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ONE SENTENCE SUMMARY: 15 

Diatom ALB3b is required for insertion of Fx-Chl binding proteins in thylakoid membranes and 16 

has a novel conserved domain implying that its interaction partners differ from those in 17 

plants/green algae.  18 
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 37 

ABSTRACT 38 

The family of chloroplast ALBINO3 (ALB3) proteins function in the insertion and assembly of 39 

thylakoid membrane protein complexes. Loss of ALB3b in the marine diatom Phaeodactylum 40 

tricornutum leads to a striking change of cell color from the normal brown to green. A 75% 41 

decrease of the main fucoxanthin-chlorophyll a/c-binding proteins was identified in the alb3b 42 

strains as the cause of changes in the spectral properties of the mutant cells. The alb3b lines exhibit 43 

a truncated light-harvesting antenna phenotype with reduced amounts of light-harvesting pigments 44 

and require a higher light intensity for saturation of photosynthesis. Accumulation of 45 

photoprotective pigments and LHCX proteins were not negatively affected in the mutant strains, 46 

but still the capacity for non-photochemical quenching was lower compared to wild type. In plants 47 

and green algae, ALB3 proteins interact with members of the chloroplast signal recognition 48 

particle pathway through a lysine-rich C-terminal domain. A novel conserved C-terminal domain 49 

was identified in diatoms and other stramenopiles, questioning if ALB3b proteins have the same 50 

interaction partners as their plant/green algae homologs.  51 

 52 

INTRODUCTION 53 

Diatoms (Bacillariophyceae) are a major group of eukaryotic phytoplankton belonging to the 54 

phylum Heterokont that evolved through a secondary endosymbiotic event around 200 to 180 55 
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million years ago (Brown and Sorhannus, 2010). Diatoms are key primary producers in the marine 56 

food chain. They account for 40% of the total carbon fixation in oceans and 25% of the total global 57 

oxygen production (Falkowski et al., 1998). Diatom plastids differ substantially from the ones in 58 

green algae and land plants due to their peculiar inheritance and evolution (Oudot-Le Secq et al., 59 

2007). Because of secondary endosymbiotic events, four membranes surround the diatom 60 

chloroplast. The outer envelope, known as chloroplast endoplasmic reticulum, is a continuum with 61 

the nuclear envelope. The diatom thylakoids are organized in stacked bands of three membranes, 62 

also known as girdle lamellae, spanning along the entire length of the plastid. This configuration 63 

differs substantially from the classic grana stacks and interconnecting stroma-exposed thylakoid 64 

organization found in higher plant chloroplasts (Austin and Staehelin, 2011). Light-harvesting 65 

complexes (LHCs) are embedded in the thylakoid membrane of the chloroplast and surround the 66 

photosynthetic reaction centers of the photosystems.  67 

In contrast to land plants, where specific LHCs serve either PSI or PSII, diatoms are characterized 68 

by a peripheral fucoxanthin (Fx)-chlorophyll (Chl) a/c antenna complex believed to deliver 69 

excitation energy to both photosystems, in addition to having a PSI-associated antenna (Lepetit et 70 

al., 2010; Büchel, 2015). Proteins of the peripheral Fx-Chl a/c antenna complex in diatoms belong 71 

to the LHC superfamily (Durnford et al., 1996), but are often referred to as Fx-Chl a/c binding 72 

proteins (FCPs) in order to distinguish them from the LHCs of the green lineages (Falkowski and 73 

Raven, 2007). In addition to the light-harvesting pigments, FCPs also bind diadinoxanthin (Ddx) 74 

and diatoxanthin (Dtx), photoprotective pigments essential during light stress conditions (Wang et 75 

al., 2019). The FCPs belong to three major LHC classes: the LHCF, including the main Fx-Chl a/c 76 

binding proteins, the red algal-like LHCRs, and the LHCXs, related to the LhcSRs in 77 

Chlamydomonas reinhardtii (Büchel, 2015). The latter has been shown to play a central role in 78 

dissipating excessively absorbed energy through non-photochemical quenching (NPQ) in 79 

cooperation with photoprotective pigments (Bailleul et al., 2010; Taddei et al., 2016; Lepetit et al., 80 

2017; Taddei et al., 2018). 81 

 82 

LHC proteins and certain photosystem core proteins are known to be integrated into the thylakoid 83 

membrane of land plants and green microalgae through the post-translational or co-translational 84 

part of the chloroplast signal recognition particle (CpSRP) assembly pathway (Sundberg et al., 85 
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1997; Schuenemann et al., 1998; Bellafiore et al., 2002; Gerdes et al., 2006; Kirst et al., 2012; 86 

Kirst et al., 2012; Kirst and Melis, 2014). The plant/green algae CpSRP pathway includes the LHC 87 

specific chaperon CpSRP43, the GTPase CpSRP54, the signal recognition receptor CpFTSY, and 88 

the ALBINO3 insertase (ALB3) (Bellafiore et al., 2002; Kirst and Melis, 2014). Homologs of 89 

CpSRP54, CpFTSY, and ALB3 can be identified in diatom genomes (Armbrust et al., 2004; 90 

Bowler et al., 2008; Mock et al., 2017), whereas no homolog for the molecular chaperon CpSRP43 91 

have been identified (Träger et al., 2012). CpSRP43 orthologs appear to be restricted to plants and 92 

green algae, however distantly related ankyrin repeat proteins can be found in Haptophyceae. 93 

Diatom CpSRP54 knockout mutants have been shown to be light sensitive (Nymark et al., 2016), 94 

but no further information exists about CpSRP54’s role, or the role of any other members of the 95 

CpSRP pathway, in integration and assembly of thylakoid membrane proteins in diatoms. It has 96 

been shown, however, that efficient integration of FCPs depend on stromal factors and on the 97 

presence of GTP (Lang and Kroth, 2001). 98 

 99 

In land plants and green microalgae, members of the CpSRP pathway guide certain chloroplast 100 

proteins to the thylakoid membranes where ALB3 mediates protein insertion in the developing 101 

thylakoids. ALB3 belongs to the YidC/Oxa1/Alb3 family of proteins that function in folding, 102 

insertion, and assembly of membrane protein complexes in bacteria and in certain eukaryotic 103 

organelles, such as mitochondria and chloroplasts (Hennon et al., 2015). The homologs within 104 

each subfamily have different C-terminal domains that are crucial for their function and protein-105 

protein interaction. Two homologs belonging to this protein family are found in the chloroplasts 106 

of Arabidopsis thaliana, ALB3 and ALB4 (Sundberg et al., 1997; Gerdes et al., 2006) and C. 107 

reinhardtii, ALB3.1 and ALB3.2 (Bellafiore et al., 2002). ALB3 mutants of A. thaliana have a 108 

severe phenotype. They are characterized by white/pale-yellow leaves, are defective in thylakoid 109 

membrane development, have strongly decreased pigment content and are unable to survive 110 

phototrophically beyond the seedling stage when grown on soil (Sundberg et al., 1997). The A. 111 

thaliana ALB3 insertase is essential for insertion of LHC proteins through the post-translational 112 

CpSRP pathway and seems to be involved in co-translational assembly of certain chloroplast-113 

encoded membrane proteins (Sundberg et al., 1997; Moore et al., 2000; Kugelmann et al., 2013). 114 

Functional data exist also for the two C. reinhardtii ALB3 homologs, ALB3.1 and ALB3.2 115 

(Bellafiore et al., 2002; Ossenbühl et al., 2004; Göhre et al., 2006). The ALB3.1 of C. reinhardtii 116 

 www.plantphysiol.orgon October 29, 2019 - Published by Downloaded from 
Copyright © 2019 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


 

5 
 

has been shown to be crucial for insertion of LHC proteins into the developing thylakoid 117 

membrane and to play a role in the assembly of D1 reaction center protein into PSII (Bellafiore et 118 

al., 2002; Ossenbühl et al., 2004). In contrast to the A. thaliana ALB3 mutants, C. reinhardtii cells 119 

lacking ALB3.1 are still capable of phototrophic growth. The other C. reinhardtii ALB3 homolog, 120 

ALB3.2, is however essential for cell survival and is believed to be associated with the assembly 121 

and maintenance of the photosystems (Göhre et al., 2006).  122 

 123 

Important differences have been identified between the function of the ALB3 homologs of 124 

organisms within the green lineage. We therefore hypothesized that characterization of diatom 125 

ALB3 insertases have the potential to uncover other and unique functional features connected to 126 

this protein family. Using a reverse genetics approach, we applied the CRISPR/Cas9 technology 127 

to knock out ALB3b, encoding one of the two ALB3 proteins present in the diatom Phaeodactylum 128 

tricornutum. We demonstrate here that ALB3b’s primary functional role pertains to insertion of 129 

light-harvesting antenna proteins in the developing thylakoid membrane. This, however, does not 130 

include antenna proteins functioning in photoprotection. Reduced levels of light-harvesting 131 

antenna proteins resulted in changes in the spectral properties, pigment content, growth rate, and 132 

photosynthetic performance of the cells. 133 

 134 

RESULTS  135 

Two homologs of the ALB3 insertase were identified in P. tricornutum and in all other 136 

stramenopiles where sequence data are available (Supplemental Figure S1). Phylogenetic analyses 137 

showed that ALB3 proteins in plants/green algae and ALB3 proteins from stramenopiles were 138 

clearly divided into two distinct groups (Supplemental Figure S1). Sequence similarity with the 139 

two ALB3 proteins with known functions in the green algae C. reinhardtii could therefore not be 140 

used to predict the individual function of the two P. tricornutum ALB3 proteins (ALB3a and 141 

ALB3b). The ALB3a paralog has a basic lysine-rich C-terminal domain (CTD) with similarities 142 

to CTD domains in ALB3 proteins in plants and green algae (Supplemental Figure S2). In A. 143 

thaliana this domain has been reported to interact directly with CpSRP43 and CpSRP54·CpFTSY 144 

complexes (Falk et al., 2010; Falk and Sinning, 2010; Lewis et al., 2010; Dünschede et al., 2011; 145 
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Chandrasekar and Shan, 2017). ALB3b proteins in stramenopiles, however, do not contain the 146 

lysine-rich CTD but have instead a unique conserved domain (Figure 1). Both P. tricornutum 147 

ALB3 genes (ALB3a (Phatr2_43657) and ALB3b (Phatr2_46411)) were targeted for 148 

CRISPR/Cas9-mediated disruption, but we were only able to generate viable knockout (KO) lines 149 

for the ALB3b gene. Three independent alb3b KO lines (alb3b-14, alb3b-16, alb3b-19) with large 150 

insertions of different sizes toward the 5’ end of the gene (Supplemental Figure S3) were identified 151 

and cultured from single cells. All insertions consisted of fragments of the vectors used for 152 

transformation and caused premature stop codons at the N-terminal part of the protein (Figure 1B). 153 

To verify that both alleles were mutated and that no wild-type (WT) sequence was present, allele-154 

specific PCR was performed. Both alleles could be amplified in the WT whereas only one allele 155 

could be amplified in the mutant strains, indicating larger insertion or deletion events which 156 

prevent amplification of the other mutated allele by PCR (Supplemental Figure S4). 157 

Complementation of all three alb3b KO mutants with a codon modified ALB3b (to avoid gene 158 

editing) was performed to confirm that the phenotype described below was the result of a lack of 159 

a functional ALB3B insertase.  160 

 161 

Spectral properties of WT and alb3b mutants 162 

Previous studies on green algae and plants showed that mutations causing a reduction in the size 163 

of the light-harvesting antenna result in a pale green color of the chloroplasts (Sundberg et al., 164 

1997; Bellafiore et al., 2002; Polle et al., 2003; Kirst et al., 2012; Kirst et al., 2012; Oey et al., 165 

2013; Gu et al., 2017). The diatom FCP complexes contain, in addition to Chl a and c, high 166 

amounts of Fx responsible for the golden-brown coloration of the diatom cells (Gundermann and 167 

Büchel, 2014; Büchel, 2015; Wang et al., 2019). The absorption properties of Fx are strongly 168 

dependent on the protein environment, and undergo extreme bathochromic shifts upon protein 169 

binding, dividing the different Fx molecules into more red, green, and blue absorbing complexes 170 

(Premvardhan et al., 2009; Premvardhan et al., 2010; Gundermann and Büchel, 2014; Wang et al., 171 

2019). We therefore hypothesized that a distortion of the normal antenna size/structure of P. 172 

tricornutum could result in a visible change in cell coloration. Disruption of the gene encoding 173 

the ALB3B insertase did indeed cause a change in coloration from the normal golden brown of 174 

the WT cells, to a green coloration, suggesting structural changes of the light-harvesting antenna 175 
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in the alb3b KO mutants (Figure 2A).  176 

 177 

To further explore the visual changes in spectral properties in the alb3b mutants compared to WT 178 

cultures, we recorded the in vivo absorbance (Figure 2B) and fluorescence excitation spectra 179 

(Figure 2C) for medium light (ML) acclimated cultures. The spectra showed that less light energy 180 

in the blue-green region is absorbed and available for photosynthesis in cultures lacking the 181 

ALB3b insertase. In vivo fluorescence excitation spectra were used to indicate the pigments’ 182 

relative energy transfer efficiency (ETE) to Chl a in the reaction center of PSII (RCII). The 183 

differences in the in vivo fluorescence excitation spectra between WT and alb3b mutants (Figure 2C, 184 

inset) strongly resembled the absorption characteristics of Chl c (peak at 462 nm) and Fx (peak at 520 185 

nm) (Bricaud et al., 2004; Premvardhan et al., 2009; Gundermann and Büchel, 2014), implying a 186 

substantially lower contribution in energy transfer from Chl c and Fx to RCII in the alb3b KO mutants. 187 

Smaller differences between WT and mutant strains are expected for the absorption spectra, as these 188 

spectra will also include pigments associated with PSI and non-protein bound carotenoids dissolved 189 

in the thylakoid membrane that do not transfer absorbed energy to PSII (Lepetit et al., 2010). Even so, 190 

the difference in the peak profile for the absorption spectra (Figure 2B, inset) matches the difference 191 

in the in vivo fluorescence excitation spectra confirming a reduction of Chl c and Fx in the mutants.  192 

 193 

Low temperature (77 K) fluorescence measurements were performed to clarify the distribution of 194 

excitation energy between PSII and PSI in WT compared to alb3b mutant cultures (Figure 3). The 195 

same samples were excited with either 435 nm (targeting Chl a absorption maxima; Figure 3A) or 470 196 

nm (targeting antenna pigments (Chl c and carotenoids; Figure 3B)). 77 K emission spectra recorded 197 

from ML acclimated samples revealed fluorescence emission maxima at 688 nm and 710 nm, which 198 

are traditionally attributed to PSII and PSI, respectively (Ikeda et al., 2008; Yamagishi et al., 2010; 199 

Juhas and Buchel, 2012). In addition, an increase in fluorescence at 710 nm (F710) emission at the 200 

expense of F687 was observed in P. tricornutum cells that were in a state of high NPQ (Lavaud and 201 

Lepetit, 2013). In WT samples the chosen excitation wavelengths caused a preferential energy transfer 202 

to PSII, displaying a relative amplitude of PSII fluorescence emission that was 2.5-fold (435 nm) or 203 

3.3-fold (470 nm) higher than the PSI emission (F687/F710). In contrast, the average F687/F710 observed 204 

in the alb3b mutants were F687/F710= 1.3 (435 nm) or 1.4 (470 nm), implying that excitation energy 205 

transfer to PSII was relatively more affected than energy transfer to PSI.  206 
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 207 

Effect of lack of ALB3b insertase on the organization of photochemical apparatus  208 

The green color of the alb3b KO mutants and the combined results from the absorbance, 209 

fluorescence excitation, and emission spectra suggested that these mutants have an altered 210 

functional light-harvesting antenna size. To investigate this in more detail, the WT and the alb3b 211 

KO lines were analyzed using an absorbance difference spectrophotometer (Melis, 1989). The 212 

rate of light absorption per second by PSII and PSI was measured by using low intensity actinic 213 

light selected by cut-off and interference filters to selectively excite Fx (533 nm) or Chl a (670 214 

nm), respectively (Table 1). When exiting Fx, the rate of light utilization by the photosystems 215 

revealed a severe decrease in the absorption cross-section both for PSII and for PSI in the alb3b 216 

mutant lines compared to WT (Table 1). The functional Chl a antenna size of PSII and PSI in the 217 

mutants were less affected because of the Chl a molecules bound to the photosystem core subunits 218 

(Ben-Shem et al., 2003; Nelson and Yocum, 2006; Ago et al., 2016) (Table 1). In accordance with 219 

the 77 K data, these data also suggest a more severe decrease of the antenna size of the PSII 220 

compared to the PSI (Table 1).  221 

 222 

Organization of the photochemical apparatus was further studied by quantification of PSI (P700) 223 

relative to the Chl a content of the cells. P700 content was measured from the light induced ΔA700 224 

absorbance change at 700 nm attributed to photooxidation of P700. On a P700 basis, there was a 225 

substantially lower number of Chl a molecules in the alb3b, i.e., from 663 Chl a/P700 in the WT, 226 

down to an average of 425 Chl a/P700 in the mutants (Table 1). This directly reflects the lowering 227 

of Chl a pigments per electron transport chain (i.e., per P700) in the alb3b mutants relative to the 228 

WT.  229 

 230 

Western blot was used for examination of the role of the ALB3b insertase in incorporating proteins 231 

in the thylakoid membrane. Antibodies specific for antenna proteins (LHCFs and LHCXs) and 232 

photosystem subunits (D1, D2, and PsaC) were used, and an antibody against AtpB was employed 233 

as a loading control. The level of LHCF proteins in the alb3b mutants was assessed by an antibody 234 

binding to a highly conserved epitope of the LHCF1 to LHCF11 proteins (Juhas et al., 2014), and 235 

found to be lowered to about 25% of WT levels in cells grown under both LL and ML conditions 236 

(Figure 4A). The relative decline of LHCF proteins is in good agreement with the smaller 237 
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functional antenna size of PSII, as estimated from the kinetic spectrophotometric measurements 238 

using Fx excitation (Table 1). The relative gene expression levels of four LHCF genes (LHCF1, 239 

LHCF2, LHCF5, and LHCF8) were examined to determine if the low content of LHCF proteins 240 

in the alb3b lines could be explained by a strong downregulation of the expression of these genes. 241 

Our data showed high gene expression levels (low Ct-values) of the examined LHCFs in all lines 242 

(Supplemental Table S1). Of the examined LHCF genes, only LHCF8 was significantly, but 243 

moderately, down-regulated in all alb3b lines (Supplemental Figure S5). No antibodies are 244 

available for detection of LHCR proteins constituting the main LHC protein fraction associated 245 

the PSI antenna (Lepetit et al., 2010; Grouneva et al., 2011; Gundermann and Büchel, 2014). 246 

However, the smaller functional PSI antenna size in the mutant lines implied that ALB3b plays a 247 

vital role also in insertion of LHCR proteins. An antibody (anti-FCP6) against an LHCX (FCP6) 248 

of Cyclotella meneghiniana, which also cross-react with the P. tricornutum LHCX proteins (Juhas 249 

et al., 2014), was used for comparison of the relative content of these photoprotective proteins. 250 

LHCX1 is crucial for NPQ to take place, whereas LHCX2-3 can provide additional NPQ capacity 251 

during high light stress (Bailleul et al., 2010; Taddei et al., 2016; Lepetit et al., 2017; Taddei et al., 252 

2018). LHCX1 and LHCX3 are of highly similar size (21.9 kDa and 22.8 kDa, respectively), 253 

therefore complete separation by western blot analysis is challenging. Based on the expression 254 

pattern of the LHCX isoforms known from literature, we interpret the proteins detected under both 255 

LL and ML conditions to be a mix of LHCX1 and LHCX3 with the major contribution coming 256 

from LHCX1 under these conditions (Taddei et al., 2016; Taddei et al., 2018). The relative content 257 

of the LHCX1+3 proteins in the mutants compared to WT seemed to be unaffected (slightly 258 

reduced levels of LHCX1+3 in alb3b-14) in both light conditions (Figure 4A). The LHCX2 protein 259 

(24.7 kDa) was detected at similar levels in WT and alb3b lines after 6 h of ML exposure 260 

(Supplemental Figure S6B), but it was not detectable in LL- or ML-acclimated samples (Figure 261 

4A). The strong band of ~22 kDa detected in WT and alb3b lines 6 h after the shift from LL to 262 

ML (Supplemental Figure S6B) is likely to contain large amounts of LHCX3 in addition to LHCX1 263 

(Taddei et al., 2016; Taddei et al., 2018). Based on Western blot analyses performed on PSI/II core 264 

proteins, the lack of a functional ALB3b insertase does not seem to have a negative impact on the 265 

incorporation of chloroplast-encoded photosystem subunits (Figure 4B).  266 

Preliminary analysis with transmission electron microscopy (TEM) showed a lower number of 267 

thylakoid membranes per chloroplast, but no obvious difference in the thylakoid architecture could 268 
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be observed in the alb3b-14 mutant line acclimated to LL (Supplemental Figure S7).  269 

 270 

Functional properties of the alb3b KO mutants  271 

To study the capability of the alb3b mutant to respond to a shift in light conditions, LL-acclimated 272 

cells (0 h) were shifted to ML conditions and sampled after 0.5, 6, 24, 48, and 168 h. The pigment 273 

content (Figure 5) and photosynthetic performance (Figures 6 and 7) of the acclimating cells were 274 

analyzed. 275 

 276 

Capacity for photoacclimation and photoprotection 277 

As expected from the changed coloration and spectroscopic analyses, the alb3b KO mutants had a 278 

significantly lower content of light-harvesting pigments (LHPs) per cell compared to WT (Figure 279 

5). Even though the content of LHPs in LL-acclimated alb3b mutants was already lower than in 280 

ML-acclimated WT cells, the LHP concentration in the mutants decreased further as a response to 281 

the ML treatment (Figure 5A-B). This observation implies that the mechanisms controlling the 282 

downregulation of the LHPs in response to an increase in available light are independent of the 283 

actual pigment concentration in the cells. The alb3b mutant lines contained ~40-60 % less Chl a 284 

and ~60-65 % less Fx in response to the light treatment (Figure 5A-B, Supplemental Table S2).  285 

The smaller antenna size of the mutant lines had no negative impact on the cell content of the 286 

xanthophyll cycle carotenoids Ddx and Dtx (Figure 5C-D). Both WT and alb3b mutant lines 287 

showed the expected photoprotective response to a shift to a higher light intensity (Nymark et al., 288 

2009), which could be observed as an immediate rise in Dtx concentration inversely to a decrease 289 

in Ddx concentration. The conversion of Ddx to Dtx peaked at the 0.5 h time point as evident by 290 

the de-epoxidation state (DES) index (Figure 6A). The DES index decreased and stabilized at a 291 

lower level after prolonged exposure to ML, indicating that the algae were acclimating to the new 292 

light condition. Although changes in DES index for both WT and mutants followed the same 293 

pattern after the shift to higher light intensities, the DES index were higher in the mutants than in 294 

WT cultures at all time points. The NPQ capacity of the alb3b mutants was initially (approx. two 295 

months after isolation of mutated single cells) found to be lowered to around half of that in the WT 296 
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levels at irradiance levels > 400 µmol m-2 s-1 (Figure 6B), but when the same experiment was 297 

repeated after the cells had been maintained in culture for one more year (approx. 100-150 298 

generations) the differences between WT and mutants had declined for all lines (Figure 6C). 299 

Measurements of time-dependent NPQ development in alb3b mutants and WT produced highly 300 

similar results as when calculating NPQ from rapid light curves (Supplemental Figure S8). The 301 

NPQ of alb3b-16 was closer to WT levels whereas a lower NPQ was observed in the two other 302 

alb3b lines. The smaller differences in NPQ capacity between alb3b lines and WT led us to also 303 

re-analyze the relative LHCF protein content, pigment levels, and photosynthetic parameters in 304 

LL-acclimated alb3b and WT cultures after one more year of growth (Supplemental Figures S6A, 305 

S9-S10). No major changes were observed for the alb3b lines relative to WT cells compared to 306 

the initial analyses of these parameters.  307 

 308 

Photosynthetic performance  309 

Variable Chl a fluorescence (Pulse-Amplitude-Modulation (PAM) fluorescence measurements) 310 

was used to calculate the photosynthetic (PSII) efficiency (Fv/Fm,) of WT and mutant lines during 311 

the light experiment. In LL-acclimated cells, the Fv/Fm were ~0.7 for all lines (Figure 7A), which 312 

is around the maximum value expected for algal cells under optimal growth conditions (Falkowski 313 

and Raven, 2007). After 0.5 h of ML exposure, both WT and mutant cells showed a modest 314 

decrease in Fv/Fm (Figure 7A). The Fv/Fm in the mutant cultures stabilized close to ~0.6 in ML, 315 

whereas Fv/Fm in WT cultures increased after prolonged exposure to ML. The maximum relative 316 

electron transport rate (rETRmax) and light saturation index (Ek) values increased as a function of 317 

ML exposure time in all cultures (Figure 7C-D), as the photoacclimation mechanisms enabled the 318 

cells to utilize the increased amount of light energy available for photosynthesis (Nymark et al., 319 

2009). However, the alb3b mutants displayed, on average, a ~30-40% higher rETRmax and Ek 320 

compared to WT cultures, showing the largest differences during the first part of the light 321 

experiment before the cells had been able to downsize the photosynthetic apparatus in response to 322 

the increased light intensities. Less pronounced differences in rETRmax and Ek were found between 323 

WT and alb3b cultures at the 24 h time point due to a more rapid change in photoacclimation status 324 

in WT cells, probably because of a higher cell division rate as described below (Table 3). To further 325 

investigate the apparent increased photosynthetic performance of the alb3b KO lines indicated by 326 
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the PAM measurement, light-saturation curves of photosynthesis (P-E curves) based on oxygen 327 

evolution, were measured for WT and alb3b KO lines acclimated to either LL (Figure 7E) or ML 328 

(Figure 7F). The maximum photosynthetic rate (Pmax (µmol O2/ mol Chl/s), the maximum light 329 

utilization coefficient (α), and the saturation intensity (Es) of photosynthesis (Pmax/α (µmol photons 330 

m-2 s-1)) were calculated from the P-E curves (Table 2) (Powles and Critchley, 1980). When 331 

normalized to Chl a, the mutant lines showed a typical truncated light-harvesting antenna (TLA) - 332 

mutant phenotype with higher Pmax and Es and slightly lower α compared to WT due to lower 333 

functional absorption cross-section caused by the smaller antenna (Kirst et al., 2014). Thus, it 334 

should be noted that these results do not indicate a higher photosynthetic performance per cell. In fact, 335 

when oxygen evolution was normalized per cell, the mutant lines showed a Pmax similar to WT 336 

(Supplemental Figure S11). Also, the light saturation curves of the alb3b KO lines acclimated to LL 337 

showed a tendency of declining photosynthetic activity at light intensity > 1000 µmol photons m-2 s-1 338 

(Figure 7E).  339 

 340 

Effect of light intensity on cell growth 341 

Growth parameters were calculated from the exponential phase in batch cultures of LL- and ML-342 

acclimated cultures (Table 3; Supplemental Figure S12) to investigate how the changes in antenna 343 

size and composition affected the cell division rate. The results showed that WT cells grew faster 344 

than alb3b KO mutants at both light conditions, but a shift from LL to ML intensities diminished 345 

that growth rate gap between the alb3b KO mutants and WT (Table 3), as recently observed in 346 

other TLA mutants (Kirst et al., 2014; Formighieri and Melis, 2017). At ML conditions the WT 347 

cells already divided at a maximum rate slightly above two cell divisions per day (Fawley, 1984). 348 

We hypothesized that if the slower growth rate of the alb3b mutants were caused by a lower ability 349 

to capture light energy, increasing the light intensities should have a positive effect on growth of 350 

the mutant cells. To investigate if a further increase in light intensity could close the growth rate 351 

gap, mutants and WT cells were acclimated to high light conditions (HL; 480 µmol photons m-2 s-352 
1). The growth temperature was set to 23°C which supports the highest cell division rate in P. 353 

tricornutum (Fawley, 1984). During the HL acclimation period (two weeks), the majority of the 354 

cells in one of the alb3b lines (alb3b-16) changed from the fusiform morphotype to a rounded 355 

phenotype. The rounded cells showed a tendency for aggregation, making accurate counting 356 

 www.plantphysiol.orgon October 29, 2019 - Published by Downloaded from 
Copyright © 2019 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


 

13 
 

necessary for growth rate calculations difficult. The attempt to acclimate alb3b-16 to HL was 357 

repeated after the discovery of the strongly increased NPQ capacity in cells that had been 358 

maintained in culture for one year after isolation of single cells, but the HL treatment induced the 359 

same change in morphotype as previously observed. The two other alb3b lines did not show a 360 

change in morphotype during the HL acclimation period or during the following growth rate 361 

experiments, but prolonged HL treatment (months) including periods in stationary phase, induced 362 

the formation of the rounded cell type also in the two other alb3b lines. The same treatment did 363 

not provoke the formation of round cells in WT cultures. Growth curves are included in 364 

Supplemental Figure S13A. The growth rate calculations from the exponential part of the curve, 365 

showed that the WT cells still divided twice per day in HL, whereas the average maximal growth 366 

rate of the alb3b mutants dropped from 1.2 in ML to 0.8 divisions per day under HL (Table 3). 367 

The physiological status of the cells, measured as Fv/Fm, was monitored during the length of the 368 

growth experiment (Supplemental Figure S13B). The average Fv/Fm in WT cultures during the 369 

period of maximal growth, was found to be 0.63. In contrast, the corresponding Fv/Fm value in the 370 

alb3b mutants were 0.41, pointing to a higher degree of photodamage. In order to investigate 371 

presence of oxidative damage, levels of lipid peroxidation were measured for HL-acclimated WT 372 

and mutant cells (alb3b-14, alb3b-19). The mutant lines did not show higher levels of lipid 373 

peroxidation compared to the WT (Supplemental Figure S14). Similar levels of xanthophyll 374 

pigments in the mutant compared to the WT could explain these results, considering their role in 375 

the stabilization and protection of the thylakoid membrane lipids from peroxidation (Hauvaux et 376 

al., 2007). 377 

Complementation studies of alb3b mutants 378 

A plasmid containing the codon modified ALB3b under control of its native promoter was 379 

introduced to the three alb3b lines by biolistic bombardment. As a result, 70 of in total 75 380 

transformed colonies regained their brown coloration. Six brown colonies (two colonies derived 381 

from each of the three complemented lines) were randomly picked and subjected to PCR analysis 382 

followed by sequencing. The introduction of the modified ALB3b gene and the absence of WT 383 

sequence were confirmed (Supplemental Figure S15). Three brown colonies (representing each of 384 

the three complemented mutant lines) were cultured for analyses of pigment and LHCF content. 385 

The results showed that the WT phenotype was recovered by introduction of the modified ALB3b 386 
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gene (Figure 8).387 
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DISCUSSION 388 

Effects of loss of the P. tricornutum ALB3b insertase 389 

The substantially lower level of antenna proteins belonging to the LHCF group (Figure 4A) indicate 390 

that the primary role of the P. tricornutum ALB3b insertase is the efficient integration of the main 391 

LHC proteins into the thylakoid membrane. However, a small functional antenna size is still 392 

assembled, implying a phenotype where some LHC proteins can be inserted through other thylakoid 393 

membrane insertion pathways, or that some functional redundancy exists between ALB3b and the 394 

uncharacterized diatom homolog ALB3a. The mainly unaffected levels of photoprotective LHCX 395 

proteins found in alb3b mutants (Figure 4A) clearly indicate the presence of other integration 396 

pathway(s) for antenna proteins. The lower level of LHPs and smaller functional antenna size, the 397 

changed spectral properties, and the increased light saturation level, can be seen as effects of the lower 398 

amount of antenna proteins causing a truncated light-harvesting antenna. The phenotypic traits listed 399 

above are characteristic of TLA-phenotype mutants, previously generated in cyanobacteria, green 400 

microalgae, and land plants (Polle et al., 2003; Kirst et al., 2012; Kirst et al., 2012; Kirst et al., 2014; 401 

Formighieri and Melis, 2017; Gu et al., 2017; Kirst et al., 2017; Kirst et al., 2018). TLA mutants have 402 

been shown to grow at relatively similar rates as WT when enough light energy is available (Bellafiore 403 

et al., 2002; Polle et al., 2003; Kirst et al., 2014; Gu et al., 2017).  404 

 405 

The slow growth of the alb3b mutants compared to WT cells might be partially explained by a 406 

reduced ability to capture light energy, since an increase in light intensity from 35 (LL) to 200 µmol 407 

photons m-2 s-1 (ML) diminished the difference in growth rate between WT and mutant by a factor of 408 

2. If the smaller antenna size of the mutants were the sole reason for the slow growth rate, a further 409 

increase in irradiance should further diminish the difference in growth between WT and mutant. 410 

Instead, analyses of algae cultures acclimated to HL (~480 µmol photons m-2 s-1) revealed a negative 411 

effect on cell division rate, photodamage of the alb3b mutants, and induction of a round cell 412 

phenotype. The round or oval cell shape has previously been reported to be associated with prolonged 413 

exposure to abiotic stress (De Martino et al., 2007; De Martino et al., 2011; Herbstova et al., 2017). 414 

The apparent increased photosynthetic capacity estimated for alb3b mutants at both LL and ML light 415 

conditions seems counter intuitive if the alb3b mutants are high light sensitive. However, these data 416 

are calculated from light-response curves where the algae are subjected to high light intensities for 417 
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relative short periods of time (minutes). The high light experienced by the algae during the generation 418 

of light-response curves might be too short for extensive photodamage to occur. However, mutants 419 

acclimated to LL conditions did show signs of photoinhibition observed as a decrease in oxygen 420 

production when exposed to light intensities > 1000 µmol photons m-2 s-1 (Figure 7E).  421 

 422 

NPQ is an important photoprotective mechanism providing the ability to dissipate excessively 423 

absorbed energy harmlessly as heat during high light exposure. In the alb3b mutants the NPQ capacity 424 

was reduced compared to WT levels (Figure 6B-C and Supplemental Figure S7), suggesting a reduced 425 

capability to handle prolonged high light exposure. Several studies show a convincing relationship 426 

between the amount of both LHCX and Dtx and the capacity for NPQ, and the presence of LHCX 427 

proteins and the conversion of protein bound Ddx to Dtx has been found to be essential for NPQ to 428 

take place (Lavaud et al., 2002; Bailleul et al., 2010; Lepetit et al., 2012; Lepetit et al., 2013; Lepetit 429 

et al., 2017; Taddei et al., 2018). The level of LHCX proteins and the content of the xanthophyll cycle 430 

pigments (Ddx+Dtx) were not negatively affected by the lack of ALB3b insertase. However, Ddx 431 

and Dtx are found in three different pools in diatoms, one located in a lipid shield around the FCPs, 432 

and two that are bound to antenna proteins connected to PSI or the peripheral FCP antenna, 433 

respectively (Lepetit et al., 2010). Only the protein bound fraction of the peripheral antenna 434 

contributes to NPQ after conversion of Ddx to Dtx (Lepetit et al., 2010). Because of the potential to 435 

store xanthophyll cycle pigments in the lipid phase of the thylakoid membrane, the amount of 436 

accumulated Ddx+Dtx that are protein bound might still be reduced even though the cell 437 

concentrations in the alb3b lines are similar or higher than in WT. The molecular role of LHCX and 438 

Dtx in NPQ is still elusive, and no data exists about the precise localization of FCPs or the LHCX 439 

proteins. The latest models for NPQ in diatoms suggest that there are two quenching sites (Q1 and 440 

Q2) present in the diatom thylakoids (Miloslavina et al., 2009; Büchel, 2014; Lavaud and Goss, 2014; 441 

Goss and Lepetit, 2015; Giovagnetti and Ruban, 2017). NPQ at Q1 is believed to involve physical 442 

detachment of FCP oligomers from PSII that in P. tricornutum can be measured as an increase in 77 443 

K emission at 710 nm and as a decrease of PSII cross-section (Lavaud and Lepetit, 2013; Giovagnetti 444 

and Ruban, 2017), whereas Q2 seems to take place in FCPs functionally connected to PSII, and 445 

involve antenna reorganization and aggregation of LHC trimers (Miloslavina et al., 2009; Büchel, 446 

2014; Lavaud and Goss, 2014; Giovagnetti and Ruban, 2017). Q2 is suggested to be dependent on 447 

the presence of protein bound Dtx and provides a much higher level of NPQ compared to Q1 448 
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(Giovagnetti and Ruban, 2017). Despite the comparable content of photoprotective antenna proteins 449 

and pigments in WT and alb3b mutants, the strong decrease in alb3b antenna size might disturb 450 

crucial protein-pigment or protein-protein (e.g LHCF-LHCX) interactions potentially necessary for 451 

effective antenna aggregation (Q2) and lower the pool of detachable antenna involved in Q1. This 452 

might lead to the lower NPQ capacity observed in the alb3b mutants. However, the difference in NPQ 453 

capacity between alb3b lines and WT decreased after the alb3b lines had been maintained in culture 454 

for one additional year (approx. 100-150 generations). The increase in NPQ compared to WT was 455 

especially prominent for alb3b-16. No major differences in pigment or LHCF content between the 456 

individual alb3b lines or changes in the pigment or LHCF ratios between alb3b and WT were 457 

observed that could explain the changes in NPQ capacity over time. The different NPQ levels in the 458 

mutants and the general increase in NPQ over time in the alb3b lines compared to WT levels can 459 

therefore not be explained by changes in antenna size over time. Giovagnetti and Ruban (Giovagnetti 460 

and Ruban, 2017) showed that the amount of antenna detached are not proportional to the level of 461 

NPQ, and that the NPQ can continue to increase without a further reduction of the PSII cross-section. 462 

We therefore suggest that the increase in NPQ over time is caused not by a larger pool of detachable 463 

antenna, but that the alb3b lines, over many generations, have been able to increase their capacity for 464 

NPQ at Q2 through an unknown mechanism. 465 

 466 

Role of diatom ALB3b in integration of nucleus and plastid encoded proteins compared to 467 
ALB3 in green algae and plants 468 

P. tricornutum ALB3b showed functional similarities with the C. reinhardtii homolog ALB3.1 469 

(Bellafiore et al., 2002; Ossenbühl et al., 2004). Both the diatom ALB3b and the green algae ALB3.1 470 

play a role in insertion of LHC proteins into the thylakoid membrane (Bellafiore et al., 2002; Kirst 471 

and Melis, 2014), and loss of the insertase causes a notably smaller antenna size (Bellafiore et al., 472 

2002). In addition, C. reinhardtii cells lacking ALB3.1 contain a substantially increased fraction of 473 

highly stable membrane inserted, but unassembled D1 protein (Ossenbühl et al., 2004). The D1 474 

content in C. reinhardtii alb3.1 mutants was half of that of WT cells. Based on the above described 475 

findings, an additional role in assembly of D1 into PSII was identified in green microalgae (Bellafiore 476 

et al., 2002; Ossenbühl et al., 2004). Subunits of PSI (PsaC), PSII (D1, D2), and ATP synthase 477 

complex (AtpB) were not negatively affected by the absence of the ALB3b insertase in diatom cells 478 

(Figure 4B), but our analyses does not discriminate between unassembled proteins in the thylakoid 479 
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membrane and proteins that are incorporated into photosynthetic complexes. More extensive protein 480 

analyses would be necessary to rule out a role of the diatom ALB3b insertase in integration/assembly 481 

of chloroplast-encoded thylakoid membrane proteins. Assembled PSII complexes are fully functional 482 

in both C. reinhardtii (Ossenbühl et al., 2004) and P. tricornutum alb3b mutants (Figure 7A). We 483 

detected no differences in photosynthetic efficiency in LL-acclimated cells between WT and mutants. 484 

This implies that even though the alb3b KO lines have a truncated antenna size, there is no difference 485 

in the probability of the trapped excitation energy being used for photochemistry between WT and 486 

mutants. However, a less efficient repair of PSII from photodamage (Guenther and Melis, 1990) and 487 

an associated slower replacement of damaged D1 could explain the on average ~12-14% lower Fv/Fm 488 

measured in alb3b mutants during prolonged ML exposure, and the on average ~36% lower Fv/Fm 489 

observed in HL-acclimated mutant cells. An efficient PSII repair mechanism including a more 490 

frequent replacement of photodamaged D1 is required under such conditions (Baroli and Melis, 1996; 491 

Theis and Schroda, 2016). Alternatively (or additionally), the PSII of the alb3b mutants might be 492 

more susceptible to photodamage because of the altered light-harvesting antenna disturbing the 493 

normally efficient NPQ mechanism (Figure 6B-C) functioning in this alga (Lavaud and Goss, 2014). 494 

However, the transformation of the normally fusiform alb3b-16 line into the rounded morphotype in 495 

HL regardless of having a lower (Figure 6B) or more similar (Figure 6C and Supplemental Figure 496 

S7) NPQ capacity as WT indicates that there are other reasons for why alb3b mutants are sensitive to 497 

HL. 498 

 499 

The A. thaliana alb3p mutant has also been reported to be photosensitive. The mutant requires very 500 

low light intensities (12 µmol photons m-2 s-1) to produce detectable levels of photosynthetic 501 

complexes like LHC trimers and PSII monomers and dimers (Kugelmann et al., 2013). To explain 502 

the severe phenotype of the alb3p mutants, additional functions beyond the CpSRP pathway have 503 

been suggested for ALB3p (Kugelmann et al., 2013). Based on phenotypic similarities between alb3p 504 

and mutants defective in carotenoid synthesis, it has been speculated that ALB3p has a role in 505 

integration and assembly of carotenoids into photosynthetic complexes (Kugelmann et al., 2013). The 506 

slow growth of the P. tricornutum alb3b mutants that cannot be compensated by increased light 507 

intensities, and the susceptibility to prolonged high light exposure, suggest additional roles for the 508 

ALB3b insertase. A future comparison with other types of P. tricornutum TLA mutants will be 509 

valuable for dissecting primary effects of the absence of ALB3b from the secondary effects of having 510 

a truncated light-harvesting antenna size. 511 
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 512 

CONCLUSION 513 

Our results show that ALB3b is essential for assembly of a full-size light-harvesting antenna in 514 

diatoms. In land plants and green algae, ALB3 insertases are part of the CpSRP pathway and the basic 515 

lysine-rich CTD is necessary for the interaction with other members of the pathway (Bellafiore et al., 516 

2002; Chandrasekar and Shan, 2017). We also identified this domain within the ALB3a proteins of 517 

the stramenopiles, but not in the ALB3b proteins which have a unique CTD domain. The LHC-518 

specific chaperone CpSRP43 is one of ALB3’s known interaction partners through its lysine-rich 519 

CTD domain, but neither we nor others (Träger et al., 2012) could identify this chaperone in diatoms 520 

or other stramenopiles. Also, the P. tricornutum CpSRP54 mutant was not reported to have a changed 521 

coloration, only to be light sensitive (Nymark et al., 2016). The different CTD domain in ALB3b 522 

proteins, the absence of CpSRP43, and the unchanged coloration of the diatom CpSRP54 mutant, 523 

imply that the ALB3b proteins have distinct interaction partners than those of ALB3a and ALB3 of 524 

plants and green algae. A hypothetical model for the role of diatom ALB3 insertases is presented in 525 

Figure 9. For verification of the model, a more thorough investigation of the P. tricornutum CpSRP54 526 

mutant, and characterization of diatom FTSY mutants should be performed. This will clarify if 527 

ALB3b is part of the post-translational CpSRP pathway, or if diatom LHC proteins are guided to 528 

ALB3b through other mechanisms.  529 

 530 

MATERIALS AND METHODS 531 

An axenic Phaeodactylum tricornutum culture originating from the sequenced clone Pt1 8.6 532 

(CCMP2561) was obtained from the culture collection of the Provasoli-Guillard National Center for 533 

Marine Algae and Microbiota (NCMA), Bigelow Laboratory for Ocean Sciences.  534 

 535 

Experimental conditions 536 

Axenic culturing of P. tricornutum WT cells and the three alb3b KO lines (alb3b-14, alb3b-16, and 537 

alb3b-19) were performed as described previously unless otherwise stated (Nymark et al., 2009). Cell 538 

cultures were grown at 15°C under continuous cool white fluorescent light at scalar irradiance (EPAR) 539 

of ~35 µmol photons m-2 s-1 (LL), or ~200 µmol photons m-2 s-1 (ML). For the high light (HL) 540 
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experiment the WT and the three independent alb3b KO lines were acclimated to 480 µmol m-2 s-541 
1 and grown at 23°C in a Vötsch VB 1514 plant growth chamber (Vötsch Industrietechnik GmbH, 542 

Germany) equipped with metal halide lamps (Powerstar HQI-BT 400 W/D). The cultures were kept 543 

in the exponential growth phase for at least three weeks under these conditions to ensure that all 544 

cells were fully acclimated prior to conducting measurements. 545 

 546 

For the spectrophotometric and kinetic analysis, cells were grown in F/2 enriched artificial seawater 547 

media (Guillard and Ryther, 1962). To avoid carbon limitation during growth the media were 548 

supplemented with NaHCO₃ (final concentration of 23.5 mM, pH=7.4). Cultures were grown at 25 549 

°C in 2 L glass bottles constantly stirred to ensure homogenous growth. Continuous illumination was 550 

provided by white fluorescent LED light tubes at ML. For the measurements, 80-85% of the total 551 

culture volume was harvested during the mid-exponential growth phase. 552 

 553 

Growth rates 554 

Growth rates were estimated in batch cultures of WT and alb3b KO lines (three biological 555 

replicates) acclimated to LL, ML, or HL using a starting concentration of 100,000 (ML, HL) or 556 

200,000 (LL) cells/ml. Counting was performed either manually using a Bürker-Türk counting 557 

chamber after fixation with Lugol`s solution (LL samples) or with a BD Accuri C6 Flow Cytometer 558 

(BD Bioscience; ML and HL samples). For the latter, glutaraldehyde (2% v/v final solution) was 559 

used for fixation of cells. Samples were excited by a 20 mW 488 nm Solid State Blue laser and 560 

chlorophyll fluorescence was measured by a >670 nm optical filter (FL3). The average maximum 561 

growth rates (cell division/day) were calculated by using a mean of the growth rates from the three 562 

biological replicates during the exponential phase.  563 

 564 

Phylogenetic analyses 565 

ALBINO3 proteins in the NCBI (National Center for Biotechnology Information) protein database 566 

and from the iMicrobe transcriptome database (https://www.imicrobe.us/) were selected for 567 

phylogenetic analyses. Accession numbers for the protein sequences used in the analysis are listed in 568 

Supplemental Table S4. The analysis involved 47 ALB3 proteins from plants and algae, each species 569 

was represented with two ALB3 paralogs (ALB3.1/ALB3.2 or ALB3a/ALB3b). The protein 570 

alignment was generated by using the ClustalX program (Thompson et al., 1997) and manually 571 
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refined in GeneDoc 2.7.000 (Nicholas et al., 1997). The evolutionary relationships were estimated 572 

using the maximum likelihood (ML) method based on the Le-Gascuel model (Le and Gascuel, 2008) 573 

and the neighbor-joining method (Saitou and Nei, 1987). The initial trees for both ML and NJ analyses 574 

were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise 575 

distances, estimated using a JTT model and the trees with best topology were selected. For the ML-576 

analyses, a discrete Gamma distribution was used to model evolutionary rate differences among sites 577 

(using 5 categories). All positions with less than 80% site coverage were eliminated. Tree branch 578 

confidence values were calculated by running 1000 bootstrap replicates for NJ and 100 replicates for 579 

ML. The phylogenetic analyses were conducted in MEGA7 (Kumar et al., 2016). 580 

 581 

CRISPR/Cas9 gene editing of the ALB3b insertase 582 

All steps for performing CRISPR/Cas9 editing of the ALB3b insertase gene (Phatr2_46411; 583 

XM_002180751) including selection of target site, ligation of adapter for target of interest into the 584 

pKS diaCas9-sgRNA plasmid (Nymark et al., 2016), transformation of diatom cells, and screening 585 

and identification of cells with biallelic mutations, were performed as described in the published 586 

protocol for CRISPR/Cas9 gene editing in P. tricornutum (Nymark et al., 2017). ALB3b specific 587 

oligos for creation of the adapter inserted into the sgRNA cassette of the CRISPR/Cas9 vector, and 588 

primers used for screening of cells with CRISPR/Cas9-mediated mutations, are presented in 589 

Supplemental Table S5. Three alb3b KO lines named alb3b-14, alb3b-16. and alb3b-19 were selected 590 

for functional characterization. These three selected lines were checked for off-target mutations by 591 

PCR amplification and sequencing of the regions containing the five most likely off-target sites. To 592 

identify potential off-target sites, a custom-made Perl-based script was used to search the genome for 593 

sites with high homology to seed (PAM-proximal) region of the target site. The script uses a string-594 

based approach, which allows for up to 3 mismatches in the seed region. Off-targets are ranked by 595 

their similarity to the target site as well as the position of the mismatches. No off-target mutations 596 

were found at any of the investigated sites. The Phatr2 ID for the genes containing the potential off-597 

target sites and primers used for the screening process are listed in Supplemental Table S5. 598 

 599 

Allele-specific PCR 600 

Allele-specific PCR was performed as an additional control as previously described (Serif et al., 601 

2017). In short, primers for PCR were derived which include an allele-specific difference on the 3′ 602 
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terminal base (see primers in Supplemental Table S5), thereby preventing polymerases without 603 

proofreading function from amplifying the respective other allele. Both alleles were amplified 604 

separately using HiDi polymerase (myPols, Konstanz, Germany) according to the manufacturer’s 605 

instructions.  606 

 607 
Isolation of thylakoid membranes  608 

Cells were harvested by centrifugation at 1000 g for 8 min at 4 °C. The pelleted cells were 609 

resuspended in 50 mM Tricine – NaOH (pH 7.8) in ice-cold isolation buffer containing 300 mM 610 

sucrose, 5 mM MgCl2, 10 mM NaCl, 2% PVP (w/v), 0.1% BSA (w/v), and 5 mM ascorbic acid. The 611 

pellet was washed twice with the described buffer to remove residual salts from the growth media. 612 

Cells were broken using a Branson 250 sonicator (pulse mode, 50% duty cycle, output power of 5) 613 

with a precooled tip for 45 s followed by 1 min of cooling in dim light. This process was repeated 614 

four times to ensure rupture of the majority of the cells. Unbroken cells were removed by 615 

centrifugation at 6500 rpm for 10 min at 4 °C. The thylakoid suspension was centrifuged at 75,000 g 616 

for 45 min at 4°C using a Beckman Coulter ultracentrifuge. The thylakoid pellet was resuspended in 617 

5 ml of ice-cold Tricine-NaOH (pH 7.8) buffer containing 10 mM NaCl and 5 mM MgCl2. Samples 618 

were measured immediately upon preparation.  619 

 620 

Spectrophotometric and kinetics analysis  621 

Photosystem kinetics and PSI quantitation analysis were performed using a laboratory-constructed 622 

absorbance difference spectrophotometer (Melis and Brown, 1980; Melis, 1989). The premise for 623 

this method is that, under light limiting conditions, the rate of primary photochemistry is directly 624 

proportional to the light-harvesting antenna size (Melis, 1989). PSI (P700) content was measured from 625 

the light-induced ΔA700 using a differential extinction coefficient of 64 mM⁻¹ cm⁻¹ (Hiyama and Ke, 626 

1972). Actinic excitation was provided in the red region of the spectrum using a transmittance 627 

interference 670 nm filter combined with a yellow cut-off filter (CS 3-69). The reaction mixture 628 

contained 50-100 µM Chl a, 0.02% SDS (w/v), 250 µM methyl viologen (MV), and 2.5 mM Na-629 

ascorbate. The sample was illumined once prior to measuring to ensure oxidation of Cytochrome c6 630 

and possibly of Cytochrome f. Two or three experimental replicates were measured, with at least 631 

three technical replicates taken. Chl a concentration in the samples was calculated after extraction in 632 
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90% acetone (v/v) for 30 min in the dark using the Jeffrey-Humphrey equation for diatoms (Jeffrey 633 

and Humphrey, 1975). Photocatalytic kinetics of the two photosystems were measured based on Chl 634 

a fluorescence induction for PSII and P700 oxidation for PSI (Melis, 1989). Actinic illumination was 635 

provided in the red and green regions of the spectrum using narrow interference filters with 636 

transmittance peaks at 670 nm and a 533 nm. These filters were chosen after examination of the 637 

thylakoid absorbance spectra so that the 670 nm filter would excite predominantly Chl a, whereas 638 

the 533 nm filter would excite Fx and other carotenoids. Incident light intensity provided was 12 639 

µmol photons m-2 s-1 in the green and 2.1 µmol m-2 s-1 in the red region. The reaction mixture for the 640 

fluorescence kinetic measurements contained approximately 5-10 µM Chl a and 20 µM 3-(3,4-641 

dichlorophenyl)-1,1-dimethylurea (DCMU), and that for the P700 oxidation kinetics contained 100-642 

200 µM Chl a, 250 µM MV, and 20 µM DCMU. 643 

 644 

Absorbance spectra 645 

To avoid light scattering, absorption spectra were measured from thylakoid membrane extracts. Prior 646 

to measurement, the samples were placed in darkness in an ice bath to avoid thermal breakdown of 647 

thylakoid structure. Absorbance spectra of all extracts were scanned spectrophotometrically from 648 

400 to 750 nm with a Shimadzu UV-1800 UV−visible spectrophotometer. The resuspension buffer 649 

was used as a blank and for baseline calibration.  650 

 651 

In vivo fluorescence excitation 652 

In vivo fluorescence excitation spectra (400-700 nm) were measured as described previously using a 653 

Hitachi F-3000 spectrofluorometer (Nymark et al., 2013). Spectra were obtained by recording the 654 

Chl a fluorescence intensity (Chl a fluorescence from PSII) at 1 nm spectral resolution (5 nm 655 

bandwidth) at a fixed wavelength of emission (730 nm, 5 nm bandwidth). The emission of light was 656 

measured as a function of absorbed light at different wavelengths for ML- acclimated cultures. All 657 

spectra were normalized to the red emission maximum of Chl a of the WT cultures, so as to study the 658 

differences in excitation energy transfer efficiency (ETE) by the main photosynthetic pigments Chl 659 

a, Chl c, and Fx in the blue-green part of the PAR spectrum, where they exhibit their maximum 660 

absorption. 661 

 662 
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77 K chlorophyll fluorescence emission measurements 663 

Low-temperature fluorescence emission spectra were recorded for three biological replicates of ML-664 

acclimated cell cultures using a custom-made 77 K fluorometer (Lamb et al., 2015). Monochromatic 665 

LEDs with an emission centered around either 435 nm (LED435-12-30, Roithner LaserTechnikor) or 666 

470 nm (LED470 Roithner LaserTechnikor) were used as excitation wavelengths. Fluorescence 667 

emission spectra were recorded between 600 and 800 nm. Samples were adjusted to a Chl 668 

concentration of 1 µg/mL, transferred to glass tubes, and frozen in liquid nitrogen before measuring 669 

the 77 K fluorescence emission. All spectra were normalized to the WT emission spectrum at 710 670 

nm. 671 

 672 

Protein isolation, SDS-PAGE, and Western blot analysis 673 

WT and alb3b mutant cultures acclimated to either LL or ML (three biological replicates for each 674 

line and light condition) were harvested by filtration (Durapore Membrane Filters, pore size 0.65 675 

µm; Merck Millipore). Filters were transferred to 2 ml tubes (Sarstedt) and 1 ml F/2 medium was 676 

added. The tubes were vortexed for 10 s for resuspension of the cells, before removal of filters and 677 

centrifugation of re-suspended cells at 16,000 g for 1 min at 15 °C. The supernatant was removed 678 

and the remaining pellet was flash frozen in liquid nitrogen and stored at -80 °C. A 5 mm pre-cooled 679 

stainless-steel bead (QIAGEN) was added to each of the tubes with frozen cell pellets, and the cells 680 

were mechanically broken and homogenized in two steps using the TissueLyser system (QIAGEN). 681 

The samples were first placed in a precooled (-80 °C) adapter set followed by cell disruption for 2 682 

min at 25 Hz. Before the second shaking step (8 min at 25 Hz), the samples were transferred to a 683 

room temperature (RT) adapter set and 700 µl lysis buffer (50 mM Tris, pH 6.8, 2% (w/v) SDS) 684 

were added according to Juhas et al. (Juhas et al., 2014). Insoluble material was removed by 685 

centrifugation (100 g for 30 min at 4 °C). The supernatant was transferred to new tubes and the 686 

protein concentration was determined using the DC Protein Assay kit (BioRad) following the 687 

manufacturer’s instructions. In addition to the whole cell extracts, lysates were also obtained from 688 

thylakoids isolated from cell cultures acclimated to either LL or ML conditions. Thylakoids were 689 

resuspended in lysis buffer (50 mM Tris, pH 6.8, 2% (w/v) SDS) and protein extracts were obtained 690 

as above (the first step for cell breakage was omitted). Proteins were resolved on 12% or 15% SDS–691 

PAGE gels, depending of the size of the protein of interest. 10 µg of the protein extracts were 692 

loaded onto the gel lanes. Western blot analyses were performed on either total protein extracts 693 
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(detection of LHCF and LHCX proteins) or thylakoid extracts (detection of D1, D2, and PsaC 694 

proteins). The PsaC antibodies produced a signal only when using thylakoid extracts, whereas the 695 

antibody recognizing LHCX proteins produced optimal results when using whole cell extracts. LHC 696 

proteins and photosystem subunits were therefore analyzed in different extracts. The signal generated 697 

by AtpB polyclonal antibodies was used as loading controls on each blot, in addition to Coomassie 698 

stained gels that were run in parallel. 10 µg of the protein extracts were loaded onto the gels. 699 

Proteins were detected with the following antibodies: anti-D1 (AS05 084 Agrisera; 1:20000), anti-700 

D2 (AS06 146 Agrisera; 1:5000), anti-PsaC (AS10 939 Agrisera; 1:1000), anti-AtpB (AS05 085, 701 

Agrisera; 1:4000), anti-LHCF1-11 (1:1000), and anti-FCP6 (LHCX; 1:1000) (kind gifts from C. 702 

Büchel, University of Frankfurt, Germany (Juhas et al., 2014)). Primary antibody incubation was 703 

performed overnight at 4°C for all antibodies. Polyclonal Goat Anti-Rabbit 704 

Immunoglobulins/Biotinylated (Dako) was used as secondary antibody with an incubation time of 2 705 

h at RT, followed by incubation with Horseradish Peroxidase Streptavidin (Vector Laboratories) for 706 

1 h at RT. Protein-antibody cross-reactions were visualized with SuperSignal West Pico PLUS 707 

Chemiluminescent Substrate (Thermo Scientific) and documented with a G:BOX ChemiXRQ gel 708 

doc system (Syngene).  709 

 710 

Transmission electron microscopy  711 

Electron microscopy was used to examine the status of the thylakoid architecture in the alb3b mutant 712 

lines. WT and alb3b-14 cell cultures acclimated to LL were harvested by a light centrifugation step 713 

(4000 g for 10 min) and fixed overnight at RT in a F/2 medium buffer containing 2.5% glutaraldehyde 714 

(v/v) and 2% paraformaldehyde (v/v). Pellets were washed three times in F/2 medium buffer solution 715 

and embedded in a 5% (w/v) gelatin solution. After post-fixation in 2% osmiumtetraoxide (w/v) and 716 

1.5% kaliumferrocyanid (w/v), the samples were dehydrated in a gradient of ethanol. Samples were 717 

thereafter embedded with epoxy resins based on Bozzola and Russell’s protocol (Bozzola and Russell, 718 

1999) and sectioned with an ultramicrotome. Images were taken using a Tecnai 12 transmission electron 719 

microscope operating at 80 kV. Images were captured using a MORADA CCD camera.  720 

 721 

Measurements of malondialdehyde content  722 

The malondialdehyde (MDA) content was determined using the Lipid Peroxidation (MDA) assay kit 723 

(Sigma-Aldrich). The MDA concentration was measured based on its reaction with thiobarbituric 724 

acid (TBA) and used as an index of lipid peroxidation. WT and alb3b (alb3b-14, alb3b-19) mutant 725 
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cultures (three biological replicates for each line) acclimated to HL were harvested by filtration as 726 

described above. The cell pellet was resuspended in the MDA lysis buffer. To ensure complete lysis 727 

the cells were briefly sonicated. Thereafter, the MDA content was determined based on the 728 

manufacturer’s instructions. In parallel samples were collected and manually counted to determine 729 

cell concentration.  730 

 731 

Isolation of total RNA and reverse transcription quantitative PCR 732 

Three biological replicates of LL-acclimated WT and alb3b mutant cultures were harvested for 733 

isolation of total RNA in parallel to the samples harvested for protein analyses as described above. 734 

Total RNA isolation, quantification, and verification of RNA integrity were performed as described 735 

in Nymark et al. (Nymark et al., 2009). Reverse transcription of RNA was performed with the 736 

QuantiTect Reverse Transcrition kit (Qiagen) following the recommended protocol. 1 µg of total 737 

RNA was used in each reaction. Reverse transcription quantitative PCR (RT-qPCR) analysis was 738 

performed as described in Nymark et al. (Nymark et al., 2009) for calculation of relative expression 739 

ratios of four LHCF genes (LHCF1, LHCF2, LHCF5, and LHCF8). The geNorm module in the 740 

qBasePLUS software (Biogazelle) was used for determining the expression stability of the candidate 741 

reference gene. Based on the stability analysis, RPS5 (Phatr2_42848) and DLST (Phatr2_45557) were 742 

selected as reference genes (Nymark et al., 2013; Valle et al., 2014). LinRegPCR software (Ramakers 743 

et al., 2003; Ruijter et al., 2009) was used to calculate mean PCR efficiency per amplicon and cycle 744 

threshold (Ct) values per sample. These data were imported into the qBasePLUS software 745 

(Biogazelle), which calculated relative expression ratios (given as Calibrated Normalized Relative 746 

Quantities (CNRQ)) and performed statistical analyses on the results. The one-way ANOVA test 747 

integrated in the qBasePLUS software was used to evaluate the significance of the estimated relative 748 

expression ratios. Forward and reverse primers are listed in Supplemental Table S5. 749 

 750 

Light shift time-series experiments 751 

LL-acclimated WT and alb3b KO lines were transferred to ML conditions and sampled after 0.5, 6, 752 

24, 48, and 168 h following the shift in growth light intensity. LL samples (0 h) were harvested as 753 

controls. Three biological replicates were set up for each line and time point to reach a cell 754 

concentration of maximum 1 x 106 cells/ml at the day of harvesting. Samples were harvested for 755 

pigment analyses, monitoring of cell concentrations, variable in vivo Chl a fluorescence (PAM), and 756 
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protein analyses. 757 

 758 

Pigment analyses 759 

HPLC pigment analysis was performed according to Rodriguez et al. (Rodriguez et al., 2006) using 760 

a Hewlett-Packard HPLC 1100 Series system. Pigment values from the HPLC analysis were 761 

calculated as fmol pigment per cell. Cell numbers were calculated from flow cytometer counts as 762 

described above.  763 

 764 

Measurements of photosynthetic parameters  765 

A PhytoPAM (System I, Walz, Germany) was used to measure variable Chl a fluorescence of the 766 

harvested samples. The photosynthesis vs. irradiance relationship was obtained as described 767 

previously (Nymark et al., 2009). An additional step at 1216 µmol photons m-2 s-1 was added for the 768 

samples that had been treated with ML for 1 week to ensure that light saturation levels were reached. 769 

The maximum quantum yield of PSII (Fv/Fm), the maximum relative electron transport rate (rETRmax), 770 

the maximum light utilization coefficient (α), and the light saturation index (Ek) were calculated as 771 

described before (Nymark et al., 2009). The rETRmax is an estimate of the maximum photosynthetic 772 

capacity of the cells (~Pmax), whereas the light saturation index Ek (rETRmax/α) is a proxy for the 773 

threshold irradiance that separates light-limited and light-saturated photosynthesis (Genty et al., 1989; 774 

Sakshaug et al., 1997). Fm at low light intensities is commonly observed to be lower than the Fm’ level 775 

under low actinic light in diatoms (Serôdio et al., 2006; Cruz and Serôdio, 2008; Cruz et al., 2011). 776 

NPQ was therefore calculated from the light-response curve from LL-acclimated samples, using the 777 

maximum Fm’ level (Fm’max;) instead of Fm as follows: NPQ = (Fm’max/ Fm’) – 1 (Serôdio et al., 2006; 778 

Kalaji et al., 2017). NPQ development over time was additionally calculated from LL-acclimated 779 

cells exposed to 5 min of actinic light at an intensity setting of 832 µmol photons m-2 s-1. For the HL 780 

experiment, Fv/Fm was measured with an AquaPen-C (Photon System Instruments) at the end of a 30 781 

min dark acclimation period to relax the fast-reversible component (qE) of NPQ so that only the 782 

photoinihibitory, slowly reversible quenching (qI), caused by damaged PSII reaction centers, would 783 

influence the Fv/Fm value. 784 

Oxygen evolution was measured at 15 °C using a S1 Clark Type polarographic oxygen electrode 785 

(Hansatech) increasingly illuminated with a 35 W cool white spot LED. The measurements were done 786 
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on cultures acclimated to both LL and ML. 2 ml cell suspension from mid-exponential phase culture 787 

was added to a stirred chamber with temperature control and supplemented with sodium bicarbonate 788 

(30 µl of a 0.5 M solution) so that the oxygen production would not be limited by carbon availability. 789 

Prior to measuring, the Chl a concentration in the sample was adjusted to a concentration lower than 790 

1.2 µM to avoid cell shading in the chamber. Simultaneously, cell concentration of the samples was 791 

determined by flow cytometry counting. Oxygen consumption in darkness was measured as a starting 792 

baseline, thereafter the sample was exposed to gradually increasing light intensities and the oxygen 793 

evolution was measured continuously for at least 10 min. Each light intensity was adjusted by 794 

measuring the light intensity in the middle of the electrode chamber with a spherical US-SQS sensor 795 

(Waltz).  796 

 797 

Complementation of alb3b KO lines 798 

A modified version of the ALB3b gene was synthesized together with its native promoter by 799 

GeneArt® Services Thermo Fisher Scientific Inc (Supplemental Figure S16). Modifications consisted 800 

of changes of the codon usage in the PAM and target region of the ALB3b gene to avoid gene editing 801 

by the functional CRISPR/Cas9 system incorporated into the genome of the alb3b KO lines. MssI 802 

sites were included at the 5’ and 3’ ends of the module to facilitate blunt-end cloning into the 803 

pM9_4Compln vector from Madhuri et al. (Madhuri et al., 2019) containing the bsr gene conferring 804 

resistance to blasticidin-S. Transformation of all three alb3b KO lines with the pM9_4Compln vector 805 

containing the synthesized ALB3b module was performed as described previously (Nymark et al., 806 

2017). The algae were transferred to low-salt selection plates (25% (v/v) natural seawater 807 

supplemented with f/2-Si, 1% (w/v) agar, 4 μg/mL blasticidin-S (Thermo Fisher Scientific)) ~ 24 h 808 

after transformation. Transformed colonies appeared 3-4 weeks after transfer to selection plates. 809 

Colonies that had regained the normal brown color were randomly picked from the selection plates. 810 

PCR amplification of the ALB3b gene and subsequent sequencing were used to test for the presence 811 

of the modified version of the ALB3b gene and the absence of WT sequence. Primers used for both 812 

PCR amplification and sequencing were PtAlb3b-G1F and PtAlb3b-G1R (Supplemental Table S5). 813 

One complemented alb3b colony, resulting from each of the transformations performed with the 814 

alb3b KO lines, was cultivated for pigment and protein analyses, as described above. 815 

 816 

Statistical analyses 817 
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The one-way ANOVA test integrated in the qBasePLUS software (Biogazelle) was used to evaluate 818 

the significance of the estimated relative expression ratios of LHCF genes in alb3b mutants compared 819 

to WT cells. Two-tailed Student t-tests were used to assess if there were significant differences in 820 

pigment concentration and photosynthetic parameters between alb3b mutants and WT. 821 

 822 

ACCESSION NUMBERS:  823 

Accession numbers for ALBINO protein sequences extracted from GenBank NCBI, the iMicrobe 824 

database (Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP)) and from the 825 

JGI genome portal are listed in Supplemental Table S4. 826 

 827 

SUPPLEMENTAL DATA: 828 

Supplemental Figure S1: Phylogenetic relationship between members of the ALBINO3 family. 829 

Supplemental Figure S2: C-terminal domain of diatom ALB3a and ALB3b proteins. 830 

Supplemental Figure S3: DNA sequences for the ALB3b WT gene and the inserts in the alb3b KO 831 

lines. 832 

Supplemental Figure S4: Allele-specific amplification of the Cas9 target site within the ALB3b gene 833 

in WT and alb3b mutant strains. 834 

Supplemental Figure S5. Relative expression levels of LHCF genes in alb3b lines compared to WT. 835 

Supplemental Figure S6. Western blot analysis of LHCF and LHCX proteins from WT and alb3b 836 

mutant lines. 837 

Supplemental Figure S7. Transmission electron micrographs of WT and alb3b-14 mutant line cells. 838 

Supplemental Figure S8. NPQ development over time in WT and alb3b lines. 839 

Supplemental Figure S9. Re-evaluation of pigment concentrations per cell for LL-acclimated WT 840 

and alb3b mutant lines. Supplemental Figure S10. Re-evaluation of photo-physiological responses 841 

of LL-acclimated WT and alb3b mutant lines. 842 
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Supplemental Figure S11. Light-saturation curves of photosynthesis for LL- and ML-acclimated 843 

WT and alb3b mutant lines presented as oxygen evolution per cell. 844 

Supplemental Figure S12: Growth curves for WT and alb3b mutants. 845 

Supplemental Figure S13: Growth curves and corresponding measurements of photosynthetic 846 

efficiency of WT and alb3b mutants in high light. 847 

Supplemental Figure S14: Malondialdehyde (MDA) product of lipid peroxidation. 848 

Supplemental Figure S15: PCR analysis and Sanger sequencing of PCR products from 849 

complemented alb3b lines. 850 

Supplemental Figure S16: DNA sequence representing the synthetic ALB3b module used for 851 

complementation of the alb3b KO lines. 852 

Supplemental Table S1: Cycle threshold (Ct) values for LHCF and reference genes  853 

Supplemental Table S2: Fraction of Chl a and Fx content in alb3b mutant lines compared to WT 854 

in LL (0h) and after 0.5-168 h in ML.  855 

Supplemental Table S3: Oxygen evolution values of the light-saturation curves of photosynthesis 856 

including ±SD for LL- and ML-acclimated WT and alb3b mutant lines. 857 

Supplemental Table S4: Accession numbers for ALBINO proteins included in the phylogenetic 858 
analyses. 859 

Supplemental Table S5: Oligo and primer sequences. 860 
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 871 

TABLES: 872 

 873 

Table 1. Photosystem absorption cross-section and Chl a content per P700 in alb3b mutants 874 

compared to WT cells. Photosystem absorption cross-section was measured as rate of 533 nm (Fx) 875 

or 670 nm (Chl a) photons absorbed by the functional thylakoid membranes. The actinic light 876 

intensity was adjusted to I670 = 2.1 µmol photons m-2 s-1 and I533 = 12 µmol photons m-2 s-1. Rates of 877 

light absorption and utilization are given in photons per second with ±SD. P700 quantification was 878 

measured from the light induced ΔA700 with 670 nm (Chl a) actinic illumination.  879 
 880 

  WT alb3b-14 alb3b-16 alb3b-19  Average alb3b alb3b/WT % 

PSI (Fx) 533 nm 2.61 s -1 ± 0.40 1.10 ± 0.08 1.17 ± 0.10 1.09 ± 0.00 1.10 ± 0.06 s -1 42 % 

(Chl) 670 nm 1.93 s -1 ± 0.11 1.43 ± 0.05 1.39 ± 0.15 1.39 ± 0.14 1.40 ± 0.01 s -1 72.5% 

PSII  (Fx) 533 nm 32.30 s -1± 0.7  13.92 ± 1.96 8.10 ± 1.16 8.58 ± 0.93 10.17 ± 3.24 s -1 35 % 

(Chl) 670 nm 12.62 s -1 ± 2.69  7.21 ± 0.00  7.08 ± 0.90  6.71 ± 1.36  7.00 ± 0.26 s -1 55 % 

             Chl a /P700 663±9 % : 1 466 ± 11 % 414 ± 9 % 394 ± 11 % 425:1 64% 

 881 

  882 
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Table 2. Photosynthesis and respiration properties of the WT and the alb3b KO lines. 883 

Parameters are calculated from the light-saturation curves of photosynthesis based on oxygen 884 

evolution of WT and alb3b KO lines (Figure 7; LL: Figure 7E, ML: Figure 7F). Data for alb3b are 885 

presented as an average of the three independent alb3b KO (alb3b-14, alb3b-16, alb3b-19) lines 886 

±SD. A minimum of three biological replicates were measured for each independent line.  887 

 888 
 LL ML  

 WT alb3b  WT alb3b 

Respiration (μmol O2/ mol Chl/s) 30.0 ± 13.6 23.8 ± 1.7 23.5 ± 5.9 24.9 ± 3.2 

Pmax (μmol O2/ mol Chl/s) 57.7 ± 11.5 63.2 ± 3.1 55.7 ± 4.9 71.8 ± 7.6 

 Es (Saturation intensity, µmol photons m-2 s-1) 96.5 250 170 > 400 

Maximum light utilization coefficient (α) 0.35  0.32  0.29  0.25 

 889 

 890 

Table 3. Growth rates of WT and alb3b mutant lines acclimated to different light intensities. 891 

Maximum cell division per day were calculated from three biological replicates of WT and alb3b 892 

KO lines acclimated to LL (35 µmol photons m-2 s-1), ML (200 µmol photons m-2 s-1), or HL (480 893 

µmol photons m-2 s-1). Values are presented with ±SD. Growth rate for the alb3b-16 mutant in HL 894 

was not calculated because of cell aggregation.  895 

 WT alb3b-14 alb3b-16 alb3b-19 alb3b average 

LL 1.6 ± 0.23 0.4 ± 0.02 0.6 ± 0.02 0.6 ± 0.03 0.5 ± 0.09 

ML 2.2 ± 0.03 1.1 ± 0.01 1.2 ± 0.03 1.4 ± 0.05 1.2 ± 0.13 

HL 2.0 ± 0.05 0.8 ± 0.17 n/a 0.9 ± 0.25 0.8 ± 0.19 

 896 

 897 

 898 

 899 
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FIGURE LEGENDS: 900 

Figure 1: Presentation of intact and truncated ALB3b protein. A) The area of the ALB3b protein 901 

corresponding to the 20 bp target region for CRISPR/Cas9-based gene editing is located toward the 902 

N-terminal part of the protein (blue highlighting) with the PAM site located at the reverse DNA 903 

strand (green highlighting). CTP: Chloroplast targeting peptide; 60 kD IMP: 60 kD Inner Membrane 904 

Protein domain; CTD: conserved C-terminal domain. B) Overview of amino acid sequences resulting 905 

from CRISPR/Cas9 induced inserts in the three alb3b KO lines causing premature stop codons and 906 

truncated ALB3b proteins. Color coding: Blue: WT target sequence; Green: amino acid 907 

corresponding to PAM site; Red letters: Insert; *: Premature stop. C) Protein alignment based on the 908 

C-terminal domain (CTD) of ALB3b proteins in diatoms.  909 

 910 

Figure 2. Color differences and spectral characteristics of WT and alb3b mutants. A) Visual 911 

representation of the alb3b phenotype compared to WT at low light (LL; 35 µmol photons m-2 s-1; 912 

left side) and medium light (ML; 200 µmol photons m-2 s-1; right side). For comparison and 913 

visualization of the color differences, all cultures were adjusted to equal cell densities (3 x 107 914 

cells/ml). B) Absorbance spectra and C) in vivo fluorescence excitation spectra of cultures acclimated 915 

to ML. Isolated intact thylakoid membranes were used for recording of the absorption spectra to avoid 916 

scattering. Fluorescence emission was measured at 730 nm to ensure origin from the reaction center 917 

II Chl a. Insets: Difference spectra between: the absorbance of WT and alb3b KO lines B) and 918 

excitation energy transfer in the blue-green region of the in vivo fluorescence excitation spectra C). 919 

WT: Presented as an average of three biological replicates; alb3b: Presented as an average of the three 920 

alb3b KO lines 14, 16, and 19 with ±SD for all data points indicated by the grey area around the 921 

graphs. Three biological replicates were measured for each line. 922 

 923 

Figure 3. 77 K fluorescence emission spectra of WT and alb3b KO samples acclimated to ML. 924 

Samples were excited at either A) 435 nm or B) 470 nm. The emission spectra were normalized at 925 

their 710 nm maximum. Data for alb3b is an average of the three alb3b KO lines 14, 16, and 19 with 926 

±SD for all data points indicated by the grey area around the graphs. Three biological replicates were 927 

measured for each line including the WT.  928 

 929 
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Figure 4. Western blot analysis of thylakoid membrane proteins from WT and alb3b mutant 930 

lines acclimated to LL or ML conditions. A) Abundance of LHC proteins belonging to the LHCF 931 

group were evaluated using an antibody recognizing LHCF1-11, whereas the LHCX proteins were 932 

recognized by anti-FCP6 (a LHCX family member of C. meneghiniana). A dilution series of the WT 933 

samples was used to assess the level of LHC proteins in alb3b mutants compared to WT. B) Protein 934 

expression of PSII and PSI core proteins were evaluated with antibodies against the D1 (PSII), D2 935 

(PSII), and PsaC (PSI) core subunits. A dilution series of the alb3b samples were used to assess the 936 

level of photosystem subunits in alb3b mutants compared to WT. An antibody recognizing the β-937 

subunit of ATP synthase (AtpB) were used as loading control on each of the individual blots. Lanes 938 

marked with 100% contain 10 µg (20 µg for analysis of LHCX levels) of protein extracts. Images 939 

have been cropped.  940 

 941 

Figure 5. Pigment concentrations per cell for WT and alb3b mutant lines as a function of ML 942 

exposure time. Cellular pigment concentrations of A) Chl a, B) Fx, C) Ddx, and D) Dtx in WT and 943 

alb3b mutant cells as a function of time following a shift from LL conditions (0 h; 35 µmol photons 944 

m-2 s-1) to ML conditions (200 µmol photons m-2 s-1) for 0.5, 6, 24, 48, and 168 h. Results are presented 945 

as a mean of three biological replicates with ±SD. Asterisks indicate the results of two-tailed Student 946 

t-tests: *p<0.05. 947 

 948 

 949 

Figure 6. De-epoxidation state index and NPQ capacity of WT and alb3b mutants. A) De-950 

epoxidation state index (DES = Dtx/(Dtx + Ddx)) calculated from the HPLC pigment data from LL 951 

acclimated (0 h) WT and alb3b cultures exposed to ML for 0.5, 6, 24, 48, and 168 h. B) Capacity for 952 

NPQ calculated from rapid light curves derived from LL-acclimated cells approx. two months after 953 

isolation of mutated single cells and C) after being maintained in culture for one more year. NPQ = 954 

(Fm’max/Fm’) – 1. Fm’max replaces the commonly used Fm since Fm’ values frequently occur that are 955 

higher than the Fm from dark-treated diatom samples (Serôdio et al., 2006). Results are presented as 956 

a mean of three biological replicates with ±SD. 957 

 958 

Figure 7. Photo-physiological responses of WT and alb3b mutant lines. In vivo Chl a fluorescence 959 

kinetics (PAM) were used to estimate A) the maximum quantum yield of PSII (Fv/Fm), B) the 960 
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maximum light utilization coefficient (α), C) the maximum relative light-saturated electron transport 961 

rate (rETRmax), and D) the light saturation index (Ek) in LL (0h) acclimated WT and alb3b KO lines 962 

as a function of ML exposure time (0.5-168 h). Values are presented with ±SD bars. Asterisks indicate 963 

the results of two-tailed Student t-tests: *p<0.05. Light-saturation curves of photosynthesis based on 964 

oxygen evolution were produced for E) LL-acclimated and F) ML-acclimated WT and alb3b KO 965 

lines. The oxygen concentration was normalized on a per-Chl basis. The results were fit with curves 966 

based on a polynomial regression using R. All values are presented as an average of three biological 967 

replicates for each line and ±SD for each value can be found in Supplemental Table S3.  968 

 969 

 970 

Figure 8. Culture color, LHCF protein level, and pigment concentration in complemented alb3b 971 

lines compared to WT. A) WT and complemented alb3b KO lines (alb3b-14C, alb3b-16C, alb3b-972 

19C) were acclimated to LL and ML conditions. All cultures were concentrated and adjusted to equal 973 

cell densities (3 x 107 cells/ml) for comparison. B) Western blot analysis of LHCF proteins in WT 974 

and complemented alb3b mutant lines acclimated to LL and ML conditions. LHCF protein levels 975 

were evaluated using LHCF1-11 antibody. An antibody recognizing the β-subunit of ATP synthase 976 

was used as loading control. 10 µg of total protein from cell lysates was loaded onto the gel. C) 977 

Cellular pigment concentrations of Chl a and Fx in LL conditions. Results are presented as a mean 978 

of three biological replicates with ±SD bars. Asterisks indicate the results of two-tailed Student t-979 

tests: *p<0.05. 980 

 981 

 982 

Figure 9. Proposed model of the role of diatom ALB3 insertases in insertion/assembly of 983 

thylakoid membrane proteins. LHC proteins are synthesized on ribosomes on the cERM, 984 

transported through the four membranes surrounding the secondary plastid of diatoms, and guided to 985 

ALB3b by an unknown protein complex before incorporation into the thylakoid membrane (left side). 986 

Chloroplast-encoded proteins are suggested to be integrated by the co-translational cpSRP pathway 987 

including cpSRP54, FTSY, and ALB3ba (right side). cERM: chloroplast ER membrane; PPM: 988 

periplastidal membrane; OEM: plastid outer envelope membrane; IEM: plastid inner envelope 989 

membrane. CpSRP54: chloroplast signal recognition particle protein 54; CpFTSY: chloroplast SRP 990 
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receptor; ALB3: chloroplast SRP insertase Albino3.  991 

 992 
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