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SHORT COMMUNICATION

Tests of association based on genomic 
windows can lead to spurious 
associations when using genotype panels 
with heterogeneous SNP densities
Jinghui Li1, Zigui Wang1, Rohan Fernando2 and Hao Cheng1*  

Abstract 

Dense single nucleotide polymorphism (SNP) panels are widely used for genome-wide association studies (GWAS). In 
these panels, SNPs within a genomic segment tend to be highly correlated. Thus, association studies based on test-
ing the significance of single SNPs are not very effective, and genomic-window based tests have been proposed to 
address this problem. However, when the SNP density on the genotype panel is not homogeneous, genomic-window 
based tests can lead to the detection of spurious associations by declaring effects of genomic windows that explain a 
large proportion of genetic variance as significant. We propose two methods to solve this problem.

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco 
mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ 
zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Genome-wide association studies (GWAS) have been 
widely used to locate quantitative trait loci (QTL) for 
traits of interests [1–3]. Typically, GWAS methods are 
based on testing the significance of single nucleotide 
polymorphism (SNP) effects. However, SNPs within a 
genomic segment can be highly correlated with each 
other and jointly influence the phenotype, which makes 
the effect of a single SNP difficult to be identified [4]. 
Therefore, GWAS based on testing genomic windows 
have been proposed to overcome this problem [5].

Many approaches have been developed to make infer-
ences of associations based on genomic windows. Chen 
et al. [6] generalized a frequentist method to test genomic 
window effects through extending the popular single SNP 
testing method, Efficient Mixed-model Association eXpe-
dited (EMMAX) [7]. It has been suggested that EMMAX 
is not statistically coherent since it treats one marker (or 

window) effect as both fixed and random, and repeats the 
process for every single marker (or window) to make infer-
ences [6, 8]. Other frequentist methods make inferences 
on genomic windows using bootstrap or sample permuta-
tion [4, 9], which are computationally expensive. Therefore, 
the use of Bayesian approaches, which include all marker 
effects simultaneously, have gained popularity in recent 
research. Legarra et al. [10] developed a method of Bayes 
factors to evaluate genomic windows, but did not suffi-
ciently justify the threshold that was used. Fernando et al. 
[11] described a method to calculate the window posterior 
probability of association (WPPA) using Markov chain 
Monte Carlo (MCMC). They showed that the posterior 
type I error rate is less than α when declaring an association 
for a genomic window with WPPA > 1− α . However, we 
will show that this approach may result in spurious asso-
ciations, i.e., the proportion of false positives exceeding the 
expectation, for genomic windows at the higher end of the 
distribution for SNP density. Note that some frequentist 
methods, e.g., [12], may also detect spurious associations if 
effects of genomic windows explaining a large proportion 
of genetic variance are declared as significant.
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The objectives of this study are to show that genomic-
window based tests can lead to the detection of spurious 
associations when the SNP density on the genotype panel 
is not homogeneous and to propose two methods to solve 
this problem. The article is composed of three parts. First, 
we will demonstrate the problem of spurious associations 
in analyzing a real data set. Second, two methods to over-
come this problem are described and compared with the 
original method. Finally, the validity of our methods is 
examined through simulated data sets.

Methods
Demonstration of spurious associations
Bayesian regression models
For simplicity of the description, all analyses in this study 
were based on a single-trait regression model with a gen-
eral mean as the only fixed effect. The model for individual 
i from n genotyped individuals can be written as:

where yi is the phenotypic value for individual i, µ is the 
overall mean, mij is the genotype covariate at locus j for 
individual i (coded as 0, 1 or 2), αj is the marker effect for 
locus j, and ei is the random residual for individual i. We 
assume that µ has a flat prior, and all the residuals, ei , are 
independent and identically distributed normal variables 
with null mean and variance σ 2

e  , which in turn is assumed 
to have a prior of a scaled inverse chi-square distribution. 
The prior used in BayesCπ [13], a Bayesian variable selec-
tion method, is used for the marker effects. In BayesCπ , 
the prior for marker effects, αj , is identical and independ-
ent with mixture distributions, each of which has a point 
mass at zero with probability π , and a normal distribution 
with probability 1− π having a null mean and variance 
σ
2
α

 , which in turn has a prior of a scaled inverse chi-
square distribution. In addition, π is treated as unknown 
with a uniform prior.

Inference of associations based on genomic windows
Inferences of associations based on genomic windows were 
made using the method described by Fernando et al. [11]. 
The posterior distribution for the proportion of the genetic 
variance explained by each genomic window is estimated 
from MCMC samples as follows. First, the genotypic value 
of the genomic window w is calculated as:

where Mw is the genotype covariates matrix and αw is the 
vector of the samples of marker effects for SNPs in the 
window w. Then, the genetic variance explained by win-
dow w is calculated as:

yi = µ+

p
∑

j=1

mijαj + ei,

gw = Mwαw ,

where gwi is the local genotypic value of window w for 
individual i and n is the total number of individuals. Sim-
ilarly, the total genetic variance, σ 2

g  , is calculated as:

where g is the vector of genotypic values, M is the gen-
otype covariate matrix, α is the vector of the samples of 
marker effects and gi is the genotypic value for individual 
i. Finally, the proportion of the genetic variance explained 
by genomic window w is:

Given the MCMC samples of qw , WPPA is calculated as 
the proportion of qw samples that exceed the value of T. 
A constant value of T = 0.1% was used for all windows 
in [11], and others have used T =

1
N  , where N is the total 

number of genomic windows [14].

Real data
An Oryza sativa data set [15] with 413 Oryza sativa indi-
vidual records of genotypes and the trait of flowering 
time in Arkansas was used to demonstrate the problem 
of spurious associations. After removing the records with 
missing data for the trait and genotypes with a minor 
allele frequency less than 0.05, 374 individuals and 33,701 
SNPs were included in the analysis. The data are publicly 
available at the Rice Diversity Panel (http:// www. riced 
ivers ity. org). Inferences of association based on genomic 
windows using Bayesian regression models were con-
ducted using non-overlapping windows of size 1 Mb. The 
genome of the real data was divided into 378 non-over-
lapping genomic windows of size of 1 Mb, and the value 
of T was set to 1N  , where N = 378. The lower, median and 
upper quartiles for the number of SNPs per window ( pw ) 
were 60, 82 and 106, respectively. Seven windows con-
taining more than 175 (i.e., upper quartile + 1.5× (upper 
quartile − lower quartile)) SNPs were identified as dense.

Two solutions
The results of the analysis with real data showed false 
positives on dense genomic windows, which will be dem-
onstrated in  the "Results and discussion" section. Here, 
we propose two methods to solve the problem of false 
positives. We denote the above method of making infer-
ences of associations based on genomic windows as 

σ
2
gw

=

∑n
i=1 g

2
wi

n
−

(
∑n

i=1 gwi

n

)2

,

g =Mα

σ
2
g =

∑n
i=1 g

2
i

n
−

(
∑n

i=1 gi

n

)2

,

qw =

σ
2
gw

σ 2
g

,
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1 MbT. The first method is to use a window size of 100 
SNPs (100 T) and set the value T to 1

N ′ , where N ′ is the 
total number of windows for a window size of 100 SNPs. 
This method (100 T) provides equal numbers of SNPs for 
each window, and thus the problem caused by window 
density can be avoided. However, a window size of 100 
SNPs may not be as informative as a window size of 1 
Mb. Therefore, using window-specific T for a window 
size of 1 Mb (1 MbTw) is proposed as the second method. 
Here, instead of a constant T, a set of window-specific 
Tw =

pw
p  is used, where pw is the number of SNPs in win-

dow w and p is the total number of SNPs.

Data analysis using two solutions
The Rice Diversity Panel data were reanalyzed using the 
two methods proposed above. In order to examine the 
properties of the solutions, the three methods, 1  MbT, 
100 T, and 1 MbTw, were also compared through a sim-
ulation study. Phenotypes were simulated based on the 
genotypic data from the Rice Diversity Panel. Since the 
number of QTL ( nQTL ) may influence the GWAS result, 
90 phenotypic data sets were simulated for nQTL = 30, 
90, and 300 (30 replicates for each). All the QTL effects 
were generated from a standard normal distribution. In 
order to show the false positive caused by dense win-
dows, all the QTL positions were randomly selected from 
the SNPs located on nondense windows (i.e., all windows 
except the seven dense ones identified previously). Phe-
notypes were generated based on a heritability of 0.5.

The GWAS performance of the three methods was 
compared using the area under receiver operating charac-
teristic (AUC), which was calculated through the R pack-
age ROCR [16]. In order to exclude the irrelevant AUC 
with low levels of specificity, only the partial area under 
the curve up to the false positive rate of 5% (pAUC5) was 
calculated [6]. For ease of comparison, all pAUC5 values 
were rescaled such that the pAUC5 of a random classifier 
equals 1 (i.e., all pAUC5 values were divided by 0.00125). 
The pAUC5 values of 1  MbT, 1  MbTw and 100  T were 
compared for each level of nQTL by ANOVA F-test at a 
significance level of 0.05.

We also conducted the GWAS based on EMMAX using 
a window size of 1 Mb [6] denoted as 1 MbFre, in order 
to compare our methods with a frequentist method. The 
significance of each window was inferred through a χ2 
test and the result is shown as the negative logarithm of 
p-values.

All analyses based on Bayesian regression methods 
were performed using the JWAS package [17], which is 
an open-source, publicly available package for single-
trait and multi-trait whole-genome analyses. The GWAS 
based on EMMAX was performed in R [18].

Results and discussion
Real data analysis
In the GWAS result based on 1 MbT, the correlations of 
pw with qw and WPPA were 0.62 and 0.65, respectively, 
which means that dense windows tend to explain more 
genetic variance and have large WPPA. One possible 
explanation (hypothesis) for this observation is that a 
window with a high density of SNPs is also likely to con-
tain more trait loci than a window with a lower density 
of SNPs. To test this hypothesis, we reanalyzed the data 
and computed the correlations of pw with qw and WPPA 
after phenotype permutation, in which we shuffled the 
phenotype labels but kept the genotypes the same. If this 
hypothesis was true, the correlations following permu-
tation of the phenotypes should be low since the phe-
notype–genotype relationship is removed. However, in 
30 replicates of random shuffling, the average correla-
tion between pw and qw was 0.36, and that between pw 
and WPPA was 0.62. In addition, the largest WPPA was 
always obtained for one of the three densest windows, 
containing 733, 594 and 545 SNPs, respectively. The high 
correlation between pw and WPPA indicates that dense 
windows tend to have large WPPA regardless of the 
phenotypes and this is very likely to cause an excess of 
false positives. Use of priors in other approaches, such as 
BayesB [19, 20] or Bayesian LASSO [21], would result in 
the same problem as above.

After changing the value of T from a constant to a win-
dow-specific value (1 MbTw), the correlation between pw 
and qw stayed the same, but that between pw and WPPA 
decreased from 0.65 to 0.29. The Manhattan plot shows 
that the dense windows showing significant signals dis-
appeared when using 1 MbTw instead of 1 MbT (Fig. 1). 
One should note that, the use of a window-specific T 
does not change the proportion of genetic variance 
explained by each window, but it changes the WPPA 
through different values for T.

Simulated data analysis
The correlations obtained with the simulation data are 
similar to those with real data. For a window size of 1 Mb, 
the correlation between pw and qw was strong (Fig.  2), 
especially for nQTL = 90 and 300. Window density was 
also highly correlated with WPPA when using a constant 
T value to calculate WPPA, while the correlation signifi-
cantly decreased when using a window-specific T value 
(Fig.  3). When T is set to 1N  , the null hypothesis is that 
each genomic window explains an equal amount of 
genetic variance (i.e., no QTL exists). However, when 
using Tw =

pw
p  , the null hypothesis is that each SNP 

explains an equal amount of genetic variance, thus dense 
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windows have to explain more genetic variance than non-
dense windows to obtain the same WPPA value. 

The pAUC5 values of 1 MbT, 1 MbTw and 100 T 
are shown in Table  1. Although no significant differ-
ence was found for pAUC5 when nQTL = 30 , pAUC5 
of 1 MbT was significantly lower than that of 1 MbTw 

and 100 T when nQTL = 90 and 300. No significant dif-
ference was found between 1 MbTw and 100 T. The 
result of pAUC5 indicates that using a window size of 
100 SNPs or a window-specific T improves the GWAS 
performance. Note that the performance of 100 T 
may not be comparable to that of 1 MbT and 1 MbTw 
because different genomic windows are tested in 100 
T. Similar results were observed for simulation studies 
with different heritabilities (results not shown). The 
correlation between the negative logarithm of p-val-
ues and the number of SNPs in each window was low 
(− 0.11) for 1 MbFre in the real data analysis, and none 
of the dense windows was significant (Fig.  1). This is 
because, under the null hypothesis, for each window, 
the test statistic follows a Chi-square distribution with 
the degrees of freedom equal to the number of SNPs 
in the window, which lowers the negative logarithm 
of p-values for dense windows. Regarding the GWAS 
performance in the simulation study, 1 MbFre per-
formed significantly worse than 1 MbT and 1 MbTw 
when nQTL = 30 and 90 based on pAUC5, although no 
significant difference was observed when nQTL = 300. 
We also conducted another simulation study using a 
swine dataset composed of 928 individuals and 44,055 
SNPs [22]. In the swine dataset, the 1 MbTw consist-
ently improved the GWAS performance compared to 1 
MbT when using genotype panels with heterogeneous 
SNP densities (results not shown).

Fig. 1 Manhattan plot of GWAS analysis for the real data. 1 MbT = GWAS analysis with a window size of 1 Mb and a constant T for all windows; 1 
MbTw = GWAS analysis with a window size of 1 Mb and window specific T; 100 T = GWAS analysis with window size of 100 SNPs and a constant T; 1 
MbFre = GWAS analysis with a window size of 1 MB using EMMAX. Red points represent dense windows

Fig. 2 Correlations between number of SNPs and the proportion 
of genetic variance explained by each window with a window size 
of 1 Mb for simulated data. Correlations were obtained based on 30 
replicates for each number of simulated QTL
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Conclusion
When SNP densities on the genotype panel are hetero-
geneous, genomic-window based tests can lead to the 
detection of spurious associations by declaring effects 
of genomic windows  that explain a large proportion of 
genetic variance as significant. Two straightforward solu-
tions are offered in this paper. One is to make each win-
dow contain an equal numbers of SNPs, and the other 
one is to use a window-specific T value, so that false posi-
tives caused by window density may be avoided.
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