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FUNCTION REPRESENTATION OF COMMUTATIVE
OPERATOR TRIPLE SYSTEMS

YAAKOV FRIEDMAN AND BERNARD RUSSO

1. Introduction and notation

By an operator triple system we mean a complex linear subspace of <S?(H, K), the
bounded linear operators from a Hilbert space H to a Hilbert space K, which is
closed in some topology and under some triple product of its elements. In this piiper
we shall be interested primarily in the class of J*-algebras, though we also deal with
abstract Jordan triple systems. One of the principal consequences of our main result
(Theorem 1) is a Gelfand Naimark representation theorem for associative Jordan
triple systems (Theorem 2).

A J*-algebra is a norm closed complex subspace of $£{H, K) which contains aa*a
if it contains the element a. Simple identities [6, p. 17] show that J*-algebras are
closed under the triple product (a, b,c) —» ab*c + cb*a. The subclass of ternary
algebras, that is those closed under {a, b, c) -> ab*c, is more tractable but occurs less
frequently than J*-algebras. Any collection of operators which is closed under a
binary product gives rise to an operator triple system. Thus the class of J*-algebras is
large enough to contain all C*-algebras, JC*-algebras, and many important Lie
algebras of operators; and small enough to possess nice properties.

It is elementary that every Banach space can be embedded isometrically into a
space of continuous functions satisfying some symmetry properties. We prove below
(Theorem 1) that this embedding is onto when the Banach space is a commutative
J*-algebra (defined below).

This result answers a question posed by Harris in [7] and has several immediate
consequences. We show that the range of a contractive projection on a commutative
J*-algebra is itself a commutative J*-algebra. This is a complete solution in a special
case to a recent problem, cf. [1, 3, 4, 5]. We also prove a Stone-Weierstrass theorem
in the setting of commutative J*-algebras, and use it to determine all closed ideals of
a commutative J*-algebra. In the last section we extend our results to Jordan triple
systems.

Some of the applications in analysis and geometry of J*-algebras and their
generalizations are indicated in the introduction of [5].

If M is a J*-algebra and v is a partial isometry in M, then with / = vv* and
r = v*v, projections E = E(v), F = F{v) and G = G(v) on M are defined by

Ex = Ixr, Fx = (1 - l)x{ 1 - r) Gx = /x( 1 - r) + (1 - l)xr .

If g belongs to the normed dual M' of M then by an abuse of notation, Eg denotes
go E, and similarly for F and G.

The second dual M" has a natural structure of weakly closed
J*-algebra [5, Lemma 2.1] and each fe M' has an enveloping polar decomposition
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514 YAAKOV FRIEDMAN AND BERNARD RUSSO

as follows [5, Theorem 1]. There is a unique partial isometry v e M", denoted by
v(f), such that, with r = v*v, we have

(1.1) Nv = v*M"r is an ultra-weakly closed Jordan *-subalgebra of S?{H), with
unit r;

(1.2) (f>0, defined by <f)v(a) = f(va), for aeNv, is a faithful ultra-weakly
continuous positive functional on Nv;

(1.3) /(x) = 0o(u*xr), for x e M".

In particular, ||/|| = f{v). Note that (1.1) is valid for any partial isometry veM"
[5, Lemma 2.3]. For feM' we shall use the abbreviations £(/) = E(v(f)),
F(f) = F(v(f)) and G(f) = G(v(f)).

A J*-homomorphism is a linear map T satisfying T(xx*x) = Tx{Tx)*Tx. Such a
map satisfies ||T|| ^ 1 and

T{xy* z + zy* x) = Tx{ Ty)* Tz + Tz{ Ty)* Tx

(cf. [6, pp. 17-19]).
We shall use the following additional notation: T is the unit circle in C; V is a

complex Banach space; K = (V')l is the unit ball in V with the <w*-topology;
S = S{V) = extK is the set of extreme points of K. A function fe CC{K) is said to
be T-homogeneous if /(ocfc) = otf(k) for all a e T, fc e K. The class of T-homogeneous
functions in CC(K) is denoted by Chom(K). Similar remarks hold for functions on S. If
/ e CC{K), then the function

keK,

where da is the unit Haar measure on T, is continuous and T-homogeneous. It
follows that homr is a norm-decreasing projection of CC(K) onto Chom(K).

2. Representation of commutative 3*-algebras

For any Banach space V the map V 3 x -* x e Chom(X), defined by x(/) = f{x),
for feK, is a linear isometry of V onto a closed subspace V of Chom(K). Let
*¥\V -*• Chom{S) be defined by ¥(x) = x|5. Then ^ is a linear isometry of K onto a
closed subspace of Chom(S). This follows from the Krein-Milman theorem.

Suppose now that V is the underlying Banach space of a commutative J*-algebra
(to be defined). It follows from Proposition 2.3 below that *F is a J*-homomorphism
of V into Chom(S), that is ¥(aa*a) = <P(a)^(a)xP(a), and (Corollary 2.4) that S u {0}
is co*-closed. We show in Proposition 2.6 that V is a Lindenstrauss space, that is, the
dual V* is isometric to some L1 space. Thus a commutative J*-algebra satisfies (1) of
[10, Theorem 9]. Application of (2) of this theorem will show that *F maps V onto
Chom(S).

Our first task is to define a commutative J*-algebra. We are guided by the
following proposition.
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PROPOSITION 2.1. Let A be a C*-algebra. The following are equivalent:

(1) A is commutative;

(2) G(v) = Ofor all partial isometries v e A";

(3) G(f) = Ofor all feA'.

Proof (1) => (2) If A is commutative, then so is A". Thus if veA", then
/ = vv* - v*v = r, and for xeA" we have G{v)x = /x(l-r)+(l-/)xr = 0.

(2) => (3) This is obvious.
(3) => (1) Let e be an arbitrary projection in A". Then e = sup{e^,: 0 e A\,

e^ ^ e] where e^ denotes the support in A" of the positive functional </>. By
assumption, for each x 6 A",

0 = G(<f>)x = ^ x ( l - g ^ 0

Therefore xe^ = e^xe^ = e^x, and so xe = ex for arbitrary x e A".

DEFINITION. A J*-algebra M is said to be commutative if G(f) = 0 for all fe M'
(cf. Example 4.1).

Throughout the rest of this section, M will denote a commutative J*-algebra.

LEMMA 2.2. For each v e M", Nv is a commutative von Neumann algebra.

Proof By (1.1), it suffices to prove that ae = ea for an arbitrary projection e in
Nv and an arbitrary element a in Nv. By the approximation argument in the proof of
Proposition 2.1 we may assume that e is the support of some (f) e (Nv)£. Also, as in
the proof of Proposition 2.1 it suffices to show that G{(j>) = 0. This follows from
[5, Remark 3.2].

PROPOSITION 2.3. For fe M', the following are equivalent:

(1) f is an extreme point of the unit ball of M';

(2) / is a non-zero J*-homomorphism of M into C;

(3) / (the canonical image of f in M'") is a non-zero J*-homomorphism of M"
into C.

Proof (1) => (3) By [5, Proposition 3.7],

(2.1) E(f)x = <x,/>y f o r x e M " .

Since M is commutative, G(f) — 0. Thus for each x € M", with E = E(f) and
F = F(f), we can write x = £x + Fx and therefore £(xx*x) = JEx(Ex)*£x. Using
(2.1) we have

<xx*x,f>v = E(xx*x) = <x,/M<x,

and therefore /(xx*x) = f(x)2f(x).
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(3) => (2) This is trivial.
(2) => (3) As noted in Section 1, / satisfies

(2.2) f(xy*z + zy*x) = 2f(x)f(y)f(z) for x, y, z e M .

Now multiplication is separately ultraweakly continuous on M" and the involution
is ultraweakly continuous. Therefore (2.2) implies that / is a J*-homomorphism of
M" into C.

(2) => (1) We first show that | | / | | = 1. As noted above, | | / | | ^ 1. By (3), / is a
J*-homomorphism of M" so that, with v = v{f), \f(v)\ = \f{vv*v)\ = |/(u)|3, that is
Il/H = ll/ll3; therefore | | / | | = 1 since / ^ 0.

Now write / = %{g + h), with g,heM\. Then

1 = ll/ll < H\\E(f)g\\ + \\E(f)h\\) ^ $(\\9\\ + \\h\\) = 1

and so by [5, Lemma 3.1], g = E{f)g and h = E{f)h. Since E{f)M' ~ (NJ (by
[5, Remark 3.2]) we see that fe ext M\ if and only if fe ext E{f)M\, and this is the
case if and only if (j>v e ext ( N J ^ . It remains to prove that (f)v e ext (Nv)4:1.

For x e M" and a = v*xr e Nv, we have

^ ( a 2 ) = 4>0{v*xv*xr) = f(xv*x) = /(x)2/(i>) = / (x) 2 = (f>v(a)2 •

Thus 4>v i
s a multiplicative linear functional on the abelian von Neumann algebra Nv

and therefore <j)v is a normal pure state of Nv. It follows that <frv e ext (Nu)+1.

COROLLARY 2.4. (ext M^) u {0} is weak*-compact.

Proof. The weak*-limit of J*-homomorphisms of M is a J*-homomorphism of
M.

LEMMA 2.5. Let f,g€QxtM\. Then f and g are either orthogonal {that is
f = F(g)f) or linearly dependent.

Proof. For any f,geM', we have / = E{g)f + F(g)f (since G(g) = 0) and
ll/ll = \\E(g)f\\ + \\F(g)f\\, by [9, Lemma 1.1]. Suppose that E(g)f±0 and
F(g)f ± 0. Then / = a^1 E(g)f) + (1 -a)((l-a)-lF{g)f) where a = ||£(g)/||
and since / is extreme, it follows that / = (1—a) 1F(g)f and / = a 1E{g)f.
Therefore / = <x~1E{g)f = a"1 E(g)(l-a)~lF(g)f = 0, a contradiction. Thus
either / = F(g)f or / = E(g)f = </, v{g)}g since g is extreme (by [5, Proposition
3.7]).

PROPOSITION 2.6. M is a Lindenstrauss space.

Proof. Let S = ext (M')x. Choose, by the axiom of choice, a set So cz S such
that every / e S is a scalar multiple of exactly one element of 50 . By Lemma 2.5, the
elements of So are orthogonal, so that v = ]T v{f) exists in M" and is a partial

isometry with the property that E{v)f = / for every f eS.lt follows, by the Krein-
Milman theorem, that E = E(v) is an isometry of M onto E(M) a M", and therefore



FUNCTION REPRESENTATION OF COMMUTATIVE OPERATOR TRIPLE SYSTEMS 5 1 7

that M' ~ E(M)' ^ E{M') ~ (Nv)^ ~ L1. Here ^ denotes isometric isomorphism
and the last step follows from Lemma 2.2.

The following remark was pointed out by the referee.

REMARK 2.7. The proof of Proposition 2.6 shows that M" is isometric to Nv,
which is a commutative von Neumann algebra. By [6, Theorem 4] M" and Nv are
J*-isomorphic (cf. Proposition 3.1).

THEOREM 1. Let M be a commutative 3*-algebra, and let S = extM\. Then the
map ¥ : M -* Chom(S) defined by ¥(x) = x\S,for x e M, is a J*-isomorphism onto.

Proof. By Proposition 2.3, *F is a J*-isomorphism of M into Chom(5). By
Corollary 2.4 and Proposition 2.6, M satisfies (1) of [10, Theorem 9]. Now let
<f> e Chom(5). Since 5 u {0} is w*-closed, <$> has a continuous extension $ to C{K). By
(2) of [10, Theorem 9] there is a n x e M such that ^(x) = x\S = homT<f>\S = </>.

EXAMPLE 2.8. Let X be a Tff-space, that is a compact Hausdorff space together
with a continuous map a : T x X -> X satisfying <x(a, cr(p\ x)) = <r(aj3, x), and
<T(1 , x) = x, for a J e T and x e X. Let

C0(X) = {<M C(X): 0(a(a, x)) = a</>(x), for all (a, x) e T x X} .

A Banach space V isometric to a space of the form Ca(X) is called a Ca-space (cf.
Olsen [10]). Since C^X) c= C(X), it follows that Ca{X) has a faithful representation
as a commutative J*-algebra. Let M = Cg{X) and S = extM'j. For xeX, let
p(x) e M\ be defined by <p(x), $> = <̂ >(x). Then p: X -* M\ is continuous and
obviously p(x) is a J*-homomorphism of M into C. Therefore, by Proposition 2.3,
either p(x) = 0 or p{x) G S. Thus p : X -* S u {0} and p is one-to-one on p~ H^). Let
T : S -» K be the one-to-one map defined by p( t( / ) ) = / for / G S. Then the map
(p -+ $ of Ca(X) onto Chom(S) is also given by </> -> (f> o T.

3. Applications

Our first application of Theorem 1 is a result of Banach-Stone type. For
arbitrary J*-algebras, the implication (2) => (1) is a deep result of Harris [6, Theorem
4].

PROPOSITION 3.1. Let M and N be commutative J*-algebras and let T: M -*• N
be a linear map. The following are equivalent:

(1) T is a J*-isomorphism of M onto N;

(2) T is an isometry of M onto N;

(3) there is a homeomorphism a: S{N) -* S{M) with o{otf) = aa(f) for
( a , / ) e TxS{N)such that {Ta)~ = ao a, for ae M.

Proof. (1) => (2) Any J*-homomorphism is norm decreasing. Since T~x is also
a J*-homomorphism, (2) follows.

(2) => (3) The map a = T'|S(N) has the stated properties.

(3) => (1) {T{aa*a)Y = [aa*a)~ o a = (alia) o a = (Taf(Ta)~ (Ta)~
= (Ta{Ta)*Tay.
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In [4, Theorem 5], the authors showed that the range of a contractive projection
on a commutative C*-algebra is a Ca-space. Using that result and Theorem 1 we can
prove the following.

PROPOSITION 3.2. If P is a contractive projection on a commutative J*-algebra,
then P(M) is isometric to a commutative J*-algebra.

Proof. Identify M with Chom(S). Then P{M) = P(homr(C0(S))). Since
P o homr is a contractive projection on C0(S), it follows that P(M) is a complex
Cff-space and is therefore a commutative J*-algebra.

CONJECTURE. On an arbitrary J*-algebra M, each bicontractive projection P
has the form Px = | (x + 0.x), for x e M, where 0 is a J*-automorphism with 62 = id.

We prove this conjecture below in the case of a commutative J*-algebra. Other
cases when this conjecture is true are given in the introduction of [5].

PROPOSITION 3.3. Let Mbea commutative J*-algebra and let P be a bicontractive
projection on M. Then there is a homeomorphism o of S{M), with a2 = id and
a{<xf) = aa{f),for ( a , / ) e T x S , such that

(Pxf = ! ( X + .XO<T), xeM.

Proof. Since M is a Lindenstrauss space by Proposition 2.6, the result follows
from the main result of Bernau and Lacey [2], and Proposition 3.1.

The following is a Stone-Weierstrass theorem for commutative J*-algebras.

PROPOSITION 3.4. Let B be a commutative 3*-algebra and let A be a commutative
J*-subalgebra ofB. Let X = ext B\ = S{B). Suppose that A separates the points ofX,
that is f,geX,f ^ g, implies that there is an element ae A such that f(a) ± g{a).
Suppose also that for each f e X there is an element ae A with f(a) ^ 0. Then
A = B.

Proof. Let Y = S{A). The two assumptions and Proposition 2.3 imply that the
map X 3 f -+f\A G y is a continuous bijection. Since X u {0} is compact, this map
is a homeomorphism and therefore Chom(X) ~ Chom{Y). By Theorem 1, A c~ Chom{Y)
and B ~ Chom(X). Since the diagram

commutes, we must have A = B.

We shall now use the Stone-Weierstrass result to develop ideal theory for
commutative J*-algebras. An ideal in any J*-algebra is a linear subspace / which
contains ab*c + cb*a whenever it contains at least one of a, b, c.
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For an ideal / in a commutative J*-algebra M, let S, = {/ e S(M): f(a) = 0 for
all a G /} . Then S, is a closed homogeneous subset of S = S{M).

LEMMA 3.5. Let I be a closed ideal in a commutative ]*-algebra M, and let
r'.M'^l'be the restriction map. Then

(1) r is a homeomorphism ofS — S, onto S{I);

(2) the map c -* cor is a J*-isomorphism of 1 onto Chom{S — S,).

Proof. If feS-S, then f\I =£ 0 so that feS{I) by Proposition 2.3. Thus r
maps S-S, into 5(7). Suppose that f,geS-Sh and / f g. We shall prove that
f\I £ g\I. Since f eS-S, there is ax e / with f{ax) = 1. Suppose that f{a) = #(a)
for all a e I. Then 1 = / ( a j = ^(aj. Let <£ e C0(S) satisfy tf>(a/) = 0, <£(<X0) = a for
ae T and choose be M such that 5 = homT(j). Then c = a1d*fr + 66*a1 e / ,

fie) = 2/(a1)|/(f>)|2 = 0 and g(c) = 2^(a1Mfe)|2 = 2,

a contradiction. Thus f\l j= g\I and r is injective on S — S,. Now let fr e S(I) and let
F = {/c e M\ : k\l = h}. Then T is weak* compact and non-empty, and any extreme
point h of F lies in S{M). Since necessarily heS — Sh and since r is obviously
continuous, we have proved that r is a continuous bijection of S — S, onto S(/). Now
observe that {c o r : c e /} is a J*-subalgebra of Chom(S — S,) which by the preceding
part of this proof satisfies the two conditions of Proposition 3.4. Therefore (2) is
proved and (1) follows from (2) and Proposition 3.1.

For any subset R of S = S{M) let I(R) = { a e M : a{R) = 0}. Then I{R) is a
closed ideal in M and R e S / w .

REMARK 3.6. If R is closed and homogeneous, we have R — SI{R). Indeed, if
g e SHR) and g <£ R then there is 0 e Chom(5) with (f){R) = 0, <$>{g) = 1. With ce M
such that c = </>, we have c e /(i?) but g{c) = c(#) = (/>(̂ ) = 1, contradicting the fact
that g e SHR).

PROPOSITION 3.7. Let M be a commutative J*-algebra, let 2tf be the collection of
all closed homogeneous subsets of S, and let J be the collection of all closed ideals in
M. Then R -* I(R) is a bijection of & onto J', with inverse I -*• S,.

Proof. We shall show that for each ideal / e / w e have / = I{S,). This will show
that the map R -»• I{R) maps Jf onto J. Since S,{R) = R, it will follow that R -* I(R)
is a bijection.

We thus prove that / = I{S,). Since a(S,) = 0 for all a e / , we have / ^ I{S,). For
notational convenience let J = I(S,)- Then Sj = S,{Sl) = S, as remarked above. We
have, by Lemma 3.5,

/ <= J

Ch0JS-S,) = Chom(5-5,)

and the diagram commutes. Therefore I = J.
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REMARK 3.8. A quadratic ideal in a J*-algebra M is a linear subspace J which
contains ab*a whenever aeJ and beM (equivalently ab*c + cb*aeJ whenever
a,ceJ and be M). Using the preceding techniques it is easy to show the following.

(a) In a commutative J*-algebra, the closed ideals coincide with the closed
quadratic ideals.

(b) In a weakly closed commutative J*-algebra M, every weakly closed ideal /
is of the form / = E(v)(M) for some partial isometry VEM (take v to be an extreme
point of the unit ball of / and use [6, Theorem 11]).

REMARK 3.9. We have the following simple consequences of Proposition 3.7
concerning maximal ideals.

(1) Since 1(RV) £ I(R2) if and only if /?t 3 R2, there is a one-one
correspondence between maximal ideals in M and S /~ , where / ~ g means that /
and g are linearly dependent.

(2) Every closed ideal is the intersection of the maximal ideals which contain it.

(3) If / is a maximal ideal then M/I ~ C.

Finally we answer partially another question of Harris [7].

PROPOSITION.3.10. Let M be a commutative J*-algebra and let I be a closed ideal.
Then M/I is a J*-algebra, that is M/I is J*-isomorphic to Chom{R) where R = S,.

Proof. The map M/I B a + I -*• a\R e Chom(R) is easily seen to be a
J*-homomorphism onto. To show that ||a + /|| = \\a\R\\, let c e Chom(S) be a Tietze
extension of d\R. Then cea + I and ||a + /|| ^ ||c|| ^ \\a\R\\. The opposite inequality
is obvious.

4. Representation of associative Jordan triple systems

Let U be a complex vector space endowed with a triple product
{-,-,'}:UxUxU->U which is linear in the two outer variables and conjugate
linear in the middle variable. Then (U, { }) is called a Jordan triple system if the
following two identities hold:

(4.1) {xy{uvz}} - {uv{xyz}} = {{xyu}vz} - {u{yxv}z} ;

(4.2) {xyz} = {zyx}.

Kaup, in [8], defines an hermitian Jordan triple system to be a complex Banach
space (( / , | | | | ) endowed with a Jordan triple system structure
{•,-,-}: UxUxU-^U in such a way that {x, x, •} is an hermitian operator on U
for each x in U. He shows that this category is equivalent to the category of simply
connected, symmetric, complex Banach manifolds with base point. More recently he
has given a classification of 'atomic' hermitian Jordan triple systems of finite rank
[9]-
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The pair (U, { }) is said to be an associative triple system if (instead of (4.1) and
(4.2))

(4.3) {xyfzut;}} = {X{UZJ;}I;} = {{xyz}m>} .

A real subsystem V of a Jordan triple system U is called flat if

(4.4) {xyz} = {yxz}.

If V is flat then Vc — V + iV is an associative subsystem of U.
Kaup [8] and Vigue [11] prove that if V is a flat subsystem of an hermitian

Jordan triple system U whose corresponding complex Banach manifold is
isomorphic to a bounded domain, then Vc = V + iV is J*-isomorphic to C0(S), with
5 locally compact. In this setting a J*-homomorphism is a linear map i// satisfying

In Theorem 2 below we prove that any associative Jordan triple system with a
norm which satisfies some natural conditions is J*-isomorphic to the space of all
homogeneous, continuous functions on a locally compact space.

Theorem 2 differs from the results of Kaup and Vigue in the following way.
Although the norm conditions (4.5), (4.6) imply that U is an hermitian Jordan triple
system, we do not make any assumption on the Banach manifold corresponding to
U nor do we assume the existence of a flat generating subspace.

EXAMPLE 4.1. Let M be a J*-algebra. Then M becomes a Jordan triple system in
the triple product {xyz} = \(xy* z + zy* x). It follows from Theorem 1 that M is
commutative as a J*-algebra if and only if (M, { }) is an associative Jordan triple
system. Indeed if M is commutative then Theorem 1 implies that (M, { }) is
associative. Conversely, if M is associative then so is M" by the separate ultraweak
continuity of multiplication and continuity of the involution on M". Therefore, if v is
any partial isometry in M" and x e M", then

G(v)x = vv*x(l—v*v) + (l — vv*)xv*v

= vv* x — vv* xv* v + xv* v — vv* xv* v

= 2{w>x}-2{i>{i>xt>}t>} = 0
since

{u{t>xt;}u} = {twjxtw}} = {twjiwx}} = {u{ui;t;}x} = {vvx}.

EXAMPLE 4.2. Let U be a linear subspace of C0(S), with S locally compact, and
let c: S -> U be bounded and continuous. Suppose that U is closed under the triple
product {xyz}c = cxyz, for x, y, z e U. Then (U, { }c) is an associative Jordan triple
system.

Moreover, if \c\ = 1, then {U, { }c) satisfies

(4.5) ll{xyz}||<||x|||M|||z||,

(4.6) ll{xxx}|| = ||x||3,

where || • || denotes the sup norm on C0(S).
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Note that if S+ = {c = 1} and S_ = {c = - 1 } then S = S+ u S_ and

( xyz on S+ ,

— xyz on S_ .

The following theorem, due to H. Zettl [12], gives an abstract characterization of
a ternary algebra, or in Zettl's terminology a norm closed ternary ring of operators
(TRO).

A ternary C*-ring {2t, { - , - , • } , || • ||) consists of a complex Banach space and an
associative triple system satisfying (4.5) and (4.6). A ternary C*-ring
(i2f, { • , - , • } , || • ||) is isomorphic (respectively anti-isomorphic) to a TRO R if there is
a linear onto isometry U : 2t -+ R satisfying U({x, y, z}) = U{x)U{y)*U{z), for
x , y , z e & (respectively U({x,y, z}) = -U(x)U(y)*U(z)).

THEOREM A (Zettl). Every ternary C*-ring 3t is the direct sum of two ternary
C*-subrings i2f+ and Jf_ in such a way that 3?+ {respectively 2£-) is isomorphic
{respectively anti-isomorphic) to a TRO. The subspaces $?+ and 2t_ are orthogonal in
the sense that for all z e 2t',

(4.8) {.x, y, z) = 0 = -{y, x, z) , for xe&+,ye&_.

Moreover, let P be the projection of 2t onto &+. Then the map T = 2P — I satisfies
T2 = id and

(4.9) T{x, y, z} = {Tx, Ty, Tz), x, y, z e & .

LEMMA 4.3. Let 2tbe a ternary C*-ring with decomposition 2£ =
in Theorem A, and let P be the projection of 2C onto 2C+. Then

(1) {

(2) Il/H = \\Ff\\ + \\(l-r)f\\,forfear;
(3)

in the sense that, with f+ = P'f,f- = {\-P')f, we have / e e x t ^ ' j if and only if
either /+ = 0 and /_ e ext(^T'_)1, or f+ e ext(5r'+)i and /_ = 0.

Proof It is elementary that (2) follows from (1) and (3) follows from (2).
To prove (1) let xei2? and write x = x++x_ with x+e&+, x_e.2?_. For
notational convenience write y3 = {y, y, y}. Then by (4.8), the linearity properties of
{ }, and (4.6) we have x3 = x3

++x3_, and ||x||3 = ||x3|| = ||x3
++x3_|| ^ ||x3 || + ||x3_||,

that is ||x|| ̂  (||x + ||3 + ||x_||3)1/3. Iteration of this argument yields that ||x|| ̂
(l|x + ir+||x_||3n)3"n for n = 1,2,..., and this implies that ||x|| ^ max{||x+||, ||x_||}.
But (4.9) implies that ||T|| ^ 1 where T = 2P-I. Therefore ||x+|| = ||Px|| =

: ||x||, and ||x_|| = | |(/-P)x|| = ||^(x-Tx)|| ^ ||x||.
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THEOREM 2. Let (U, { } , || ||) be an associative Jordan triple system with a complete
norm satisfying (4.5) and (4.6). Let S = ext U\. Then

(1) the map Y :U -* Chom(S) defined by *¥{x) = x\S is an isometry onto;

(2) 5 = 5 + * J S _ , where S+ {respectively S_) is the set of all non-zero
J*-homomorphisms (respectively J*-anti-homomorphisms (this means f{xx*x) =

-f(x)f{x)f(x))) ofU into C, so that S u {0} is w*-compact;

(3) when we equip Chom(S) with the triple product (4.7), ¥ is a J*-isomorphism.

Proof. Since ( l / ,{ }, || ||) is a ternary C*-ring we have, by Zettl's theorem,
U = u+ © l/_, where (7+, C/_ are ternary C*-subrings of U and there exist an
isomorphism n+ : U+ -*• R + and an anti-isomorphism rc_ : U_ -> R_ onto ternary
rings of operators R + ,R.. By Example 4.1, R+ and R_ are commutative
J*-algebras. By Theorem 1 there exist onto J*-isomorphisms *¥+ :R+ -*• Chom(S+)
and *?_:/?_-»• Chom(5_), where S± = e x t ^ ) ! . By (3) of Lemma 4.3 we can
identify S+ with 5+ and 5_ with S_ and therefore Chom(S+<uS.) with
Chom(S+ u 5_) = Chom(S+) 0 Chom(S_). It follows that the map
T : t / ^ C t a ( S + u S . ) given by *F(x) = ( ¥ + o TT+(X)) 0 (¥_ o TI_(X)) is a
J*-isomorphism of (U, { }, || ||) onto (Chom(5+ u S_), { }c, || \\n).

REMARK 4.4. All of the results in Section 3 of this paper can be extended to an
associative Jordan triple system with a norm satisfying (4.5) and (4.6). The proofs
are immediate..

Note added in proof, March 21, 1983. The authors have recently given an
affirmative answer to the conjecture in Section 3. Also they have extended
Proposition 3.2 to arbitrary J*-algebras.
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