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Title: The pace of life for forest trees 
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One Sentence Summary: The pace of life for trees varies predictably across biogeographic gradients, with important 

implications for modeling the forest carbon dynamics in a changing world. 
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Abstract. Tree growth and longevity trade-offs fundamentally shape the terrestrial carbon 26 

balance. Yet, we lack a unified understanding of how such trade-offs vary across the world’s 27 

forests. By mapping life history traits for a wide range of species across the Americas, we 28 

reveal considerable variation in remaining life expectancies from 10 cm in diameter (ranging 29 

from 1.3 to 3,195 years) and show that the pace of life for trees can be accurately classified 30 

into four demographic functional types. We find emergent patterns in the strength of trade-31 

offs between growth and longevity across a temperature gradient. Furthermore, we show that 32 

the diversity of life history traits varies predictably across forest biomes, giving rise to a 33 

positive relationship between trait diversity and productivity. Our pan-latitudinal assessment 34 

provides new insights into the demographic mechanisms that govern the carbon turnover rate 35 

across forest biomes. 36 

 37 

Introduction: The cumulative energetic investment in survival and growth from one year to 38 

the next ultimately determines an organism’s overarching pace of life, including the time it 39 

takes to grow to its maximal size and its life expectancy (1, 2). This fundamental relationship 40 

between energetic investments, developmental schedules, and longevity has been extensively 41 

studied for animals, showing that high resource allocation toward growth is inversely related 42 

to life expectancy and maximal body mass (3, 4). Trees are also assumed to retain tightly 43 

coupled relationships between growth strategies, life expectancies, and maximal sizes (Fig. 44 

1a) (5), which determine the dynamics and structure of global forests. Yet, although these life 45 

history differences fundamentally regulate how fast carbon is sequestered in different regions 46 

of the vegetation carbon pool (6–8), we still lack a unified understanding of the range of tree 47 

life history strategies that exist across global forests.  48 
 49 
It is widely accepted that tree life history strategies should align along a primary axis of 50 

variation in their pace of life, ranging from fast-growing, short-lived species to slow-growing, 51 

long-lived species (i.e., fast-slow continuum and r/K selection theory) (Fig. 1a) (5). In this 52 

context, high energetic investment of finite resources toward fast growth is expected to come 53 

at the cost of reduced survival, which ultimately determines a species’ life expectancy and 54 

maximal size (Fig. 1a) (9–11). Thus, it is expected that abiotic constraints (e.g. soil nutrients, 55 

water, and temperature) should strongly shape the pace of life for trees, giving rise to 56 

predictable variation in the strength of life history trade-offs across biogeographic gradients 57 

(Fig. 1b) (12). So far, however, the only empirical tests of these trade-offs come from tree 58 

ring data and local-scale studies from tropical ecosystems and have produced mixed results 59 

(2, 12–14).  60 

 61 

One potential challenge that can obscure predictable patterns in the pace of life for trees is 62 

that it is not only the traits that are expected to vary across environmental gradients but also 63 

the diversity of those traits. For example, strong biotic competition across tropical forests is 64 

thought to have led to high demographic niche differentiation (i.e. high demographic 65 

diversity: Fig. 1c, upper right). In contrast, resource limitations in harsh cold/dry regions are 66 

assumed to have restricted the species pool to predominantly slow-growing, long-lived 67 

species (Fig. 1c, lower left). Yet, these concepts lack empirical evidence because the extreme 68 

longevity of trees (which can live for thousands of years) has precluded our capacity to 69 

quantify the strength of tree life history trade-offs across a wide range of species, let alone 70 

characterize the diversity of life history traits across biogeographic gradients.   71 
 72 
Here, we used the largest dataset of dynamic tree information to date and employed age-73 

from-stage methods to calculate the mean life expectancy and maximal lifespan for a wide 74 

range of trees across the Americas (15–17), spanning a latitudinal gradient from Northern 75 



Canada to Southern Brazil. This includes long-term records from an international network of 76 

researchers, including members of the Global Forest Dynamics, ForestPlots (18, 19), and 77 

ForestGeo (20–22) networks and the United States and Canadian forest inventory programs 78 

(23–25). To balance this dataset across our biogeographic gradient, we randomly sub-79 

sampled the North American plots to equal the number of point observations in Central and 80 

South America (see materials and methods), resulting in 3.2 million unique tree 81 

measurements for 1,127 species (i.e., tree size and status). Our big-data approach allowed us 82 

to test for the expectation that trees align along the fast-slow continuum (Fig. 1a, H1) and 83 

quantify if tree growth-longevity-stature relationships co-vary across soil, water, and 84 

temperature gradients (Fig. 1b, H2). Apart from species with low occurrences (< 100 85 

observations, see materials and methods), our systematic sampling allowed us to test for the 86 

expectation that the range of life history strategies occupied by species (i.e., demographic 87 

trait diversity) varies predictably across broadscale biogeographic gradients, with harsh cold 88 

regions in the northern hemisphere restricting trees to a smaller pool of predominantly slow-89 

growing, long-lived species (Fig. 1c, H3). Based on the well-established diversity-90 

productivity relationship, we also expected demographic trait diversity to be positively 91 

associated with ecosystem productivity (Fig. 1c, H3). 92 

 93 

 94 
Fig. 1. Conceptual diagram of our core aims and associated hypotheses. The expectation is that trees should 95 
align along the fast-slow continuum, with fast-growing short-lived species on one end of the spectrum and slow-96 
growing long-lived species on the other end (H1, panel A). Life history trait relationships should be 97 
phylogenetically conserved and should co-vary across biogeographic gradients, leading to more conservative 98 
life history strategies in low-resource environments (low soil and nutrient environments and colder 99 
temperatures) (H2, panel B). Lastly, we expect the range of tree life history strategies (i.e., convex-hull volume 100 
in life history trait space that is occupied by species) to vary predictably across biogeographic gradients, with 101 
demographic trait diversity being positively associated with ecosystem productivity (H3, panel C).  102 
 103 
To quantify tree growth, longevity, and stature for a wide range of species across 104 

biogeographic gradients and test our three core hypotheses, we first grouped the stem-level 105 

tree data into equally sized hexagon grids (size ~ 250,000 km2) and developed species-106 

specific survival and growth generalized linear mixed effect models that included tree 107 

diameter at breast height (dbh) at the first census interval as a predictor variable and grid cell 108 

as a random effect (see materials and methods). We then used the survival and growth 109 

coefficients to fit size-dependent integral projection models (IPMs) and derive age-related 110 

traits from size-dependent probabilities for each species within each grid cell (see materials 111 

and methods) (15–17, 26–28).  IPMs dynamically integrate size-dependent variability in 112 

survival and growth as a continuous process, which allowed us to use cross-sectional data 113 

over discrete time steps to make interspecific comparisons in how many years it takes trees to 114 

attain key milestones in their life cycle. We parameterized our IPMs using methods 115 

specifically developed for trees (27–29). Validations of IPM model outputs, relative to tree 116 



ring data, showed this parameterization method can provide realistic estimates of tree age 117 

demographics (27). 118 

 119 

We used our species-specific IPMs and employed age-from-stage methods to calculate 120 

several quantitative measures of growth, longevity, and stature. Specifically, we calculated 121 

the number of years it takes for trees to grow from 10 to 20 cm in diameter (fig. S2, path a.2) 122 

and grow from 10 cm to the 70th quantile of their size distribution (fig. S2, path a.1) 123 

(hereafter referred to as growth strategies). The 10 cm in diameter lower bound threshold was 124 

chosen because it was the size at which point trees were consistently monitored across the 125 

forest networks and the 70th quantile threshold was chosen because it reflects a mature size at 126 

which point trees have approached their ultimate position in the forest. We also calculated 127 

two quantitative measures of tree longevity, including their average remaining life 128 

expectancy from 10 cm in diameter and their maximal lifespan age (95% cohort mortality 129 

from 10 cm), and a measure of maximal tree stature (size at maximal lifespan age) (fig. S2, 130 

path b) (15–17). These mean estimates capture the pace of life for trees (growth, longevity, 131 

and stature) based on observed climate conditions over the last century (derived from 132 

dynamical data collected between 1926-2014, see materials and methods).  133 

 134 

Our estimates of remaining life expectancy from 10 cm dbh range from 1.2 to 3,195 years, 135 

with a mean value of 60 years in the tropics and 95 years in the extratropics (Fig 2a). This 136 

trend matches our theoretical expectation of broadscale tree life history diversification 137 

patterns (Fig. 1b) and confers with known tree longevity hot spots, whereby the oldest 138 

recorded species occur in temperate conifer and boreal forests (12, 30). However, there was 139 

also considerable overlap in the range of tree life expectancies across biomes (fig S3-S4), 140 

table S2) and wide variability in how longevity relates to tree growth strategies and maximal 141 

statures (Fig. 2b, fig S3-S4, and table S2). It is important to note that remaining life 142 

expectancy from 10 cm dbh is a species-level mean estimate (i.e. is conditional on surviving 143 

to 10 cm dbh). A low life expectancy, relative to the mean number of years it takes a species 144 

to grow from 10-20 cm dbh, does not imply that no individuals will reach 20 cm dbh. Instead, 145 

it implies that less than half of the individuals will survive to that size threshold.   146 

 147 

Tree life history strategies do not strictly follow the fast-slow continuum (H1). 148 

To test the expectation that trees align along the fast-slow continuum (Fig. 1a, H1), we first 149 

examined univariate trait correlations and found moderate support for trade-offs between tree 150 

growth, longevity, and stature (fig. S5). For example, the number of years it takes trees to 151 

grow from 10-20 cm in diameter was positively correlated to life expectancy (Pearson 152 

correlation = 0.22) and maximal lifespan age (Pearson correlation = 0.21). Similarly, 153 

maximal tree size was positively related to life expectancy (Pearson correlation = 0.41). 154 

Interestingly, the strength of these pairwise correlations also suggests that tree age 155 

demographics do not strictly follow a single axis of variation along the fast-slow continuum 156 

(i.e., the assumption that growth is tightly coupled and inversely related to longevity and 157 

maximal stature).  158 

 159 

To examine the multidimensionality of tree age demographics (Fig. 1A, H1), we analyzed the 160 

variance-covariance matrix of tree growth, longevity, and stature using a principal component 161 

analysis (PCA). Highly correlated traits that captured redundant trait information were 162 

excluded from the PCA (fig. S5), resulting in the inclusion of tree growth strategies (i.e., 163 

growth from 10 to 20 cm dbh and the 70th quantile of their size distribution), life expectancy 164 

from 10 cm dbh, and maximal tree size (fig. S5). The first PC axis captured 46% of the life 165 

history trait variation and was heavily weighted by tree growth dynamics (i.e., years to 20 cm 166 



dbh and the 70th quantile size) (Fig. 2C). The PC loadings also showed that slow growth was 167 

correlated with high life expectancy and large maximal size (table S3). The second axis 168 

captured 28% of the trait variation. Interestingly, the directionality between the trait 169 

correlations flipped, whereby slow growth was negatively correlated to life expectancy and 170 

maximal size (table S3). The third axis was heavily weighted by tree life expectancy, with 171 

high life expectancy being positively related to slow growth but negatively related to tree 172 

maximal size (table S3). PCA analyses for tropical versus extratropical species retain 173 

consistent patterns in the directionality of the trait correlations among the PC axes (table S3), 174 

illustrating the modular and flexible nature of tree age demographics beyond the fast-slow 175 

continuum within and among the Northern and Southern hemispheres.   176 

 177 

To further contextualize how the variation in tree age demographics among the PC axes 178 

shapes the overarching pace of life for trees, we used a K-means clustering algorithm to 179 

group species into core demographic functional types (see material and methods subsection 3 180 

and fig. S6). Using this clustering algorithm, which reduces the within-group sum of squares, 181 

we found that fast-growing species aggregated into a single stature-longevity functional type 182 

(Fig. 2C-2D, cluster 1). Conversely, conservative slow-growing species formed three distinct 183 

clusters, including low, intermediate, and high stature-longevity functional types (Fig. 2C-184 

2D, clusters 2-4). The fast-growing species cluster matches the theoretical expectation of 185 

ubiquitous resource limitations that constrain a species' ability to maintain high growth and 186 

high survival simultaneously, leading to low life expectancies and small maximal sizes (Fig. 187 

2C-2D, cluster 1). Yet, the emergence of three distinct clusters for slow-growing species 188 

suggests conservative trees are less constrained in their pace of life. At one end of these three 189 

conservative growth trait clusters were species with high life expectancies but small maximal 190 

sizes (Fig. 2C-2D, cluster 4), and at the other end were species with low life expectancies but 191 

large maximal sizes (Fig. 2C-2D, cluster 3). Clustering analyses for tropical versus 192 

extratropical species indicate that the tropics retain the full range of demographic functional 193 

types (fig. S7, four distinct clusters), Conversely, the extratropical species group into two 194 

demographic functional types of predominantly slow-growing conservative clusters (fig. S7, 195 

two distinct clusters). Together, these results provide key insight into the core groups of 196 

demographic functional types that shape the structural complexity and dynamics of tropical 197 

versus extratropical forests. 198 
 199 
 200 



 201 
Fig. 2. Visual illustration of tree growth-longevity-stature relationships and core demographic functional types. 202 
The mean life expectancy is higher in the extratropics than in the tropics (A), with substantial variation between 203 
tree growth strategies and life expectancies (B) (N=6,847 i.e., species X grid ID). The other trait relationships 204 
are represented in fig. S8. The core growth-longevity-stature functional types are presented in C-D, which are 205 
determined using the K-means clustering algorithm of the life history trait PC scores. PC weights and trait 206 
correlations are reported in table S3. The frequency density (A) and the life history traits (B) are scaled by the 207 
natural log. The axes for A-D are scaled by the natural log. Data points are species-specific and are calculated 208 
using individual tree observations and size-dependent integral projection models (see materials and methods).  209 
 210 

Our broadscale assessment of growth-longevity-stature relationships for a wide range of 211 

species across the Americas is consistent with trends derived from tropical forest plots, which 212 

found survival and growth rates over discrete size ranges differed substantially among 213 

species and diminished as trees attained larger sizes (31–37). Similarly, while tree-ring data 214 

showed that annual growth rates were negatively correlated with observed maximal ages 215 

(12), there was more variation in observed maximal ages for species with fast versus slow 216 

growth (12, 14). Together, these emergent patterns illustrate the modular and flexible nature 217 

of trees that extend beyond the fast-slow continuum (Fig. 2C-2D, figs. S3-S4) and highlight 218 

the tremendous variation in tree life expectancies across forest biomes (Fig 2A and figs. S3-219 

S4), with some of the oldest living species having a remaining life expectancy > 2000 years 220 

(such as Tsuga heterophylla and Sequoia sempervirens). 221 

 222 

Building on these foundational insights from predominantly tropical ecosystems, our results 223 

provide a novel perspective that contributes to our fundamental understanding of tree age 224 

demographics. By converting survival and growth rates over species life cycles to age-based 225 

traits, our results provide insight into the time it takes trees to reach their ultimate positions in 226 

the forest and their mean age at death (e.g., life expectancy). This allowed us to quantify the 227 

pace of life for a wide range of species across the Americas and identify the core 228 

demographic functional types more directly linked to carbon turnover. The emergence of the 229 



slow-growth short-lifespan functional trait cluster is in line with previous research from 230 

tropical forests, which showed that some short-stature trees had slow growth and low survival 231 

(31, 32, 34, 38). This emergent trend may be an indication of maladapted species, or a 232 

mediated effect of environmental disturbance (10, 32, 33). Conversely, it could be the result 233 

of energetic investments in reproduction over species’ lifespans (net reproductive rate) that 234 

we were not able to capture in our analysis  (5, 11, 31, 34). Regardless of the mechanisms, 235 

our findings provide a novel perspective on the multidimensionality of tree age demographics 236 

for a wide range of phylogenetic and geographical groups. Furthermore, our finding of 237 

emergent differences in the number of demographic functional types in the tropics versus 238 

extratropics provides novel insight into the mechanisms that shape the dynamics and 239 

structure of forests across the Americas. 240 
 241 
Weak coordination in the strength of life history trade-offs across biogeographic gradients 242 

(H2).  243 

To test for emergent patterns in the strength of tree life history trade-offs across 244 

biogeographic gradients (Fig. 1b, H2), we fit a multi-response Bayesian generalized mixed 245 

effect model that included the first PC axis for each of three comprehensive sets of variables 246 

related to soil, temperature, and precipitation as fixed effects and the phylogenetic relatedness 247 

as a random effect (see materials and methods, table S4, figs S6-S8) (39). These abiotic 248 

indexes were selected because they are known to strongly regulate photosynthetic capacity 249 

and plant growth and are commonly assumed to induce life history trade-offs. This approach 250 

allowed us to test for covariation in life history trait responses across soil, temperature, and 251 

precipitation indexes and control for the effects of phylogenetic ancestry (40). These soil, 252 

temperature, and precipitation variables were based on mean conditions from 1997-2013 (see 253 

materials and methods, table S4), which overlap with the time window that our dynamical 254 

tree data were collected. The expectation is that tree life history trade-offs are shaped by the 255 

shared influence of abiotic factors and phylogenetic constraints, with colder temperatures and 256 

lower resource availability pushing species toward the conservative end of the life history 257 

trait spectrum (Fig. 1b, H2).  258 
 259 
Our results show that there is a strong relationship between temperature and tree life history 260 

traits, with colder temperatures being associated with conservative growth (𝛽 = -0.02, CI = (-261 

0.03, -0.01)) and high life expectancies (𝛽 = -0.07, CI = (-0.05, -0.08)) (Fig. 3 and fig. S12). 262 

Conversely, our precipitation and soil indices had a weak effect on life history traits (fig. 12, 263 

table S.5). Consistent with Amazon research (41), we found that tree life history traits were 264 

phylogenetically conserved (Pagel’s 𝜆 ranging from 0.88-0.99, fig. S14 and table S6). Yet, 265 

we also found low phenotypic correlations among our life history traits, indicating that the 266 

strength of trade-offs between tree growth, longevity, and stature do not strongly co-vary 267 

across biogeographic gradients (Fig. 1b, H2). For example, the phenotypic correlation 268 

between the number of years it takes trees to grow to 20 cm dbh and their life expectancy 269 

from 10 cm dbh was 0.18 (Fig. 3a). Together, these results show that, while tree life history 270 

traits are phylogenetically conserved (∆ DIC null model versus phylo. model = 76832), 271 

growth-longevity-stature relationships are not driven by genetic linkages or shared selective 272 

pressures that act on both traits independently over evolutionary time across broad-scale 273 

resource gradients (table S6) (42).  274 

 275 

While our results offer the most comprehensive assessment of tree age demographics across 276 

broadscale resource gradients, it is important to note the data gap in the subtropics (i.e., 277 

across Mexico and northern Central America, Fig S1). This data gap could help explain the 278 

noticeable difference in the range of life history trait strategies between the North American 279 



temperate forests (low trait variation) and South American tropical forests (high trait 280 

variation) (Fig 3B-3D and fig S1). This data gap highlights the need for increased sampling 281 

efforts in these understudied regions of the world and should be a priority of future research 282 

and funding.  283 

 284 

Our findings are in line with trade-offs between physiological and morphological plant 285 

features linked to individual fitness and life history evolution, one reflecting leaf economic 286 

variables related to photosynthetic activity and growth potential and the other associated with 287 

morphological features related to light competition and plant height (43–45). Yet, similar to 288 

our results, the dominant axes of physiological and morphological plant features did not 289 

strongly co-vary across latitudinal gradients (44, 45). Together, our findings and previous 290 

research suggest that organismal function that supports rapid growth is not necessarily linked 291 

to organismal function that results in lower life expectancies and small maximal sizes. These 292 

emergent patterns suggest that rapid shifts in climate conditions may have divergent effects 293 

on the relationship between biomass accumulation in tree growth and biomass retention in 294 

tree longevity, with important implications for modeling the global carbon balance in a 295 

changing world (46).   296 

 297 
 298 

 299 
Fig. 3. Tree life history traits across our temperature index (PC axis 1 for a comprehensive list of temperature 300 
variables, see materials and methods). Overall, we found low phenotypic correlations [variance-covariance of 301 
standardized traits] among tree growth, longevity, and stature, suggesting there is weak support for coordinated 302 
trade-offs over evolutionary time (i.e., organismal function that supports conservative growth does not 303 
necessarily trade-off with organismal function needed to maintain high longevity) (A). We also find a strong 304 
effect of temperature on tree life history traits (panels B-D), with little additional variation explained by soil or 305 
precipitation (see figs. S12-S13 and table S5). The temperature gradient is derived from a principal component 306 
analysis of nine temperature variables and represents a gradient from intermediate temperatures in the tropical 307 
moist forest of the southern hemisphere to colder temperatures in the boreal north (from left to right of the x-308 



axis). The y-axis is scaled by the natural log. Data points are species-specific and are calculated using individual 309 
tree observations to fit size-based integral projection models for each species within each grid cell ID (total of 310 
1,127 species and 6,847 trait values) (see materials and methods). Model coefficients of the multi-response 311 
Bayesian model are reported in fig. S12 and table S5). 312 
 313 

Demographic diversity varies predictably across biogeographic gradients (H3).  314 

To characterize the range of life history strategies that are expressed by trees across 315 

broadscale biogeographic gradients, we first calculated the convex-hull volume in 316 

demographic trait space within each grid cell (see materials and methods) (47) and compared 317 

the relationship between the demographic trait diversity of forests and well-established 318 

patterns in species richness. The convex-hull volume was calculated using the life history 319 

trait PC scores for axes 1-3, which together captured 95% of the life history trait variation. 320 

We then tested if the demographic trait diversity of forests varied predictably across 321 

biogeographic gradients, and explored potential links between demographic trait diversity 322 

and remotely sensed estimates of potential above-ground net primary productivity (NPP) 323 

(Fig. 1c, H3, see materials and methods) (48). The expectation is that the diversity of life 324 

history trait strategies that are expressed by trees should vary predictably across 325 

biogeographic gradients, with higher demographic diversity being positively associated with 326 

above-ground productivity. 327 

 328 

Our results illustrate that the demographic trait diversity of forests follows well-established 329 

patterns in species richness (Fig. 4a, adj R2 =0.65, p < 0.001). We also found that the 330 

demographic diversity of forests varied predictably across biogeographic gradients, with high 331 

demographic trait diversity across warm tropical forests and low diversity of predominantly 332 

slow-growing, long-lived species in the cold temperate and boreal forests (adj R2 =0.40, p < 333 

0.001, Fig. 4b and table S7). Lastly, we found a positive correlation between the demographic 334 

diversity of forests and remotely sensed estimates of ecosystem productivity (Pearson 335 

correlation = 0.71). 336 

 337 

The emergence of a positive association between the demographic trait diversity and 338 

ecosystem productivity is in line with two non-mutually exclusive hypotheses. From an 339 

evolutionary perspective, ecosystem productivity is thought to drive species diversification 340 

and niche differentiation (49). Conversely, following widely established relationships 341 

between biodiversity and ecosystem function, more demographically diverse forests are 342 

commonly assumed to have access to a larger resource pool and should thus be more 343 

productive (50, 51). Here, we found moderate support for both hypotheses. Specifically, we 344 

found that ecosystem productivity was predictive of demographic trait diversity across broad-345 

scale biogeographic gradients (adj R2 = 0.49, p < 0.001, Fig. 4c, table S7). At the same time, 346 

ecosystem productivity was jointly influenced by temperature (average marginal effect = 347 

0.83, p =0.04, Fig. 4d) and demographic trait diversity (average marginal effect = 1.43, p < 348 

0.001, Fig. 4d). This positive association was consistent across the tropics (adj R2 =0.26, p < 349 

0.01, table S7) and extra-tropics (adj R2 = 0.84, p < 0.01, Fig. 4d, table S7). It should be noted 350 

that NPP was strongly correlated with mean annual temperature (Pearson correlation = 0.94), 351 

which did not allow us to explicitly test for the individual and combined effect of these 352 

variables on demographic trait diversity. While our broadscale analysis does not establish 353 

causality in the direction of these relationships, it does highlight the inextricable link between 354 

demographic trait diversity and ecosystem productivity across forest biomes.  355 
 356 
 357 



 358 
Fig. 4. The relationship between the demographic trait diversity of forests and ecosystem productivity (H3). We 359 
find that the demographic trait diversity is positively related to species richness (A), with increasing 360 
demographic trait diversity (i.e., convex-hull volume in life history trait space that is occupied by species) 361 
across a mean annual temperature gradient (B). In line with two non-mutually exclusive hypotheses in 362 
evolutionary biology and functional ecology, we find a positive association between demographic trait diversity 363 
and above-ground net primary productivity (NPP) (C and D). It is important to note that NPP was based on 364 
remotely sensed estimates and that these analyses do not establish causality in the directionality of this 365 
relationship (C and D). The fully parameterized model in panel D includes the demographic trait diversity and 366 
mean annual temperature. Demographic trait diversity and NPP were scaled to a mean of zero and a standard 367 
deviation of one. Average marginal effects (AME) represent the response per unit increase for each predictor 368 
variable.  369 
 370 

The established association between demographic trait diversity and ecosystem productivity 371 

is in line with emergent patterns derived from tropical forest plots, which found that the 372 

demographic composition of forests was predictive of empirically derived measures of 373 

above-ground carbon dynamics (32). Similarly, our findings match theoretical expectations 374 

that the pace of life of organisms within a community (e.g., life expectancy and generation 375 

time) should strongly regulate the relationship between carbon turnover (ecosystem fluxes) 376 

and carbon retention (ecosystem pools) (52). It is important to note that the association 377 

between demographic trait diversity and ecosystem productivity was derived from multi-year 378 

averages in remotely sensed NPP from 1997-2013 and mean estimates of tree growth-379 

longevity-stature relationships based on the current distribution of species (i.e., derived from 380 

dynamical data collected from the 1900s-2000s). This approach did not allow us to account 381 

for potential biogeographic biases in the effects of human disturbance on species diversity 382 

(i.e., between boreal and tropical forests). Yet, by quantifying the current distribution of 383 

demographic functional types across broad-scale resource gradients, our results provide a 384 

powerful backdrop for parameterizing next-generation vegetation models to simulate forest 385 

carbon turnover rates across a range of current and future conditions.  386 



 387 

More generally, our analysis offers strong empirical support for the expectation of high 388 

demographic trait diversity in tropical forests compared to temperate and boreal forests. This 389 

multi-biome finding supports the community assembly theory of strong abiotic filtering in 390 

boreal regions, resulting in a restricted species pool of predominantly slow-growing, long-391 

lived species (Fig. 1c, H3). This emergent pattern is congruent with known variability in 392 

physiological leaf trait characteristics across biogeographic gradients (43–45), with 393 

decreasing variation in leaf economic traits from lower to higher latitudes (53). Similarly, our 394 

results match well-established species richness–productivity relationships across global 395 

forests (51, 54) and community structure-productivity relationships (55). Yet, while it makes 396 

intuitive sense that the demographic diversity of forest communities follows well-established 397 

patterns in species richness (49, 50), our findings establish a more direct link to the 398 

demographic mechanisms that generate global variation in ecosystem carbon turnover. 399 
 400 
Conclusion: 401 

Our broad-scale analysis reveals the remarkable diversity of life history strategies that exist 402 

for tree species across the Americas. Weak trade-offs between tree growth, longevity, and 403 

stature across biogeographic gradients demonstrate the modular and flexible nature of trees, 404 

highlighting the diversity of evolutionary trajectories that have arisen to address the 405 

ecological puzzle of survival. In addition, from a functional perspective, we find that while 406 

acquisitive trees sequester carbon at faster rates, they also generally appear constrained to 407 

smaller maximum sizes and shorter lifespans that translate to lower carbon storage and faster 408 

carbon turnover. More importantly, we find that more demographically diverse forests tend to 409 

be more productive at the ecosystem scale across the tropics and extra-tropics. These findings 410 

have important implications for informing global restoration and conservation efforts, and for 411 

understanding the fundamental feedback between biodiversity and climate change mitigation. 412 

 413 
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Materials and methods 926 

1: Forest inventory data 927 

The dataset we used for this project was developed by a global community of network 928 

partners, including members of the ForestPlots (18), TreeMort, and ForestGeo networks (20–929 

22), and includes dynamic tree data from thousands of long-term research plots and datasets 930 

from National Forest Inventory networks (table S1).  Combining and quality controlling this 931 

network of dynamic tree data was led by the Global Forest Dynamics team, initiated by the 932 

TreeMort project, and the ForestPlots network (18). The compiled dataset includes the 933 

following information: tree ID, diameter at breast height (dbh) at 1.3 m of trunk height, status 934 

(alive or dead), plot ID, plot coordinates, census year, and management history. Tree species 935 

names were standardized across the datasets using The World Consensus on Vascular Plants 936 

backbone (57) and the Treemendous R package (58). The point of dbh measurement 937 

differed by > 30 cm in a few cases for predominantly tropical trees, in which case we 938 

excluded the census points. To standardize our life history trait comparisons among species, 939 

we excluded tree observation < 10 cm dbh. The time interval between census periods varied 940 

from 1 to 36 years, with the highest occurrence of a 5-year census interval. Since time 941 

intervals greater than 10 years were not represented across all datasets and were sparse 942 

overall, we excluded census intervals >10 years. Thus, we focused on interval lengths that 943 

were well-represented across the forest inventory datasets. The plot size ranged from 0.07 ha 944 

to 50 ha among forest inventories. Tree observations with ‘unnatural’ modes of death (i.e., 945 

harvest, etc.) were removed from our analysis because they do not reflect ‘ambient’ life 946 

history dynamics. We limited our analysis to species with >100 unique observations and 947 

excluded species with < 5 observed deaths to maintain a sufficient sample size and excluded 948 

tree observations with unknown species identity. We also exclude species that did not have 949 

observations across species size ranges (i.e., there were only observations for large-sized 950 

individuals, with no information for smaller individuals in the 10 cm dbh size range). To 951 

balance our dataset across our biogeographic gradient, we randomly sub-sampled the North 952 

American plots to equal the number of point observations in Central and South America (see 953 

materials and methods). This allowed us to avoid potential biases due to imbalanced 954 

sampling efforts across our biogeographic gradients. These initial filters reduced the dataset 955 

from 5.6 million unique observations of 5,612 species to 3.2 million unique tree 956 

measurements for 1,127 species (i.e., tree size and status) (Table S1).  957 

 958 

All analyses were conducted in R version 4.2.0 (59). While p-values and R2 are reported for 959 

generalized linear models, we present results in terms of ‘evidence’ versus significance 960 

levels, following (60).   961 

 962 

2: Integral projection models   963 

2.1 Assigning individual tree observations to hexagon grid IDs 964 

 To capture the full range of life history strategies across a latitudinal gradient, we used 965 

Google Earth Engine to assign each tree measurement (dbh and status) to equal area hexagon 966 

grids (size ~ 250,000 km2) (fig S1). The hexagon grid ID was then included as a categorical 967 

random effect in our species-specific survival and growth models. This allowed us to 968 

incorporate intra-specific variation in tree life history traits (growth strategies, stature, and 969 

longevity) across broadscale biogeographic gradients (see material and methods, subsection 970 

2.2-2.5). The unique hexagon grid IDwere also used to calculate the demographic trait 971 

diversity (convex-hull volume in life history trait space that is occupied by species within 972 

each grid) and characterize the relationship between demographic trait diversity and above-973 

ground net primary productivity (see material and methods, subsection 4).  974 

 975 



2.2 Species-specific survival and growth models 976 

To estimate size-dependent survival and growth rate coefficients for our integral projection 977 

models (IPM), we fit species-specific generalized linear mixed-effect models, using the 978 

glmer and the lmer function in the lme4 package (61). Here 𝑦𝑖𝑗 is the response for 979 

individual 𝑖 in grid cell 𝑗. The random grid cell effect, 𝜇𝑗, and error, 𝜖𝑖𝑗, are added to the 980 

intercept, b0. The effect of size,  𝑥𝑖𝑗, for individual 𝑖 in grid cell 𝑗 is measured by the slope, 981 

b1. Our survival model included ‘initial tree size’ (dbh) and the square of tree size (centered 982 

natural log of dbh) as predictor variables, survival at the second census interval as the 983 

response variable, and grid ID as a random effect. Similarly, for our growth model, we 984 

included initial tree size (dbh) as a predictor variable, size at the second census interval as the 985 

response variable, and grid ID as a random effect. Tree size was natural log-transformed for 986 

both models.  987 

 988 

𝑦𝑖𝑗 =  𝛽0 + 𝛽1𝑥𝑖𝑗 + 𝜇𝑗 + 𝜖𝑖𝑗  989 

 990 

To account for variation in forest inventory census intervals, we standardized the survival and 991 

growth rate estimates to a one-year time-step. This was relatively straightforward for survival 992 

but more involved for growth. Specifically, for our survival model, we fit a logistic 993 

regression with a complementary log-log link function and included the census interval 994 

length as an offset, which effectively standardized the survival rate to a 1-year timestep. To 995 

standardize the time step for our growth model, we tested two approaches. First, we 996 

calculated the relative growth rate (RGR), which is the geometric mean of the ratio of log tree 997 

sizes over the time interval, 𝑟𝑔𝑟 = (𝑠𝑡 𝑠0 ⁄ )1/𝑡. Here, 𝑟𝑔𝑟 is the annualized relative growth 998 

rate, 𝑠0 is the log of the initial size, and 𝑠𝑡 is the log of size at the end of the time interval, 𝑡. 999 

We calculated size in the next year for all initial tree observations by multiplying the initial 1000 

size by the annualized growth rate, 𝑠1 = 𝑠0𝑟𝑔𝑟. This method implicitly assumes a zero 1001 

intercept in the growth function. To test if the assumption of a zero intercept influenced our 1002 

results, we explored a second method that directly computes the annual slope and intercept 1003 

for a variable time interval. The algebraic expression that represents the compounding effect 1004 

of adding an intercept in each annual estimate within a time series results in a nonlinear 1005 

expression. Thus, we employed the nonlinear least squares function to estimate the following 1006 

model, 𝑠𝑡 = b0(1 − b1
𝑡)/(1 − b1) + 𝑠0b1

𝑡). Visual inspection of coefficient plots and 1007 

model fit plots using both methods showed highly similar results. Due to the extended 1008 

computation time for the nonlinear models, we chose the less complex RGR method, and 1009 

converted final size, 𝑠𝑡, to size at one year, 𝑠0, before fitting our growth regressions. 1010 

 1011 

Model evaluation of our vital rate regressions showed that initial tree size captured a high 1012 

amount of variance for our growth models and was a significant predictor of tree size in the 1013 

following timestep (R2=0.83-0.99, and p < 0.001). Similarly, initial size was a significant 1014 

predictor of survival (p < 0.001). It is important to note that, for nonlinear regression models, 1015 

the R2 does not represent the proportion of variance explained by the predictor variable and is 1016 

thus not a useful metric for evaluating the goodness of fit for logistic regression. For this 1017 

reason, we did not report this value for our survival models. 1018 

 1019 

2.3 Size-dependent integral projection model 1020 

An integral projection model (IPM) is a tractable way to derive life history traits, using 1021 

continuous size-based survival and growth rates. To calculate age-related traits from size-1022 

dependent probabilities, we used a key component of an IPM, the survival-growth kernel, 𝐏, 1023 

and with methods developed by (26), we projected the future fate of living individuals. By 1024 



excluding reproduction, this model captures cohort dynamics based on survival and growth 1025 

rates. A change in the size-specific density of trees, 𝑛(𝑡), is projected using the following 1026 

equation:  1027 

 1028 

𝑛(𝑦, 𝑡 + 1) = ∫  𝐏(y, x)𝑛(𝑥, 𝑡)𝑑𝑥
𝑢

l
  1029 

 1030 

where the kernel 𝐏(y, x) is a non-negative surface of survival and growth transition 1031 

probabilities of individual plants from size x at time t to size y at time t+1. L and U represent 1032 

the minimum and maximum plant size thresholds respectively, with the lower threshold L 1033 

being set to 10 cm dbh and the upper size threshold being set to the species maximal tree size. 1034 

𝐏 is composed of two functions,  1035 

 1036 

𝐏(y, x) = s(𝑥)g(y, x)  1037 

 1038 

where s(x) represents the survival rate of an x-sized individual and growth g(y, x) is the 1039 

probability density for individuals of size x transitioning to size y over a 1-year timestep. 1040 

These parameters are derived from the species- and grid-cell-specific survival and growth 1041 

regression models that we parameterized with empirical field data (see materials and 1042 

methods, subsection 2.2).  1043 

 1044 

Our species- and grid cell-specific IPMs were informed by hundreds to thousands of unique 1045 

tree measurements across a large portion of a species life cycle (from 10 cm dbh to their 1046 

maximal size) and across a wide range of local conditions (light and nutrient conditions, 1047 

varying levels of density dependence, etc.). This framework allowed us to explicitly account 1048 

for survival-growth trade-offs that operate across species life cycles and thus provide a 1049 

tractable way to calculate robust species-level mean life history trait estimates (passage time 1050 

and life expectancy) across broadscale biogeographic gradients (i.e., for each species by grid 1051 

cell combination). 1052 

 1053 

2.4 IPM kernel integration and diagnostic checks 1054 

The relatively slow incremental growth of trees can create a sharp ridge along the diagonal of 1055 

the probability surface, 𝐏. Defining this ridge with sufficiently high resolution becomes 1056 

computationally expensive when numerically integrating the kernel, 𝐏, and failing to do so 1057 

can lead to biologically unreasonable column sums, which theoretically equal the survival 1058 

rate for each size class. Previous work indicates that IPM model outputs for trees (first 1059 

passage times, etc.) are sensitive to the dimension used for kernel integration, whereby a 1060 

small kernel size (i.e., 10 size categories) can underestimate tree age demographics and a 1061 

large kernel size (i.e., 1,000 size categories) can overestimate tree age demographics. Thus, 1062 

previous works show that a kernel dimension equivalent to a tree size transition rate between 1063 

0.1-1 cm in diameter is needed to produce realistic tree age demographics for trees (27). 1064 

Thus, to balance the need for high biological resolution and reduced computation time and 1065 

memory, a mixed kernel integration approach has been established for trees (27–29). 1066 

Following this mixed kernel integration approach, we selected a moderately large resolution 1067 

for the overall kernel, 600 × 600, and used the standard mid-bin integration for most of these 1068 

cells. Along the growth ridge, we used a Gaussian-Legendre quadrature integration, whereby 1069 

each cell was divided into 420 sub-rows (i.e., along the size-dependent growth probability 1070 

density) and 3 sub-columns. The result was a 600 × 600 kernel with a well-defined ridge and 1071 

biologically reasonable column sums and element values.  1072 

 1073 

2.5 Life history trait calculations and age-from-stage methods 1074 



Following numerical integration, the survival-growth kernel, 𝐏, was used to calculate a series 1075 

of life history traits, including first passage time, life expectancy from 10 cm dbh, and 1076 

maximal lifespan. These life history traits were derived from survival and growth data that 1077 

were collected between 1926 and 2014. These life history traits are thus representative of tree 1078 

age demographics based on observed climate conditions over the last century.  1079 

 1080 

Passage time: First passage time captures the number of years it takes for an x-sized 1081 

individual to reach a predetermined size threshold for the first time. Using the kernel, 𝐏, we 1082 

calculated passage time 𝜏𝑖𝑗 from initial size class j to the target size class i, following  (15–1083 

17) : 1084 

 1085 

𝜏𝑖𝑗 =
(𝐈 − 𝐏′)−2(𝑖, 𝑗)

(𝐈 − 𝐏′)−1(𝑖, 𝑗)
 1086 

 1087 

where 𝐈 is an identity matrix and P′ is identical to 𝐏 except for column j, which is replaced 1088 

with zeros in all cells. The initial size for all passage time calculations was 10 cm dbh 1089 

because this is the size when all species were tagged in our standardized dataset. Throughout 1090 

the main text, we refer to our passage time to target size thresholds as tree growth strategies.  1091 

 1092 

To make biologically reasonable comparisons in growth strategies among species, we 1093 

calculated first passage times to 20 cm dbh (fig. S2, path a.2) and the 70% quantile of 1094 

observed maximal size (fig. S2, path a.1). The 20 cm target size threshold serves as a time-1095 

standardized rate of growth for all species in our dataset. However, the passage time from 10 1096 

to 20 cm dbh may represent the time to max size for the smallest statured species in our 1097 

dataset (i.e., 20 cm size is the 95% quantile of maximum size for small trees). Conversely, 1098 

this target threshold captures early life growth dynamics for larger tree species. To capture 1099 

growth dynamics over a wider range of a species life cycle, we also calculated the first 1100 

passage time from 10 cm DHB to the 70% quantile of the observed size distribution for each 1101 

species across the full dataset. This quantile-based target size varied among species and 1102 

represented an above-average size at which point a tree has approached its ultimate position 1103 

in the canopy, whether that be a short-statured understory tree that reaches its maximal height 1104 

in 5-years or a tall dominant canopy tree that grows for decades before reaching their ultimate 1105 

position in the canopy.  1106 

 1107 

Life expectancy: To examine differences in early-life tree mortality patterns and survivorship 1108 

trajectories over species lifespans, we calculated life expectancy from size class i to size class 1109 

j using (fig. S2, path b)  (1, 15–17): 1110 

 1111 

𝜂𝑗 = ∑ (𝐈 − 𝐏)−1(𝑖, 𝑗)
𝑛

𝑖=1
 1112 

 1113 

where 𝐈 is an identity matrix. Life expectancy from 10 cm dbh was calculated using the 1114 

equation above with j = 1. For total life expectancy conditional on reaching the target size 1115 

classes (either 20cm dbh or the 70th quantile of a species size distribution), we determined 1116 

which column, j, corresponded to the target class and then added the time to reach size class j 1117 

to the remaining life expectancy for size class j, i.e., 𝜏𝑖𝑗 + 𝜂𝑖. It is important to note that life 1118 

expectancy is highly left skewed by early life mortality, with smaller individuals having 1119 

higher mortality than larger individuals. A low life expectancy to a given size (e.g., 20 cm 1120 

dbh) does not imply that no individuals of a given species will survive to that size threshold 1121 



(i.e., it is not a maximal). It simply means that individuals that do live longer represent the 1122 

lucky few, resulting in a higher proportion of smaller individuals within a population. 1123 

 1124 

Maximal lifespan: We calculated the maximal lifespan as the age at which the cumulative 1125 

mortality was 95%. Starting with a cohort composed exclusively of 10 cm dbh individuals, 1126 

we projected the cohort through time using the recursion equation 𝑛(𝑡 + 1) = 𝐏𝑛(𝑡). The 1127 

simulation limit was set to 10,000, which resulted in the exclusion of 38 species. We 1128 

normalized the initial cohort to sum to one and identified the time step, x, where the sum of 1129 

𝑛(𝑥) was less than 0.05. The number of years, x, is thereby the age at which less than 5% of 1130 

the initial cohort is still alive. At this maximal age, x, we also calculated the mean size from 1131 

the population density, 𝑛(𝑥), which we refer to in the main text as size at maximal age.  1132 

 1133 

Model valuation: We parameterized our IPMs using methods that were specifically 1134 

developed for cross-sectional tree data (see materials and methods, subsection 2.4) (27–29) 1135 

and used age-from-stage methods to calculate age-related demographics (15–17). Validation 1136 

of age-related outputs would require an extensive longitudinal dataset that tracks the fate of 1137 

individual trees over their life cycle (which would require decades to millennia of 1138 

longitudinal data for long-lived trees). This level of longitudinal data is rarely available and is 1139 

also why cross-sectional forest inventory data and age-from-stage estimates are so valuable. 1140 

The next best validation method relies on tree ring data. Previous validations of IPM model 1141 

outputs for trees with paired tree ring data showed that IPMs can produce realistic estimates 1142 

of tree age demographics (27).  Similarly, IPM model validations, using 34-year time series 1143 

data, showed that IPM outputs match time series data over snapshots of species life cycles 1144 

(62). Together, previous validation efforts for IPMs using time series and tree ring data 1145 

suggest model outputs can accurately capture the age dynamics for long-lived species with 1146 

slow growth and low mortality. We did not have such paired time series or tree ring data to 1147 

compare with the wide range of species included in our analysis. Yet, while not directly 1148 

comparable, the directionality of our biome-level comparisons in tree longevity was 1149 

congruent with longevity estimates from tree ring data (12). Specifically, that assessment 1150 

showed that the mean longevity for trees in the tropics and extratropics were 186 ±138 and 1151 

322± 201 years respectively (12). In our study, we found that the mean life expectancy for 1152 

trees in the tropics and extratropics were 60 and 95 years respectively (see Figure 2).  1153 

 1154 

While the directionality of our biome-level patterns in tree longevity is in line with 1155 

broadscale trends derived from tree ring studies, there are several reasons why it does not 1156 

make conceptual sense to make one-to-one comparisons in measures of tree longevity 1157 

derived from IPMs from that of tree ring-studies that differ in temporal times scales and 1158 

geographical scope. First, age estimates from tree-ring studies can be heavily influenced by 1159 

anthropogenic disturbance and climate-induced shifts in tree growth-longevity trade-offs. 1160 

Second, the sampling framework used for tree ring studies tends to target the largest trees in 1161 

areas of low anthropogenic disturbance. Yet, considering that the oldest trees can be up to 1162 

half the size of the largest trees (30), it is impossible to derive standardized metrics of tree 1163 

age (e.g., mean life expectancy) from tree ring studies and thus they serve as a coarse 1164 

estimate of tree longevity.  1165 

 1166 

3: Tree life history trade-offs and core demographic functional types 1167 

To test for broadscale tree growth- longevity-stature trade-offs, we conducted a correlation 1168 

analysis, using the cor function in the stats package (59). To further contextualize the full 1169 

dimensionality of growth- longevity-stature trait constellations, we conducted a standard 1170 

principal component analysis (PCA) of the life history traits, using the princomp function 1171 



in the stats package (59). All traits included in the PCA were scaled to have a mean of 1172 

zero and a standard deviation of one. Highly correlated traits that captured redundant trait 1173 

information were dropped from the PC analysis to avoid issues of multicollinearity, resulting 1174 

in the inclusion of passage time to 20 cm dbh, passage time to 70th quantile size range, size at 1175 

maximal age, and life expectancy from 10 cm dbh (fig. S3). We then used the K-means 1176 

machine learning algorithm to identify the core growth- longevity- stature groupings, setting 1177 

the maximum number of iterations to 15 and the number of random starting points to 50, 1178 

using the kmeans function in the R stats package. To identify the optimal number of 1179 

clusters, we calculated the coefficient scores and the total within sum of squares across 1180 

cluster sizes, using the silhouette and  wss functions in the R cluster package (63). 1181 

The sum of squares elbow method (wss) and the silhouette method both indicated that 4 was 1182 

the optimal number of clusters, and the silhouette method identified 3 as the second optimal 1183 

number of clusters (fig. S5).  1184 

 1185 

4: The strength of tree life history trade-offs across biogeographic gradients:  1186 

To examine the independent and joint effects of soil, precipitation, and temperature on tree 1187 

life history traits we used a multivariate Bayesian generalized mixed effect model, using the 1188 

MCMCglmm package in R (39). We included the same four life history traits used in S3 as 1189 

response variables (i.e., time to 20cm, time to 70th percentile of size, size at maximal age, and 1190 

life expectancy from 10cm dbh) and soil, precipitation, and temperature indexes as fixed 1191 

effects (described below). To account for the signature of phylogenetic ancestry on tree life 1192 

history traits, we included the phylogenetic distances between species as a random effect (39, 1193 

42). We also controlled for the covariation between our life history traits and the residual 1194 

variation within each trait response to account for potential trade-offs among life history traits 1195 

(39). To meet model assumptions, we scaled our life history traits and climate variables to a 1196 

mean of zero standard deviation of one. 1197 

 1198 

Biogeographic indexes: We included soil, precipitation, and temperature indexes in our 1199 

Bayesian model because they are known to strongly regulate photosynthetic capacity and 1200 

plant growth and are commonly assumed to induce life history trade-offs. To avoid issues 1201 

with multicollinearity and reduce model complexity, we first extracted a comprehensive set 1202 

of variables related to soil, temperature, and precipitation from WorldClim and SoilGrids 1203 

(64) and calculated the mean of these variables for each grid cell, using Google Earth Engine 1204 

(see fig. S1 and table S4). We then assigned each variable to a categorical soil, climate, or 1205 

precipitation grouping (table S4) and conducted a principal component analysis for the list of 1206 

variables within each group. The first PC axis for each group (e.g., soil, precipitation, and 1207 

temperature indexes) were then included as fixed effects in our Bayesian generalized mixed 1208 

effect model. These soil, temperature, and precipitation indexes represent multi-year mean 1209 

conditions from 1997-2013. These multi-year averages capture the mean conditions that 1210 

correspond with the dynamical data used to calculate our age-related demographic traits (e.g., 1211 

mean life expectancy of trees based on observation data from the 1900s-2000s). 1212 

 1213 

Phylogenetic tree: We constructed the time-calibrated phylogeny for all tree species using the 1214 

Qian and Jin 2016 megaphylogeny (65) for plants and the V.Phylomaker2 (66) package 1215 

in R.  The three species that were missing from the phylogenetic backbone were added to the 1216 

tree using the most closely related species within the same genus, following Cardoso et. Al 1217 

2013 (67).  1218 

 1219 

Bayesian model construction and validation: The multivariate Bayesian models were run with 1220 

15,000 iterations, a burnin of 5,000, and a thinning rate of 10, with an effective sample size 1221 



of 1000 MCMC samples. Model convergence was assessed via inspection of trace and 1222 

density plots. Posterior means and upper and lower credible intervals for the fixed and 1223 

random effects were used to examine the shared influence of phylogenetic ancestry and soil, 1224 

temperature, and precipitation variables on mean life history trait differences across our 1225 

biogeographic gradient (figs. S9 and S11, table S5-S9).  The estimated variance coefficients 1226 

for the fixed and random effects are reported in figs. S9 and S11, Table S5-S9. Credible 1227 

intervals that do not overlap with zero are suggestive of mean trait differences across 1228 

broadscale soil, temperature, and precipitation gradients. The phenotypic variance-1229 

covariance, genetic variance-covariance and residual variance-covariance, and Pagels lambda 1230 

(i.e., phylogenetic heritability) are reported in Table S6. 1231 

 1232 

5: Demographic trait diversity across biogeographic gradients 1233 

To characterize the range of life history strategies that were occupied by species across 1234 

broadscale biogeographic gradients, we first calculated the 3-dimentional convex-hull 1235 

volume of tree growth-longevity-stature strategies (i.e., demographic trait diversity) using the 1236 

life history trait PC scores for axes 1-3 within each grid cell (47). The convex-hull volume is 1237 

a widely used method to test for macroevolutionary signatures of trait diversity and habitat 1238 

filtering (47). To avoid known effects of variable plot sizes between North and South 1239 

America (see table S1) and minimize the potential effects of local scale disturbance events on 1240 

broadscale diversity patterns, we balanced the number of individual tree observations across 1241 

our biogeographic gradient (see materials and methods, section 1) and calculated the convex 1242 

hull volume across equal sized hexagon grids. Four of our grid cells did not meet the 1243 

minimum number of species that were needed to calculate the convex-hull volume (i.e., 1244 

included < 4) and were thus excluded from our analysis. 1245 

 1246 

The convex hull volume of each grid cell was then used to test for predictable variation in 1247 

demographic trait diversity across biogeographic gradients, using a generalized linear model 1248 

(Fig 1c, H3). We used mean annual temperature as our predictor variable because it was 1249 

found to have the strongest effect on our univariate traits (see Figs. 3 and S9).  We also tested 1250 

for two non-mutually exclusive expectations of a positive relationship between demographic 1251 

diversity and ecosystem productivity, including the expectation from an evolutionary theory 1252 

perspective (i.e., productivity should drive diversification) and functional perspective (i.e., 1253 

more diverse systems should be more productive). To test these non-mutually exclusive 1254 

hypotheses (Fig 1c, H3), we used linear and generalized linear models. The predictor 1255 

variables were scaled to a mean of zero and a standard deviation of one. We assessed the 1256 

normality of the residuals and, when needed, we transformed the variable by the natural log. 1257 

It is important to note that mean annual temperature and our remotely sensed estimate of 1258 

above-ground net primary productivity (NPP) were based on multi-year mean conditions 1259 

from 1997-2013 (48). These multi-year averages serve as coarse proxies of the conditions 1260 

related to the mean pace of life for trees over the last century (life expectancies, etc.), which 1261 

were derived from dynamical data collected from 1926 to 2014.  1262 

 

 

 

 

 

 

 

 

 



Supplementary Figures:  

 

  
 

Figure S1. Map of equal area hexagon grids (size ~ 250,000 km2) that were used to calculate 

our species by grid ID life history traits. The heatmap represents the total number of tree 

observations within each grid cell.  

 

 

 

 

 



 
 

Figure S2. Visual illustration of life-history traits, including first passage times from 10 to 20 

cm dbh and the 70% quantile of the observed size distribution, the life expectancy from 10 

cm dbh, and the maximal lifespan age and size.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure S3. The relationship between growth-longevity-stature relationships across forest biomes, with means 

and 95% CI values. Ellipses capture the 70th quartile of trait variation among biomes (i.e., range of life history 

trait occupied by species across biomes.  
 
 

 
Figure S4. Heatmaps across biomes that show the relationship between tree growth strategies 

and the remaining life expectancies from 10 cm dbh. Color transparency represents the 

concentration of species with similar trait values, with less transparent colors representing a 

high concentration of species with similar trait values within biome.   



 
Figure S5. Life history trait correlations.  

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
Figure S6. Optimal number of clusters using the elbow total within sum of square and 

Silhouette methods, including all species. 

 



 
 

Figure S7. Optimal number of clusters using the elbow total within sum of square and 

silhouette methods for species in the tropics and extratropics. 

 



 
Figure S8. Visual illustration of tree growth- longevity-stature relationships for all species 

within each grid cell (total of 1,127 species and 6,847 trait values, i.e., species × grid). 

 



 
Figure S9. Correlations among soil variables, extracted from soil grids (GS)(64). 

 

 

  



 
Figure S10. Correlations among precipitation variables. 

 

 



 
Figure S11. Correlations among temperature variables. 

 

 

 

 

 



  
 

 

Figure S12. Estimated coefficients, with posterior mean and 95% credible intervals, for life 

history traits across broadscale soil, temperature, and precipitation gradients, using a multi-

response Bayesian generalized mixed effect model. 
 

 

 

 

 

 



 
Figure S13. Life history trait variation across a precipitation gradient, which represents the first 

PC axis of 8 precipitation variables that we derived from WorldClim(48) and SoilGrids   and 

span a latitudinal gradient from southern Brazil to northern Canada. The Y-axis is scaled by 

the natural log. Data points are species- and grid-specific and are calculated using individual 

tree observations to fit size-based integral projection models for each species within each grid 

cell ID. Model coefficients of the multi-response Bayesian model are reported in Fig. SI.10). 

 
 

 

 

 

    
Figure S14. Estimated phylogenetic heritability from the Bayesian multiple-response mixed 

effect model, with posterior mean and 95% credible intervals.  

 

 

 

 



 

 
 

Figure S15. The phylogenetic tree for species included in our study, with a heatmap of tree 

life expectancies from 10 cm dbh. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Tables:  

S1. Forest inventory network datasets used in this study. 

 

Network 
name 

Network 
regional 
code 

# of unique 
tree 
measurements 

# of 
species 

Min 
census 
year 

Max 
census 
year 

Countries 

ForestGeo FGE 
180,002 

216 1982 2013 
Panama and United States of 
America 

ForestPlots FPN 

633,406 

921 1961 2013 

Bolivia, Brazil, Colombia, 
Ecuador, French Guiana, 
Guyana, Peru, Suriname, 
Venezuela 

NFI NAL 313,091 13 1960 2007 Canada (Alberta) 

NFI NBC 702,018 28 1926 2012 Canada (British Columbia) 

NFI NQU 252,176 34 1970 2014 Canada (Quebec) 

NFI NSA 84,207 9 1958 1999 Canada (Saskatchewan) 

SYN SYN 24,070 13 1982 2014 United States of America 

FIA FIAN 303,264 130 1999 2013 United States of America 

FIA FIANE 170,424 102 2001 2013 United States of America 

FIA FIANW 96,804 52 1995 2007 United States of America 

FIA FIARM 63,917 30 2000 2008 United States of America 

FIA FIAS 374,777 154 2000 2013 United States of America 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S2. Mean and CI values in the number of years it takes trees to go to 20 cm in diameter 

across biomes. The history-history traits were scaled by the natural log before calculating the 

mean traits and back-transformed for reporting peruses.  
 

Life expectancy from 10 cm in diameter 

Biome Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 

Boreal                     10 35 73 87 186 2825 

Temperate conifer          6 48 108 118 245 2674 

Temperate broadleaf 3 39 100 98 253 3005 

Temperate savanna 7 36 79 86 189 2976 

Tropical dry  4 27 54 59 112 2037 

Tropical moist 1 25 54 60 129 3195 

Tropical savanna           4 23 56 59 129 2143 

       

Growth strategy, years to grow from 10-20 cm in diameter 

Biome Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 

Boreal                     27 42 53 52 62 99 

Temperate conifer          14 35 48 45 61 112 

Temperate broadleaf 10 29 36 36 45 83 

Temperate savanna 4 25 35 33 46 85 

Tropical dry  7 26 32 31 41 82 

Tropical moist 3 26 37 34 50 130 

Tropical savanna           4 25 35 33 46 85 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



S3. Principal component analysis loadings of the life history traits. 

 ALL species PC 1 PC 2 PC 3 PC 4 

Yrs to 20 cm dbh 0.513 0.616 0.12 0.585 

Yrs to 70th max size 0.68 0.129 -0.227 -0.685 

Life exp. From 10 cm dbh 0.344 -0.433 0.833  

Max size 0.395 -0.645 -0.49 0.433 

     

Tropical species     

Yrs to 20 cm dbh 0.55 0.591   0.586 

Yrs to 70th max size 0.702   0.216 -0.679 

Life exp. From 10 cm dbh 0.306 -0.214 -0.928   

Max size 0.333 -0.777 0.299 0.442 

     

Extratropical species     

Yrs to 20 cm dbh 0.481 0.603 0.227 0.594 

Yrs to 70th max size 0.64 0.252 -0.192 -0.7 

Life exp. From 10 cm dbh 0.388 -0.545 0.742   

Max size 0.456 -0.526 -0.601 0.393 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



S4. List of the environmental variables included in the soil, temperature, and precipitation 

variables used in the multi-response Bayesian generalized mixed effect model. 

 

Env. group Variable name Data source Unit Resolution 

Soil  Bulk density 015cm 
 

Soilgrids(64)  ≈250m 

Soil Soil pH H2O 15cm Soilgrids(64)  ≈250m 

Soil Clay content 15cm Soilgrids(64)  ≈250m 
Soil Saturated H2O content 15cm Soilgrids(64)  ≈250m 

Soil Silt content 15cm Soilgrids(64)  ≈250m 
Soil CEC 15cm           Soilgrids(64)  ≈250m 

Soil SOC content 15cm            Soilgrids(64)  ≈250m 

Soil Sand content 15cm Soilgrids(64)  ≈250m 
Soil Coarse fragments 15cm Soilgrids(64)  ≈250m 

Soil Depth to bedrock Soilgrids(64)  ≈250m 

Soil H2O capacity 15cm Soilgrids(64)  ≈250m 

Soil Sand content 15cm Soilgrids(64)  ≈250m 

Precipitation Aridity index CGIAR (48) AI value 1km 

Precipitation Annual precipitation CHELSA(68) mm 30 arcsec 
(≈900m at 
equator) 

Precipitation Precipitation of coldest 
quarter 

CHELSA(68) mm 30 arcsec 
(≈900m at 
equator) 

Precipitation Precipitation of driest 
quarter 

CHELSA(68) mm 30 arcsec 
(≈900m at 
equator) 

Precipitation Precipitation of warmest 
quarter 

CHELSA(68) mm 30 arcsec 
(≈900m at 
equator) 

Precipitation Precipitation of wettest 
quarter 

CHELSA(68) mm 30 arcsec 
(≈900m at 
equator) 

Precipitation Precipitation seasonality CHELSA(68) mm 30 arcsec 
(≈900m at 
equator) 

Precipitation Growing season precipitation 
sum 

CHELSA(68) mm 30 arcsec 
(≈900m at 
equator) 

Precipitation Depth to water table annual 
mean 

CHELSA(68) mm 30 arcsec 
(≈900m at 
equator) 

Temperature  Isothermality CHELSA(68) Unitless 
 

30 arcsec 
(≈900m at 
equator) 



Temperature Mean diurnal range CHELSA(68) °C 30 arcsec 
(≈900m at 
equator) 

Temperature Mean temperature of coldest 
quarter 

CHELSA °C 30 arcsec 
(≈900m at 
equator) 

Temperature Mean temperature of coldest 
quarter 

CHELSA °C 30 arcsec 
(≈900m at 
equator) 

Temperature Mean temperature of coldest 
quarter 

CHELSA °C 30 arcsec 
(≈900m at 
equator) 

Temperature Mean temperature of coldest 
quarter 

CHELSA °C 30 arcsec 
(≈900m at 
equator) 

Temperature Temperature seasonality CHELSA °C 30 arcsec 
(≈900m at 
equator) 

Temperature Growing season length CHELSA Number 
of days 

30 arcsec 
(≈900m at 
equator) 

Temperature Growing season temperature 
mean 

CHELSA °C 30 arcsec 
(≈900m at 
equator) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 



Table S5. Results of Bayesian generalized mixed effect model, with estimates of posterior 

means, upper and lower credible intervals. 

Life history 
trait Env. variable post.mean 

lower-
95% CI 

upper-
95% CI eff.samp 

p value 
MCMC   

Life exp. 
From 10 cm 
dbh -- 0.055 -0.030 0.134 1000.0 0.218   

Yrs to 20 cm 
dbh -- 0.160 0.082 0.256 1000.0 0.001 ** 

Yrs to 70th 
max size -- 0.106 0.022 0.193 1000.0 0.020 * 

Max size -- -0.273 -0.357 -0.191 1000.0 0.001 *** 
Life exp. 
From 10 cm 
dbh Soil PCA 0.012 0.003 0.022 1115.9 0.016 * 

Yrs to 20 cm 
dbh Soil PCA 0.002 -0.007 0.011 1000.0 0.686   

Yrs to 70th 
max size Soil PCA 0.004 -0.004 0.011 1000.0 0.316   

Max size Soil PCA 0.004 0.000 0.008 1117.3 0.040 * 

Life exp. 
From 10 cm 
dbh 

Precipitation 
PCA 0.013 0.007 0.021 1000.0 0.001 ** 

Yrs to 20 cm 
dbh 

Precipitation 
PCA 0.002 -0.005 0.007 1000.0 0.620   

Yrs to 70th 
max size 

Precipitation 
PCA 0.002 -0.004 0.007 1000.0 0.544   

Max size 
Precipitation 
PCA 0.002 -0.001 0.004 1000.0 0.196   

Life exp. 
From 10 cm 
dbh 

Temperature 
PCA -0.067 -0.082 -0.055 1000.0 0.001 *** 

Yrs to 20 cm 
dbh 

Temperature 
PCA -0.020 -0.032 -0.005 1000.0 0.002 ** 

Yrs to 70th 
max size 

Temperature 
PCA -0.018 -0.029 -0.007 1000.0 0.002 ** 

Max size 
Temperature 
PCA -0.003 -0.009 0.002 1000.0 0.200   

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

 

 

 

 

 

 



Table S6. Phylogenetic variance-covariance of the Bayesian generalized mixed effect model, 

with the genetic and residual correlations for each life history trait and Pagel’s lambda. 

Phenotypic correlations [variance-covariance of standardized traits] 

  
Life exp. From 10 cm 
dbh 

Yrs to 20 cm 
dbh 

yrs to 70th max 
size Max size 

Life exp. From 10 cm 
dbh 1 0.18 0.32 0.34 

Yrs to 20 cm dbh 0.18 1 0.61 -0.04 

Yrs to 70th max size 0.32 0.61 1 0.41 

Max size 0.34 -0.04 0.41 1 

     

Genetic variance-covariance 

  
Life exp. From 10 cm 
dbh 

Yrs to 20 cm 
dbh 

yrs to 70th max 
size Max size 

Life exp. From 10 cm 
dbh 0.94 0.21 0.36 0.35 

Yrs to 20 cm dbh 0.21 1.14 0.67 -0.05 

Yrs to 70th max size 0.36 0.67 1.15 0.48 

Max size 0.35 -0.05 0.48 1.09 

     

Residual variance-covariance 

  
Life exp. From 10 cm 
dbh 

Yrs to 20 cm 
dbh 

yrs to 70th max 
size Max size 

Life exp. From 10 cm 
dbh 0.12 0.00 0.00 0.01 

Yrs to 20 cm dbh 0.00 0.10 0.08 0.00 

Yrs to 70th max size 0.00 0.08 0.07 0.00 

Max size 0.01 0.00 0.00 0.02 

     

Genetic correlations 

  
Life exp. From 10 cm 
dbh 

Yrs to 20 cm 
dbh 

yrs to 70th max 
size Max size 

Life exp. From 10 cm 
dbh 1 0.20 0.35 0.35 

Yrs to 20 cm dbh 0.20 1 0.59 -0.05 

Yrs to 70th max size 0.35 0.59 1 0.43 

Max size 0.35 -0.05 0.43 1 

     

Residual correlations 

  
Life exp. From 10 cm 
dbh 

Yrs to 20 cm 
dbh 

yrs to 70th max 
size Max size 

Life exp. From 10 cm 
dbh 1 -0.04 -0.01 0.28 

Yrs to 20 cm dbh -0.04 1 0.93 0.08 

Yrs to 70th max size -0.01 0.93 1 0.08 

Max size 0.28 0.08 0.08 1 

     



Pagel's lambda  

  lambda Lower CI Upper CI  
Life exp. From 10 cm 
dbh 0.89 0.88 0.90  
Yrs to 20 cm dbh 0.92 0.92 0.93  
Yrs to 70th max size 0.94 0.94 0.95  
Max size 0.99 0.98 0.99  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S7. Linear model coefficients and summary statistics associated with Fig 4, including 

species richness and demographic trait diversity (A), mean annual temperature and 

demographic trait diversity (B), net primary productivity and demographic trait diversity table 

(C), and the combined effect of demographic trait diversity and mean annual temperature on 

net primary productivity (D).  
 

Species richness on demo. diversity (Fig 4.A) 

Term Estimate Std error Statistic P value 

(Intercept) -6.732 0.984 -6.840 <0.01 

Species richness (log) 2.193 0.554 3.959 0.000 

Species.richness^2 (log) -0.146 0.073 -2.006 0.048 

Adj R2 = 0.65, F2,82 = 79, p < 0.01   

     

Mean annual temp on demo diversity (Fig 4.B) 

Term Estimate Std error Statistic P value 

(Intercept) -2.267 0.2376 -9.541 <0.01 

Mean annual temp (scaled) 0.106 0.0139 7.593 <0.01 

Adj R2 = 0.40, F1,83 = 58, p < 0.01   

     

NPP on demo diversity (Fig 4.C) 

Term Estimate Std error Statistic P value 

NPP (scaled and log) 0.708 0.077 9.182 <0.01 

Adj R2 = 0.49, F1,84 = 84.32, p < 0.01 

     

Demographic diversity on NPP (Fig 4.D) 

Term Estimate Std error Statistic P value 

Demo. diversity (scaled and 
log) 0.178 0.0441 4.041 <0.01 

Mean annual temp. (scaled 
and log) 0.827 0.044 18.777 <0.01 

Adj R2 = 0.90, F2,83 = 394.9, p < 0.01   

     

The effect of demographic diversity on NPP, tropics  

Term Estimate Std error Statistic P value 

Temp (scaled) 0.308 0.152 2.030 0.051 

Demo diversity (log and scaled) 0.412 0.152 2 .716 0.011 

Adj R2 = 0.26, F2,31 = 6.912, p = 0.003   

     

The effect of demographic diversity on NPP, extra-tropics 

Term Estimate Std error Statistic P value 

Temp (scaled) 0.790 0.068 11.611 <0.001 

Demo diversity (log and scaled) 0.199 0.068 2.917 0.005 

Adj R2 = 0.840, F2,50 = 136.6, p < 0.01  
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