
UC San Diego
Technical Reports

Title
Whole Page Performance

Permalink
https://escholarship.org/uc/item/1dz5t32h

Authors
Bent, Leeann
Voelker, Geoffrey M

Publication Date
2002-12-16

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1dz5t32h
https://escholarship.org
http://www.cdlib.org/

Whole Page Performance

Leeann Bent and Geoffrey M. Voelker

Department of Computer Science and Engineering

University of California, San Diego

9500 Gilman Dr., MS 0114

La Jolla, CA 92093-0114 USA

flbent,voelkerg@cs.ucsd.edu

Abstract

This paper explores the user-perceived Web per-

formance of downloading entire pages, and how

various common Web enhancements impact overall

page performance. We use Medusa, a non-caching

forwarding proxy, to collect user traces and replay

them under various configurations of HTTP request

optimizations. These optimizations include parallel

and persistent connections, DNS caching, and the

use of CDNs. We then use Medusa to characterize

whole-page performance and measure the impact of

request optimizations on downloading entire Web

pages.

We find that the most effective optimization is par-

allel connections. Other optimizations provide in-

cremental benefits due to limited opportunity for

use or due to limited benefit of the optimization it-

self. When there is more opportunity for use, we

find that optimizations in the former case provide

substantial benefit.

Keywords: User-Perceived Web Performance,

Web Proxy, Content Distribution Networks, DNS

1 Introduction

This paper explores the user-perceived Web per-

formance of downloading entire pages, and how

various common Web enhancements impact over-

all page performance. Extensive previous work has

studied how various techniques, such as caching

(e.g., [6,8,13,17,21]), prefetching (e.g., [2,4,5,15],

content distribution networks (CDNs) (e.g., [7, 9,

11, 12]), and DNS resolution (e.g., [10, 18, 19]),

impact the performance of downloading individual

objects. But when browsing the Web, users are

much more concerned with the performance of en-

tire pages. Although whole-page performance is

determined by the performance of its components,

optimizations like parallel and persistent connec-

tions make it difficult to map directly from individ-

ual object performance to whole-page performance.

As a result, even though whole-page performance is

what users ultimately are most interested in, it has

received scarce attention.

The most extensive work on this topic is by Kr-

ishnamurthy and Wills [14]. They studied the im-

pact of parallel, persistent, and pipelined connec-

tions on user-perceived Web performance for em-

bedded objects in top-level pages from a set of pop-

ular servers. In effect, our study is a follow-on to

theirs from a somewhat different perspective. First,

we employ real user workloads. We look at whole-

page performance for all pages accessed by users,

not just the top-level pages on popular servers. Sec-

ond, in addition to embedded objects, we include

the time of downloading the base page as a factor

in whole-page performance. Finally, in addition to

the connection optimizations, we also single out the

contribution of CDNs and DNS to whole-page per-

formance.

Exploring whole-page performance opens up

a number of interesting questions about user-

perceived Web performance. How does whole-

page performance compare to individual object per-

formance? How do various downloading opti-

mizations improve whole-page performance? Con-

tent distribution networks (CDNs) can improve ob-

ject download performance [9, 11, 12], but how do

CDNs impact whole-page latency given that typi-

cally only a subset of objects comprising a page are

fetched from a CDN? Since DNS resolution can in-

crease download latency [3, 19], particularly when

using CDNs [12], how does DNS caching amor-

tize resolution costs across all of the objects down-

loaded in a page? These various questions trans-

late into two high level goals: (1) we want to exam-

ine the extent to which the above optimizations are

used and (2) we want to study the effect of these dif-

ferent optimizations on downloading whole pages

of objects. This paper addresses these high level

goals.

The primary challenge in studying user-perceived

whole-page performance is the difficulty in mea-

suring the overall effect of Web download opti-

mizations at the page level. With objects being

download over parallel connections, for example,

pinpointing where exactly where slowdowns occur

during user browsing can be a difficult task.

Our approach for exploring whole-page perfor-

mance uses the Medusa proxy [11]. The Medusa

proxy is a non-caching forwarding proxy deployed

in conjunction with a user’s browser. Its key fea-

tures are that it can transform requests and mirror

them to multiple destinations. For this study, we

extend the Medusa proxy to support HTTP con-

nection optimizations, including parallel and per-

sistent connections, as well as measuring DNS and

CDN effects. We then use the Medusa proxy on

user traces to characterize whole-page performance

and measure the impact of request optimizations on

downloading entire pages.

In general, our results show what one would ex-

pect when comparing the relative contributions of

the performance optimizations. The easiest and rel-

atively most effective connection optimization is

simply to use parallel connections. Meanwhile,

other optimizations provide incremental benefit. In

some cases this is due to a limited opportunity for

use, while in other cases it is due to the limited ben-

efit of the optimization itself. In the former case,

improvements are shown to be substantial when

there is more opportunity for use.

The rest of this paper is organized as follows. Sec-

tion 2 discusses related work. Section 3 describes

the Medusa proxy and the extensions that support

the HTTP request optimizations we use to study

whole-page performance. Section 4 in addition to

our methodology and section 5 presents our exper-

imental results. Finally, Section 6 concludes.

2 Related Work

There have been numerous studies on the impact of

various optimizations on the latency of download-

ing individual objects, including caching, prefetch-

ing, CDNs, and DNS resolution. These studies

tend to examine particular optimizations in isola-

tion, whereas our goal is to examine their relative

effects on whole-page performance.

Surprisingly, there have been relatively few stud-

ies on whole-page performance. Liston and Ze-

gura [16] describe a proxy used in a similar way as

Medusa to measure client-side Web performance.

Their initial goal is to study the contribution of

DNS resolution to the latency of downloading web

pages, although they only describe the design and

implementation of the proxy and do not include any

experimental results.

As discussed in the introduction, Krishnamurthy

and Wills have done the most extensive published

research on this topic. This work extends theirs

by (1) looking at real user workloads, (2) looking

at all pages accessed by users, (3) looking at base

page download times in addition to embedded ob-

ject times, and (4) examining CDN and DNS con-

tributions.

In [12], the authors look at a variety of different per-

formance aspects of CDNs. They found that, while

CDNs improve performance, they can also incur

high DNS costs. They also quantified DNS effects

on persistent connections and pipelining. While our

study does consider many of these same factors, we

look at real web pages encountered in actual web

browsing. In addition we look at optimizations on

a whole page basis, rather than per object.

In [20], Wills et al. use bundling to deliver em-

bedded web objects from a server as an alterna-

tive mechanism to pipelining and parallel connec-

tions when fetching multiple objects. They find that

fetching compressed bundles offers faster down-

loads than pipelining or parallel retrieval. We look

at the use of parallel options, as well as other fac-

tors that influence web download performance such

as CDNs and DNS usage. However, we do not con-

sider bundling in the optimizations we explore.

3 The Medusa Proxy

The Medusa proxy is a non-caching forwarding

proxy [11]. It was designed to explore user-

perceived Web performance and is typically con-

figured as a personal proxy for the Web browser

and executes alongside the browser on the same ma-

chine. Medusa has a number of features, including:

Tracing and replay. As it receives requests, the

Medusa proxy can record them in a trace for subse-

quent replay in non-interactive experiments.

Performance measurement. As it handles in-

teractive or replayed requests, the Medusa proxy

tracks and records performance information, such

as request latency, DNS overhead, and connections

used.

Transformation. The Medusa proxy can install fil-

ters to transform HTTP requests. We use this fea-

ture to transform Akamaized URLs (ARLs) to the

original URLs that refer to customer origin servers.

Optimization options. Different download opti-

mizations can be toggled in the Medusa proxy dur-

ing object requests, such as using parallel and per-

sistent connections.

The initial version of the Medusa proxy supported

basic HTTP 1.0 request functionality. For the ex-

periments in this paper, we extended Medusa to

support a number of new features, including page

delimitation, parallel connections, and persistent

connections.

To capture the effects of downloading entire pages,

Medusa records page delimiters in its traces and

supports the concept of page downloads during

trace replay. In this mode, Medusa requests all ob-

jects in a page according to its configured optimiza-

tion mode, and then waits for all responses before

requesting the objects in the subsequent page.

To support parallel connections, Medusa records

the number of different connections used by the

browser during trace collection, as well as which

requests are sent over which connection. With this

information, Medusa is able to faithfully recreate

the connection behavior used during browsing. Re-

quests are fetched in a sequential fashion on each

connection in the order in which they were origi-

nally requested, with all connections beginning re-

quests at the same time. As a result, parallel down-

load time is optimistic but also consistent and re-

peatable.

Persistent connections are implemented according

to both the HTTP 1.0 convention and the HTTP 1.1

specification. Medusa has several persistent con-

nection modes: it can attempt to always keep the

connection open, it can attempt to mirror the orig-

inal connection state found in the trace, or it can

always close the connection. Should a persistent

connection fail, we re-establish the connection and

continue.

The Medusa proxy is highly configurable. Any

of the connection options can be enabled in any

configuration. In addition, Medusa now records

the DNS resolution time for each object. Medusa

can either replay traces using recorded DNS resolu-

tions or re-resolve DNS resolutions. In either case,

DNS resolution time (previously recorded or cur-

rent lookup) can be toggled to count towards object

download cost (or not).

As with the original version, Medusa can still trans-

form requests, such as converting Akamai requests

to origin server requests, online or during replay.

This is limited to Akamai Freeflow ARLs, however,

and does not consider sites completely hosted on

CDNs. We use these options in various configura-

tions to explore whole-page download performance

as described in the following section.

4 Methodology

For our experiments, we use the Medusa proxy to

record everyday browsing from six different users

over the course of four days. We then replay these

traces, again using the Medusa proxy, while tog-

gling different performance optimizations and cap-

turing individual object download times. Finally,

we use the individual object download times mea-

sured during replay to compute download cost for

whole pages.

In this section, we describe how the Medusa proxy

is used to compute download cost, describe our

trace characteristics, and outline the performance

optimizations we use to explore whole-page perfor-

mance.

4.1 Computing Page Download Time

4.1.1 Measurements

In this study, we define user-perceived latency for

whole pages to be the total wall clock time required

to download the base page and all of its embedded

objects. We refer to this time as the page download

time. We calculate page download time using ob-

ject download time, as defined below. Of course,

the browser can display useful information before

all of the page’s objects are downloaded. In prac-

tice, though, it is difficult to determine at what point

the user considers a page downloaded, and we con-

sider the total time to download the page a reason-

able conservative and repeatable metric.

The Medusa proxy calculates object download time

from just after the DNS lookup until it closes the

connection; this cost includes the TCP connection

setup and close. When persistent connections are

enabled, cost is calculated from just after DNS

lookup until full object return, and does not include

connection close. Where DNS overhead is included

in page download time, we have added the original

recorded DNS overheads to object download time

after replay. For our timings in our Java implemen-

tation of Medusa, we used a custom native timer

implementation with a 3ns granularity to gather ac-

curate results. Although the native call to the timer

incurs a 51 microsecond overhead, this overhead

is still negligible relative to the time durations we

measure.

Calculating page download time depends on the

download optimizations used. For experiments that

do not use parallel connections, we sum the total

object download time for all objects on a page (as

dictated by the page delimitation algorithm) to get

total page download time. For experiments with

parallel connections enabled, we sum up the total

object download time for each sequence of objects

downloaded serially, then take the maximum se-

quence time as page download time. Examples of

calculation of page download time, in both cases,

are given in the following section.

To account for variation in individual download

times, we download each page in the trace five

times, one right after another. We then take the me-

dian page value as the representative page down-

load time for that page. Across sets of pages, we

report both average page download time and me-

dian page download time.

4.1.2 Example

We use an example to illustrate the calculation of

page download time. Suppose we replay a trace to

Download Time DNS Time

Obj1 150 5

Obj2 200 40

Obj3 100 4

Obj4 250 90

Table 1: Example object download and DNS times

for a page with four objects. All times in millisec-

onds.

Seq. With

Method Download Seq. Time DNS

Serial Obj1,Obj2,Obj3,Obj4 700 839

Total page download time: 700 839

Parallel Obj1, Obj3 250 259

Obj2, Obj4 450 580

Total page download time: 450 580

Table 2: Example page download times when using

(1) serial connections, and (2) parallel connections

using two connections. All times are in millisec-

onds. ID refers to sequence ID identifying a set of

objects that must be downloaded serially.

download a 4-object page with the object download

times and DNS resolutions times as shown in Ta-

ble 1. Note that, even in trace replay, we would use

the DNS times from the original user trace. For the

purpose of this example, persistent connections are

turned off. In actual replay situations, times with

and without persistent connections enabled would,

of course, be different.

Table 2 shows how we would determine page

download times when downloading the page using

serial connections and when using parallel connec-

tions. With serial connections, Medusa opens and

closes new connections to download the objects one

after the other in sequence. In this case, the total

page download time is simply the sum of the indi-

vidual times: 700ms without the DNS times, and

839ms with them.

With two parallel connections, Medusa downloads

the objects in parallel. It first opens two paral-

lel connections to download the first two objects.

When the first object finishes, it opens another con-

nection to download the third object; when the sec-

ond object finishes, it opens another connection to

download the fourth. Since these object download

sequences happen in parallel due to the use of paral-

lel connections, the total page download is the max-

imum total download time of either sequence of ob-

ject downloads: 450ms without the DNS times, and

580ms with them.

Note that in both methods Medusa opens and

closes a new connection for each object; if we had

used persistent connections in this example, then

Medusa would have reused connections if the ob-

jects came from the same server.

4.2 Traces

To generate a workload for our experiments, we

collected traces of everyday Web browsing from six

different users in our research lab from Saturday,

April 27 through Tuesday, April 30, 2002.

Table 3 summarizes our user traces. We originally

recorded 22,338 objects in 1,455 pages. However,

upon replaying the traces, not all of the objects in

the traces could be successfully downloaded again

due to connections errors and 4XX/5XX responses.

We therefore removed all pages with any objects

that failed to download from the original trace. The

result was a workload of successfully downloaded

pages consisting of 13,747 HTTP requests compris-

ing 920 pages, for an average of 15 requests per

page.

To explore the individual and combined impact

of different download optimizations, we replayed

these traces using Medusa while enabling differ-

ent optimization configurations. In all replay ex-

periments, we executed the Medusa proxy on a

1133MHz PIII with 512KB cache and 1GB of

memory running Linux 2.4.2-2. We ran the Medusa

proxy using Sun’s Java 2 Runtime Environment

(v1.4.0) with the same version of HotSpot. We

used Internet Explorer 5 (IE), Netscape V4.79, and

OmniWeb v4.1b5 as the browsers to generate our

workloads. Replay measurements were gathered

overnight on May 6–7 and June 22–27 with each

of seven machines replaying parts of the traces. To

minimize warming effects, for each object we take

the median download time across five downloads.

User Reqs Pgs Ave Reqs/Pg

A 1212 87 13.9

B 872 103 8.5

C 10341 568 18.2

D 650 70 9.3

E 477 68 7.0

F 195 24 8.1

Total 13747 920 15.0

Table 3: The six user traces of successfully re-

played pages collected from Saturday, April 27,

2002 through Tuesday, April 30, 2002.

4.3 Optimizations

For each experiment, we used the Medusa proxy to

replay user traces. During playback, we enabled

different optimization options to mimic optimiza-

tions that are commonly used by Web browsers and

servers. Below we describe our methodology for

page delimitation and the optimizations we study.

Page Delimitation. To divide user traces into pages

we used the relatively common heuristic of calcu-

lating inter-object times in the original trace to dis-

tinguish page boundaries. While [5] used an intra-

page reference time of 2.25 seconds, we found that

a value of 2 seconds was sufficient for our users

who had excellent connectivity to the Internet. We

have verified that using 2 seconds as a page break

allows us to match known page boundaries in our

traces.

We use page delimitation both in calculating total

page costs and in limiting optimizations to a page.

Specifically, Medusa uses the page delimitation to

limit parallelization to within a page.

(1) Parallel Connections. The Medusa proxy

tracks the number of unique concurrent connections

used by the browser during trace collection. These

connection numbers are then used to replay parallel

download.

In parallel replay mode, all parallel downloads are

begun at the same time, even though this is not the

case during browser download. As a result, our

numbers represent an optimistic lower bound for

parallel page performance.

To report parallel page costs, we compute the time

spent per download sequence. We then take the

maximum sequence download time as the page

download time, since this connection will dominate

page download time. Although this may underesti-

mate download time, it excludes overhead Medusa

may introduce.

(2) CDN Usage. As explained in [11], some objects

hosted on Akamai servers are named with URLs

that reveal their location on origin servers. When

the CDN usage optimization is disabled, Medusa

uses a filter to remove the references to Akamai

servers and replaces them with references to the ori-

gin servers. When CDN usage is enabled, Medusa

simply leaves the traces in their original state. We

do not attempt to simulate more CDN usage than is

found in the original trace.

Since Akamai accounts for 85–98% of CDN-hosted

objects [12], we have focused on identifying and

removing Akamai hosted objects only.

(3) DNS Caching. We simulate idealized optimal

DNS caching by simply not including DNS timing

information when Medusa replays objects. When

idealized DNS caching is turned off, we add the

original DNS lookup cost (as measured by Medusa

when the trace was originally generated during user

browsing) to the object cost. In both cases, Medusa

does not record DNS lookup during replay. Note

that this original cost will reflect the benefits of

standard locality-based DNS caching, or the cost of

DNS redirection as the case may be, since Medusa

measures and records the time to do the original

DNS resolution. As a result, the difference between

enabling and disabling Medusa’s DNS caching re-

flects the overhead of DNS resolution in the original

trace.

(4) Persistent Connections. As with parallel con-

nections, with persistent connections Medusa at-

tempts to mirror the connection state of the original

trace. Medusa supports both HTTP 1.0 KeepAlive

and HTTP 1.1 style persistent connections; in our

experiments, we use whichever request syntax the

original browser used. As with CDN usage, we

do not attempt to model more aggressive persis-

tent connection usage than would be possible given

the number of connections in the original trace;

Medusa only uses persistent connections during re-

play for objects that were downloaded over persis-

tent connections in the original trace. We assume

that the browser has already attempted maximum

persistent connection usage, and has recorded fail-

ures as close connection events in our user trace.

We are thus simulating persistent connections with

perfect knowledge. We do not count failed persis-

tent connection attempts in our timing data, we sim-

ply begin timing at the new connection open.

4.4 Configurations

We ran experiments with the following optimiza-

tion combinations.

� No optimization options (serial download).

� Persistent connections only.

� Parallel connections only.

� Parallel connections and CDNs.

� Parallel connections and DNS caching.

� Parallel connections and persistent connec-

tions.

� Parallel connections, CDN usage and persis-

tent connections.

� Parallel connections, CDN usage and DNS

caching.

� Parallel connections, DNS caching and persis-

tent connections.

� Parallel connections, CDN usage, DNS

caching, and persistent connections.

5 Results

As stated in the introduction, the high level goals

of this paper were to examine the extent to which

the optimizations above were used and to study

the effect of these optimizations on whole page

performance. The following sections address both

of these goals by characterizing the pages in our

trace and evaluating whole-page performance using

the combinations of download optimizations listed

above.

We downloaded 920 pages with a total of 13747 ob-

jects for an average of 15.0 objects per page. Pages

with one or more download errors during replay

were discarded (this includes both connections er-

rors and 4XX/5XX responses).

5.1 Page Characterization

We first characterize the pages in our traces in terms

of the number and types of objects per page, as well

as the use of embedded objects from Akamai and

advertisement servers.

5.1.1 Objects per page

Figure 1 shows the distribution of different page

sizes in terms of the number of objects in each page.

The values on the x-axis correspond to the number

of objects in a page, and the values on the y-axis

correspond to the number of pages in the traces that

have a given number of objects. Pages with only

one object have no embedded objects. The large

number of small object pages is due to a combina-

tion of factors, such as caching and refresh effects.

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160

N
um

be
r

of
 P

ag
es

Objects per Page

Figure 1: Distribution of objects per page.

Objects

per Page No. of Pages No. of Objects

1 235 (25.5%) 235 (1.71%)

2-5 240 (26.1%) 720 (5.24%)

6-15 165 (17.9%) 1577 (11.5%)

16+ 280 (30.4%) 11215 (81.6%)

Total 920 13747

Table 4: Number of pages successfully downloaded

in each page size category. Mean objects per page

is 15, median is 5.

Because of this we categorize pages according to

the number of objects they contain.

Table 4 shows the breakdown of pages in the trace

according to the number of objects in the pages.

Since the median number of objects per page is 5

and the average is 15, we use these values as cat-

egory boundaries. Note that, although relatively

small pages (1–5 objects per page) comprise 51.6%

of the pages, they only constitute 9% of the requests

in the trace.

5.1.2 Object Type

In terms of the types of objects requested, we

found that 80.7% of URLs were images, 3.3% were

javascript, and 3.0% were CSS files. 3.8% were

found to be cgi, perl, or class files. Surprisingly,

only 5.6% identified as “.html” or “.htm” files (this

does exclude pages with no identifying suffix). The

remaining 3.6% of pages were pages with no suffix

and miscellaneous files (pdf, txt, etc.).

5.1.3 CDNs

We found that the number of pages with explicit

Akamai-hosted objects is small, with 48 pages or

5.2% of pages containing Akamai-hosted objects.

Akamai-hosted objects accounted for only 216, or

1.6%, of total downloaded objects. For pages that

contained an akamai reference, there were an aver-

age of 216/48 = 4.5 CDN objects per page. Pages

that contained CDNs had an average of 12.06 ob-

jects per page.

5.1.4 Persistent Connections

We found that the number of pages that use persis-

tent connections is also small, with only 229 pages

or 20% of the pages in out trace using persistent

connections. These pages contained 2211 persis-

tently downloaded objects, accounting for 16.1% of

total objects downloaded.

5.1.5 Ad-Servers

We searched for ad servers by looking for refer-

ences to hosts that were named with the phrases

“ads” or “adservers”. Thus, objects such as

http://rmads.msn.com/images 47144 date0429 50.jpg

were flagged, but objects such as

http://graphics4.nytimes.com/ads/scottrade sov.gif

were not.

S
er

ia
l

P
er

si
st

en
t

P
ar

al
le

l

P
ar

al
le

l,
C

D
N

P
ar

al
le

l

D
N

S
 C

ac
hi

ng

P
ar

al
le

l

P
er

si
st

en
t

P
ar

al
le

l,
C

D
N

P
er

si
st

en
t

P
ar

al
le

l,
C

D
N

D
N

S
 C

ac
hi

ng

P
ar

al
le

l,
D

N
S

C
ac

hi
ng

, P
er

si
st

en
t

A
ll

Option Combinations

0

500

1000

1500

2000

2500

P
ag

e
D

o
w

n
lo

ad
 T

im
e

Median
Average

Figure 2: Average page cost with different opti-

mization options enabled. Numbers along the bot-

tom correspond to numberings in methodology sec-

tion. Averages are the top points for each option,

and medians are the bottom points.

The number of total ads served by identifiable ad-

servers in our dataset was 211, which were dis-

tributed across 87 (9.5%) pages. This is an average

of 2.4 ads per page for those pages that contained

ads. Pages that contained ads had an average of

30.75 objects per page.

5.2 Whole Page Optimizations

In this section we evaluate the performance of the

different download optimizations. Figure 2 shows

the average page performance with different op-

timizations enabled. The x-axis corresponds to a

configuration of optimizations numbered according

to the list in Section 4, and the y-axis corresponds

to the page download time. As this figure shows,

the optimization that has the greatest incremental

effect across all pages is enabling parallelism. For

example, using parallel connections alone improves

performance 100.5%. All other improvements are

moderate: CDN improvement is 2.5% with all other

options turned on and DNS improvement is 6.7%

with all other options turned on. Surprisingly, even

persistent connections are not as helpful as ex-

pected. With no other options turned on, persistent

connections improve performance only 1.5%, and

with all other options turned on they only improve

performance 3.4%.

We also find that all two option settings perform

better than one option settings, and all three op-

tion settings perform better than two option settings

with the four option setting of using parallelism (1),

CDNs (2), complete DNS caching (3), and persis-

tent connections (4) being the most effective. Fig-

ure 2 also shows that parallelism and any one op-

tion gives almost equivalent improvement to having

all options enabled. The maximum overall benefit

comes from adding the first two optimizations. Fi-

nally, notice that the medians are much lower than

the means in this graph. This is both because of the

high variance for page download, and a skew to-

wards smaller pages in the data set (distribution of

page sizes).

From this graph we can draw some overall conclu-

sions. The first is that parallelism has the great-

est effect across the pages in this workload. This

follows from the fact that parallelism is the only

performance optimization used aggressively on all

pages (a related study found that a browser may

open as many as 28 simultaneous connections [1]).

While none of the other optimizations are ineffec-

tual, they all offer only incremental benefits. There

are two reasons for this. In some cases (e.g. DNS),

the overheads involved may be small, allowing for

only modest improvement. In other cases, look-

ing at the average over all pages may not provide

a realistic estimate of the improvements offered by

an optimization (e.g. persistent connections). Not

all pages implement all optimizations, and not all

pages that implement those optimizations use them

aggressively. Below, we examine each of the other

optimizations in detail, examining factors that con-

tribute to their modest improvement.

5.3 Ideal DNS Caching

We found that the average DNS cost per object

is 7.1 ms and the average DNS cost per page is

529.7 ms. This represents total time spent doing

DNS lookups, not time the browser spends waiting

on a DNS lookup since with parallel connections

lookups can also be done in parallel.

We can quantify the amount of time that the

browser spends waiting on a DNS lookup by com-

paring average whole-page latency with and with-

out DNS caching. We see that DNS cost is 12.2%

of parallel page cost, 6.9% of parallel/CDN page

cost, 5.1% of parallel, persistent connection page

cost, and 6.3% of parallel, persistent, CDN page

cost.

Looking at Figure 2, we see that the benefit of ide-

alized DNS caching is moderate, but that it is rel-

atively helpful in all cases. This is due to two fac-

tors. The first is the fact that we already have less-

than-ideal, but still effective DNS caching in place.

Thus, not every DNS lookup needs to query a re-

mote nameserver. The second factor is that shown

above, DNS queries overlap with other page down-

load operations. This leaves only modest room

for improvement, even when specific DNS requests

have high overhead.

5.3.1 DNS and CDNs

We also examine the interactions between DNS and

CDNs at the page level by looking at DNS overhead

for only those pages which contain CDN hosted ob-

jects.

We were interested in whether DNS costs are higher

for those pages which contain a large number of

Akamai-hosted objects. We find that is not nec-

essarily true, however. For example, DNS con-

tributes 0.8% to parallel connections with CDNs

for pages that use Akamai, compared with 6.9% on

average. For parallel, persistent connections with

CDNs, DNS contributes 6.0% to pages that use

Akamai, compared with 6.3% for average pages.

5.4 CDNs

While perfect DNS caching is only incrementally

effective because existing DNS caching is already

S
er

ia
l

P
er

si
st

en
t

P
ar

al
le

l

P
ar

al
le

l
C

D
N

P
ar

al
le

l
D

N
S

 C
ac

hi
ng

P
ar

al
le

l
P

er
si

st
en

t

P
ar

al
le

l
C

D
N

P
er

si
st

en
t

P
ar

al
le

l
C

D
N

D
N

S
 C

ac
hi

ng

P
ar

al
le

l
D

N
S

 C
ac

hi
ng

P
er

si
st

en
t

A
ll

Option Combinations

0

2000

4000

6000

P
ag

e
D

o
w

n
lo

ad
 T

im
e

16+
6-15
2-5
1

Figure 3: Average page download time where ob-

jects are grouped by page size.

effective, the same is not true for CDNs. Previ-

ous studies have shown that CDNs are highly ef-

fective for individual objects [11]. We note that

while CDNs do give improvement in our overall re-

sults (1.3% -11.1% and 2.5% with all other options

enabled), overall their contribution is small.

This small improvement corresponds to the simi-

larly small number of Akamai-hosted objects found

in our traces. We found that only 48 pages (5.2%)

contain Akamai-hosted objects, with a total of 216

objects for an average of 4.5 Akamai-hosted ob-

jects per page. As in [11], from an overall work-

load perspective, CDNs have an impact on whole-

page download performance that corresponds to

their limited part of user workloads.

5.5 Persistent connections

We have observed that persistent connections do

not appear to have as substantial of an impact on

performance as we would expect. The reason for

this is that looking at all pages in the trace does not

tell the whole story: Many pages have little oppor-

tunity to benefit from persistent connections. For

example, pages with one object count as much as

pages with 152 objects, even though connection op-

timizations will be much more effective on larger

pages. In this section, we characterize the potential

for the pages in our trace to benefit from persistent

S
er

ia
l

P
er

si
st

en
t

P
ar

al
le

l

P
ar

al
le

l
C

D
N

P
ar

al
le

l
D

N
S

 C
ac

hi
ng

P
ar

al
le

l
P

er
si

st
en

t

P
ar

al
le

l
C

D
N

P
er

si
st

en
t

P
ar

al
le

l
C

D
N

D
N

S
 C

ac
hi

ng

P
ar

al
le

l
D

N
S

 C
ac

hi
ng

P
er

si
st

en
t

A
ll

Option Combinations

0

2000

4000

6000

P
ag

e
D

o
w

n
lo

ad
 T

im
e

1
2-5
6-15
16+

Figure 4: Median page download time where ob-

jects are grouped by page size.

connection, first by objects per page, then by per-

centage persistent objects. We present the perfor-

mance impact of persistent connections.

5.5.1 Page Breakdown

We begin by looking at objects per page as a possi-

ble explanation for the lack of impact of persistent

connections. Figures 3 and 4 show the effect the

different optimizations have on pages with differ-

ing numbers of embedded objects. We have catego-

rized pages based on the median number of embed-

ded objects per page (5) and the average number

of embedded objects per page (15). We find that

pages with one object only improve 20.8% from

all optimizations, and pages with 2-5 objects only

improve 63.4%. Meanwhile, larger pages do quite

well. Pages with 6-15 embedded objects improve

156.9% overall, while pages with 16 or more ob-

jects improve 182.9% overall. However, we still

find that persistent connections are not as effective

as we would like, even on the large pages. For ex-

ample, on pages with 16 or more objects, persistent

connections only improve the serial case 2.0% and

only improve the parallel case (with no other op-

tions) 22.5%.

It is also interesting to note that Figures 3 and 4

show persistent connecions are more helpful in the

parallel case than in the serial case. Lack of per-

sistent connections contributes only 2.0% to the

cost of downloading a serial page, while contribut-

ing 18.3% in the parallel case for pages with more

than 16 objects. This appears to be due to the

fact that requests in the serial case may get in-

terleaved when they are sent on one connection

in the order in which they were originally down-

loaded by the user’s browser. For example, us-

ing parallel connections, two requests to the server

www.cnn.com may get sent in sequence 0 while one

request to ar.atwola.com may get sent in sequence

1. When Medusa serializes these requests, it is pos-

sible that they may get ordered as (www.cnn.com,

ar.atwola.com, www.cnn.com), negating persistent

connection benefits for one connection. Thus, the

opportunity for taking advantage of persistent con-

nections is smaller for the non-parallel case.

We can draw several conclusions from Figures 3

and 4. First, not surprisingly, all of the optimiza-

tions have more effect when there are more objects

per page. This is because there is more opportunity

to take advantage of parallel and persistent connec-

tions. For example, persistent connections provide

a more significant improvement for larger pages, re-

flecting the fact that larger pages contain more ob-

jects on the same servers. Second, many of these

optimizations are cumulative. Finally, single object

pages can only be improved by the elimination of

DNS overhead and CDNs (unless they are located

on the same server as the previous page, in which

case persistent connections might be useful). Thus,

these pages do not exhibit much improvement over-

all, but they account for 26% of pages overall.

5.5.2 Mostly Persistent Pages

We would expect to see more improvement from

the use of persistent connections than is found

above. Consequently, we took a closer look at the

use of persistent connections in our trace. We found

that only 20% of the pages in our trace use persis-

tent connections (229 pages), accounting for 16.1%

of objects (2211 objects). Because of this, we fo-

cus only on those pages that have the potential to

benefit from their use.

Objects Ave. # Ave. # Persistent Ave. # Servers Ave. # Persistent

per Page No. Pages of Objects Objects (% Objects) per Page Objects/Server

2-5 59 3.02 1.95 (64.57%) 1.48 1.32

6-15 25 9.68 6.00 (61.98%) 2.16 2.77

16+ 100 46.42 17.81 (38.38%) 4.54 3.92

All 184 23.76 9.66 (40.66%) 2.89 3.34

Table 5: Various characteristics of pages where persistent connections were used in the original trace.

Table 5 shows various characteristics of the pages

in our trace that have the potential to benefit from

persistent connections. The pages are broken down

into categories determined by the number of ob-

jects in the page; we omit the one-object category

since one-object pages cannot benefit from persis-

tent connections in isolation. These pages are the

ones that used persistent connections in the original

trace. Recall that Medusa only uses persistent con-

nections during replay when downloading objects

that were downloaded using persistent connections

originally. Table 5 shows the number of these pages

in the first column of the table; comparing the All

row with the Total row in Table 4, we see that only

(184/920 = 20%) of all pages in the trace used per-

sistent connections.

The remaining columns in Table 5 give further in-

sight into the potential benefit of persistent connec-

tions for these pages. For persistent connections to

be useful when Medusa replays traces, two condi-

tions must hold: (1) multiple objects were down-

loaded over persistent connections in the original

trace, (2) these objects were downloaded from few

servers to benefit from connection reuse. The “Ave.

of Objects” column in the table shows the aver-

age number of objects in the pages in the category.

Since not necessarily all of the objects of a page

were originally downloaded using persistent con-

nections, the next column shows the average num-

ber of objects downloaded in the pages in the cat-

egory; the percentage of all objects in the page is

given in parentheses.

From the table we see that, for pages with less than

six objects per page, on average only two out of

three objects are downloaded using persistent con-

nections. For these pages, then, the use of persis-

tent connections only has the potential to save the

connection overhead for one object compared to us-

ing serial connections. For pages with many ob-

jects (“16+”), a substantial number of objects are

downloaded over persistent connections on average

(approximately 18) and we would expect persistent

connections to benefit these pages. Note, though,

that the full potential of using persistent connec-

tions for these pages is only partially realized since

only 38% of the objects on these pages are down-

loaded using persistent connections.

The “Ave. # Servers per Page” column shows the

average number of different servers used to down-

load the objects for the pages, and the final col-

umn shows the average number of objects down-

loaded using persistent connections in the page di-

vided by the number of servers. For example, if a

page used persistent connections to download six

objects equally from two servers, then its corre-

sponding entries in the columns would be 2.0 and

3.0. The final column characterizes the average

“opportunity” of using persistent connections for

these pages: it measures the average number of ob-

jects downloaded per persistent connection for the

pages in each category. For the “2-5” pages, this

metric is 1.32: on average, using persistent connec-

tions will save the connection overhead for the re-

maining 0.32 objects beyond the initial object from

the connection (or, 1 out of every 3 such pages).

On the other hand, for the “16+” pages four objects

are downloaded per persistent connection on aver-

age. Furthermore, since the objects on these pages

are downloaded from 4.5 servers on average, they

also have good potential for using parallel persis-

tent connections.

In Figures 2– 4 we found that the use of persistent

Objects < 50% Persistent >= 50% Persistent

per Page Method Pages Mean Median Pages Mean Median

2-5 serial 7 566 476 52 1550 865

persistent 601 482 1630 741

6-15 serial 11 1670 811 14 4000 1780

persistent 1530 779 2680 1580

16+ serial 63 7160 3960 37 6180 3620

persistent 7410 4040 4660 3390

Table 6: Page download times for those pages where persistent connections were used. For comparison,

page download times when using both serial and persistent connections are shown. Pages are categorized

by the number of objects they contain, and divided by whether more or less than half of the objects in the

pages were downloaded over persistent connections. All times are in milliseconds.

connections did not have a significant impact on

page download time across all pages. Table 5 above

showed that the primary reason is that most pages

in the trace cannot benefit from the use of persis-

tent connections. To focus on the impact of persis-

tent connections on just those pages that can ben-

efit from their use, Table 6 shows the page down-

load times for those pages that used persistent con-

nections in the original trace. We categorize the

pages according to the number of objects they con-

tain, and compare the performance of using the se-

rial and persistent connection optimization meth-

ods. We further divide the pages by whether more

or less than half of the objects in the pages were

downloaded over persistent connections.

The page download times in Table 6 show that the

use of persistent connections does improve perfor-

mance for those pages that can benefit from them.

These are the pages one would expect: they have

a substantial number of objects in the page, and

most of those objects are downloaded over persis-

tent connections. For the pages with 6–15 and 16+

objects, and at least half of the objects are down-

loaded over persistent connections, persistent con-

nections improve page download times by 32.6–

49.3% over using serial connections.

5.6 Ad Servers

We also looked at the relative improvements of

the different options on only pages containing ads.

We find that all optimizations improve the perfor-

mance of pages containing ads. Adding CDNs

to the parallel case improves performance 11.0%.

Adding DNS caching improves the parallel case

12.3% (compared with an of average 13.9% over

all pages), improves the parallel/CDN case 8.9%

(compared with 7.4% over all pages), and improves

the parallel, persistent, CDN case 4.9% (compared

to 6.7%).

6 Conclusion

In this paper we have explored user-perceived Web

performance of downloading entire pages, and how

various optimizations impact overall page perfor-

mance. To explore whole-page performance, we

have extended the Medusa proxy to support paral-

lel and persistent connections, as well as to record

DNS lookup times. We then use the Medusa proxy

on user traces to characterize whole-page perfor-

mance and measure the impact of request optimiza-

tions on downloading entire pages.

In general, we found that the connection optimiza-

tion that has the largest impact across all pages in

our trace is simply parallel connections. We found

that persistent connections, for example, were not

as widely used as we expected. They were only

used in 20% of the original page downloads in our

trace, and they primarily benefit those pages that

have at least six objects in the page and most of

those objects are actually downloaded over persis-

tent connections. We found that the connection

optimizations have a greater effect the larger the

pages. With an average number of 15 objects per

page in our user traces, there is greater opportu-

nity for parallelism and connection reuse. We also

found that explicit Akamai-hosted objects were rare

(5.2% of pages), and their effect limited. Finally,

we found that perfect DNS caching had a limited

but uniform effect across all pages, indicating that

DNS caching is already fairly effective. Of course,

as with any trace-based analysis, these results re-

flect our workloads and our computing and network

environment, and results can differ for other envi-

ronments.

7 Acknowledgements

We would like to thank Jeff Chase and the anony-

mous reviewers for their helpful comments and sug-

gestions. This research was supported in part by

DARPA Grant N66001-01-1-8933.

References

[1] L. Bent. Simultaneous paral-

lel connections under two browsers,

http://ramp.ucsd.edu/medusa/parallel.html.

[2] A. Bestavros. Using speculation to reduce server

load and service time in the WWW. In Proc. of the

4th ACM Intl. Conf. on Information and Knowl-

edge Mgmt., November 1995.

[3] E. Cohen and H. Kaplan. Proactive caching of dns

records: Addressing a performance bottleneck. In

In Proceedings of the Symposium on Applications

and the Internet (SAINT), January 2001.

[4] M. Crovella and P. Barford. The network effects of

prefetching. In Proc. of Infocom ’98, April 1998.

[5] D. Duchamp. Prefetching hyperlinks. In Proc. of

the 2nd USENIX Symp. on Internet Technologies

and Systems, October 1999.

[6] B. Duska, D. Marwood, and M. J. Feeley. The

measured access characteristics of World Wide

Web client proxy caches. In Proc. of the 1st

USENIX Symp. on Internet Technologies and Sys-

tems, pages 23–36, Dec. 1997.

[7] S. Gadde, J. Chase, and M. Rabinovich. Web

caching and content distribution: A view from the

interior. In Proc. of the 5th Int. Web Caching and

Content Delivery Workshop, May 2000.

[8] S. D. Gribble and E. A. Brewer. System design

issues for Internet middleware services: Deduc-

tions from a large client trace. In Proc. of the

1st USENIX Symp. on Internet Technologies and

Systems, pages 207–218, Montery, CA, December

1997.

[9] K. L. Johnson, J. F. Carr, M. S. Day, and M. F.

Kaashoek. The measured performance of con-

tent distribution networks. In Proc. of the 5th

Int. Web Caching and Content Delivery Workshop,

May 2000.

[10] J. Jung, E. Sit, H. Balakrishnan, , and R. Morris.

Dns performance and the effectiveness of caching.

In ACM SIGCOMM Internet Measurement Work-

shop, November 2001.

[11] M. Koletsou and G. M. Voelker. The medusa

proxy: A tool for exploring user-perceived web

performance. In Sixth International Workshop on

Web Caching and Content Distribution, Boston,

MA 2001.

[12] B. Krishnamurthy, C. Wells, and Y. Zhang. On the

use and performance of content distribution net-

works. In ACM SIGCOMM Internet Measurement

Workshop, November 2001.

[13] B. Krishnamurthy and C. E. Wills. Study of pig-

gyback cache validation for proxy caches in the

World Wide Web. In Proc. of the 1st USENIX

Symp. on Internet Technologies and Systems, Dec.

1997.

[14] B. Krishnamurthy and C. E. Wills. Analyz-

ing factors that influence end-to-end web perfor-

mance. WWW9 / Computer Networks, 33(1-6):17–

32, 2000.

[15] T. M. Kroeger, D. D. E. Long, and J. C. Mogul.

Exploring the bounds of Web latency reduction

from caching and prefetching. In Proc. of the 1st

USENIX Symp. on Internet Technologies and Sys-

tems, pages 13–22, Dec. 1997.

[16] R. Liston and E. Zegura. Using a proxy to measure

client-side web performance. In Proc. of the 6th

Int. Web Caching and Content Delivery Workshop,

June 2001.

[17] M. Rabinovich, J. Chase, and S. Gadde. Not all

hits are created equal: Cooperative proxy caching

over a wide area network. In Proc. of the 3rd Int.

WWW Caching Workshop, June 1998.

[18] A. Shaikh, R. Tewari, and M. Agrawal. On the ef-

fectiveness of dns-based server selection. In Proc.

of IEEE INFOCOM 2001, Anchorage, AK 2001.

[19] C. Wills and H. Shang. The contribution of dns

lookup costs to web object retrieval. In Tech. Rep.

TR-00-12, Worcester Polytechnic Institute, July

2000.

[20] C. E. Wills, M. Mikhailov, and H. Shang. N for the

price of 1: bundling web objects for more efficient

content delivery. In World Wide Web, pages 257–

265, 2001.

[21] A. Wolman, G. M. Voelker, N. Sharma, N. Card-

well, A. Karlin, and H. M. Levy. On the scale and

performance of cooperative Web proxy caching. In

Proc. of SOSP ’99, pages 16–31, December 1999.

