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a consortium of five studies of healthy aging and 
extreme human longevity with 3545 participants. This 
consortium includes the New England Centenarian 
Study, the Baltimore Longitudinal Study of Aging, the 
Arivale study, the Longevity Genes Project/LonGenity 
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Abstract  With the goal of identifying metabolites 
that significantly correlate with the protective e2 allele 
of the apolipoprotein E (APOE) gene, we established 
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studies, and the Long Life Family Study. We analyzed 
the association between APOE genotype groups E2 
(e2e2 and e2e3 genotypes, N = 544), E3 (e3e3 geno-
types, N = 2299), and E4 (e3e4 and e4e4 genotypes, 
N = 702) with metabolite profiles in the five studies 
and used fixed effect meta-analysis to aggregate the 
results. Our meta-analysis identified a signature of 19 
metabolites that are significantly associated with the 
E2 genotype group at FDR < 10%. The group includes 
10 glycerolipids and 4 glycerophospholipids that were 
all higher in E2 carriers compared to E3, with fold 
change ranging from 1.08 to 1.25. The organic acid 
6-hydroxyindole sulfate, previously linked to changes 
in gut microbiome that were reflective of healthy aging 
and longevity, was also higher in E2 carriers compared 
to E3 carriers. Three sterol lipids and one sphingolipid 
species were significantly lower in carriers of the E2 
genotype group. For some of these metabolites, the 
effect of the E2 genotype opposed the age effect. No 
metabolites reached a statistically significant asso-
ciation with the E4 group. This work confirms and 
expands previous results connecting the APOE gene to 
lipid regulation and suggests new links between the e2 
allele, lipid metabolism, aging, and the gut-brain axis.

Keywords  Apolipoprotein E · Longevity · 
Metabolomics · Lipid metabolism

Introduction

The apolipoprotein E (APOE) gene is associated 
with cognitive change and late‐onset Alzheimer’s 
disease [1]. The gene has three well-characterized 
alleles that are defined by a two-SNP haplotype 
(rs7412 and rs429358). The e3 allele is the most 

common and it is considered the neutral allele. 
The e4 allele is associated with an increased 
risk for Alzheimer’s disease (AD) and cognitive 
decline in whites, while the effect in other genetic 
backgrounds is less clear [2]. The e2 allele is the 
least common in whites with frequency ranging 
between 0.02 and 0.12 [3]. It is associated with 
increased human longevity [4] and neuroprotection 
and decreased risk for AD [5–7].

The biological mechanisms related to the vari-
ous effects of the APOE e2 allele on cognitive 
function, resistance to AD and other dementias, 
and ultimately longevity are not well understood. 
APOE transports lipids across cells and tissues by 
binding to receptors of lipoproteins with affinity 
that is allele-dependent [8]. The gene is also a key 
regulator of plasma lipids, and a growing body of 
work has characterized lipid species that are asso-
ciated with different APOE isoforms [9, 10]. For 
example, a genome-wide genetic study of 10,654 
plasma metabolomic profiles identified a signature 
of 10 sphingolipids that were lower in e2 carriers 
compared to other APOE alleles [11]. Additionally, 
a large multi-cohort, multi-platform study identi-
fied 237 lipid species associated with the e2 allele 
[9].

To expand these results to cohorts of older indi-
viduals, we established a consortium of five stud-
ies of healthy aging and extreme human longevity 
that include, in aggregation, 544 carriers of e2, 
and metabolomic profiles of 3545 individuals with 
a total of 1453 chemicals measured in at least one 
study. This consortium includes the New England 
Centenarian Study [12], the Baltimore Longitudi-
nal Study of Aging [13], the Arivale study [14], 
the Longevity Genes Project/LonGenity studies 
[15, 16], and the Long Life Family Study [17]. We 
harmonized the results across the studies that used 
different platforms for metabolomic profiling and 
used a fixed effect meta-analysis of the study-spe-
cific results to characterize a serum metabolomic 
signature of the e2 allele. The resulting signature 
includes glycerol, sterol and sphingolipids, and 
6-hydroxyindole sulfate: a novel metabolite that is 
associated with gut microbiome patterns that are 
predictive of healthy aging and longevity [18]. By 
leveraging the wide range of ages of study partici-
pants, we were also able to investigate the effect of 
e2 on aging trends of some of these metabolites.
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Methods

Participant studies

New England Centenarian Study (NECS)  A 
subset of 195 unrelated NECS participants compris-
ing centenarians, centenarians’ offspring, and unre-
lated controls were selected to be healthy at the time 
of blood draw (at least 1  year off from major clini-
cal events), to be free of major medications, and to 
have survived at least 1  year after the blood draw. 
The age of NECS participants is carefully validated 
[12] and, in addition to an expansive data collection 
at enrollment, the participants are followed up annu-
ally to update their medical history and to assess their 
physical and cognitive function. Blood samples were 
collected at enrollment and transferred to the Bos-
ton University Molecular Genetic Core biobank for 
DNA, serum, and plasma extractions. Both serum 
and plasma samples were maintained at − 80  °C. 
The alleles of the APOE genes were determined 
from SNPs rs7412 and rs429358 (e2: rs7412 = T 
rs429358 = T; e3: rs7412 = C rs429358 = T; e4: 
rs7412 = C rs429358 = C) that were either genotyped 
using real-time PCR or imputed using IMPUTE2 
in participants with genome-wide genotype data as 
described in [4]. We used the genetic data to enrich 
the selection of subjects with carriers of the allele e2 
of APOE as described in [19]. A total of 1495 chemi-
cals including 1213 compounds of known identity and 
282 compounds of unknown structural identity were 
profiled in serum samples collected at enrollment at 
Metabolon, Inc. A detailed description for sample 
preparation and liquid chromatography-tandem mass 
spectrometry (LC–MS/MS) is in the Supplementary 
Material. Raw data was extracted, peak-identified, 
and QC-processed using Metabolon’s hardware and 
software. Data were normalized to remove batch 
effects due to day-to-day variations. The compounds 
identified with the Metabolon bioinformatics pipeline 
were renamed using search tools from the Metabo-
lomics workbench (Metabolomics Workbench: Tools: 
MS Searches), and standardized names from RefMet 
[20], Lipid Maps (LIPID MAPS), and the HMBD 
[21] were used when known. Supplementary Table 1 
includes the mapping between the compound names 
provided by the Metabolon bioinformatics pipeline 
and the standardized names, as well as additional 

annotations. The NECS protocol was approved by 
the Institutional Review Board of Boston University. 
Participants provided written informed consent at 
enrollment.

Arivale  A subset of 634 Arivale wellness pro-
gram participants with APOE genotype data, plasma 
metabolomic data, and other covariates data were 
included in this study. Arivale includes adults (age 
range 18–90 +) who self-enrolled in a consumer fac-
ing wellness program (Arivale, Inc. 2015–2019) [14]. 
The participants were required to be over the age of 
18 and not pregnant, with no additional screening of 
participants. The participants were provided well-
ness coaching, which targeted several clinical out-
comes based on longitudinal omics measurements 
and detailed health history and behavioral question-
naires. Western International Review Board found 
that this study met the requirements for a waiver 
of consent under 45 CFR 46.116(d). APOE geno-
typing was based on whole genome sequencing of 
DNA extracted from whole blood using the Illumina 
TruSeq Nano Library prep kit and sequenced using 
Illumina HiSeq X, PE-150, target 30X coverage at a 
single CLIA approved sequencing laboratory. Metab-
olomics measurements of plasma extracted from 
blood samples collected from participants by certi-
fied phlebotomists were generated at Metabolon, Inc., 
using the Metabolon HD4 discovery platform and 
similar quality control pipelines used for NECS data. 
The study was reviewed and approved by the Western 
International Review Board. Participants consented to 
have their de-identified data being used for research 
purposes.

Baltimore Longitudinal Study of Aging (BLSA)  A 
subset of 989 BLSA participants with APOE geno-
type data and plasma metabolites were selected for 
this study. The BLSA is a longitudinal study of com-
munity-dwelling adults selected to be free of cogni-
tive impairment, functional limitations, chronic dis-
eases, and cancer within the previous 10  years [13]. 
Blood samples were drawn from the antecubital vein 
between 7 and 8 am after an overnight fast. Partici-
pants were also requested not to smoke, exercise, or 
take medications before the blood sample collection. 
Plasma samples were prepared following the recom-
mendations in [22]. APOE genotypes were determined 
using polymerase chain reaction (PCR) amplification 
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of leukocyte DNA [23] for earlier assays and using the 
TaqMan method for more recent assays [24]. Metabo-
lomic analyses were conducted in plasma specimens 
via Biocrates p500 kit between April 2004 and Decem-
ber 2019. The BLSA protocol was approved by the 
Institutional Review Board of the National Institutes of 
Health. Participants provided written informed consent 
at each BLSA visit. Plasma metabolites were measured 
using LC–MS/MS. Metabolites were extracted and 
concentrations were measured using the MxP Quant 
500 kit (Biocrates Life Sciences AG, Innsbruck, Aus-
tria) following the manufacturer’s protocol for a 5500 
QTrap (Sciex, Framingham, MA, USA), as described 
in detail previously [25].

Long Life Family Study (LLFS)  A subset of 1580 
LLFS participants with APOE genotype data and data 
of 193 lipids that were profiled in plasma samples 
were included in this analysis. LLFS is a family-based 
study of healthy aging and longevity that enrolled 4981 
family members from 552 families selected for famil-
ial longevity (6, 7). Participants were enrolled at three 
American field centers (Boston, Pittsburgh, and New 
York), and a Danish field center. Ages of all partici-
pants have been validated (8) and participants are fol-
lowed up annually (9). APOE alleles were inferred 
from SNPs rs7412 and rs429358 haplotypes that were 
genotyped using whole genome sequencing [17]. All 
subjects provided informed consent and data are avail-
able via dbGaP (dbGaP Study Accession: phs000397.
v1.p1). Experimental methods are described in detail in 
the Supplementary Material. In brief, lipid metabolites 
in plasma were extracted by using solid-phase extrac-
tion kits. Samples were subsequently separated by 
reversed-phase chromatography prior to being analyzed 
by an Agilent 6545 quadrupole time-of-flight mass 
spectrometer at Washington University St Louis. Data 
were processed with a combination of XCMS, DecoID, 
and Skyline to facilitate removal of background, anno-
tation of adducts, and compound identification [26–28]. 
Lipid and polar metabolites were analyzed on a LC/MS 
platform using batches of approximately 90 samples 
each, and data were normalized by applying Combat 
[29]. From the metabolomic data, we focused on 193 
lipid metabolites that were identified from   plasma 
samples by matching the fragmentation patterns to 
metabolites databases. According to the Metabolomics 
Standard Initiative [30], these identifications are level 2 
confidence.

Longevity Genes Project (LGP)/LonGenity  The 
LGP and LonGenity cohorts were recruited at Albert 
Einstein College of Medicine to study the biological 
mechanisms of healthy longevity. LGP is a cross-
sectional study of individuals aged 95 and older, their 
offspring, and controls without a history of parental 
longevity [15]. LonGenity is a longitudinal study 
of offspring of parents with exceptional longevity, 
defined as having at least one parent living to age 95 
or older, and age- and sex-matched controls without 
parental longevity [16]. Both studies enroll individu-
als of Ashkenazi Jewish descent from Northeastern 
United States. Venous blood samples were collected 
at enrollment and serum was stored at − 80  °C until 
metabolomic analysis. Metabolomic analysis was per-
formed on a subset of 150 samples from both stud-
ies, 50 samples from individuals aged 95 and older, 
50 offspring, and 50 controls using LC/MS as in 
LLFS. By design, the subset was enriched for the old-
est individuals whose offspring were also enrolled 
in the study. APOE genotype data was available for 
147 individuals. The study protocols were approved 
by the Institutional Review Board at Albert Einstein 
College of Medicine. Participants provided written 
informed consent at enrollment.

Statistical analysis

NECS  Raw data from the 1487 metabolites were 
inspected for residual batch effects but no evident 
bias was detected (Supplementary Fig. 2). The miss-
ing data pattern of each metabolite was analyzed 
using a logistic regression model of APOE genotypes, 
adjusting for age at blood draw, sex, batch indica-
tor, and education, to identify metabolites that were 
not detected in carriers of specific APOE genotypes. 
This analysis did not identify any such metabolite. 
Only metabolites with less than 20% missing values 
were included in the final analysis. We used multi-
ple imputation to fill-in missing metabolite values 
and repeated the imputation 5 times to maximize 
the power of the study. We imputed the non-detected 
metabolites using a uniform distribution defined 
between 0 and the minimum detected value of each 
metabolite, assuming that missing values were below 
the range of detection. In each imputed data set, each 
metabolite was transformed in natural log-scale, 
and correlated to APOE genotype group defined as 
E2 = e2e2 or e2e3; E3 = e3e3; and E4 = e3e4 or e4e4, 
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adjusting for age at blood draw, sex, education, and 
batch effect. The ambiguous e2e4 genotypes were 
removed from the data. The E3 group was used as 
the referent and the estimated effects of the E2 and 
E4 group on each metabolite in the 5 imputed data 
sets were aggregated using the formulas for repeated-
imputation inference provided by Little and Rubin 
[31]. See Supplementary Fig. 2 for details.

Arivale  This study provided data of 722 metabo-
lites with less than 20% missing values in 634 study 
participants. Metabolite values were natural log-
transformed to account for right skewness and out-
liers and the associations between each metabolite 
and the APOE genotype groups were estimated using 
linear regression, adjusted for age, sex, education, 
baseline BMI, and self-reported statin medication 
use. Missing metabolite values were ignored. Arivale 
analyses were performed in Python v3.7.6 with the 
statsmodels package v0.11.1

BLSA  Metabolites with more than 30% miss-
ing values were excluded and missing values for the 
remaining metabolites were imputed using half of the 
minimum value. Metabolites were natural log-trans-
formed and values equal to or greater than 4 standard 
deviation were considered outliers and excluded from 
the analysis. After pre-processing, 465 of the origi-
nal 630 metabolites in 989 study participants were 
included in this analysis. The associations between 
metabolomics and APOE genotype groups were esti-
mated using multivariable linear regression and were 
adjusted for age at blood draw, sex, batch effect, and 
years of education.

Long Life Family Study  For the purposes of this 
work, we analyzed 193 lipid metabolites from 1580 
plasma samples. Missing values were imputed using 
the half-minimum approach. The intensities of each 
compound were natural log-transformed and then 
correlated to the APOE genotype groups using a 
linear mixed effects model to account for genetic 
relationships. The analyses were adjusted for age at 
blood draw, sex, years of education, and the first four 
genome-wide principal components. The same model 
including only age at blood draw, sex, years of edu-
cation, and the first four genome-wide principal com-
ponents was used to characterize the distribution of 
metabolites at varying ages. The genetic relations, 

genome-wide principal components analysis, and 
association analyses were conducted using the R 
package GENESIS.

LGP/LonGenity  Data from 412 identified metabo-
lites and less than 20% missing values in 147 serum 
samples were included in the analysis. Associations 
between metabolites and APOE genotype groups 
were estimated using linear regression adjusted for 
age at blood draw, sex, education, and batch effect. 
Missing values were ignored in this analysis. The 
association analyses were conducted using the R pro-
gramming language (version 4.1.1).

Meta‑analysis  Results of the five studies were 
linked by the standardized name of metabolites, and 
the results of metabolites that were detected in at least 
2 studies were aggregated by inverse-weighting, fixed 
effect meta-analysis using the rmeta package in the 
R software, V 4.1. Adjusted p values were calculated 
using the Benjamini–Hochberg correction [32] and 
results with a < 10% false discovery rate are included 
in Table 2. Complete meta-analysis results are in Sup-
plementary Table 3.

Results

Study characteristics  Table 1 summarizes the main 
characteristics of the five study populations. NECS par-
ticipants were older, and with less years of education 
compared to the other studies. By design, the NECS 
participants were selected to be enriched for carriers of 
the E2 genotype group (24%), and had the smallest pro-
portion of E4 carriers (10%). LLFS and LGP/LonGen-
ity had a similar proportion of E2 carriers, higher than 
BLSA and Arivale but lower than NECS. The Arivale 
study included the youngest group of participants and 
the smallest proportion of E2 carriers.

Study‑specific results  The number and type of com-
pounds being profiled by metabolomics are strongly 
dependent on methods. As an example, extracting 
samples with aqueous solvents is best suited for analy-
sis of polar metabolites whereas extracting samples 
with organic solvents is better for examining lipid 
metabolites. The metabolomic data in all five studies 
described here were generated by using LC–MS, but 
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different experimental and data-processing strategies 
were applied at Metabolon, Inc., Biocrates, Wash-
ington University in St. Louis, and Harvard Medical 
School (see “Methods”). As a result, each platform 
provided unique coverage of the metabolome. The lists 
of metabolites quantitated in each study are shown in 
the Supplementary Table 1. After reannotation of the 
metabolite names using RefMet, the five studies con-
tributed data for a total of 1453 metabolites that were 
detected in at least one study. No metabolite was com-
mon to all studies; 21 were detected in four studies, 
105 in three studies, and 427 in two studies (Supple-
ment Fig. 3).

APOE-metabolite associations were initially 
conducted in each study, using regression analysis 
adapted to the specific study design and available 
meta-data of the individual cohorts, and the lists of 
study-specific results are included in Supplementary 
Table  2. In the NECS, no single APOE-metabolite 
association reached statistical significance after cor-
rection for multiple testing (FDR < 10%), although 
we noticed a cluster of lipids including ceramides 
and glycerols showing strong, positive associations 
with the E2 genotype group. In the Arivale study, the 
metabolite 1-docosapentaenoyl-GPC (22:5n6) was 
significantly associated with the E2 genotype group 
(1.4 fold change (FC) comparing the E2 to the E3 
group, adjusted p value = 0.0024). This metabolite did 
not pass the QC step in NECS, and it was not pro-
filed in the other studies. In the BLSA, despite the 
substantially larger sample size, no single metabolite 
was significantly associated with any of the APOE 
genotype groups, after correcting for multiple test-
ing (FDR < 10%). However, we noticed a cluster of 
lipids mainly comprising triglycerides and sphin-
golipids that were nominally associated with the E2 
genotype group (p value < 0.05). Several triglycerides 

were higher in E2 carriers compared to E3 carriers, 
while sphingolipids were lower in E2 carriers com-
pared to E3 carriers. In addition, putrescine was 
borderline significantly lower in carriers of the E4 
genotype group (0.82 FC comparing the E4 to the 
E3 group, adjusted p value = 0.07174). In the LLFS, 
many lipids showed strong significant associations 
with the E2 genotype group. A few triglycerides 
and glycerolipids were significantly higher in car-
riers of the E2 genotype group compared to carriers 
of the E3 genotype group (largest effect: TG 56:1, 
FC = 1.45, p value = 3E − 10), while a few sterol and 
sphingolipids were significantly lower in carriers of 
the E2 genotype group, compared to carriers of the 
E3 genotype group (largest effect: 22:6 cholesterol 
ester, CE 22:6, FC = 0.75, adjusted p value = 2E − 07). 
Two metabolites reached statistically significant asso-
ciation in the LGP/LonGenity study (PC(O-40:6), 
FC = 1.26, p value = 3E − 05; SM 46:3;O2, FC = 1.36, 
p value = 8E − 05).

Results from meta‑analysis  Table  2 summarizes 
the 19 metabolites that were significantly associated 
with the E2 genotype group in the meta-analysis at 
FDR < 10%. The group includes 10 glycerolipids that 
were all higher in E2 carriers compared to E3 car-
riers, with FC ranging from 1.14 (oleoyl-linoleoyl-
glycerol, DG 18:1_18:2, adjusted p value = 0.001) 
to 1.23 (palmitoyl-oleoyl-glycerol, DG 16:0_18:1, 
adjusted p value = 0.0002) and 1.26 (1-oleoylglyc-
erol, MG 18:1/0:0/0:0, adjusted p value = 0.03). Four 
glycerophospholipids were also significantly higher 
in E2 carriers compared to E3 carriers, with FC rang-
ing from 1.08 (LPE 18:1, adjusted p value = 0.07) 
to 1.13 (PE 36:1, adjusted p value = 0.0054). Three 
sterol lipids were significantly lower in carriers of the 

Table 1   Summary of patients’ characteristic. Age is reported in median and range. E2 = e2e2, e2e3; E3 = e3e3; E4 = e3e4, e4e4. 
Only categories of education were available in Arivale

N Age (years) Sex (% F) Education (years) E2 E3 E4 Metabolomics

NECS 195 88 (56–115) 62% 14.4 (3.90) 47 (24%) 128 (66%) 20 (10%) LC/MS with Metabolon 
Inc

LLFS 1580 83 (25–110) 52% 10.3 (3.99) 263 (17%) 1067 (68%) 250 (16%) LC/MS
Arivale 634 49 (22–87) 61% – 71 (11%) 415 (66%) 148 (23%) LC/MS with Metabolon 

Inc
BLSA 989 67 (24–96) 52% 17.6 (2.7) 139 (14%) 583 (59%) 267 (27%) LC/MS with Biocrates
LGP/LonGenity 147 80 (58–110) 69% – 24 (16%) 106 (72%) 17 (12%) LC–MS
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E2 genotype group (22:6 cholesterol ester, CE 22:6, 
FC = 0.78, adjusted p value = 0.00004; 20:4 cholesterol 
ester, CE 20:4, FC = 0.84, adjusted p value = 0.00005; 
22:5 cholesterol ester, CE 22:5, FC = 0.87, adjusted p 
value = 0.0142). The sphingolipid lignoceroyl sphingo-
myelin SM 18:1;O2/24:0 was also significantly lower in 
carriers of the E2 genotype group (FC = 0.93, adjusted 
p value = 0.03). The study-specific results were very 
similar, as shown in the forest plots in Fig.  1 for the 
lipid species DG 18:1_20:4, and SM 18:1;O2/24:0, 
while additional examples are in Supplementary Fig. 4. 
In addition to lipids, the organic acid 6-hydroxyindole 
sulfate was higher in E2 carriers compared to E3 carri-
ers (FC = 1.20, adjusted p value = 0.07). No metabolite 
was significantly associated with the E4 genotype group, 
after correcting for multiple testing.

Aging trends  To test whether the signature was 
enriched for metabolomic markers of aging, we exam-
ined the associations of these metabolites with age 
at enrollment in the LLFS that included the largest 
sample size and widest range of ages spanning 25 to 
110  years (Table  1). Four lipid species were signifi-
cantly associated with age after correction for multiple 
testing. Specifically, the oleoyl-arachidonoyl-glycerol 
(DG 18:1_20:4) showed lower values at older ages (p 
value = 1.11E − 12), and the PE 36:1 showed a decreas-
ing trend with older age (p value = 6.8E − 13). Similarly, 
the 20:4 cholesterol ester (CE 20:4) and the lignoceroyl 
sphingomyelin (SM 18:1;O2/24:0) showed lower values 
at older ages (Table 2).

Discussion

Summary of finding  We examined the association 
between APOE genotype groups and 1453 metabolites 
in 5 different studies comprising 3545 participants and 
544 e2 carriers. After aggregating the study-specific 
results of 553 metabolites that were shared by at least 
2 studies with a meta-analysis, 19 metabolites were 
significantly associated with the E2 genotype group 
at 10% FDR. The metabolomic signature of APOE 
E2 included 4 lipid classes (glycerolipids, glycer-
ophospholipids, sphingolipids, and sterol lipids) and 
6-hydroxyindole sulfate: an organic acid that may be 
a marker of gut microbiome health [18]. Four species 
of lipids from the 4 classes were also correlated with 
age. Interestingly, the effect of the E2 genotype group Ta
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on the glycerolipid DG 18:1_20:4 and on the glyc-
erophospholipid PE 36:1 was in the opposite direc-
tion to the age effect and carriers of the E2 genotype 
group appear to maintain, on average, higher values of 
these lipid species at any age. On the other hand, the 
effects of the E2 genotype group on the sphingolipid 
SM 18:1;O2/24:0 and the cholesterol ester CE 20:4 
were concordant with the age effect, and carrying this 
genotype was associated with lower levels of both lipid 
species that were also lower at older ages. Last, it is 
noteworthy that many of the significant findings related 
to lipids with polyunsaturated fatty acyl chains (20:4, 
22:5, 22:6) that were found to be linked to a variety 
of different lipid carriers. This finding supports the 
hypothesis that altered levels of lipid-bound polyunsat-
urated fatty acids may be part of the AD-protective and 
longevity-enhancing effects of APOE.

Discussion of key results and relevant literature  The 
patterns of associations between APOE and the four 
classes of lipids in our study are consistent with those 
reported in recent studies and, particularly, the compre-
hensive analysis of Wang et  al. [9] that identified 237 

lipid species from more than 20 lipid classes that cor-
relate with the e2 allele. Our results confirm the gen-
eral trend of lower sphingo- and sterol-lipids and higher 
glycerolipids and glycerophospholipids in e2 carriers 
described in [9]. Lower levels of the three cholesterol 
esters CE 20:4, CE 22:5, and CE 22:6 in e2 carriers 
compared to e3 homozygotes have also been observed in 
older community-dwelling black men [33]. In addition, 
the same authors found a diacylglycerol, DG 38:5, that 
was similarly higher in e2 carriers vs. e3 homozygotes, 
though this result was only borderline significant.

In our analysis, we noticed that four of the lipid spe-
cies that were associated with the e2 allele of APOE were 
also associated with age in the LLFS. In particular, levels 
of SM 18:1;O2/24:0 and CE 20:4 decreased with older 
age and were lower in e2 carriers, while levels of DG 
18:1_20:4 (DG 38:5) and PE 36:1 decreased with older 
age but were higher in carriers of the e2 allele. We posit 
that since the e2 allele has a protective effect, the con-
cordant associations of SM 18:1;O2/24:0 and CE 20:4 
with both the e2 allele and older age suggest that decreas-
ing levels of these two lipid species with older age may 
represent a protective mechanism that is enhanced in e2 

Fig. 1   Left panel: Forest plot of the study-specific effects of 
E2 = e2e2, e2e3 vs E3 = e3e3 and meta-analysis results for DG 
18:1_20:4 (oleoyl-arachidonoyl-glycerol) and sphingolipid SM 
18:1;O2/24:0/. The genetic effects on the x-axis are in log-

scale. The panels in the middle and the right display the dis-
tribution of the log-transformed levels of these two lipid spe-
cies by APOE groups and age strata by APOE groups in LLFS 
participants

GeroScience (2023) 45:415–426 423
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carriers. Supporting this hypothesis, Wang et al. reported 
that elevated levels of some cholesteryl esters were asso-
ciated with increased risk for AD [9], replicating data 
also provided in [34] and [10]. In addition, higher levels 
of cholesterol esters and sphingomyelins were associated 
with higher risk for cardiovascular disease and mortal-
ity [35]. It has been recently shown that an imbalance in 
sphingomyelin species is associated with AD pathogen-
esis and modulation of sphingosine-1-phosphate recep-
tor activity could restore this imbalance [36]. Our results 
suggest that the e2 allele of APOE could have a role in 
maintaining protective levels of sphingomyelin species 
that warrant further investigation.

On the other hand, the discordant associations of the 
glycerol lipid DG 18:1_20:4 (DG 38:5) and the glyc-
erophospholipid PE 36:1 with the E2 group and age 
(higher in E2 carriers and lower with older age) sug-
gest that maintaining higher levels of this lipid species 
as people age might have a beneficial effect. Elevated 
levels of several diacylglycerols in E2 carriers have 
been previously reported in [9] and, while only lower 
levels of the species DG 16:0_22:6 (DG 38:6) have 
been correlated to AD by these investigators, lower 
levels of several DG species have been associated with 
higher risk for cardiovascular events and mortality in 
large cohorts [35]. Earlier reports that measured DG 
species using a different technology in a small number 
of participants reported significantly higher levels of 
DG 34:2 and DG 36:2 in participants with mild cog-
nitive impairment versus individuals with mild and 
severe dementia but also when compared with controls 
[37], and similar patterns were noted by Wood et  al. 
[38]. It has been postulated that glycerol lipids could 
be blood biomarkers of immune activation in the brain 
[39] and possibly modulate autophagy by induction of 
protein kinase [40, 41]. Declines of glycerophospholip-
ids have been associated with older age in mice, and 
the decline appeared to be reduced after treatment with 
acarbose although the effect was significant only in 
males [42].

A novel finding in our analysis is the higher level of 
6-hydroxyindole sulfate detected in e2 carriers. This 
metabolite is a member of the class of indoles that have 
several protective features, including anti-oxidant effects, 
and have been shown to increase health span and extend 
survival in a number of animal models [43], although 
elevated levels of this metabolite were noted in individu-
als with impaired kidney function [44]. This metabolite 
was associated with changes in gut microbiome that were 

reflective of healthy aging and longevity in the Arivale 
cohort [18]. Interestingly, plasma levels of 6-hydroxyin-
dole sulfate terms were positively correlated with preva-
lence of Akkermansia and Lachnoclostridium in the atlas 
of metabolomic signatures of the gut microbiome [45]. 
Akkermansia is considered a marker of gut health and is 
highly prevalent in centenarians [46]. Lachnoclostridium 
abundance was increased in e2 carriers, when compared 
with e3 carriers, in mice engineered to express APOE 
alleles [47]. This metabolite is structurally similar to 
5-hydroxyindole, which is an inhibitor of monoamine 
oxidase in brain (MAO) [48], that is used as a therapeutic 
approach in Alzheimer’s disease treatment [49]. Collec-
tively, these data suggest a link between the e2 allele and 
the gut-brain axis.

No clear role for E4  Our study did not find any 
significant association between metabolites and the 
E4 genotype group, despite the collectively large 
number of e4 carriers. Wang et al. [9] also reported 
a smaller number of metabolites associated with 
e4 than e2. It has previously been noted that differ-
ences for e2 carriers when compared with non-e2 
carriers may be easier to detect because of allele 
differences in apolipoprotein affinity [33]. For 
example, when compared with the e3 or e4 alleles, 
the e2 allele causes the resulting APOE2 isoform to 
have a 50 × lower binding affinity for the low-den-
sity lipoprotein receptor [50], potentially resulting 
in larger differences in circulating lipids that are 
easier to detect [33, 51]. In addition, serum and/
or plasma may not be the best tissue. For example, 
very recently Miranda et al. [52] found lower levels 
of some diglycerol lipids in brain tissues of e4 car-
riers compared to e3 homozygotes.

Limitations  Our analysis aggregated the results 
derived from five different studies that used a differ-
ent study design, as well as different enrollment cri-
teria, blood collection protocols, and approaches to 
metabolomics. Despite these differences, the metabo-
lomic signature of the E2 genotype group is remark-
ably robust but probably limited to metabolites that 
were detected with multiple approaches. There cer-
tainly will be additional metabolites that correlate 
with APOE alleles and that were not detected in our 
analysis. In addition, inclusion of a larger number of 
normally aging individuals could unveil associations 
between the E4 genotype group and metabolites.
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Conclusions

Our analysis discovered a robust metabolomics sig-
nature of APOE alleles that confirms an important 
role of isoforms of this gene in regulation of lipids 
and suggests a possible link between APOE and the 
gut-brain axis that warrants further investigation. 
These results expand our ongoing characterization 
of the role of APOE2 in longevity [4] and preser-
vation of good cognitive functions [5] through bio-
logical mechanisms [19]. They also add new evi-
dence supporting a possible role of longevity genetic 
variants in slowing down the rate of molecular 
aging [53]. However, many questions remain to be 
answered. Future studies should replicate the results 
in larger, ethnically, and racially diverse groups, and 
validate the use of different technologies. It will also 
be important to quantify the portion of the protective 
effects of e2 on longevity and neuroprotection that 
is mediated by the metabolomic signature to assess 
the value of this signature as target for therapeutics. 
Finally, as we enrich our ongoing studies of different 
molecular data such as serum proteomics, integrat-
ing the multi-omic associations with APOE geno-
type into one model will help decipher the molecu-
lar steps between genotype and the various paths to 
healthy aging and extreme human longevity.
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