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Optimized bacteria are environmental prediction engines

Sarah E. Marzen1,* and James P. Crutchfield2,†
1Department of Physics, Physics of Living Systems Group, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

2Complexity Sciences Center and Department of Physics, University of California at Davis, Davis, California 95616, USA

(Received 8 February 2018; revised manuscript received 17 June 2018; published 16 July 2018)

Experimentalists observe phenotypic variability even in isogenic bacteria populations. We explore the hypoth-
esis that in fluctuating environments this variability is tuned to maximize a bacterium’s expected log-growth rate,
potentially aided by epigenetic (all inheritable nongenetic) markers that store information about past environments.
Crucially, we assume a time delay between sensing and action, so that a past epigenetic marker is used to
generate the present phenotypic variability. We show that, in a complex, memoryful environment, the maximal
expected log-growth rate is linear in the instantaneous predictive information—the mutual information between
a bacterium’s epigenetic markers and future environmental states. Hence, under resource constraints, optimal
epigenetic markers are causal states—the minimal sufficient statistics for prediction—or lossy approximations
thereof. We propose new theoretical investigations into and new experiments on bacteria phenotypic bet-hedging
in fluctuating complex environments.

DOI: 10.1103/PhysRevE.98.012408

I. INTRODUCTION

Isogenic bacterial populations exhibit phenotypic variabil-
ity [1–4]. Some variability is unavoidable due to noise in the
underlying biological circuits [5]. Such noise is not always
detrimental to organism functioning: phenotypic variability
can be tuned to maximize population fitness [6,7]. Such optimal
phenotypic variability is called bet hedging [8,9] and has
been implicated in seed germination in annual plants [10,11]
and in phenotype switching by bacteriophages [12] and fungi
[13–16].

At first blush, it may seem strange that a population of organ-
isms should not simply express the phenotype that grows best
in the most probable environment—a deterministic strategy.
Imagine, however, that the environment fluctuates somewhat
unpredictably (as real environments often do), sometimes
reaching a less probable state in which that phenotype does not
reproduce. If organisms only express that single phenotype,
then eventually the population will go extinct. A population
of organisms should, instead, hedge its “bets” about future
environmental states, using the unavoidable noise in biological
circuits [5] or other mechanisms—e.g., slipped-strand mis-
pairing [2,3]—to express different phenotypes with varying
probabilities. Given this, the only question is: how should the
population hedge its bets?

The first theoretical analysis of such bet-hedging was pro-
vided by Kelly in a classic analysis of gambling; see Refs. [17]
and [18, chap. 6]. If one thinks of organisms as money, to
draw out the parallel, then gambling and bacterial growth
are analogous. Adapting Kelly’s setup, only one phenotype
can reproduce in any given environmental state. Kelly found
in effect that (i) the optimal probability of expressing a
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phenotype is the probability of observing the corresponding
environmental state and (ii) the maximal expected log-growth
rate is linear in the negative entropy of a single environmental
state’s probability.

Realistically, though, more than one phenotype might re-
produce in a particular environment. For example, a bacterial
phenotype optimized for growth on a high concentration of lac-
tose can still grow on glucose, albeit with additional energetic
expenditure [19]. References [20,21] analyzed bet-hedging in
just such a case.

Furthermore, epigenetics provides a mechanism by which
organisms can remember the environmental past [22]. This
memory acts as side information about future environmental
states—information that can be used to increase the popula-
tion’s expected log-growth rate [17,18,23].1 And this suggests
in turn that such memory should affect optimal phenotypic
variability. In fact, in the context of seed germination, predic-
tive cues about the current environmental state were found to
change the optimal germination fraction [25]. We assume that
there is a time delay between sensing and action, e.g., as in
Ref. [26], so that prior epigenetic memory is used to choose
the present phenotype. Hence, one’s best guide to the present
environmental state is indeed the past environmental state.

Here we solve for optimal phenotypic variability and use
this to calculate a population’s maximal expected log-growth
rate when accounting for (i) nonzero reproduction rates of
suboptimal phenotypes, (ii) limited epigenetic memory, and
(iii) sensor noise. We find, as one might have expected from
Ref. [23], that the instantaneous predictive information—that
shared between the organism’s present phenotype and future
environment states—captures (and not just upper bounds
[20,21]) the benefit of epigenetic memory. When combined

1In a different context, this observation about memory was used to
improve estimates of the entropy of written English [24].
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FIG. 1. Population of isogenic bacteria interacting with a fluc-
tuating environment x, given by the concentrations of nutrients
(pink triangles and purple circles): Bacteria (i) observe only the
concentration x̃ of pink nutrient, (ii) remember aspects of the past
environment through their epigenetic state y, which, for instance,
could include their genome and any methylations M thereof, and (iii)
express a phenotypep (blue or green ovals) that reproduces at different
rates depending on the environment. Observations of the environment
are assumed to be identical from bacterium to bacterium. When the
bacteria experience identical sensations, the epigenetic states of the
two bacteria are assumed identical. However, inherent biochemical
stochasticity can cause the expression of different phenotypes.

with resource constraints—not considered in Ref. [23]—this
predicts that optimal isogenic bacterial populations store epi-
genetic memories that are causal states or lossy causal states of
bacterial observations of the environment, as long as sensors
are not too noisy. We conclude with suggestions for testing and
extending these results.

II. BACKGROUND

Take the environment to be everything, except the bacterial
phenotype, that determines reproductive rates of an individual
bacterium. At time t the environment is in a state xt . What the
bacteria observe of the environment at time t is x̃t—a noisy
subsampling of the full environmental state xt at time t . For
example, the environmental state xt might consist of a full list
of available nutrients, only some of which x̃t are sensed by
bacteria.

An individual bacterium has a genotype, an epigenetic
state—all the epigenetic factors such as methylation or the
number of proteins that can be inherited above and beyond
genetic information—and a phenotype. When we wish to
emphasize that the epigenetic state contains information about
past environments, we refer to the state as an epigenetic
memory. We denote the epigenetic state at time t by yt ∈ Y ,
with Yt its random variable. See Fig. 1.

We assume the environmental time series x−∞:∞ =
. . . , xt , xt+1, . . . is a realization of a stationary stochastic pro-
cess. Time increments when the phenotype updates. Bacteria
are assumed to stochastically choose a new phenotype every
time step based on their previous epigenetic state, where the
time delay between perception and action comes from finite
biochemical rates. We assume that when a bacterium chooses

its phenotype, it only references its previous epigenetic state
and not its previous phenotype.

It is well worth mapping our setup’s assumptions (or, equiv-
alently, those of Ref. [23]) to those previously used to explore
the value of information for populations subject to fluctuating
environments [27]. We simultaneously relax assumptions A1
(“no information is inherited”) and A3 (“only one phenotype
survives”) there, allowing for inheritance only through the
epigenetic state, not through the previous phenotype. The last
assumption (“epigenetic state selects phenotype”) does not
map onto any in Ref. [27]. It constitutes the main insight that
allows relaxing both A1 and A3 but still yields closed-form
expression for the value of information as the increase in
expected log-growth rate arising from storing information
about the environment [23].

We, at first, do not allow each bacterium to observe the envi-
ronment differently; in other words, Ref. [27]’s environmental
sensor is the identity map. Later, this, too, is relaxed.

Ultimately, we show that a bacterium should optimally
predict its environment (somehow) using the environment’s
causal states [28]. Two observed environmental pasts x̃−∞:t

and x̃ ′
−∞:t are considered equivalent, x̃−∞:t ∼ε x̃ ′

−∞:t , if and
only if Pr(X̃t |X̃−∞:t = x̃−∞:t ) = Pr(X̃t |X̃−∞:t = x̃ ′

−∞:t ). In
this, X̃−∞:t = . . . X̃t−2, X̃t−1 is the chain of random variables
representing the observed pasts. The equivalence relation ∼ε

partitions the set of all pasts into classes called causal states
σ ∈ S and induces a rule that maps a past to its causal state:
σ = ε(x̃−∞:t ). Causal states are the minimal sufficient statistics
for predicting the environment, meaning that they constitute
the minimal information about the past necessary to predict the
future as well as one possibly could given the observations.2

Typically, infinite futures are considered, but in the follow-
ing, one-step futures are best-suited for the results. The change
from infinite futures to one-step futures leads to a slightly
modified definition of causal states. The resulting equivalence
classes are a coarse-graining of causal states defined as in
Ref. [28], but for simplicity we continue to refer to them as
causal states.

Let St be the random variable corresponding to the causal
state at time t . From the probabilities Pr(X̃t |X̃−∞:t ) and the
rule ε(·), one obtains a transition dynamic Pr(St+1, X̃t |St ) on
causal states. The corresponding hidden Markov model is the
environment’s minimal, optimal model—its ε-machine [28].
It is unifilar—that is, given the environment’s current causal
state and next observation, its next state is uniquely determined.
Of the unifilar hidden Markov models that describe a given
environment, the ε-machine has the minimal number of states
[28,30].

III. RESULTS

First, we find that the instantaneous predictive information
defines the quality of an epigenetic state under several assump-
tions on reproduction rates and environmental statistics. Then,
we show that the optimal resource-constrained epigenetic
states are the observational causal states. Importantly, this latter

2The reinforcement learning literature has come to call causal states
predictive representations [29].
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result is free from several of the more stringent assumptions
required to establish the first result. Finally, we find that when
sensors are sufficiently noisy, stochastic switching strategies
[7] can beat optimal memoryful bet-hedging strategies.

A. Emergence of instantaneous predictive information

Let nt be the number of organisms at time t . Let Pr(pt |yt−1)
be a bacterium’s strategy—the probability that an organism
expresses phenotype pt given epigenetic state yt−1. (Recall
that we condition on the previous epigenetic state since there
is an effective time delay between perception and action,
enforced by finite biochemical kinetic rates.) This conditional
probability distribution exists in a strategy simplex—the space
of valid conditional probability distributions Pr(p|y). Assume
that a bacterium’s phenotype at the next time step depends on
the previous epigenetic state but is generated independently of
its phenotype at the previous time step. Finally, let f (pt , xt ) be
the reproduction rate of phenotype pt in environment xt , which
might depend on the energetic efficiency of that phenotype in
that environment. Let W be the matrix of these reproductive
rates.

We measure the fitness of a bacterial population by its
expected log-growth rate:

r =
〈
log

nt+1

nt

〉
Pr(xt ,yt−1 )

. (1)

The expected log-growth rate r is a function of epigenetic
memories Pr(yt |̃x−∞:t ), the phenotypic strategy Pr(pt |yt−1),
and reproductive rates f (pt , x:t ). From Appendix A and
Eq. (17) in Ref. [23], one finds a maximal expected log-growth
rate:

r∗ = max
Pr(pt |yt−1 )

r

= −H[Xt |Yt−1] −
∑
xt

Pr(xt ) log
∑
pt

(W−1)pt ,xt
(2)

if Eq. (A2) yields an xy in the strategy simplex. The first
of these two terms (−H[Xt |Yt−1]) depends on the scheme
that assigns epigenetic states to environmental pasts. The
second is independent of such schemes and depends only on
environmental statistics and reproduction rates.

Now, recall that the “value of information” in Ref. [27]
�r∗ is the increase in maximal expected log-growth rate of
a population with epigenetic memory above and beyond that
of a population without any epigenetic memory. And so, if
Eq. (A2) yields an xy in the strategy simplex, then the “value
of information” is

�r∗ = −H[Xt |Yt−1] + H[Xt ]

= I[Yt−1; Xt ]; (3)

equivalent to Ref. [23]’s Eq. (18), where a cue there is now the
previous epigenetic state.

This is the instantaneous predictive information [31].
Hence, epigenetic states with higher instantaneous predictive
information are evolutionarily favored.

B. Optimal epigenetic memories are causal states

Now we are ready to analyze optimal epigenetic strate-
gies Pr(yt |̃x−∞:t ). Note that yt has access to information
about x̃−∞:t but cannot directly access information about xt .
All of yt ’s information about xt comes through x̃−∞:t ; i.e.,
Yt−1 → X̃−∞:t → X−∞:t → Xt . From this, the Data Process-
ing Inequality [18] reveals that

I[Yt−1; Xt ] � I[X̃−∞:t ; Xt ]

� I[X−∞:t ; Xt ]. (4)

Employing the Data Processing Inequality, we implicitly
assume that a bacterium’s only guide to the future environ-
ment consists of past environmental states. In other words,
we assume that an experimentalist, say, does not give the
bacterium additional side information about the environment.
The quantity I[X−∞:t ; Xt ] = H[Xt ] − hμ is also known as
the predicted information rate or the total correlation rate
[32,33]. It is largely controlled by the environment’s intrinsic
randomness or Shannon entropy rate hμ = H[Xt |X−∞:t ].

Equation (4) suggests evolution favors populations of or-
ganisms which develop epigenetic memories that store as much
of the environmental past as possible. However, memory is
costly and one should not remember environmental pasts that
are not helpful. More specifically, genomes are finite in size
and can only support a finite number of epigenetic markers.
Hence, the number of possible epigenetic states |Y| is finite.
The balance to strike therefore is to saturate the inequality
in Eq. (4) while minimizing a resource cost—the number of
possible epigenetic states |Y|. In short, epigenetic memories
store the minimal amount of information about the observed
environment’s past needed to predict the environment’s future.
They are, therefore, the minimal sufficient statistics of predic-
tion of the future environment with respect to past observations.

How might epigenetic memories store such information?
After all, a bacterium cannot directly access the observed envi-
ronment’s past . . . , x̃t−2, x̃t−1 at time t . However, a bacterium’s
future epigenetic state yt+1 depends on both its previous
epigenetic state yt and the present environmental observation
x̃t+1. In other words, a bacterium’s epigenetic state is generated
by an input-dependent dynamical system in which input is
the environmental observation. If the update rule for how
the bacterium’s future epigenetic state yt+1 depends on the
previous epigenetic state yt and the present environmental
observation x̃t+1 are chosen so as to mimic the environment’s
ε-machine transition dynamic, then the bacterium’s epigenetic
state yt at time t will be the observed environment’s causal
state [28]. This is the limit to what is realizable from an input-
dependent dynamical system. Hence, a bacterium’s optimal
realizable epigenetic memories and so its epigenetic states are
the causal states of the observed environment.

More generally, Eq. (A2) might not give a valid conditional
probability distribution or the matrix W there might not be
invertible. Even then, maximization of expected log-growth
rate combined with resource limitations implies that optimal
epigenetic memories are causal states. To show this, we first
show that expected log-growth rate is maximized when the
epigenetic memories store the entire observed environmental
past. Then, we show that this maximum is also achieved
when epigenetic memories are minimal sufficient statistics
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of prediction of the future environment with respect to past
observations. Finally, the aforementioned resource constraints
imply that optimal realizable epigenetic memories are causal
states.

Let us explain this and so provide a sketch of its proof.
As stated, we must first show that expected log-growth rate
is maximized when the epigenetic memories store the entire
environmental past. To see this, note that any Pr(pt |yt−1), for
any realizable yt−1, can be represented if yt = x̃−∞:t+1. Hence,

max
Pr(pt |yt−1 )

r � max
Pr(pt |̃x−∞:t+1 )

r.

Then

max
Pr(yt−1 |̃x−∞:t )

max
Pr(pt |yt−1 )

r � max
Pr(pt |yt−1 ):yt−1=x̃−∞:t

r.

The left-hand side is a maximum over all possible epige-
netic states, whereas the right-hand side chooses a particular
epigenetic state. And so, the opposite inequality also holds.
Therefore, we obtain the equality, as desired:

max
Pr(yt−1 |̃x−∞:t )

max
Pr(pt |yt−1 )

r = max
Pr(pt |yt−1 ):yt−1=x̃−∞:t

r.

Next, we argue that this maximum is also achieved when epige-
netic memories are minimal sufficient statistics of prediction of
the future environment with respect to past observations. Note
that the expression for r depends only on Pr(xt |yt−1), averaged
over Pr(yt−1). This, in turn, implies that maximal expected
log-growth rate can be achieved by any sufficient statistic of
prediction. If we prefer sufficient statistics with smaller |Y|,
then we find that optimal realizable epigenetic memories are
causal states [28], as stated earlier.

C. Detrimental effects of noisy sensors

Natural environments vary widely in terms of structure and
predictability. How do evolved bacteria respond? To probe
this in a controlled manner, we can design novel experiments
in which bacterial observations are described by finite ε-
machines. There are two reasons for using finite ε-machines
to probe bacterial behavior. First, when environments are
generated by finite ε-machines, one can quantitatively predict
optimal phenotypic strategies. See Appendix A. Second, even
finite ε-machines are quite rich, as they can have a wide range
of stochasticity and structure. Regardless of the ε-machine,
results from the previous subsection suggest that bacteria
should become predictors of such complex environments.

However, sensors are noisy and this degrades a bacterium’s
ability to predict and detect regularities, especially in less-
predictable or less-structured environments. Bacteria that
noisily sense and bet-hedge might be outcompeted by other
nonsensing stochastic switchers [7]. Are optimized bacteria
still environmental prediction engines?

We study the effects of sensor noise via an illustrative
example. Consider an experiment that has been designed so
that at any time step, lactose is everywhere at one of two
concentrations: 0 and a concentration that we set to be 1 without
loss of generality. The experimentalist changes the lactose
concentration in time according to the unifilar hidden Markov
model shown in Fig. 2 (top).

Bacteria observe the present lactose concentration via tran-
scription of the lacZ gene. The lacZ gene is more likely to be

FIG. 2. Hidden Markov models that describe the environment’s
time evolution xt (top) and bacterial observations x̃t (bottom). Note
that Fig. 2 (bottom) is a nonunifilar hidden Markov model; the next
state is not uniquely determined by the prior state and the observed
symbol because both symbols can be emitted from both states.

transcribed when there is lactose in the environment, as the
lactose will bind to a lac repressor that inhibits transcription.
Such binding is governed by thermal fluctuations. Hence, there
is an error probability p that 0 is incorrectly sensed as 1 and that
1 is missensed as 0. (In general, these missensing probabilities
are not identical, but we assume that they are identical for
the sake of simplicity.) This probability p depends on the
temperature, on the concentration of lactose when present, and
on the free-energy landscape of the sensor and the sensed [34].

Due to this sensing noise, the time series of bacterial
observations from the point of view of any particular bacterium
is a realization of the process generated by the hidden Markov
model in Fig. 2 (bottom). In this model, environmental state
transitions can produce either concentrations 0 or 1 with
probabilities determined by the error parameter p. Figure 2
(bottom) is built from Fig. 2 (top) by altering state transitions
to include the missensing probabilities of the noisy sensor.

What should a bacterium faced with this observed time se-
ries do? Ideally, as discussed above, it should estimate whether
the environment is in state A or state B in Fig. 2 (bottom) from
its observations 0 and 1. When the sensor is noiseless—i.e.,
in the absence of thermal fluctuations or when p = 0—the
bacterium can employ a simple input-dependent dynamical
system to correctly estimate whether the environment is in
state A or B: that of Fig. 2 (top). In this way, the bacterium
reduces the error in its prediction of the environment and so
maximizes its fitness.

When bacterial sensors are noisy, a perfect classification of
pasts of bacterial observations into state A or B is no longer
possible, reducing fitness. To optimize fitness, now bacteria
must try to find causal states of a much more complicated
stochastic process—that generated by Fig. 2 (bottom)—which
has an infinite number of causal states that arise from its
(noise-induced) nonunifilarity [35]. (See Appendix B for
evidence that the number of causal states is infinite.) Due to
resource constraints, though, an optimized bacterium cannot
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FIG. 3. Optimal phenotypic response depends heavily on sen-
sor noisiness: Horizontal axis shows the sensing error rate p; the
vertical axis shows the probability Pr(pt = pG|xt ) of exhibiting a
nonlactose-digesting phenotype given that the environment is in state
xt ∈ {0, 1}. When xt = 0, the bacterium optimally expresses the
nonlactose-digesting phenotype; when xt = 1, it optimally expresses
the lactose-digesting phenotype. As the expressed phenotype can only
depend on past bacterial observations, such an optimal response is
impossible. And so, as sensor noisiness p increases, the response
tracks further from optimal.

internally represent the infinite number of states needed for
optimal prediction. Rather, it must now calculate lossy causal
states [36]. From Appendix B, the predictive information
Ipred saturates quickly as a function of the number of causal
states |Y|, implying that resource constraints still permit a
near-optimal storage of predictive information.

However, our optimized, noisily sensing bacterium per-
ceives different lactose concentrations for the same environ-
mental concentration. This heterogeneity in sensation leads to
additional heterogeneity in phenotype expression above and
beyond that predicted by the optimal bet-hedging strategy.

To illustrate this, we imagine that there are two possible
phenotypes: one pG that does not have the ability to produce
phenotypic machinery to digest lactose and one pL that does
have the ability to produce said machinery. For the associated
reproduction rates, suppose that f (pG, 0) = 1, f (pG, 1) =
1, f (pL, 0) = 0.75, and f (pL, 1) = 2. These take into ac-
count both that producing the enzymes which digest lactose
is expensive and that lactose, when digested, provides the
bacterium with energy [19]. If we assume that the epigenetic
memory fully stores information about pasts of length 10,
then Pr(pG|x) depends on the sensor noisiness characterized
by error probability p. See Fig. 3. We have assumed, for
simplicity, that bacteria use a slightly suboptimal phenotypic
strategy: that their phenotypic strategy maximizes expected
log growth rate in the case that all bacteria have seen the same
bacterial observations. See Appendix B.

Figure 4 shows that the maximal expected log-growth
rate r∗ decreases with increasing p, implying that growth is
negatively affected by sensor noise. Furthermore, from simu-
lations described in Appendix C, simple stochastic switching
strategies sans sensing can outcompete optimal phenotypic

0.0 0.1 0.2 0.3 0.4 0.5

p

0.050

0.075

0.100

0.125
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0.175

0.200

0.225

r∗

FIG. 4. Maximal expected log-growth rate quickly decreases with
increasing sensor noise level: r∗ versus noise level p for environments
with order-10 Markov memories. From simulations described in
Appendix C, simple stochastic switching strategies sans sensing can
outcompete optimal phenotypic bet-hedging strategies with noisily
sensed epigenetic memory when r∗ < 0.13 or when p > 0.19. The
blue region indicates where optimal phenotypic bet-hedging strategies
with sensing outcompete stochastic switching strategies sans sensing,
and the green region indicates the opposite.

bet-hedging strategies with noisily sensed epigenetic memory
when r∗ < 0.13 or when p > 0.19. And these limitations
ignore the costs of sensing and memory storage [7]. It is ap-
parently not worthwhile to store expensive epigenetic memory
when sensor noise is too large. The critical level of sensor
noise depends on the reproductive rates, the temporal statistics
of the environment, and the effect of epigenetic memory
cost on reproductive rates. For instance, when environments
are independent, identically distributed (IID), the stochastic
switching strategy will likely outcompete the phenotypic bet-
hedging strategy even when there is no sensor noise [26].

IV. CONCLUSIONS

These results lead us to propose that isogenic bacterial
populations must predict their environment to maximize their
expected log-growth rate, assuming that their sensors are not so
noisy that stochastic switching strategies without sensing can
outcompete optimal phenotypic bet-hedging strategies with
sensing. This conclusion and Eq. (A2) give explicitly testable
predictions for new kinds of bacterial-evolution experiments
in which populations evolve subject to a fluctuating memoryful
environment. For instance, one can subject populations to
partly random, partly predictable patterns of antibiotics. The
prediction is that the bacteria, if sensor noise is small enough,
will develop optimal phenotypic bet-hedging behavior in
which their probability of exhibiting a particular phenotype im-
plies epigenetic memory, i.e., with phenotypic variability given
by Eq. (A2) and with epigenetic memories that correspond
to causal states of the environment. (Epigenetic mechanisms
might include postreplicative DNA methylation [37], which
might occur on timescales as fast as minutes [38].) Although
the above analysis focused on bacteria, similar results apply to
the phenotype-switching fungi cited earlier.

012408-5



SARAH E. MARZEN AND JAMES P. CRUTCHFIELD PHYSICAL REVIEW E 98, 012408 (2018)

That said, the setup in Ref. [7] might be more appropriate
for interfacing with experiment. As such, we briefly describe
an extension of that setup that should yield similar qualitative
results to those presented here. Reference [7] studied pheno-
typic bet-hedging in a continuous-time system and assessed
the difference between stochastically switching phenotypes
(bet-hedging) and switching to the best phenotype based
on sensing. In point of fact, there is a time delay between
sensing and action that can be explicitly built into a model
of environmental sensing and phenotypic switching, as we
have done here. One should then find that memory of past
environmental states, above and beyond instantaneous sensing
of present environmental states, can be used to better select the
next phenotype. The environment’s inherent stochasticity will
also lead such optimally sensing populations to not only utilize
memory of past fluctuations but also to stochastically choose
phenotypes.

For randomly selected processes, ε-machines are usually
not finite. Indeed, in our illustrative example, the tiniest bit
of sensor noise led to an infinite ε-machine. Thus, the re-
source constraints mentioned earlier become paramount when
addressing more naturalistic environments and more realistic
setups. It is surprisingly easy to put resource constraints and
predictive information on the same footing in this framework
based solely on their effect on expected log-growth rate.

Consider Eq. (A3). More stringent constraints on bacterium
size will tend to increase reproductive rates f (p, x), since less
material is required to generate a new bacterium. Resource
constraints therefore will increase the second term in Eq. (A3).
However, stronger resource constraints tend to diminish the
predictive information captured by the bacterial population, as
given by the first term in Eq. (A3). We therefore expect that the
input-dependent dynamical system supporting a bacterium’s
epigenetic states will usually find “lossy causal states” [36]
rather than causal states. The degree of trade-off between
resource constraints and predictive information will be deter-
mined by the environment and the organism’s ability to grow in
said environment. Lossy causal states can be calculated using
the methods of Ref. [36], although here we found suboptimal
lossy causal states using the methods of Ref. [35].

The derivation above assumed that the environment was so
large that its evolution was independent of bacterial pheno-
types. However, bacteria certainly affect their environment, at
the very least by secreting molecules and removing nutrients.
Ideally, we would not assume that the environment’s evolution
was independent of the bacteria’s actions, thereby closing
the sensorimotor loop and allowing for niche construction
[39]. We expect relaxing this assumption to yield much more
complicated quantifiers of the quality of epigenetic memory,
given the difficulty of solution of partially observable Markov
decision processes (POMDPs); e.g., as described in Refs. [40–
42]. However, we expect causal states to be optimal epigenetic
states in any case, since the belief states used in the solution of
POMDPs are causal states.
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APPENDIX A: MAXIMAL EXPECTED
LOG-GROWTH RATE

To keep our development self-contained, we derive here the
maximal expected log-growth rate and the maximizing distri-
bution over phenotypes. From the setup, we straightforwardly
obtain:

nt+1 =
∑
pt

[Pr(pt |yt−1)nt ]f (pt , xt )

=
[∑

pt

Pr(pt |yt−1)f (pt , xt )

]
nt ,

valid when nt is sufficiently large. This yields an expected
log-growth rate:

r =
〈
log

nt+1

nt

〉

=
〈

log

[∑
pt

Pr(pt |yt−1)f (pt , xt )

]〉

=
∑

yt−1,xt

Pr(yt−1, xt ) log

[∑
pt

Pr(pt |yt−1)f (pt , xt )

]
. (A1)

Note that we focus on the expected log-growth rate as a natural
measure of a population’s fitness, rather than on an individual’s
fitness, which might be better measured via expected growth
rate. Indeed, the lesson from phenotypic bet-hedging is that
what is good for the population is not necessarily good for the
individual. To survive, an individual should choose a strategy
that survives in all environments, even if it grows slowly in
some. However, a population has the luxury of betting some
organisms on phenotypes that might not survive in certain
environments if they grow much faster in others. Hence, we
are interested in what kinds of isogenic bacterial populations
evolve. However, since these populations are isogenic, we
describe the evolved population by describing properties of
the individual bacterium.

We seek the bet-hedging strategy Pr(pt |yt−1) that max-
imizes expected log-growth rate r . Our derivation closely
follows that of Ref. [21], with the key change that we now allow
for side-information from epigenetic memory. We maximize
r , subject to the constraint that

∑
pt

Pr(pt |yt−1) = 1 for all yt ,
via the Lagrangian:

L =
∑

yt−1,xt

Pr(yt−1, xt ) log

[∑
pt

Pr(pt |yt−1)f (pt , xt )

]

+
∑
yt−1

λyt−1

∑
pt

Pr(pt |yt−1),

with respect to Pr(pt |yt−1), where λyt−1 is the Lagrange mul-
tiplier for each epigenetic state yt−1. Note that if the bacterial
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population strongly affected the environment’s dynamics, then
Pr(yt−1, xt ) would depend on Pr(pt |yt−1). Instead, we assume
the environment is so large that the bacteria population does
not affect it.

To find the strategy Pr(pt |yt−1) that maximizes r , we take
derivatives of the Lagrangian and set them to 0:

0 = ∂L
∂ Pr(pt |yt−1)

=
∑
xt

Pr(xt |yt−1)
f (pt , xt )∑

pt
Pr(pt |yt−1)f (pt , xt )

− λyt−1 .

And so:

λyt−1 =
∑
xt

Pr(xt |yt−1)
f (pt , xt )∑

pt
Pr(pt |yt−1)f (pt , xt )

.

Let xy be the vector of optimal strategies Pr(pt |yt−1), py

the vector of Pr(xt |yt−1), and W the matrix with elements
f (pt , xt ). Then, the preceding result in matrix form is as
follows:

λy1 = W (py � [W	xy]�−1),

where the 1s vector 1 has the length of the number of
possible phenotypes and � is the Hadamard product, so that
� represents component-wise multiplication and [W	xy]�−1

represents component-wise inversion. If W is invertible, then
we solve for xy :

xy = 1

λy

(W	)−1(py � [W−11]�−1),

and, using the normalization condition 1	xy = 1, we fortu-
itously find that:

xy = (W	)−1(py � [W−11]�−1. (A2)

Note that this is the maximizing conditional distribution if it is
in the strategy simplex and if W is invertible. One might relax
the condition that W is invertible, if W is square, via the Drazin
inverse. In sum, Eq. (A2) determines the optimal strategy for
phenotypic variability given a particular epigenetic memory. It
is comparable to a manipulation of Eq. (16) in Ref. [23].

The expected log-growth rate r is, from Eq. (A1), a func-
tion of epigenetic memories Pr(yt |x−∞:t+1), the phenotypic
strategy Pr(pt |yt−1), and reproductive rates f (pt |xt ). Given
the optimal strategy xy from Eq. (A2), one finds a maximal
expected log-growth rate:

r∗ =
∑

yt−1,xt

Pr(yt−1, xt ) log
Pr(xt |yt−1)∑
pt

(W−1)pt ,xt

= −H[Xt |Yt−1] −
∑
xt

Pr(xt ) log
∑
pt

(W−1)pt ,xt
. (A3)

Equation (A3) is comparable to Eq. (17) in Ref. [23], in which
y(e|c) is set to p(e|c) and in which d(e) is calculated in terms
of W .

APPENDIX B: SENSOR NOISE

We first calculate Ipred = I[YT ; X̃T ]. Here, we take Yt to be
a uniform coarse-graining of the mixed state simplex [35,43].
We cannot find the recurrent mixed states, but instead calculate

FIG. 5. For the noisy Even Process of Fig. 2 (bottom), mixed
states are in a one-dimensional simplex. A mixed state is completely
characterized by the mixed state distribution Pr(ST = A|X̃0:T =
x̃0:T ), where ST is random variable for the process’ two internal states
A and B. This distribution is shown as an empirical histogram over
the unit interval, here shown with T = 12 and 20 bins along the unit
interval. This mixed state presentation suggests an infinite number of
mixed states, since the empirical frequency distribution does not look
to be a sum of delta functions.

transient mixed states for trajectories of length T . Since there
are only two states in the underlying hidden Markov model,
the mixed-state simplex is one dimensional and characterized
completely by the probability that one is in state A given
a trajectory x̃0:T . Our calculations require only two labeled-
transition matrices:

T (0) =
[

1
2 (1 − p) p

1
2p 0

]
and T (1) =

[
1
2p 1 − p

1
2 (1 − p) 0

]
.

The equilibrium probability μ over states A and B is

μ = eig1(T (0) + T (1) )

=
(

2
3
1
3

)
,

where eig1(M ) is the normalized (i.e., entries sum to 1)
eigenvector of eigenvalue 1 of matrix M . The probability of
observing any particular trajectory is

p(x̃0:T ) = 1	T (̃xT −1 ) . . . T (̃x0 )μ

and the corresponding mixed state has[
Pr(ST = A|X̃0:T = x̃0:T )

Pr(ST = B|X̃0:T = x̃0:T )

]
= 1

p(x̃0:T )
T (̃xT −1 ) . . . T (̃x0 )μ.

The empirical distribution over mixed states is shown in Fig. 5
for p = 0.1.

To coarse-grain, the mixed-state simplex—completely
characterized by Pr(ST = A|X̃0:T = x̃0:T )—is divided into |Y|
equal-sized bins, corresponding then to representation yT . Let
δ|Y| : x̃0:T → y describe the map:

δ|Y|(x̃0:T ) = 
|Y| Pr(ST = A|X̃0:T = x̃0:T )�.
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FIG. 6. Predictive information Ipred quickly saturates as a function
of the number |Y| of epigenetic states: At p = 0.1, with Yt being a
uniform coarse-graining of 215 mixed states (T = 15) with |Y| coarse-
grained states. This curve is representative of various p and is typical
for such curves [36,44,45].

We would like to calculate Ipred = I[YT ; X̃T ], which requires
calculating Pr(X̃T |YT ). We calculate the latter from:

Pr(X̃T |YT ) =
∑

σ

Pr(X̃T |ST = σ ) Pr(ST = σ |YT ),

where

Pr(ST = σ |YT ) =
∑
x̃0:T

Pr(ST = σ |X̃0:T = x̃0:T )

× Pr(X̃0:T = x̃0:T |YT )

Pr(ST = σ |YT = y) =
∑

x̃0:T :δ|Y| (̃x0:T )=y

Pr(ST = σ |X̃0:T = x̃0:T )

× p(x̃0:T )/
∑

x̃0:T :δ|Y| (̃x0:T )=y

p(x̃0:T )

and where Pr(X̃T |ST = σ ) can be calculated from 1	T (̃xT )
:,σ , so

that

Pr(X̃T = 0|ST = A) = 1
2 and Pr(X̃T = 0|ST = B ) = p,

and so on. Figure 6 shows the predictive information Ipred so
calculated as a function of |Y| for the particular value p = 0.1.

Finally, we would like to compute both optimal phenotypic
heterogeneity Pr(p|xt ) and maximal expected log growth rate
r∗ as a function of sensor noise p. In the most general case,
this turns out to be beyond the present scope, for reasons
detailed below. If the bacterial population remains isogenic,
however, then we can calculate phenotypic heterogeneity
from consideration of the optimal phenotypic strategy given
a particular environmental past. Of course, all the bacteria
“sees”—all that influences its phenotypic strategy—is the
observed environmental past. In other words, we have:

Pr(p|x−∞:t ) =
∑
x̃−∞:t

Pr(p|̃x−∞:t ) Pr(x̃−∞:t |x−∞:t ).

A tricky part is to correctly calculate Pr(x̃−∞:t |x−∞:t ).
Naively, it may seem that

Pr(x̃t−L:t |xt−L:t ) = pH (̃xt−L:t ,xt−L:t )(1 − p)L−H (̃xt−L:t ,xt−L:t ),

where H (a, b) is the Hamming distance based on how we
have defined the sensor noise, but this is incorrect. The
probability of a cell experiencing a certain observation x̃t−L:t is
affected by the phenotypic strategy pursued by the cell, as that
changes the fraction of cells having observed x̃t−L:t , which then
changes the fraction of cells observing a particular x̃t−L:t+1. In
reality, supposing that there are nt (x̃t−L:t ) cells that experience
observations x̃t−L:t at time t , then

nt+1(x̃t+1−L:t+1) =
∑
x̃ ′

t−L:t

nt (x̃
′
t−L:t )〈f (p, xt )〉Pr(p|̃x ′

t−L:t )

× Pr(x̃t+1−L:t+1 |̃x ′
t−L:t ), (B1)

where

Pr(x̃t+1−L:t+1 |̃x ′
t−L:t ) = Pr(x̃−∞:t |xt )δx̃t+1−L:t ,̃x

′
t+1−L:t

, (B2)

where Pr(x̃t :∞|xt :∞) is 1 − p if they are identical and p

otherwise in this particular example. This implies that the
expected log growth rate is

r =
〈∑

x̃t+1−L:t+1
nt+1(x̃t+1−L:t+1)∑

x̃t−L:t
nt (x̃t−L:t )

〉
t

. (B3)

Given a phenotypic strategy Pr(p|̃xt−L:t ), we can calculate the
expected log growth rate given the evolution equation above.

Note that Eq. (B3) gives a different equation for expected
log growth rate than previously given in Appendix A. There
is no longer a closed-form solution for the optimal phenotypic
strategy that maximizes expected log growth rate. To make
progress, we assume a suboptimal phenotypic strategy: We
assume that bacteria experiencing observations x̃−∞:t choose
a phenotypic strategy that would have maximized expected
log growth rate had the entire population observed x̃−∞:t . This
should work well when x̃−∞:t is “typical,” which happens
with high probability. This will lead to an overestimate of the
detrimental effects of sensor noise. In other words, to find an
approximate Pr(p|̃x−∞:t ), we utilize the results of Appendix A
and find that

Pr(p|̃x−∞:t ) = (Pr(xt |̃x−∞:t ) � [W−1�1]�−1)/W	,

for

W =
(

0 1
1
4 2

)
.

When the so-calculated Pr(p|̃x−∞:t ) is not within the
simplex, it is on the simplex faces or edges. To deal
with this likely scenario, we simply calculate the ex-
pected log growth rate conditioned on observing the
past x̃−∞:t ,

∑
xt

Pr(xt |̃x−∞:t ) log [
∑

p Pr(p|̃x−∞:t )f (p, xt )]
and choose the phenotypic strategy at the edge of
the simplex that maximizes this conditional expected
log growth rate. For the two-phenotype problem con-
sidered here, we compare

∑
xt

Pr(xt |̃x−∞:t ) log [f (pG, xt )]
to

∑
xt

Pr(xt |̃x−∞:t ) log [f (pL, xt )] and choose the strategy
Pr(p|̃x−∞:t ) = δp,pG

should the former outweigh the latter and
Pr(p|̃x−∞:t ) = δp,pL

should the latter outweigh the former. In
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practice, we replace the infinite pasts x−∞:t and x̃−∞:t with
finite-length L pasts, and make L sufficiently large that the
answer does not change on increases in L. Finite L is not
only computationally necessary, but biologically reasonable
given our requirement on resource constraints. We have chosen
L = 10.

APPENDIX C: STOCHASTIC SWITCHING STRATEGIES

In a stochastic switching strategy, nothing is sensed, but
bacteria randomly switch from one phenotype to another. In
the simple illustrative example studied in the main text, if nG

t

is the number of glucose-favoring phenotypes at time t and nL
t

is the number of lactose-favoring phenotypes at time t , then(
nG

t+1

nL
t+1

)
=

(
1 − a b

a 1 − b

)[
f (pG, x:t ) 0

0 f (pL, x:t )

](
nG

t

nL
t

)
.

In this model, bacteria first grow each time step and then
stochastically switch. Environments are generated from the
hidden Markov model in Fig. 2 (top) for T time steps, and the
expected log-growth rate is approximated as

r̂ = 1

T

T∑
t=1

log
nG

t+1 + nL
t+1

nG
t + nL

t

.

Larger T leads to more accurate estimates of the true ex-
pected log-growth rate. Parameter sweeps over a and b were
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FIG. 7. Estimated expected log-growth rate r̂ with T = 105 as a
function of stochastic switching parameters a and b. At maximum,
stochastic switching gives an expected log-growth rate of r̂∗ ≈ 0.13.

performed, resulting in the contour plot of expected log-growth
rate r̂ in Fig. 7. The maximal expected log-growth rate from a
stochastic switching strategy is r̂∗ ≈ 0.13.
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