benchmarks in Fig. 2.5 highlighting the performance gain
of analytic derivative computation over numerical derivatives, we perform additional tests for 2D
and 3D computation speeds on more complex polygons and meshes to show the applicability of
DDSL to 2D and 3D computer vision problems.

Res2 16 32 64 128 256

Fwd Time (ms) 2.30 1.88 2.48 5.02 20.13

Bwd Time (ms) 4.33 3.80 5.93 16.69 59.15

Table A.2: 2D Computational speed (polygon w/ 250 edges).

Res3 4 8 16 32

Fwd Time (ms) 9.88 9.32 14.21 78.62

Bwd Time (ms) 14.47 10.06 34.26 239.51

Table A.3: 3D Computational speed (tri-mesh w/ 1300 faces).

A.4 3D Geometric Applications
To showcase the generalizabilty of the DDSL to 3D domain, we demonstrate its application in two
separate 3D tasks that utilze the differentiablity of the simplex rasterization layer.

3D Rotational Pose Estimation
In Fig. A.1, we use DDSL to create a differentiable volumetric loss comparing current and target
shapes, the gradients of which can be backpropagated to the pose. More specifically, we parame-
terize the rotational pose as a quaternion q = a+ bî+ cĵ + dk̂, s.t.||q||2 = 1. The rasterization
loss is defined as:

L(q) = ||D32(V (q))−D32(Vtg)||1

where D32 is the rasterization operator at resolution 323 and Vtg is the target mesh.
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Figure A.1: Mesh pose and rasters before and after opt.

Although the volumetric rasterization loss is not a globally convex loss for pose alignment,
with certain initialization of the target poss, the pose can be estimated by minimizing the DDSL
rasterization loss.

Single Image Mesh Estimation
In Fig. A.2, we evaluate our method in the context of 3D deep learning. Our model consists of
an image encoder from ResNet18, spherical convolutions [46] for generating a distortion map for
a spherical mesh, and a loss function which is a weighted sum of DDSL rasterization loss (at
323 resolution), Chamfer loss from point samples, Laplacian regularization loss, and Edge length
regularization loss. We train on the airplane category in ShapeNet dataset, with (w/) and without
(w/o) DDSL loss. We evaluate using accuracy, completeness, and chamfer distance metrics (see
Tab. A.4).

Since surface based Chamfer distance does not signal the network to produce consistently
oriented surfaces and does not consistently enclose volume, it leads to incorrectly oriented surfaces.
DDSL loss effective regularizes surface orientation based on the volume enclosed according to the
surface orientations, and improves overall results.
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DDSL Accuracy Complete Chamfer

w/o 8.47 9.84 9.16
w/ 2.15 1.83 1.99

Table A.4: Evaluation resultsn(×10−2).

(a) w/ DDSL (b) w/o DDSL

Figure A.2: Qualitative visualization of generated samples.

A.5 Additional 3D Visualizations
We provide visualizations for rasterizing 3D shapes, rasterizing the enclosed volume as well as the
surface mesh.
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Input
Triangular
Mesh

Rasterize
Surface
Mesh (j=2)

Rasterize
Enclosed
Volume (j=3)

Figure A.3: In this example above, the input is a watertight triangluar mesh represented by ver-
tices and faces. It can be rasterized in-situ in a 3-dimensional grid differentiably. The value is
approximately 0 or 1 indicating signal densities.
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Appendix B

Additional Details for UGSCNN

Notation Meaning

MeshConv(a, b) Mesh convolution layer with a input channels and produc-
ing b output channels

MeshConv(a, b)T Mesh transpose convolution layer with a input channels and
producing b output channels.

BN Batch Normalization.
ReLU Rectified Linear Unit activation function
DownSamp Downsampling spherical signal at the next resolution level.
ResBlock(a, b, c) As illustrated in Fig. 3.1, where a, b, c stands for input chan-

nels, bottle neck channels, and output channels.
[ ]Li The layers therein is at a mesh resolution of Li.
Concat Concatenate skip layers of same resolution.

Table B.1: Network architecture notation list

B.1 Network Architecture and Training Details
In this section we provide detailed network architecture and training parameters for reproducing
our results in Sec. 3.4. We use Fig. 3.2 as a reference.

Spherical MNIST
Architecture Since the input signal for this experiment is on a level-4 mesh, the input pathway
is slightly altered. The network architecture is as follows:

[MeshConv(1,16) + BN + ReLU]L4 + [DownSamp + ResBlock(16, 16, 64)]L3 + [DownSamp +
ResBlock(64, 64, 256)]L2 + AvgPool + MLP(256, 10)
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Total number of parameters: 61658

Training details We train our network with a batch size of 16, initial learning rate of 1 × 10−2,
step decay of 0.5 per 10 epochs, and use the Adam optimizer. We use the cross-entropy loss for
training the classification network.

3D Object Classification
Architecture The input signal is at a level-5 resolution. The network architecture closely follows
that in the schematics in Fig. 3.2. We present two network architectures, one that corresponds to
the network architecture with the highest accuracy score (the full model), and another that scales
well with low parameter counts (the lean model). The full model:

[MeshConv(6, 32) + BN + ReLU]L5 + [DownSamp + ResBlock(32, 32, 128)]L4 + [Down-
Samp + ResBlock(128, 128, 512)]L3 + [DownSamp + ResBlock(512, 512, 2048)]L2 + AvgPool +
MLP(2048, 40)

Total number of parameters: 3737160
The lean model:
[MeshConv(6, 8) + BN + ReLU]L5 + [DownSamp + ResBlock(8, 8, 16)]L4 + [DownSamp +

ResBlock(16, 16, 64)]L3 + [DownSamp + ResBlock(64, 64, 256)]L2 + AvgPool + MLP(256, 40)
Total number of parameters: 70192

Training details We train our network with a batch size of 16, initial learning rate of 5 × 10−3,
step decay of 0.7 per 25 epochs, and use the Adam optimizer. We use the cross-entropy loss for
training the classification network.

Omnidirectional Image Segmentation
Architecture Input signal is sampled at a level-5 resolution. The network architecture is identical
to the segmentation network in Fig.3.2. Encoder parameters are as follows:

[MeshConv(4,32)]L5 + [DownSamp + ResBlock(32, 32, 64)]L4 + [DownSamp + ResBlock(64,
64, 128)]L3 + [DownSamp + ResBlock(128, 128, 256)]L2 + [DownSamp + ResBlock(256, 256,
512)]L1 + [DownSamp + ResBlock(512, 512, 512)]L0

Decoder parameters are as follows:
[MeshConvT(512,512) + Concat + ResBlock(1024, 256, 256)]L1 + [MeshConvT(256,256) +

Concat + ResBlock(512, 128, 128)]L2 + [MeshConvT(128,128) + Concat + ResBlock(256, 64,
64)]L3 + [MeshConvT(64,64) + Concat + ResBlock(128, 32, 32)]L4 + [MeshConvT(32,32) + Concat
+ ResBlock(64, 32, 32)]L5 + [MeshConv(32,15)]L5

Total number of parameters: 5180239

Training details Note that the number of output channels is 15, since the 2D3DS dataset has
two additional classes (invalid and unknown) that are not evaluated for performance. We train our
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network with a batch size of 16, initial learning rate of 1× 10−2, step decay of 0.7 per 20 epochs,
and use the Adam optimizer. We use the weighted cross-entropy loss for training. We weight the
loss for each class using the following weighting scheme:

wc =
1

1.02 + log(fc)
(B.1)

where wc is the weight corresponding to class c, and fc is the frequency by which class c appears
in the training set. We use zero weight for the two dropped classes (invalid and unknown).

Climate Pattern Segmentation
Architecture We use the same network architecture as the Omnidirectional Image Segmentation
task in Sec.B.1. Minor difference being that all feature layers are cut by 1/4.

Total number of parameters: 328339

Training details We train our network with a batch size of 256, initial learning rate of 1× 10−2,
step decay of 0.4 per 20 epochs, and use the Adam optimizer. We train using weighted cross-
entropy loss, using the same weighting scheme as in Eqn.B.1.

B.2 Detailed statistics for 2D3DS segmentation
We provide detailed statistics for the 2D3DS semantic segmentation task. We evaluate our model’s
per-class performance against the benchmark models. All statistics are mean over 3-fold cross
validation.

Model Mean beam board bookcase ceiling chair clutter column door floor sofa table wall window

UNet 0.5080 0.1777 0.4038 0.5914 0.9180 0.5088 0.4603 0.0875 0.4398 0.9480 0.2623 0.6865 0.7717 0.3481
FCN8s 0.4842 0.1439 0.4413 0.3952 0.8971 0.5244 0.5759 0.0564 0.5962 0.9661 0.0322 0.6614 0.7359 0.2682
PointNet++ 0.3349 0.1928 0.2942 0.3277 0.5448 0.4145 0.2246 0.3110 0.2701 0.4596 0.3391 0.4976 0.3358 0.1413

Ours 0.5465 0.1964 0.4856 0.4964 0.9356 0.6382 0.4309 0.2798 0.6321 0.9638 0.2103 0.6996 0.7457 0.3897

Table B.2: Per-class accuracy comparison with baseline models

Model Mean beam board bookcase ceiling chair clutter column door floor sofa table wall window

UNet 0.3587 0.0853 0.2721 0.3072 0.7857 0.3531 0.2883 0.0487 0.3377 0.8911 0.0817 0.3851 0.5878 0.2392
FCN8s 0.3560 0.0572 0.3139 0.2894 0.7981 0.3623 0.2973 0.0353 0.4081 0.8884 0.0263 0.3809 0.5849 0.1859
PointNet++ 0.2312 0.0909 0.1503 0.2210 0.4775 0.2981 0.1610 0.0782 0.1866 0.4426 0.1844 0.3332 0.3061 0.0755

Ours 0.3829 0.0869 0.3268 0.3344 0.8216 0.4197 0.2562 0.1012 0.4159 0.8702 0.0763 0.4170 0.6167 0.2349

Table B.3: Mean IoU comparison with baseline models
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Appendix C

Additional Details for LIG

C.1 Additional visual results
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Figure C.1: Left: Ground truth mesh overlaid with input point samples; Middle: Our reconstruc-
tion; Right: Screened PSR [55] reconstruction. The input are point samples from the Matterport
ground truth mesh at a sample density of 500 points / m2.
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Figure C.2: Left: Ground truth mesh overlaid with input point samples; Middle: Our reconstruc-
tion; Right: Screened PSR [55] reconstruction. The input are point samples from the SceneNet
ground truth mesh at a sample density of 500 points / m2.
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CL CD(↓) Normal(↑) F-Score(↑)

8 0.0181 0.9238 0.8516
16 0.0153 0.9433 0.8984
32 0.0132 0.9594 0.9356
64 0.0133 0.9638 0.9470

Table C.1: Additional ablation
study on the effects of latent
code length (CL). Reconstruc-
tion performance measured on
SceneNet reconstruction from
100 point samples / m2.

(a) Chamfer Dis-
tance

(b) Normal Align-
ment

(c) F-Score

Figure C.3: Line plot for Chamfer Distance, Normal Alignment
and F-Score versus Latent Code Length.

C.2 Additional ablation studies
We perform additional ablation studies on the effects of latent code length on reconstruction per-
formace. See Table C.1 and Fig. C.3 for reference. With increasing number of latent channels, the
reconstruction performance improves with diminishing marginal improvement. Our choice of 32
latent channels strikes a good balance between performance and efficiency.

C.3 Implementation details

Model architecture
We present a schematic of our encoder architecture for our part autoencoder in Fig. C.4. The
input to the encoder is a normalized TSDF crop of the part to be encoded, and the encoder uses
3D CNNs to encode the input into a latent code of dimensions 32. The encoder is decorated with
residue blocks with bottleneck layers for improved performance.

We refer the reader to [14] for the architecture for our refiner. We preserve the architecture
of the IM-NET model, but reduce the latent dimension from 128 to 32, and reduce the number of
hidden layers in every layer of the model to 1/4 of the original value for improved efficiency, due
to the fact that part geometries are easier to learn and represent than entire objects.
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Figure C.4: Encoder architecture. The encoder is a simple 3D CNN decorated with residue blocks,
that encodes 3D TSDF tensors into latent codes, which can be decoded into implicit surfaces by
an implicit network decoder.

Part autoencoder training
For training the part autoencoder, we use a batch size of 32, and for each shape we sample 2048
point samples. We train with a latent penalty factor λ = 10−2, learning rate of 10−3. We sample
empty volumes with a probability of 10−3 to embed empty space. We train the part autoencoder
for a total of 107 steps.

Inference
For reconstructing geometries from point samples, for each point sample, we sample 10 points
along the point normal with a standard deviation of 1cm. For the Local Implicit Grid, we initialize
each cell with Gaussian normal random values with a standard deviation of 0.01. During latent
grid optimization, we use 32768 random point samples per batch, and optimize with a learning
rate of 10−3. We optimize for a fixed 10000 steps. When extracting the final mesh, we extract the
mesh at 1/64m resolution.
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