Title

Determination of \mid Vub| from Measurements of the Electron and Neutrino Momenta in Inclusive Semileptonic B Decays

Permalink

https://escholarship.org/uc/item/1dz4c5sb

Journal

Physical Review Letters, 95(11)
ISSN
0031-9007

Authors

Aubert, B
Barate, R
Boutigny, D
et al.

Publication Date

2005-09-09
DOI
10.1103/physrevlett.95.111801

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Determination of $\left|V_{u b}\right|$ from Measurements of the Electron and Neutrino Momenta in Inclusive Semileptonic B Decays

B. Aubert, ${ }^{1}$ R. Barate, ${ }^{1}$ D. Boutigny, ${ }^{1}$ F. Couderc, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ E. Grauges, ${ }^{2}$ A. Palano, ${ }^{3}$ M. Pappagallo, ${ }^{3}$ A. Pompili, ${ }^{3}$ J. C. Chen, ${ }^{4}$ N. D. Qi, ${ }^{4}$ G. Rong, ${ }^{4}$ P. Wang, ${ }^{4}$ Y. S. Zhu, ${ }^{4}$ G. Eigen, ${ }^{5}$ I. Ofte, ${ }^{5}$ B. Stugu, ${ }^{5}$ G. S. Abrams, ${ }^{6}$ M. Battaglia, ${ }^{6}$ A. B. Breon, ${ }^{6}$ D. N. Brown, ${ }^{6}$ J. Button-Shafer, ${ }^{6}$ R. N. Cahn, ${ }^{6}$ E. Charles, ${ }^{6}$ C. T. Day, ${ }^{6}$ M. S. Gill, ${ }^{6}$ A. V. Gritsan, ${ }^{6}$ Y. Groysman, ${ }^{6}$ R. G. Jacobsen, ${ }^{6}$ R. W. Kadel, ${ }^{6}$ J. Kadyk, ${ }^{6}$ L. T. Kerth, ${ }^{6}$ Yu. G. Kolomensky, ${ }^{6}$ G. Kukartsev, ${ }^{6}$ G. Lynch, ${ }^{6}$ L. M. Mir, ${ }^{6}$ P. J. Oddone, ${ }^{6}$ T. J. Orimoto, ${ }^{6}$ M. Pripstein, ${ }^{6}$ N. A. Roe, ${ }^{6}$ M. T. Ronan, ${ }^{6}$ W. A. Wenzel, ${ }^{6}$ M. Barrett, ${ }^{7}$ K. E. Ford, ${ }^{7}$ T. J. Harrison, ${ }^{7}$ A. J. Hart, ${ }^{7}$ C. M. Hawkes, ${ }^{7}$ S. E. Morgan, ${ }^{7}$ A. T. Watson, ${ }^{7}$ M. Fritsch, ${ }^{8}$ K. Goetzen, ${ }^{8}$ T. Held, ${ }^{8}$ H. Koch, ${ }^{8}$ B. Lewandowski, ${ }^{8}$ M. Pelizaeus, ${ }^{8}$ K. Peters, ${ }^{8}$ T. Schroeder, ${ }^{8}$ M. Steinke, ${ }^{8}$ J. T. Boyd, ${ }^{9}$ J. P. Burke, ${ }^{9}$ N. Chevalier, ${ }^{9}$ W. N. Cottingham, ${ }^{9}$ M. P. Kelly, ${ }^{9}$ T. Cuhadar-Donszelmann, ${ }^{10}$ B. G. Fulsom, ${ }^{10}$ C. Hearty, ${ }^{10}$ N.S. Knecht, ${ }^{10}$ T. S. Mattison, ${ }^{10}$ J. A. McKenna, ${ }^{10}$ A. Khan, ${ }^{11}$ P. Kyberd, ${ }^{11}$ M. Saleem, ${ }^{11}$ L. Teodorescu, ${ }^{11}$ A. E. Blinov, ${ }^{12}$ V.E. Blinov, ${ }^{12}$ A. D. Bukin, ${ }^{12}$ V. P. Druzhinin, ${ }^{12}$ V. B. Golubev, ${ }^{12}$ E. A. Kravchenko, ${ }^{12}$ A. P. Onuchin, ${ }^{12}$ S. I. Serednyakov, ${ }^{12}$ Yu. I. Skovpen, ${ }^{12}$ E. P. Solodov, ${ }^{12}$ A. N. Yushkov, ${ }^{12}$ D. Best, ${ }^{13}$ M. Bondioli, ${ }^{13}$ M. Bruinsma, ${ }^{13}$ M. Chao, ${ }^{13}$ I. Eschrich, ${ }^{13}$ D. Kirkby, ${ }^{13}$ A. J. Lankford, ${ }^{13}$ M. Mandelkern, ${ }^{13}$ R. K. Mommsen, ${ }^{13}$ W. Roethel, ${ }^{13}$ D. P. Stoker, ${ }^{13}$ C. Buchanan, ${ }^{14}$ B. L. Hartfiel, ${ }^{14}$ A. J. R. Weinstein, ${ }^{14}$ S. D. Foulkes, ${ }^{15}$ J. W. Gary, ${ }^{15}$ O. Long, ${ }^{15}$ B. C. Shen, ${ }^{15}$ K. Wang, ${ }^{15}$ L. Zhang, ${ }^{15}$ D. del Re, ${ }^{16}$ H. K. Hadavand, ${ }^{16}$ E. J. Hill, ${ }^{16}$ D. B. MacFarlane, ${ }^{16}$ H. P. Paar, ${ }^{16}$ S. Rahatlou, ${ }^{16}$ V. Sharma, ${ }^{16}$ J. W. Berryhill, ${ }^{17}$ C. Campagnari, ${ }^{17}$ A. Cunha, ${ }^{17}$ B. Dahmes, ${ }^{17}$ T. M. Hong, ${ }^{17}$ M. A. Mazur, ${ }^{17}$ J. D. Richman, ${ }^{17}$ W. Verkerke, ${ }^{17}$ T. W. Beck, ${ }^{18}$ A. M. Eisner, ${ }^{18}$ C. J. Flacco, ${ }^{18}$ C. A. Heusch, ${ }^{18}$ J. Kroseberg, ${ }^{18}$ W. S. Lockman, ${ }^{18}$ G. Nesom, ${ }^{18}$ T. Schalk, ${ }^{18}$ B. A. Schumm, ${ }^{18}$ A. Seiden, ${ }^{18}$ P. Spradlin, ${ }^{18}$ D. C. Williams, ${ }^{18}$ M. G. Wilson, ${ }^{18}$ J. Albert, ${ }^{19}$ E. Chen, ${ }^{19}$ G. P. Dubois-Felsmann, ${ }^{19}$ A. Dvoretskii, ${ }^{19}$ D. G. Hitlin, ${ }^{19}$ I. Narsky, ${ }^{19}$ T. Piatenko, ${ }^{19}$ F. C. Porter, ${ }^{19}$ A. Ryd, ${ }^{19}$ A. Samuel, ${ }^{19}$ R. Andreassen, ${ }^{20}$ S. Jayatilleke, ${ }^{20}$ G. Mancinelli, ${ }^{20}$ B. T. Meadows, ${ }^{20}$ M. D. Sokoloff, ${ }^{20}$ F. Blanc, ${ }^{21}$ P. Bloom, ${ }^{21}$ S. Chen, ${ }^{21}$ W. T. Ford, ${ }^{21}$ U. Nauenberg, ${ }^{21}$ A. Olivas, ${ }^{21}$ P. Rankin, ${ }^{21}$ W. O. Ruddick, ${ }^{21}$ J. G. Smith, ${ }^{21}$ K. A. Ulmer, ${ }^{21}$ S. R. Wagner, ${ }^{21}$ J. Zhang, ${ }^{21}$ A. Chen, ${ }^{22}$ E. A. Eckhart, ${ }^{22}$ A. Soffer, ${ }^{22}$ W. H. Toki, ${ }^{22}$ R. J. Wilson, ${ }^{22}$ Q. Zeng, ${ }^{22}$ D. Altenburg, ${ }^{23}$ E. Feltresi, ${ }^{23}$ A. Hauke, ${ }^{23}$ B. Spaan, ${ }^{23}$ T. Brandt, ${ }^{24}$ J. Brose, ${ }^{24}$ M. Dickopp, ${ }^{24}$ V. Klose, ${ }^{24}$ H. M. Lacker, ${ }^{24}$ R. Nogowski, ${ }^{24}$ S. Otto, ${ }^{24}$ A. Petzold, ${ }^{24}$ G. Schott, ${ }^{24}$ J. Schubert, ${ }^{24}$ K. R. Schubert, ${ }^{24}$ R. Schwierz, ${ }^{24}$ J. E. Sundermann, ${ }^{24}$ D. Bernard, ${ }^{25}$ G. R. Bonneaud, ${ }^{25}$ P. Grenier, ${ }^{25}$ S. Schrenk, ${ }^{25}$ Ch. Thiebaux, ${ }^{25}$ G. Vasileiadis, ${ }^{25}$ M. Verderi, ${ }^{25}$ D. J. Bard, ${ }^{26}$ P. J. Clark, ${ }^{26}$ W. Gradl, ${ }^{26}$ F. Muheim, ${ }^{26}$ S. Playfer, ${ }^{26}$ Y. Xie, ${ }^{26}$ M. Andreotti, ${ }^{27}$ V. Azzolini, ${ }^{27}$ D. Bettoni, ${ }^{27}$ C. Bozzi, ${ }^{27}$ R. Calabrese, ${ }^{27}$ G. Cibinetto, ${ }^{27}$ E. Luppi, ${ }^{27}$ M. Negrini, ${ }^{27}$ L. Piemontese, ${ }^{27}$ F. Anulli, ${ }^{28}$ R. Baldini-Ferroli, ${ }^{28}$ A. Calcaterra, ${ }^{28}$ R. de Sangro, ${ }^{28}$ G. Finocchiaro, ${ }^{28}$ P. Patteri, ${ }^{28}$ I. M. Peruzzi, ${ }^{28, *}$ M. Piccolo, ${ }^{28}$ A. Zallo, ${ }^{28}$ A. Buzzo, ${ }^{29}$ R. Capra, ${ }^{29}$ R. Contri, ${ }^{29}$ M. Lo Vetere, ${ }^{29}$ M. Macri, ${ }^{29}$ M. R. Monge, ${ }^{29}$ S. Passaggio, ${ }^{29}$ C. Patrignani, ${ }^{29}$ E. Robutti, ${ }^{29}$ A. Santroni, ${ }^{29}$ S. Tosi, ${ }^{29}$ S. Bailey, ${ }^{30}$ G. Brandenburg, ${ }^{30}$ K. S. Chaisanguanthum, ${ }^{30}$ M. Morii, ${ }^{30}$ E. Won, ${ }^{30}$ J. Wu, ${ }^{30}$ R. S. Dubitzky, ${ }^{31}$ U. Langenegger, ${ }^{31}$ J. Marks, ${ }^{31}$ S. Schenk, ${ }^{31}$ U. Uwer, ${ }^{31}$ W. Bhimji, ${ }^{32}$ D. A. Bowerman, ${ }^{32}$ P. D. Dauncey, ${ }^{32}$ U. Egede, ${ }^{32}$ R. L. Flack,,${ }^{32}$ J. R. Gaillard, ${ }^{32}$ G. W. Morton,,${ }^{32}$ J. A. Nash, ${ }^{32}$ M. B. Nikolich, ${ }^{32}$ G. P. Taylor, ${ }^{32}$ W. P. Vazquez, ${ }^{32}$ M. J. Charles, ${ }^{33}$ W. F. Mader, ${ }^{33}$ U. Mallik, ${ }^{33}$ A. K. Mohapatra, ${ }^{33}$ J. Cochran, ${ }^{34}$ H. B. Crawley, ${ }^{34}$ V. Eyges, ${ }^{34}$ W. T. Meyer, ${ }^{34}$ S. Prell, ${ }^{34}$ E. I. Rosenberg, ${ }^{34}$ A. E. Rubin, ${ }^{34}$ J. Yi, ${ }^{34}$ N. Arnaud, ${ }^{35}$ M. Davier, ${ }^{35}$ X. Giroux, ${ }^{35}$ G. Grosdidier, ${ }^{35}$ A. Höcker, ${ }^{35}$
F. Le Diberder, ${ }^{35}$ V. Lepeltier, ${ }^{35}$ A. M. Lutz, ${ }^{35}$ A. Oyanguren, ${ }^{35}$ T. C. Petersen, ${ }^{35}$ M. Pierini, ${ }^{35}$ S. Plaszczynski, ${ }^{35}$ S. Rodier, ${ }^{35}$ P. Roudeau, ${ }^{35}$ M. H. Schune, ${ }^{35}$ A. Stocchi, ${ }^{35}$ G. Wormser, ${ }^{35}$ C. H. Cheng, ${ }^{36}$ D. J. Lange, ${ }^{36}$ M. C. Simani, ${ }^{36}$ D. M. Wright, ${ }^{36}$ A. J. Bevan, ${ }^{37}$ C. A. Chavez, ${ }^{37}$ J. P. Coleman, ${ }^{37}$ I. J. Forster, ${ }^{37}$ J. R. Fry, ${ }^{37}$ E. Gabathuler, ${ }^{37}$ R. Gamet, ${ }^{37}$ K. A. George, ${ }^{37}$ D. E. Hutchcroft, ${ }^{37}$ R. J. Parry, ${ }^{37}$ D. J. Payne, ${ }^{37}$ K. C. Schofield, ${ }^{37}$ C. Touramanis, ${ }^{37}$ C. M. Cormack, ${ }^{38}$
F. Di Lodovico, ${ }^{38}$ R. Sacco, ${ }^{38}$ C. L. Brown, ${ }^{39}$ G. Cowan, ${ }^{39}$ H. U. Flaecher, ${ }^{39}$ M. G. Green, ${ }^{39}$ D. A. Hopkins, ${ }^{39}$ P. S. Jackson, ${ }^{39}$ T. R. McMahon, ${ }^{39}$ S. Ricciardi, ${ }^{39}$ F. Salvatore, ${ }^{39}$ D. Brown, ${ }^{40}$ C. L. Davis, ${ }^{40}$ J. Allison, ${ }^{41}$ N. R. Barlow, ${ }^{41}$ R. J. Barlow, ${ }^{41}$ M. C. Hodgkinson, ${ }^{41}$ G. D. Lafferty, ${ }^{41}$ M. T. Naisbit, ${ }^{41}$ J. C. Williams, ${ }^{41}$ C. Chen, ${ }^{42}$ A. Farbin, ${ }^{42}$ W. D. Hulsbergen, ${ }^{42}$ A. Jawahery, ${ }^{42}$ D. Kovalskyi, ${ }^{42}$ C. K. Lae, ${ }^{42}$ V. Lillard, ${ }^{42}$ D. A. Roberts, ${ }^{42}$ G. Simi, ${ }^{42}$ G. Blaylock, ${ }^{43}$ C. Dallapiccola, ${ }^{43}$ S. S. Hertzbach, ${ }^{43}$ R. Kofler, ${ }^{43}$ V. B. Koptchev, ${ }^{43}$ X. Li, ${ }^{43}$ T. B. Moore, ${ }^{43}$ S. Saremi, ${ }^{43}$ H. Staengle, ${ }^{43}$ S. Willocq, ${ }^{43}$ R. Cowan, ${ }^{44}$ K. Koeneke, ${ }^{44}$ G. Sciolla, ${ }^{44}$ S. J. Sekula, ${ }^{44}$ M. Spitznagel, ${ }^{44}$ F. Taylor, ${ }^{44}$ R. K. Yamamoto, ${ }^{44}$ H. Kim, ${ }^{45}$ P. M. Patel, ${ }^{45}$ S. H. Robertson, ${ }^{45}$ A. Lazzaro, ${ }^{46}$ V. Lombardo, ${ }^{46}$ F. Palombo, ${ }^{46}$ J. M. Bauer, ${ }^{47}$ L. Cremaldi, ${ }^{47}$ V. Eschenburg, ${ }^{47}$ R. Godang, ${ }^{47}$ R. Kroeger, ${ }^{47}$ J. Reidy, ${ }^{47}$ D. A. Sanders, ${ }^{47}$ D. J. Summers, ${ }^{47}$ H. W. Zhao, ${ }^{47}$ S. Brunet, ${ }^{48}$ D. Côté, ${ }^{48}$ P. Taras, ${ }^{48}$ B. Viaud, ${ }^{48}$ H. Nicholson, ${ }^{49}$ N. Cavallo, ${ }^{50, \dagger}$ G. De Nardo, ${ }^{50}$ F. Fabozzi, ${ }^{50, \dagger}$ C. Gatto, ${ }^{50}$ L. Lista, ${ }^{50}$ D. Monorchio, ${ }^{50}$ P. Paolucci, ${ }^{50}$ D. Piccolo, ${ }^{50}$ C. Sciacca, ${ }^{50}$ M. Baak, ${ }^{51}$ H. Bulten, ${ }^{51}$ G. Raven, ${ }^{51}$ H. L. Snoek, ${ }^{51}$ L. Wilden, ${ }^{51}$
C.P. Jessop, ${ }^{52}$ J. M. LoSecco, ${ }^{52}$ T. Allmendinger, ${ }^{53}$ G. Benelli, ${ }^{53}$ K. K. Gan, ${ }^{53}$ K. Honscheid, ${ }^{53}$ D. Hufnagel,,${ }^{53}$ P.D. Jackson, ${ }^{53}$ H. Kagan, ${ }^{53}$ R. Kass, ${ }^{53}$ T. Pulliam,,${ }^{53}$ A. M. Rahimi, ${ }^{53}$ R. Ter-Antonyan ${ }^{53}$ Q. K. Wong, ${ }^{53}$ J. Brau, ${ }^{54}$ R. Frey, ${ }^{54}$ O. Igonkina, ${ }^{54}$ M. Lu, ${ }^{54}$ C. T. Potter, ${ }^{54}$ N. B. Sinev, ${ }^{54}$ D. Strom,,${ }^{54}$ J. Strube, ${ }^{54}$ E. Torrence,,${ }^{54}$ A. Dorigo,,${ }^{55}$ F. Galeazzi, ${ }^{55}$ M. Margoni, ${ }^{55}$ M. Morandin, ${ }^{55}$ M. Posocco, ${ }^{55}$ M. Rotondo, ${ }^{55}$ F. Simonetto, ${ }^{55}$ R. Stroili, ${ }^{55}$ C. Voci, ${ }^{55}$ M. Benayoun, ${ }^{56} \mathrm{H}$. Briand, ${ }^{56}$ J. Chauveau, ${ }^{56}$ P. David, ${ }^{56}$ L. Del Buono, ${ }^{56} \mathrm{Ch}$. de la Vaissière, ${ }^{56}$ O. Hamon, ${ }^{56}$ M. J. J. John, ${ }^{56}$ Ph. Leruste, ${ }^{56}$ J. Malclès, ${ }^{56}$ J. Ocariz, ${ }^{56}$ L. Roos, ${ }^{56}$ G. Therin, ${ }^{56}$ P. K. Behera, ${ }^{57}$ L. Gladney, ${ }^{57}$ Q. H. Guo, ${ }^{57}$ J. Panetta,,${ }^{57}$ M. Biasini, ${ }^{58}$ R. Covarelli, ${ }^{58}$ S. Pacetti, ${ }^{58}$ M. Pioppi, ${ }^{58}$ C. Angelini, ${ }^{59}$ G. Batignani, ${ }^{59}$ S. Bettarini, ${ }^{59}$ F. Bucci, ${ }^{59}$ G. Calderini, ${ }^{59}$ M. Carpinelli, ${ }^{59}$ R. Cenci, ${ }^{59}$ F. Forti, ${ }^{59}$ M. A. Giorgi, ${ }^{59}$ A. Lusiani, ${ }^{59}$ G. Marchiori, ${ }^{59}$ M. Morganti, ${ }^{59}$ N. Neri, ${ }^{59}$ E. Paoloni, ${ }^{59}$ M. Rama, ${ }^{59}$ G. Rizzo,,${ }^{59}$ J. Walsh, ${ }^{59}$ M. Haire, ${ }^{60}$ D. Judd, ${ }^{60}$ D. E. Wagoner, ${ }^{60}$ J. Biesiada, ${ }^{61}$ N. Danielson, ${ }^{61}$ P. Elmer, ${ }^{61}$ Y. P. Lau, ${ }^{61}$ C. Lu, ${ }^{61}$ J. Olsen, ${ }^{61}$ A. J. S. Smith, ${ }^{61}$ A. V. Telnov, ${ }^{61}$ F. Bellini, ${ }^{62}$ G. Cavoto, ${ }^{62}$ A. D'Orazio, ${ }^{62}$ E. Di Marco, ${ }^{62}$ R. Faccini, ${ }^{62}$ F. Ferrarotto, ${ }^{62}$ F. Ferroni, ${ }^{62}$ M. Gaspero, ${ }^{62}$ L. Li Gioi, ${ }^{62}$ M. A. Mazzoni, ${ }^{62}$ S. Morganti, ${ }^{62}$ G. Piredda, ${ }^{62}$ F. Polci, ${ }^{62}$ F. Safai Tehrani, ${ }^{62}$ C. Voena, ${ }^{62}$ H. Schröder, ${ }^{63}$ G. Wagner, ${ }^{63}$ R. Waldi, ${ }^{63}$ T. Adye, ${ }^{64}$ N. De Groot, ${ }^{64}$ B. Franek, ${ }^{64}$ G.P. Gopal, ${ }^{64}$ E. O. Olaiya, ${ }^{64}$ F.F. Wilson, ${ }^{64}$ R. Aleksan, ${ }^{65}$ S. Emery, ${ }^{65}$ A. Gaidot ${ }^{65}$ S.F. Ganzhur, ${ }^{65}$ P.-F. Giraud, ${ }^{65}$ G. Graziani, ${ }^{65}$ G. Hamel de Monchenault, ${ }^{65}$ W. Kozanecki, ${ }^{65}$ M. Legendre, ${ }^{65}$ G. W. London, ${ }^{65}$ B. Mayer, ${ }^{65}$ G. Vasseur, ${ }^{65}$ Ch. Yèche, ${ }^{65}$ M. Zito, ${ }^{65}$ M. V. Purohit, ${ }^{66}$ A. W. Weidemann, ${ }^{66}$ J. R. Wilson, ${ }^{66}$ F. X. Yumiceva, ${ }^{66}$ T. Abe,${ }^{67}$ M. T. Allen, ${ }^{67}$ D. Aston, ${ }^{67}$ R. Bartoldus, ${ }^{67}$ N. Berger,,${ }^{67}$ A. M. Boyarski, ${ }^{67}$ O. L. Buchmueller, ${ }^{67}$ R. Claus, ${ }^{67}$ M. R. Convery,${ }^{67}$ M. Cristinziani,,${ }^{67}$ J. C. Dingfelder, ${ }^{67}$ D. Dong, ${ }^{67}$ J. Dorfan, ${ }^{67}$ D. Dujmic, ${ }^{67}$ W. Dunwoodie, ${ }^{67}$ S. Fan, ${ }^{67}$ R. C. Field, ${ }^{67}$ T. Glanzman, ${ }^{67}$ S. J. Gowdy, ${ }^{67}$ T. Hadig, ${ }^{67}$ V. Halyo, ${ }^{67}$ C. Hast, ${ }^{67}$ T. Hryn'ova, ${ }^{67}$ W. R. Innes,,${ }^{67}$ M. H. Kelsey, ${ }^{67}$ P. Kim, ${ }^{67}$ M. L. Kocian, ${ }^{67}$ D. W. G. S. Leith, ${ }^{67}$ J. Libby, ${ }^{67}$ S. Luitz, ${ }^{67}$ V. Luth,,${ }^{67}$ H. L. Lynch,,${ }^{67}$ H. Marsiske, ${ }^{67}$ S. Menke, ${ }^{67}$ R. Messner, ${ }^{67}$ D. R. Muller, ${ }^{67}$ C. P. O’Grady, ${ }^{67}$ V.E. Ozcan, ${ }^{67}$ A. Perazzo, ${ }^{67}$ M. Perl, ${ }^{67}$ B. N. Ratcliff, ${ }^{67}$ A. Roodman, ${ }^{67}$ A. A. Salnikov, ${ }^{67}$ R. H. Schindler, ${ }^{67}$ J. Schwiening, ${ }^{67}$ A. Snyder,,${ }^{67}$ J. Stelzer, ${ }^{67}$ D. Su, ${ }^{67}$ M. K. Sullivan, ${ }^{67}$ K. Suzuki, ${ }^{67}$ S. Swain, ${ }^{67}$ J. M. Thompson, ${ }^{67}$ J. Va'vra,,${ }^{67}$ M. Weaver, ${ }^{67}$ W. J. Wisniewski, ${ }^{67}$ M. Wittgen, ${ }^{67}$ D. H. Wright, ${ }^{67}$ A. K. Yarritu, ${ }^{67}$ K. Yi, ${ }^{67}$ C.C. Young, ${ }^{67}$ P. R. Burchat, ${ }^{68}$ A. J. Edwards, ${ }^{68}$ S. A. Majewski, ${ }^{68}$ B. A. Petersen, ${ }^{68}$ C. Roat,,${ }^{68}$ M. Ahmed, ${ }^{69}$ S. Ahmed, ${ }^{69}$ M.S. Alam, ${ }^{69}$ J. A. Ernst, ${ }^{69}$ M. A. Saeed, ${ }^{69}$ F. R. Wappler, ${ }^{69}$ S.B. Zain, ${ }^{69}$ W. Bugg, ${ }^{70}$ M. Krishnamurthy, ${ }^{70}$ S. M. Spanier, ${ }^{70}$ R. Eckmann, ${ }^{71}$ J. L. Ritchie, ${ }^{71}$ A. Satpathy, ${ }^{71}$ R.F. Schwitters, ${ }^{71}$ J. M. Izen, ${ }^{72}$ I. Kitayama, ${ }^{72}$ X. C. Lou, ${ }^{72}$ S. Ye, ${ }^{72}$ F. Bianchi, ${ }^{73}$ M. Bona, ${ }^{73}$ F. Gallo, ${ }^{73}$ D. Gamba, ${ }^{73}$ M. Bomben, ${ }^{74}$ L. Bosisio, ${ }^{74}$ C. Cartaro, ${ }^{74}$ F. Cossutti, ${ }^{74}$ G. Della Ricca, ${ }^{74}$ S. Dittongo, ${ }^{74}$ S. Grancagnolo, ${ }^{74}$ L. Lanceri, ${ }^{74}$ L. Vitale, ${ }^{74}$ F. Martinez-Vidal,,${ }^{75}$ R. S. Panvini, ${ }^{76, \ddagger}$ Sw. Banerjee, ${ }^{77}$ B. Bhuyan, ${ }^{77}$ C. M. Brown, ${ }^{77}$ D. Fortin, ${ }^{77}$ K. Hamano, ${ }^{77}$ R. Kowalewski, ${ }^{77}$ J. M. Roney, ${ }^{77}$ R. J. Sobie, ${ }^{77}$ J. J. Back, ${ }^{78}$ P.F. Harrison, ${ }^{78}$ T. E. Latham, ${ }^{78}$ G. B. Mohanty, ${ }^{78}$ H. R. Band, ${ }^{79}$ X. Chen, ${ }^{79}$ B. Cheng, ${ }^{79}$ S. Dasu, ${ }^{79}$ M. Datta, ${ }^{79}$ A. M. Eichenbaum, ${ }^{79}$ K. T. Flood, ${ }^{79}$ M. Graham, ${ }^{79}$ J. J. Hollar, ${ }^{79}$ J. R. Johnson, ${ }^{79}$ P.E. Kutter, ${ }^{79}$ H. Li, ${ }^{79}$ R. Liu, ${ }^{79}$ B. Mellado, ${ }^{79}$ A. Mihalyi, ${ }^{79}$ Y. Pan, ${ }^{79}$ R. Prepost, ${ }^{79}$ P. Tan, ${ }^{79}$ J. H. von Wimmersperg-Toeller, ${ }^{79}$ S.L. Wu, ${ }^{79}$ Z. Yu, ${ }^{79}$ and H. Neal ${ }^{80}$
(BABAR Collaboration)

[^0]${ }^{20}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
${ }^{21}$ University of Colorado, Boulder, Colorado 80309, USA
${ }^{22}$ Colorado State University, Fort Collins, Colorado 80523, USA
${ }^{23}$ Universität Dortmund, Institut fur Physik, D-44221 Dortmund, Germany
${ }^{24}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
${ }^{25}$ Ecole Polytechnique, LLR, F-91128 Palaiseau, France
${ }^{26}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
${ }^{27}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
${ }^{28}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
${ }^{29}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
${ }^{30}$ Harvard University, Cambridge, Massachusetts 02138, USA
${ }^{31}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
${ }^{32}$ Imperial College London, London SW7 2AZ, United Kingdom
${ }^{33}$ University of Iowa, Iowa City, Iowa 52242, USA
${ }^{34}$ Iowa State University, Ames, Iowa 50011-3160, USA
${ }^{35}$ Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France
${ }^{36}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
${ }^{37}$ University of Liverpool, Liverpool L69 72E, United Kingdom
${ }^{38}$ Queen Mary, University of London, London E1 4NS, United Kingdom
${ }^{39}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 OEX, United Kingdom
${ }^{40}$ University of Louisville, Louisville, Kentucky 40292, USA
${ }^{41}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{42}$ University of Maryland, College Park, Maryland 20742, USA
${ }^{43}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
${ }^{44}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
${ }^{45}$ McGill University, Montréal, Quebec, Canada H3A $2 T 8$
${ }^{46}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
${ }^{47}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{48}$ Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, Quebec, Canada H3C $3 J 7$
${ }^{49}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
${ }^{50}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
${ }^{51}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
${ }^{52}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{53}$ The Ohio State University, Columbus, Ohio 43210, USA
${ }^{54}$ University of Oregon, Eugene, Oregon 97403, USA
${ }^{55}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
${ }^{56}$ Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
${ }^{57}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{58}$ Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
${ }^{59}$ Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
${ }^{60}$ Prairie View A\&M University, Prairie View, Texas 77446, USA
${ }^{61}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{62}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
${ }^{63}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{64}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom
${ }^{65}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
${ }^{66}$ University of South Carolina, Columbia, South Carolina 29208, USA
${ }^{67}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
${ }^{68}$ Stanford University, Stanford, California 94305-4060, USA
${ }^{69}$ State University of New York, Albany, New York 12222, USA
${ }^{70}$ University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{71}$ University of Texas at Austin, Austin, Texas 78712, USA
${ }^{72}$ University of Texas at Dallas, Richardson, Texas 75083, USA
${ }^{73}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
${ }^{74}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
${ }^{75}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
${ }^{76}$ Vanderbilt University, Nashville, Tennessee 37235, USA
${ }^{77}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6
${ }^{78}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
${ }^{79}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{80}$ Yale University, New Haven, Connecticut 06511, USA

(Received 14 June 2005; published 9 September 2005)

Abstract

We present a determination of the Cabibbo-Kobayashi-Maskawa matrix element $\left|V_{u b}\right|$ based on the analysis of semileptonic B decays from a sample of $88 \times 10^{6} \mathrm{Y}(4 S)$ decays collected with the $B A B A R$ detector at the SLAC PEP-II $e^{+} e^{-}$storage ring. Charmless semileptonic B decays are selected using measurements of the electron energy and the invariant mass squared of the electron-neutrino pair. We obtain $\left|V_{u b}\right|=\left(3.95 \pm 0.26_{-0.42}^{+0.58} \pm 0.25\right) \times 10^{-3}$, where the errors represent experimental uncertainties, heavy quark parameter uncertainties, and theoretical uncertainties, respectively.

DOI: 10.1103/PhysRevLett.95.111801
PACS numbers: $13.20 . \mathrm{He}, 12.15 . \mathrm{Hh}, 14.40 . \mathrm{Nd}$

The study of the weak interactions of quarks has played a crucial role in the development of the standard model (SM), which embodies our understanding of the fundamental interactions. The increasingly precise measurements of $C P$ asymmetries in B decays allow stringent experimental tests of the SM mechanism for $C P$ violation via the complex phase in the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1]. Improved determinations of $\left|V_{u b}\right|$, the coupling strength of the b quark to the u quark, will improve the sensitivity of these tests.

Two observables have been used to determine $\left|V_{u b}\right|$ from inclusive semileptonic B decays: the end point of the lepton momentum spectrum [2] and the mass of the accompanying hadronic system [3]. In this Letter, semileptonic $\bar{B} \rightarrow X_{u} e \bar{\nu}$ decays are selected using a novel approach based on simultaneous requirements for the electron energy, E_{e}, and the invariant mass squared of the $e \bar{\nu}$ pair, q^{2} [4]. The neutrino 4-momentum is reconstructed from the visible 4-momentum and knowledge of the $e^{+} e^{-}$ initial state. The dominant charm background is suppressed by selecting a region of the $q^{2}-E_{e}$ phase space where correctly reconstructed $\bar{B} \rightarrow X_{c} e \bar{\nu}$ events are kinematically excluded. Background contamination in the signal region is due to resolution effects and is evaluated in Monte Carlo (MC) simulations. Theoretical calculations are applied to the measured $\bar{B} \rightarrow X_{u} e \bar{\nu}$ partial rate to determine $\left|V_{u b}\right|$, the precision of which is limited mostly by our current knowledge of the b-quark mass, m_{b}.

The data used in this analysis were collected with the $B A B A R$ detector [5] at the SLAC PEP-II asymmetricenergy $e^{+} e^{-}$storage ring. The data set consists of $88.4 \times$ $10^{6} B \bar{B}$ pairs collected at the $\Upsilon(4 S)$ resonance, corresponding to an integrated luminosity of $81.4 \mathrm{fb}^{-1}$ at $\sqrt{s}=$ 10.58 GeV . An additional $9.6 \mathrm{fb}^{-1}$ of data were collected at center-of-mass energies 20 MeV below the $B \bar{B}$ threshold. Off-resonance data are used to subtract the non- $B \bar{B}$ contributions from the data collected at the $\Upsilon(4 S)$ resonance. To do so, the off-resonance data are scaled according to the integrated luminosity and the energy dependence of the QED cross section, and the particles are boosted to the $Y(4 S)$ resonance energy. Throughout this Letter, all kinematic variables are given in the $Y(4 S)$ rest frame unless stated otherwise.

The simulation of charmless semileptonic B decays used in optimizing the analysis and determining reconstruction efficiencies is based on the heavy quark expansion (HQE)
including $\mathcal{O}\left(\alpha_{S}\right)$ corrections [6]. This calculation produces a continuous spectrum of hadronic masses, m_{X}. Subsequent hadronization is simulated using JETSET down to $2 m_{\pi}$ [7]. Decays to low-mass hadrons (π, η, ρ, ω, η^{\prime}) are simulated separately using the ISGW2 model [8], and mixed with the nonresonant states so that the m_{X}, q^{2}, and E_{e} spectral distributions correspond as closely as possible to the HQE calculation.

Hadronic events containing an identified electron with energy $2.1<E_{e}<2.8 \mathrm{GeV}$ are selected. Radiative Bhabha events rejected using the criteria given in Ref. [9] and electrons from $J / \psi \rightarrow e^{+} e^{-}$decays are vetoed. The total visible 4 -momentum, $p_{\text {vis }}$, is determined using charged tracks emanating from the collision point, identified pairs of charged tracks from $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}, \Lambda \rightarrow$ $p \pi^{-}$, and $\gamma \rightarrow e^{+} e^{-}$, and energy deposits in the electromagnetic calorimeter. Each charged particle is assigned a mass hypothesis based on particle identification information. Calorimeter clusters unassociated with a charged track and with a lateral energy spread consistent with electromagnetic showers are treated as photons.

Additional requirements are made to improve the quality of the neutrino reconstruction and suppress contributions from $e^{+} e^{-} \rightarrow q \bar{q}$ continuum events. We form the missing 4-momentum, $p_{\text {miss }}=p_{e^{+} e^{-}}-p_{\text {vis }}$, where $p_{e^{+} e^{-}}$is the 4 -momentum of the initial state. For each event we require (1) no additional identified e or μ; (2) $-0.95<$ $\cos \theta_{\text {miss }}<0.8$, where $\theta_{\text {miss }}$ is the polar angle of the missing 3-momentum; (3) $0.0<E_{\text {miss }}-\left|\mathbf{p}_{\text {miss }}\right|<0.8 \mathrm{GeV}$, where $E_{\text {miss }}$ is the missing energy in the event; (4) $\left|\mathbf{p}_{\text {miss }}\right|<$ 2.5 GeV and (5) $\left|\cos \theta_{T}\right|<0.75$, where θ_{T} is the angle between the electron momentum and the thrust vector of the remaining particles in the event.

The measured $\left|\mathbf{p}_{\text {miss }}\right|$ differs from the true neutrino momentum due to additional particles that escape detection. Therefore, a bias correction, $\mathbf{p}_{\nu}=\mathbf{p}_{\text {miss }}(0.804-$ $\left.0.078 /\left|\mathbf{p}_{\text {miss }}\right|\right)$, is derived from the simulation. Since the resolution on $\left|\mathbf{p}_{\text {miss }}\right|$ is superior to that of $E_{\text {miss }}$, we set $p_{\nu}=$ $\left(\mathbf{p}_{\nu},\left|\mathbf{p}_{\nu}\right|\right) \quad$ and $\quad q^{2}=\left(p_{e}+p_{\nu}\right)^{2}$. Defining $\quad \eta_{ \pm}=$ $\sqrt{(1 \pm \beta) /(1 \mp \beta)}$, where $\beta \simeq 0.06$ is the velocity of the B meson in the $\mathrm{Y}(4 S)$ frame, the maximum kinematically allowed hadronic mass squared for a given E_{e} and q^{2} is $s_{h}^{\max }=m_{B}^{2}+q^{2}-2 m_{B}\left(E_{e} \eta_{-}+q^{2} \eta_{+} / 4 E_{e}\right)$ for $\pm 2 E_{e}>$ $\pm \sqrt{q^{2}} \eta_{ \pm}$, and $s_{h}^{\max }=m_{B}^{2}+q^{2}-2 m_{B} \sqrt{q^{2}}$ otherwise. We require $s_{h}^{\max }<3.5 \mathrm{GeV}^{2} \approx m_{D^{0}}^{2}$; no $\bar{B} \rightarrow X_{c} e \bar{\nu}$ decays can
have values of $s_{h}^{\max }$ below this limit before accounting for resolution. The requirements on E_{e} and $s_{h}^{\max }$ and criteria (1)-(5) were chosen to minimize the total (experimental and theoretical) expected uncertainty $\sigma\left(\left|V_{u b}\right|\right) /\left|V_{u b}\right|$.

The quality of the neutrino reconstruction is evaluated using a control sample ($D e \bar{\nu}$) consisting of the decays $\bar{B} \rightarrow$ $D^{0} e \bar{\nu}(X)$, where kinematic criteria result in the X system typically being no more than a π or γ from a $D^{*} \rightarrow D^{0} X$ transition. The D^{0} is reconstructed in the $K^{-} \pi^{+}$decay mode, and we require $\left|\mathbf{p}_{D^{0}}\right|>0.5 \mathrm{GeV}$ and $E_{e}>1.4 \mathrm{GeV}$. The $D^{0} e$ combination must satisfy $-2.5<\cos \theta_{B D e}<1.1$, where $\cos \theta_{B \cdot D e}=\left(2 E_{B} E_{D e}-m_{B}^{2}-m_{D e}^{2}\right) /\left(2\left|\mathbf{p}_{B} \| \mathbf{p}_{D e}\right|\right)$ is the cosine of the angle between the vector momenta of the \bar{B} and the $D^{0} e$ system assuming the only missing particle in the \bar{B} decay was a single neutrino. After the combinatorial background is subtracted using D^{0} mass sidebands, the selected sample consists primarily ($\simeq 95 \%$) of $\bar{B} \rightarrow$ $D^{0} e \bar{\nu}$ and $\bar{B} \rightarrow D^{*} e \bar{\nu}$ decays. The control sample selection makes no requirements on the other B in the event, and can therefore be used to study the impact of the modeling of the other B on the neutrino reconstruction. Since the unreconstructed X system in the $\bar{B} \rightarrow D^{0} e \bar{\nu}(X)$ decays carries away little energy, a good estimate ($\mathrm{rms} \sim 0.2 \mathrm{GeV}$) of the neutrino energy can be obtained from the known \bar{B} energy and the measured D^{0} and e energies, $E_{\nu}^{D e}$. A second estimate of the neutrino energy is constructed from the visible momentum as described previously. Subtracting the first estimate from the second gives the distribution shown in Fig. 1, where the criteria (1)-(5) described above have been imposed. We find good agreement between data and MC calculations; the average (rms) is 0.066 GeV $(0.366 \mathrm{GeV})$ for data and $0.072 \mathrm{GeV}(0.365 \mathrm{GeV})$ for simulated events.

The $D e \bar{\nu}$ control sample is also used to improve the modeling of the $\bar{B} \rightarrow X_{c} e \bar{\nu}$ decays. After relaxing the $\cos \theta_{B \cdot D e}$ requirements and subtracting continuum and combinatorial backgrounds, we perform a binned χ^{2} fit to the $D e \bar{\nu}$ sample in the variables $\left|\mathbf{p}_{D}\right|, E_{e}$, and $\cos \theta_{B \cdot D e}$. The fit determines scale factors for the MC components $\bar{B} \rightarrow D e \bar{\nu}, \bar{B} \rightarrow D^{*} e \bar{\nu}$, and other contributions (85% of which are decays to $D^{* *}$ states), while keeping the total

FIG. 1 (color online). The difference between the two neutrino energy estimates described in the text for continuum-subtracted data and simulated $B \bar{B}$ events for the $D e \bar{\nu}$ control sample.
$\bar{B} \rightarrow X_{c} e \bar{\nu}$ branching fraction fixed to the measured value [10]. The fit increases the $\bar{B} \rightarrow D e \bar{\nu}$ and $\bar{B} \rightarrow D^{*} e \bar{\nu}$ branching fractions to 2.29% and 6.02% (2.48% and 6.52%) for neutral (charged) B mesons, respectively, while decreasing the remaining contributions. By design, these revised branching fractions respect isospin symmetry and are used in the determination of the background.

Two control samples are used to reduce the sensitivity of the efficiency and background estimates to details of the simulation: the $D e \bar{\nu}$ control sample described above, but with $E_{e}>2.0 \mathrm{GeV}$; and events satisfying the normal selection criteria but having $s_{h}^{\max }>4.25 \mathrm{GeV}^{2}$, a sample with $<5 \%$ signal decays. Efficiencies $\epsilon_{D e \bar{\nu}}^{\text {data }}$ and $\epsilon_{D e \bar{\nu}}^{\mathrm{MC}}$ are calculated separately in data and MC calculations as the ratio of $D e \bar{\nu}$ candidates satisfying criteria (1)-(5) to the total $D e \bar{\nu}$ sample. The $\bar{B} \rightarrow X_{u} e \bar{\nu}$ signal efficiency is multiplied by the ratio of these efficiencies to reduce sensitivity to details of the simulation. The $s_{h}^{\max }>4.25 \mathrm{GeV}^{2}$ sideband region is used to normalize the simulated $s_{h}^{\max }$ distribution to the data, reducing sensitivity to background normalization uncertainties.

We determine a partial branching fraction $\Delta \mathcal{B}\left(\tilde{E}, \tilde{s}_{h}^{\max }\right)=\mathcal{B}\left(\bar{B} \rightarrow X_{u} e \bar{\nu}\right) f_{u}$, unfolded for detector effects. The acceptance, f_{u}, is the fraction of $\bar{B} \rightarrow X_{u} e \bar{\nu}$ decays in the region of interest, $\tilde{E}_{e}>2.0 \mathrm{GeV}$ and $\tilde{S}_{h}^{\max }<$ $3.5 \mathrm{GeV}^{2}$, where \tilde{E}_{e} and $\tilde{s}_{h}^{\max }$ are the true (generated) values in the B meson rest frame. Slightly lower values are accepted for \tilde{E}_{e} than for E_{e} to account for the boost of the B meson and to increase f_{u}. The efficiency times acceptance for $\bar{B} \rightarrow X_{u} e \bar{\nu}$ decays can be written as $\epsilon_{u}=$ $\epsilon_{\text {sig }} f_{u}+\epsilon_{\overline{\text { sig }}}\left(1-f_{u}\right)$, where $\epsilon_{\text {sig }}\left(\epsilon_{\overline{\text { sig }}}\right)$ is the efficiency for an event inside (outside) the region of interest to be reconstructed and pass our selection criteria. We calculate the partial branching fraction as follows:

$$
\begin{equation*}
\left.\Delta \mathcal{B}=\frac{N_{\text {cand }}-M_{\mathrm{bkg}} \frac{N_{\text {side }}}{M_{\text {side }}}}{2 N_{B \bar{B}} \frac{\epsilon_{\text {dide }}^{\text {dic }}}{\epsilon_{\text {Devi }}}} \epsilon_{\text {sig }} \quad 1+\frac{1-f_{u}}{f_{u}} \frac{\epsilon_{\overline{\text { sig }}}}{\epsilon_{\text {sig }}}\right]^{-1} \tag{1}
\end{equation*}
$$

where $N_{\text {cand }}$ and $N_{\text {side }}$ refer to the number of candidates in the signal and $s_{h}^{\max }$ sideband regions of the data, M_{bkg} and $M_{\text {side }}$ refer to background in the signal region and the yield in the sideband region in simulated events, and $2 N_{B \bar{B}}$ is the number of B mesons produced from $\mathrm{Y}(4 S) \rightarrow B \bar{B}$ decays. Since the resulting ratio of $\epsilon_{\text {sig }} / \epsilon_{\text {sig }}$ is small, $\Delta \mathcal{B}$ depends only weakly on the model used to determine f_{u}.

Figure 2 shows the electron energy and $s_{h}^{\max }$ distributions after cuts have been applied to all variables except the one being displayed. The discrepancy observed between data and MC calculations for $E_{e_{-}}<1.95 \mathrm{GeV}$ is covered by the systematic error on the $\bar{B} \rightarrow X_{c} e \bar{\nu}$ modeling. The yields and efficiencies are given in Table I. We find

$$
\begin{equation*}
\Delta \mathcal{B}(2.0,3.5)=(3.54 \pm 0.33 \pm 0.34) \times 10^{-4} \tag{2}
\end{equation*}
$$

where the uncertainties are statistical and systematic, re-

FIG. 2 (color online). The electron energy, E_{e}, and $s_{h}^{\text {max }}$ spectra in the $\mathrm{Y}(4 S)$ frame for continuum-subtracted data and simulated $B \bar{B}$ events satisfying all selection requirements except for the variable shown. The arrows denote the signal (and sideband) region in E_{e} and $s_{h}^{\max }$. Note that $\tilde{E}_{e} \neq E_{e}$ (see text).
spectively. Alternative values of $\Delta \mathcal{B}$ are obtained using different electron energy requirements: $\Delta \mathcal{B}(1.9,3.5)=$ $(4.27 \pm 0.35 \pm 0.58) \times 10^{-4}$ and $\Delta \mathcal{B}(2.1,3.5)=(2.96 \pm$ $0.34 \pm 0.28) \times 10^{-4}$.

Systematic uncertainties are assigned for the modeling of the signal $\bar{B} \rightarrow X_{u} e \bar{\nu}$ decays, background, and detector response. The leading sources of uncertainty are listed in Table II. Uncertainties from the simulation of charged particle tracking, neutral reconstruction, charged particle identification, and the energy deposition by K_{L}^{0} were evaluated from studies comparing data and simulation. Radiation in the decay process was simulated using pнotos [11]; comparisons with the analytical result of Ref. [12] were used to assess the systematic uncertainty. The uncertainty due to bremsstrahlung in the detector was evaluated using the method of Ref. [10]. The uncertainty in modeling the background was first evaluated by varying the total $\bar{B} \rightarrow X_{c} e \bar{\nu}, \bar{B} \rightarrow D e \bar{\nu}$, and $\bar{B} \rightarrow D^{*} e \bar{\nu}$ rates within

TABLE I. Yields and efficiencies from data and simulation. All uncertainties are statistical except for $N_{B \bar{B}}$ where systematics are included. Efficiencies are quoted in units of 10^{-4}.

$N_{\text {cand }}$	$N_{\text {side }}$	$\epsilon_{D e \bar{\nu}}^{\text {data }}$	$N_{B \bar{B}}\left(10^{6}\right)$		
5130 ± 150	6152 ± 130	902 ± 39	88.35 ± 0.97		
$M_{\text {bkg }}$	$M_{\text {side }}$	$\epsilon_{D e \bar{\nu}}^{\mathrm{MC}}$	$\epsilon_{\text {sig }}$	$\epsilon_{\overline{\text { sig }}}$	f_{u}
3176 ± 35	6423 ± 49	906 ± 19	301 ± 3	5.6 ± 0.2	0.140

their measured range. Furthermore, the form factors for $\bar{B} \rightarrow D e \bar{\nu}$ [13] and $\bar{B} \rightarrow D^{*} e \bar{\nu}$ [14] were varied within their uncertainties, and the composition of the $D^{* *}$ states was modified to include only narrow resonances, broad resonances, or Goity-Roberts decays [15]; the effect of these variations is reduced by the fit to the $D e \bar{\nu}$ control sample. The modeling of D decays was varied based on the measurements reported in Ref. [16]; the variation in the $D \rightarrow K_{L}^{0} X$ branching fractions dominates the uncertainty. The modeling of $\bar{B} \rightarrow X_{u} e \bar{\nu}$ decays is sensitive to the resonance structure at low mass. The branching fractions of $\bar{B} \rightarrow\left(\pi, \rho, \omega, \eta, \eta^{\prime}\right) e \bar{\nu}$ were varied as follows: $\pi: \pm 30 \% ; \rho: \pm 30 \% ; \omega: \pm 40 \%$; simultaneously η and $\eta^{\prime}: \pm 100 \%$.

We extract $\left|V_{u b}\right|=\left[\Delta \mathcal{B} /\left(\Delta \zeta \tau_{B}\right)\right]^{1 / 2} \quad$ using $\quad \tau_{B}=$ $1.604 \pm 0.012 \mathrm{ps}[16]$. The normalized partial rate, $\Delta \zeta$, computed in units of $\Delta \Gamma /\left|V_{u b}\right|^{2}$, is taken from Ref. [17], in which the leading terms in the HQE of the $\bar{B} \rightarrow X_{u} e \bar{\nu}$ spectra are computed at next-to-leading order, and power corrections are included at $\mathcal{O}\left(\alpha_{S}\right)$ for the leading shape function (SF) and at tree level for subleading SFs. The values used for the heavy quark parameters, $m_{b}=4.61 \pm$ 0.08 GeV and $\mu_{\pi}^{2}=0.15 \pm 0.07 \mathrm{GeV}^{2}$, with a correlation coefficient of -0.4 , are based on fits to $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ moments [18], translated to the shape-function scheme of Ref. [19].

We find $\left|V_{u b}\right|=\left(3.95 \pm 0.26_{-0.42}^{+0.58} \pm 0.25\right) \times 10^{-3}$ for $\tilde{E}_{e}>2.0 \mathrm{GeV}$, where the errors represent experimental, heavy quark parameters, and theoretical uncertainties, respectively. The latter include estimates of the effects of subleading SFs [20], variations in the matching scales used in the calculation, and weak annihilation [21]. No uncertainty is assigned for possible quark-hadron duality violation. The determination of $\left|V_{u b}\right|$ is limited primarily by our knowledge of m_{b}. An approximate dependence is $\quad\left|V_{u b}\left(m_{b}\right)\right|=\left|V_{u b}\left(m_{0}\right)\right|\left[1+7\left(m_{b}-m_{0}\right) / m_{0}\right]$, where

TABLE II. Uncertainties on $\left|V_{u b}\right|$ and $\Delta \mathcal{B}$.

Source	$\sigma\left(\left\|V_{u b}\right\|\right) /\left\|V_{u b}\right\|(\%)$	$\sigma(\Delta \mathcal{B}) / \Delta \mathcal{B}(\%)$
Tracking	± 0.8	± 1.5
Neutrals	± 1.7	± 3.4
Electron ID	± 0.5	± 1.0
Hadron ID	± 1.0	± 2.0
Bremsstrahlung	± 1.0	± 2.0
K_{L}^{0}	± 1.3	± 2.6
$N_{B \bar{B}}$	± 0.6	± 1.1
Radiation	± 1.9	± 3.8
$\bar{B} \rightarrow X_{c} e \bar{\nu}$ modeling	± 2.5	± 5.0
$\bar{B} \rightarrow X_{u} e \bar{\nu}$ resonances	± 2.2	± 4.4
Statistical	± 4.7	± 9.3
Total experimental	± 6.7	± 13.3
Heavy quark parameters	+14.6	± 1.5
Theoretical	± 6.3	

$m_{0}=4.61 \mathrm{GeV}$. The sensitivity to higher moments of the SF is weak; the change in $\left|V_{u b}\right|$ when varying μ_{π}^{2} from 0.03 to $0.35 \mathrm{GeV}^{2}$ with m_{b} fixed is 2%, and the impact of using alternative SF parametrizations [22] is $<2 \%$. The overall precision on the above result surpasses that of Refs. [2,3], but is comparable to determinations of $\left|V_{u b}\right|$ that have become available while this Letter was nearing completion [23].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support $B A B A R$. The collaborating institutions thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation. Finally, we thank the many theorists with whom we have had valuable discussions, and further thank M. Neubert, B. Lange, and G. Paz for making available for our use a computer code implementing their calculations.
*Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy.
${ }^{\dagger}$ Also with Università della Basilicata, Potenza, Italy. ${ }^{\dagger}$ Deceased.
[1] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[2] R. Fulton et al. (CLEO Collaboration), Phys. Rev. Lett. 64, 16 (1990); J. Bartelt et al., Phys. Rev. Lett. 71, 4111
(1993); A. Bornheim et al., Phys. Rev. Lett. 88, 231803 (2002); H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 234, 409 (1990); 255, 297 (1991).
[3] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 92, 071802 (2004); H. Kakuno et al. (BELLE Collaboration), Phys. Rev. Lett. 92, 101801 (2004).
[4] R. Kowalewski and S. Menke, Phys. Lett. B 541, 29 (2002). We have modified the definition of $s_{h}^{\max }$ from that given in this reference.
[5] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[6] F. De Fazio and M. Neubert, J. High Energy Phys. 06 (1999) 017.
[7] T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994).
[8] N. Isgur, D. Scora, B. Grinstein, and M. Wise, Phys. Rev. D 39, 799 (1989).
[9] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 67, 031101 (2003).
[10] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 69, 111104 (2004).
[11] E. Richter-Was, Phys. Lett. B 303, 163 (1993).
[12] E. S. Ginsberg, Phys. Rev. 142, 1035 (1966).
[13] J. Bartelt et al. (CLEO Collaboration), Phys. Rev. Lett. 82, 3746 (1999).
[14] B. Aubert et al. (BABAR Collaboration), hep-ex/0409047.
[15] J. L. Goity and W. Roberts, Phys. Rev. D 51, 3459 (1995).
[16] S. Eidelman et al., Phys. Lett. B 592, 1 (2004).
[17] B. O. Lange, M. Neubert, and G. Paz, hep-ph/0504071.
[18] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 93, 011803 (2004).
[19] M. Neubert, Phys. Lett. B 612, 13 (2005).
[20] S. W. Bosch, M. Neubert, and G. Paz, J. High Energy Phys. 11 (2004) 073; M. Neubert, hep-ph/0411027.
[21] T. O. Meyer, Ph.D. thesis 05-1, Cornell University, 2005.
[22] A. Limosani and T. Nozaki, hep-ex/0407052.
[23] The Heavy Flavor Averaging Group (EPS 2005 update): http://www.slac.stanford.edu/xorg/hfag/.

[^0]: ${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
 ${ }^{2}$ IFAE, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
 ${ }^{3}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
 ${ }^{4}$ Institute of High Energy Physics, Beijing 100039, China
 ${ }^{5}$ University of Bergen, Institute of Physics, N-5007 Bergen, Norway
 ${ }^{6}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
 ${ }^{7}$ University of Birmingham, Birmingham B15 2TT, United Kingdom
 ${ }^{8}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
 ${ }^{9}$ University of Bristol, Bristol BS8 1TL, United Kingdom
 ${ }^{10}$ University of British Columbia, Vancouver, British Columbia, Canada V6T $1 Z 1$
 ${ }^{11}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
 ${ }^{12}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
 ${ }^{13}$ University of California at Irvine, Irvine, California 92697, USA
 ${ }^{14}$ University of California at Los Angeles, Los Angeles, California 90024, USA
 ${ }^{15}$ University of California at Riverside, Riverside, California 92521, USA
 ${ }^{16}$ University of California at San Diego, La Jolla, California 92093, USA
 ${ }^{17}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
 ${ }^{18}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
 ${ }^{19}$ California Institute of Technology, Pasadena, California 91125, USA

