
UCLA
UCLA Electronic Theses and Dissertations

Title
Performance Debugging Frameworks for FPGA High-Level Synthesis

Permalink
https://escholarship.org/uc/item/1f19x5nc

Author
Choi, Young-kyu

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1f19x5nc
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Performance Debugging Frameworks for

FPGA High-Level Synthesis

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Young-kyu Choi

2019

c© Copyright by

Young-kyu Choi

2019

ABSTRACT OF THE DISSERTATION

Performance Debugging Frameworks for

FPGA High-Level Synthesis

by

Young-kyu Choi

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2019

Professor Jingsheng Jason Cong, Chair

Using high-level synthesis (HLS) tools for field-programmable gate array (FPGA) design is be-

coming an increasingly popular choice because HLS tools can generate a high-quality design in

a short development time. However, current HLS tools still cannot adequately support users in

understanding and fixing the performance issues of the current design. That is, current HLS tools

lack in performance debugging capability. Previous work on performance debugging automates

the process of inserting hardware monitors in low-level register-transfer level (RTL) languages

which limits the comprehensibility of the obtained result. Instead, our HLS-based flows offer anal-

ysis on a function or loop level and provide more intuitive feedback that can be used to pinpoint

the performance bottleneck of a design. In this dissertation, we present a collection of HLS-based

debugging frameworks for various purposes and characteristics of the design. First, we address the

problem in the HLS synthesis step, where an inaccurate cycle estimation is provided if the pro-

gram has input-dependent behavior. We propose a new performance estimator that automatically

instruments code that models the hardware execution behavior and interprets the information from

the HLS software simulation. However, the performance estimation result of this flow may not be

accurate for a type of designs that cannot be simulated correctly by existing HLS software simula-

tors. To handle such cases, we propose a new software simulator that provides cycle-accurate result

based on the HLS scheduling information. If the input dataset is not available for software simula-

ii

tion or high-level models do not exist for all components of the FPGA design, we also present an

on-board monitoring flow for automated cycle extraction and stall analysis. Finally, we address the

needs of HLS programmers to automatically find the best set of directives for FPGA designs. We

propose a design space exploration (DSE) framework to optimize applications with variable loop

bounds in Polybench benchmark. A quantitative comparison among the proposed frameworks is

shown using the sparse matrix-vector multiplication benchmark.

iii

The dissertation of Young-kyu Choi is approved.

William Hsu

Miryung Kim

Anthony John Nowatzki

Jingsheng Jason Cong, Committee Chair

University of California, Los Angeles

2019

iv

For my wife, Hyejin, my two daughters, Jiho and Jimin, my parents, and my in-law parents

v

TABLE OF CONTENTS

List of Figures . x

List of Tables . xiii

Acknowledgments . xvi

Vita . xviii

1 Introduction . 1

2 Related Works . 7

2.1 Performance Analysis Tools in CPU and GPU . 7

2.2 Related Works on Performance Estimation . 7

2.3 Related Work on Simulation . 8

2.4 Related Works on FPGA Hardware Debugging 9

2.5 Related Works on HLS Design Space Exploration 10

3 Performance Debugging with Fast and Accurate HLS Performance Estimator . . . 12

3.1 Performance Debugging Framework: HLScope 13

3.1.1 Scope and Overall Tool Structure . 13

3.1.2 Performance Debugging Parameters . 17

3.1.3 Performance Debugging for Quicksort . 20

3.2 Performance Estimator for HLS . 22

3.2.1 Introduction . 22

3.2.2 Background: Cycle Estimation of Loops 24

vi

3.2.3 Improving Cycle Estimation Accuracy for Loops and Conditional Statements 25

3.2.4 External Memory Access Model for HLS Software Simulation 31

3.2.5 Experimental Results . 38

3.2.6 Software Simulation Flow Overhead . 40

3.2.7 Comparison with Related Work . 41

3.2.8 Conclusion . 42

4 Cycle-Accurate Software Simulator for HLS . 43

4.1 Introduction . 43

4.2 Problem Description and Motivating Examples 48

4.2.1 Data Ordering Problem . 48

4.2.2 Artificial Deadlock and Stall . 50

4.2.3 Missing Data from Feedback Path . 52

4.3 Problem Statement and Challenges . 53

4.4 Automated Code Generation for Rapid Cycle-Accurate Simulation 57

4.4.1 FIFO Communication Cycle-Accurate Simulation 57

4.4.2 Simulation of Parallelism . 65

4.4.3 Loop and Function Simulation . 69

4.5 Optimization of Pipelined Loops Simulation . 70

4.5.1 Cycle-Based Variable Liveness Analysis 70

4.5.2 Pointer-Based Variable Access . 71

4.6 Overall Flow . 72

4.7 Source-Level Correctness Debugging and Performance Debugging 73

4.7.1 Live Capture . 74

4.7.2 Source-Level Event Trigger and Performance Measurement 75

vii

4.7.3 Large Data Debugging . 76

4.8 Experimental Results . 76

4.8.1 Experimental Setup . 76

4.8.2 Execution Time . 77

4.8.3 Accuracy . 80

4.9 Concluding Remarks . 80

5 On-Board Monitoring for Performance Debugging 82

5.1 Introduction . 82

5.2 Cycle Extraction Based on In-FPGA Monitoring 82

5.3 In-FPGA Stall Analyzer for FIFO-based Dataflow Application 85

5.3.1 Code Instrumentation for Module Under Analysis 85

5.3.2 Code Instrumentation for FIFOs . 86

5.3.3 Monitor for Stall Analysis Network . 87

5.4 Experimental Results . 89

5.4.1 Experimental Setup . 90

5.4.2 Logic Overhead . 90

5.5 Comparison with Related On-board Debugging Work 91

5.6 Concluding Remarks . 91

6 Fast Design Space Exploration for Applications with Dynamic Behavior 93

6.1 Introduction . 93

6.2 HLS Code Transformation for Variable-Bound Loops 95

6.2.1 Loop Pipelining and Loop Unrolling Based on the Maximum Loop Bound 95

6.2.2 Partial Unrolling with Pipelining . 96

viii

6.2.3 Transformation for Variable Reduction 98

6.2.4 Transformation for Variable Prefix Sum 101

6.3 Cycle / Resource Estimation . 106

6.3.1 Resource Estimation . 108

6.3.2 Cycle Estimation . 110

6.4 Overall Flow and the Design Space Exploration 111

6.5 Experimental Result . 113

6.5.1 Experimental Setup . 113

6.5.2 Performance . 113

6.5.3 Exploration Speed and Prediction Accuracy 115

6.6 Comparison with Related Work . 115

6.7 Conclusion . 116

7 Quantitative Comparison among Proposed Frameworks and Concluding Remarks 117

7.1 Quantitative Comparison with Sparse Matrix-Vector Multiplication Benchmark . . 117

7.1.1 Sparse Matrix-Vector Multiplication . 118

7.1.2 Comparison of the Proposed Performance Debugging Frameworks 120

7.1.3 Comparison with GPU and Multithreaded CPU Implementation 123

7.2 Concluding Remarks and Future Work . 124

References . 128

ix

LIST OF FIGURES

1.1 HLS development steps and the proposed performance debugging frameworks 3

3.1 Initial unoptimized C code of non-recursive quicksort (modified from [49]) 14

3.2 Dependency graph for qsort_comp() given in Fig. 3.1 (c). The dotted line denotes

synchronization barriers, and t denotes time frames divided by synchronization barriers. 15

3.3 Quicksort code and corresponding dependency graph after applying double buffering

and unrolling. loadstore() function combines the load() and store() function given

in Fig. 3.1, and qsort_comp() function is the same as that of Fig. 3.1. 16

3.4 Performance debugging parameters collected from the initial unoptimized version of

quicksort. Parameter derived from HLScope-S result. (batch_num=128, n_per_batch=1024,

‘dram’: external DRAM port, ‘lmem’: local BRAM). 20

3.5 Performance debugging parameters after unrolling qsort_comp() function 32 times.

Some PEs not shown for brevity. 21

3.6 Performance debugging parameters after applying double buffering optimization. . . . 21

3.7 C code of non-recursive quicksort [49] . 23

3.8 Loop pipelining parameters . 24

3.9 Code instrumentation to find dynamic loop bound for loop 1.1.1 in Fig. 3.7. Instru-

mented code is in bold. 25

3.10 Quicksort code after pragma insertion . 27

3.11 Quicksort code after inserting cycle estimation code 28

3.12 Dependency graph for qsort_comp() given in Fig. 3.11. The dotted line denotes syn-

chronization barriers, and t denotes time frames divided by synchronization barriers.

Reproduced from Fig. 3.2. 30

x

3.13 Random memory access example in HLS. Variable bram is a float-type local memory

and variable dram is an external port. Local memory addr has been pre-initialized

with random memory location. 33

3.14 Code example for external memory access from multiple PEs, where load(), qstore_comp(),

store() have no dependency with double buffering . 36

3.15 Computing cycle estimate (Eq. 3.18 and Eq. 3.19) for the example given in Fig. 3.14,

in the for loop that contains load(), qsort_comp(), store() PEs 36

4.1 Molecular dynamics simulation [33] . 45

4.2 HLS design steps [40] and simulation flows . 46

4.3 Timing diagram of the molecular dynamics simulation in Fig. 4.1 (FIFO transactions

among only Dist PE1, Dist PE2, and Force PE are shown) 49

4.4 Structure and code for motivating example toy_mpath 51

4.5 Modified code of M2 in Fig. 4.4 to avoid artificial deadlock 52

4.6 Matrix multiplication with linear systolic array architecture 53

4.7 Vivado HLS scheduling report for M2 of Fig. 4.5 . 58

4.8 Simulation function structure for selective simulation of an FSM state (M2_SIM is

simulated at line 9 of Fig. 4.10) . 59

4.9 Simulation code that models pipelined loop parallelism for M2 of Fig. 4.5 (provides

details for line 9 of Fig. 4.8) . 66

4.10 Module/FIFO simulation scheduler to model task-level parallelism 68

4.11 FIFO simulation code for fifo3 (F3_SIM is simulated at line 11 of Fig. 4.10) 69

4.12 Loop condition and update for flattened loop in M1 of Fig. 4.4 70

4.13 The code after applying pointer-based variable access optimization to the initial code

provided in Fig. 4.9 . 71

4.14 Overall simulation framework of FLASH . 73

xi

4.15 An example debugging session for deadlock detection using FLASH 74

5.1 Code instrumentation for in-FPGA monitoring (instrumented code in bold) 84

5.2 Dataflow vector add connected through FIFO. Circled number is the module ID. 85

5.3 Code instrumentation for Read A module. Instrumented code in bold. 86

5.4 Instrumentation of full_mtr and empty_mtr for FIFO 87

5.5 Code for full_mtr logic . 88

5.6 Distributed stall analysis network . 88

6.1 Variable loop bound example in LU benchmark . 95

6.2 Loop unrolling for loop 2 of baseline LU code (Fig. 6.1) based on the maximum loop

bound found in profiling . 96

6.3 Code after applying the proposed partial unrolling and pipelining techniques to loop 2

of Fig. 6.1 . 97

6.4 Variable reduction example in Cholesky benchmark 98

6.5 The computation pattern of variable reduction . 99

6.6 HLS code for loop 4 of Fig. 6.4 after transformation 100

6.7 Baseline code for rotated integral image computation [81] used in face recognition. . . 102

6.8 Kogge-Stone prefix sum algorithm [73]. 103

6.9 Proposed transformation of variable prefix sum in loop L2_2 of rotated integral image

computation (Fig. 6.7) . 104

6.10 Proposed computation pattern for variable prefix sum (UF=1, d=4) 105

6.11 Overall DSE framework . 112

7.1 The SpMV kernel . 118

7.2 Overall architecture for SpMV computation . 119

7.3 Design space exploration result of SpMV (cycles per sample) 120

xii

LIST OF TABLES

1.1 Comparison of the proposed performance debugging frameworks 5

3.1 Vivado HLS report for the computation part of quicksort code given in Fig. 3.1. IL, II,

and TC are explained in Section 3.2.2. 13

3.2 List of performance debugging parameters . 17

3.3 Vivado HLS report for the quicksort code given in Fig. 3.7. IL, II, and TC are explained

in Section 3.2.2. 22

3.4 HLS report for quicksort after code modification . 29

3.5 Cycle estimation and simulation time for quicksort 31

3.6 Read and write bandwidth and latency measured from ADM-PCIE-7V3 and ADM-

PCIE-KU3 using the methodology in [22] . 32

3.7 External bandwidth modeling for ADM-PCIE-7V3 and ADM-PCIE-KU3 35

3.8 Average cycle estimation error (absolute difference between on-board cycle measure-

ment and HLScope-S cycle estimation) for ADM-PCIE-7V3 and ADM-PCIE-KU3

boards. 39

3.9 Cycle estimation error rate of the most time-consuming among parallel DRAM-bound

submodules for ADM-PCIE-7V3 and ADM-PCIE-KU3 boards. 40

3.10 Time overhead of SW simulation flow. Consists of code instrumentation and additional

SW simulation time (unit:s). 41

4.1 Comparison of the software simulation of Xilinx Vivado HLS [130] and Intel OpenCL

HLS [62]. Undesirable characteristics are in bold. 46

4.2 The FIFO communication in the C source code, the corresponding FIFO IP RTL ports

and C variables, and the corresponding FLASH simulation code (Vivado HLS FIFO

APIs [130] and FIFO IP RTL ports [127] are in monospace font) 54

xiii

4.3 FIFO IP behavior (assumes all FIFO APIs are evaluated at t) 59

4.4 Debug directives for FLASH . 73

4.5 Simulation preparation time breakdown (preprocessing, HLS synthesis, and simulation

file generation: Fig. 4.14) . 77

4.6 Speedup after applying optimizations (cumulative spedup shown) 78

4.7 Simulation time comparison among Vivado HLS C simulation, Vivado HLS RTL sim-

ulation, Verilator, and FLASH simulation . 79

4.8 Total execution cycle estimated by Vivado HLS synthesis report and FLASH, and its

error rate compared to the RTL-simulated result . 81

5.1 List of probes for module under analysis . 86

5.2 List of states in the SAN monitor 3 . 89

5.3 Overhead of in-FPGA debugging flow for various versions of quicksort. 90

5.4 Logic overhead of monitors for in-FPGA flow. 90

5.5 Logic overhead of instrumented FIFO . 91

5.6 Logic overhead of SAN monitor . 91

6.1 Comparison of the execution cycles and the PE efficiency for loop pipelining (Sec-

tion 6.2.1), loop unrolling based on the maximum bound (Section 6.2.1), and the pro-

posed partial unrolling with pipelining (Section 6.2.2) 97

6.2 Comparison of the total execution cycles, resource consumption, and latency of various loop

bounds (for cases min=1, max=512) for the proposed variable-bound reduction scheme with

conventional pipelining, dependence-free pipelining [62, 142], and conventional unrolling, for

loop 4 of the Cholesky benchmark . 102

xiv

6.3 Comparison of the total execution cycles, resource consumption, and latency of various loop

bounds (for cases min=1, max=512) for the proposed variable-bound prefix sum scheme with

conventional pipelining, unrolling [69], and Kogge-Stone algorithm [57] for loop L2_2 of

rotated integral image . 107

6.4 FF/LUT estimation error rate for various R for LU benchmark 109

6.5 Design parameters evaluated in DSE . 112

6.6 Effect of the proposed code transformations (unit: cycles) 113

6.7 Comparison of the performance, design space exploration speed, and the prediction

accuracy among proposed, COMBA, and AutoAccel flows (the performance and the

prediction error rates are that of the final output design) 114

7.1 FPGA resource consumption of the design with the best performance 120

7.2 Comparison of the proposed performance debugging frameworks for the best SpMV

design space (100,000 samples, FIFO depth set to 2) 121

7.3 Performance comparison of SpMV among CPU, GPU, and FPGA implementations . . 123

xv

ACKNOWLEDGMENTS

I would like to thank, first and foremost, my advisor Professor Jason Cong for guiding me

through the long journey of PhD degree. Although I have made many mistakes during the process,

Professor Cong have always shown patience to lead me to the right path. Professor Cong took time

to teach many things to me from topic selection, experimentation, paper writing, and presentation.

It has been an unforgettable experience, and I will always try to remember his valuable lessons

throughout my career.

I gratefully acknowledge the funding received from Intel and NSF (CCF-0903541, CCF-0926127,

CCF-1436827, CCF-1723773, #20134321). I also thank the CDSC partners (especially Baidu, Fu-

jitsu, Google, NEC, and VMWare) and the CAPA collaborators (from Intel and Cornell University)

for the financial support and the feedback during the regular meetings. I also greatly appreciate the

FPGA boards and the software donation from Xilinx.

I would like to thank the defense committee members, Professor William Hsu, Professor

Miryung Kim, and Professor Tony Nowatzki, for their encouragement and the research guidance.

I thank Professor Hsu for his advice on the 3D CT reconstruction acceleration work in my early

PhD days. I thank Professor Kim for the insights on the concept of performance debugging in this

dissertation. I thank Professor Nowatzki for his feedback on differentiating HLScope from other

works.

I am grateful to Falcon Computing for providing me with a core infrastructure that I used

throughout the works in my dissertation. Without the support of Falcon members, I would not have

been able to implement my frameworks. I am especially grateful to Dr. Peng Zhang (formerly a

post-doctoral researcher in UCLA) for teaching me how to use the ROSE and Merlin Compiler

APIs. Dr. Zhang was one of my role model as a researcher and an engineer, and I was lucky to

have the opportunity to learn from his eagerness and efficiency in doing research. I also thank

Dr. Peichen Pan and Dr. Cody Hao Yu (also a former labmate) for the discussions and the lessons

on the FPGA tools.

xvi

I would also like to thank the former and current lab members. I thank Yuze Chi for always

helping me with tools, servers, and board installation. I thank Dr. Di Wu for teaching me the steps

that is needed to go through the PhD course. I thank Jie Wang, Dr. Peng Wei, and Dr. Peipei Zhou

for the frequent discussions and sharing tips for the research. I thank Dr. Peng Li for teaching me

many functionalities of Vivado HLS and ROSE. I thank Dr. Yu-ting Chen, Dr. Zhe Chen, Professor

Zhenman Fang, Nazanin Farahpour, Licheng Guo, Dr. Karthik Gururaj, Dr. Yuchen Hao, Dr. Hui

Huang, Dr. Muhuan Huang, Farnoosh Javadi, Hassan Kianinejad, Jason Lau, Professor Jie Lei, Sen

Li, Karl Marrett, Hyunseok Park, Weikang Qiao, Zhenyuan Ruan, Atefeh Sohrabizade, Dr. Bingjun

Xiao, Xinfeng Xie, Mo Xu, and Bo Yuan for their feedback and discussion. The PhD life would

have been much more difficult if it were not for your help and kindness.

I am grateful to Janice Wheeler for carefully editing all of my conference and journal submis-

sions. I also thank Alexandra Luong for her administrative support.

I would also like to express my gratitude to my former advisors, Professor Wonyong Sung and

Professor In Kyu Park, and my former mentor, Dr. Kisun You, for their lessons and guidance. They

have given me the opportunity to take down this fascinating journey as a researcher.

xvii

VITA

2008 Master of Science in Electrical Engineering and Computer Science, Seoul Na-

tional University, Korea.

2006 Bachelor of Science in Electrical Engineering, Seoul National University, Ko-

rea.

PUBLICATIONS

Young-kyu Choi, J. Cong, Z. Fang, Y. Hao, G. Reinman, and P. Wei, "In-depth analysis on

microarchitectures of modern heterogeneous CPU-FPGA platforms," ACM Trans. Reconf. Tech.

and Syst. (TRETS), vol. 12, no. 1, Feb. 2019.

Y. Chi, Young-kyu Choi, J. Cong, and J. Wang, "Rapid cycle-accurate simulator for high-level

synthesis," ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays (FPGA), Seaside, pp. 178-

183, Feb. 2019.

Young-kyu Choi and J. Cong, "HLS-based optimization and design space exploration for ap-

plications with variable loop bounds," in Proc. IEEE/ACM Int. Conf. Computer Aided Design

(ICCAD), San Diego, Nov. 2018.

Young-kyu Choi, P. Zhang, P. Li, and J. Cong, "HLScope+: Fast and accurate performance

estimation for FPGA HLS," in Proc. IEEE/ACM Int. Conf. Computer Aided Design (ICCAD),

Irvine, pp. 691-698, Nov. 2017.

xviii

Young-kyu Choi and J. Cong, "HLScope: High-level performance debugging for FPGA de-

signs," in Proc. IEEE Int. Symp. Field-Programmable Custom Computing Machines (FCCM),

Napa, pp. 125-128, May 2017.

Young-kyu Choi, J. Cong, Z. Fang, Y. Hao, G. Reinman, and P. Wei, "A quantitative analysis

on microarchitectures of modern CPU-FPGA platforms," in Proc. Design Automation Conference

(DAC), Austin, pp. 109-114, Jun. 2016.

Young-kyu Choi and J. Cong, "Acceleration of EM-based 3D CT reconstruction using FPGA,"

IEEE Trans. Biomedical Circuits and Systems (TBCAS), vol. 10, no. 3, pp. 754-767, Jun. 2016.

Young-kyu Choi, J. Cong, and D. Wu, "FPGA implementation of EM algorithm for 3D CT

reconstruction," in Proc. IEEE Int. Symp. Field-Programmable Custom Computing Machines

(FCCM), Boston, pp. 157-160, May 2014.

xix

CHAPTER 1

Introduction

With multicore scaling coming to an end [47], customization is often considered to be a promising

solution that delivers high performance with low power consumption [30]. The efficiency of cus-

tomized architectures has been demonstrated in various applications including convolution [103],

medical imaging [107], neural network [135], and speech processing [56]. However, it is not prac-

tical to provide a customized solution for every application with an application-specific integrated

circuit (ASIC), because ASIC manufacturing incurs high non-recurring engineering (NRE) cost.

As an alternative solution, field-programmable gate array (FPGA) has gained much interest as a

choice of customized acceleration platform because it provides near-ASIC performance and energy

efficiency while offering reconfigurability. FPGA allows engineers to easily update and improve

their designs even after initial deployment. In datacenters, FPGA can be used to hardware acceler-

ate different needs of customers with homogeneous platforms [102]. Due to its popularity, FPGA

is now being offered in various cloud computing services such as Amazon Web Service [5] and

Microsoft Azure [88].

However, the low-level programming environment of FPGA often created barrier for those

who did not have previous hardware design experience. FPGA designs were typically written in

register-transfer level (RTL) languages such as Verilog or VHDL, which require behavior of all

signals to be specified for every clock cycle. Design, verification, and optimization of applications

written in low-level RTL languages became complex tasks that required expertise of experienced

engineers. This naturally lead to increased development cost and prolonged time-to-market.

In order to solve this problem, high-level synthesis (HLS) tools such as Xilinx Vivado HLS [31,

1

130] and Intel OpenCL HLS [62] were introduced.1 The HLS tools allow programmers to design

FPGA applications with high-level languages such as C and OpenCL and automatically transform

them into low-level FPGA designs. This reduces the programmers’ burden of determining the

micro-architectural details of an FPGA design and increases their productivity. It also becomes

easier to change the clock frequency or port an existing design into a new platform. Moreover, the

verification is simplified because HLS tools allow C-level simulation of FPGA designs.

However, one of the obstacles that prevented more widespread use of HLS can be found in the

lack of performance analysis tools. Even if an initial FPGA accelerator design does not meet the

required performance, it is difficult to identify the cause of the problem. In contrast, CPU and GPU

programmers may use established tools like VTune [64] and NSight [94]. These tools exploit the

built-in hardware performance counters and provide line-by-line profiling result. Also, detailed

analysis of the performance bottleneck is provided for the programmers.

The process of identifying the performance bottleneck and finding an optimization to fix the

problem is called performance debugging. Previous work on FPGA performance debugging relies

on instrumenting hardware monitors into DRAM/inter-module FIFO communication channels [42,

45, 62, 71, 76, 108] or into the finite-state machine of a loop pipeline [42, 108] to measure their

active/idle cycle ratios. However, their instrumentation is performed from the viewpoint of an

individual module with low-level hardware description language (HDL). Such limited scope makes

it difficult to identify the FPGA module that is causing another module to be idle (stalled). Instead,

we propose a performance debugging methodology based on HLS. Our high-level analysis allows

tracing the cause of stalls on a function or loop level, which provides more intuitive feedback to

the programmers by pinpointing the bottleneck of an FPGA design.

However, the difficulty in performing performance debugging on HLS tools arises from the

fact that HLS tools abstract away the hardware execution model from the programmers to shorten

the learning curve and to allow quick modification of various design parameters. As a result,

performance-related details such as the execution cycles of individual processing elements or the

list of modules that cause other modules to stall are unavailable to the users. A programmer can

1For a comprehensive list of the off-the-shelf HLS tools, the readers are referred to [75, 84, 93].

2

Figure 1.1: HLS development steps and the proposed performance debugging frameworks

only observe a brief synthesis report and machine-generated output code, which is almost impos-

sible to comprehend. If a programmer wanted to analyze the output code for further performance

improvement, the person often has to spend many hours to identify the performance bottleneck.

In this dissertation, we propose a collection of HLS-based performance debugging frameworks

for FPGA as shown in Fig. 1.1. Each debugging framework is intended to be used at a different

place of the design process. The first framework is the performance estimator for HLS. Typically,

an HLS user would synthesize a design and obtain the performance estimation in the HLS synthe-

sis report, so that the user can quickly identify the performance bottleneck and restructure the code

without the time-consuming bitstream generation process. However, we will show in Chapter 3 that

the HLS-reported performance estimate may be inaccurate when the program has input-dependent

behavior or external memory access. To solve this problem, we propose a simulation-based model-

ing (SBM) approach named HLScope-S. HLScope-S automatically instruments code that models

the hardware-execution behavior. The model includes the external memory access behavior (e.g.,

DRAM bandwidth) and the loop execution behavior (e.g., initiation interval and iteration latency).

The instrumentation is performed in the granularity of loops and functions to minimize the esti-

3

mation overhead. Next, we run the HLS software simulation on the instrumented code to reflect

the input-dependent behavior on the performance estimation. This performance estimation flow

is presented in Chapter 3. We also provide a detailed description of the performance debugging

process in this chapter.

The performance estimation flow described in Chapter 3 depends on the software simulator of

HLS to reflect the input-dependent behavior of the design. However, we found that the current

FPGA HLS commercial software simulators sometimes produce incorrect results (details provided

in Chapter 4). This results in HLScope-S to provide an inaccurate performance estimate. To

solve this problem, we propose a new HLS simulation flow named FLASH. The main idea be-

hind FLASH is to extract scheduling information from the HLS tool and automatically construct

an equivalent cycle-accurate simulation model while preserving C semantics. We show that cor-

rectness of the simulation and accurateness of the performance estimation are both achieved by

the proposed process. Unlike HLScope-S which inserts performance estimation codes in loops

or functions, FLASH simulates in a finer granularity of C statements. In order to accelerate the

simulation speed compared to the RTL simulation, we abstract away the allocation, binding, and

library information, which were found to be unnecessary for solving the incorrect result problem.

The experimental result shows that FLASH runs three orders of magnitude faster than the RTL

simulation. The details of the proposed framework is explained in Chapter 4.

The simulation-based flows in Chapters 3 and 4 provide reliable performance estimation when

representative input dataset exists. However, in the case where the input may change at the time of

FPGA deployment, on-board monitoring becomes necessary. Another problematic case is where

high-level models do not exist for all components of the FPGA design. For example, a design

may have an RTL sub-component or DRAM with unknown characteristics. In order to provide

performance debugging capability for these cases, we propose a HLS-based on-board performance

monitoring framework named HLScope-M in Chapter 5. The instrumented monitoring code is

described in pure HLS C without involving RTL code, so that the integration process is simplified.

In addition to the cycle extraction, we also propose a stall analysis network (SAN) that enables each

module to trace the root cause of stall in on-board execution and find the performance bottleneck.

4

Table 1.1: Comparison of the proposed performance debugging frameworks
HLScope-S FLASH HLScope-M DSE
(Chapter 3) (Chapter 4) (Chapter 5) (Chapter 6)

Purpose
Performance

Simulation
On-board Design space

estimation monitoring exploration

Accuracy
Approximate

Cycle-accurate Cycle-accurate
Approximate

(~5% error) (~5% error)

Time 1-10 mins 1-10 mins 1-10 hours
0.1-1 secs

(per design)
Coverage FPGA+DRAM FPGA only FPGA+DRAM FPGA only

Publication [24] [18] [23] [25]

Based on the information collected from performance debugging, an FPGA designer would

perform optimization. However, many different combinations of HLS directives exist, and it is

difficult for designers to manually find the best configuration. Several design space exploration

(DSE) frameworks for HLS tools have been recently proposed [37, 72, 100, 111, 137, 138] to solve

this problem. However, one of the common limitations found in these tools is that they cannot

find a design point with large speedup for applications with variable loop bounds. The reason is

that loops with variable loop bounds cannot be efficiently parallelized or pipelined with simple

insertion of HLS directives. Also, making highly accurate prediction of cycles and resource con-

sumption on the entire design space becomes a challenging task because of the inaccuracy of the

HLS tool cycle prediction and the wide design space. To address these challenges, we propose

code transformations that increase the utilization of the compute resources for variable loops, in-

cluding completely parallel computational pattern and computational patterns with loop-carried

dependency (floating-point reduction and prefix sum patterns). In order to rapidly perform DSE

with high accuracy, we describe a model that predicts the resource usage from the information

obtained from a small number of actual HLS synthesis runs. The cycle estimation model has been

derived from HLScope-S. Experiments on applications with variable loop bounds in Polybench

benchmarks show that our framework outperforms current state-of-the-art DSE frameworks. This

is presented in Chapter 6.

The comparison among the proposed debugging frameworks are provided in Table 1.1. As

shown in the table, FLASH and HLScope-M provide cycle-accurate result. In contrast, HLScope-

5

S and the DSE framework are based on approximated prediction of the execution time so that the

cycle estimation process is accelerated. For the time taken to apply these frameworks, HLScope-M

takes most amount of time because it involves the bitstream generation process. The rest of the

frameworks take similar time in the order of minutes, because they involve code transformation

using ROSE infrastructure [106] and a software simulation run. Note that since the DSE process

reuses the software simulation for cycle estimation of multiple design points, the time taken per

design point is in the order of seconds. In terms of coverage, HLScope-S models the behavior

of FPGA modules, DRAM controllers, and DRAM. Similarly, HLScope-M can monitor any type

of modules. FLASH and the DSE framework are currently limited to modules that only perform

computation and intra-FPGA communication, and it remains as a future work to generalize these

frameworks that also model the DRAM access latency.

In order to perform quantitative comparison among the proposed frameworks, we provide a

case study on sparse matrix-vector multiplication (SpMV) benchmark. This will be presented in

Chapter 7. Also, concluding remarks and future work are provided in this chapter.

6

CHAPTER 2

Related Works

2.1 Performance Analysis Tools in CPU and GPU

Performance analysis tools have been widely used for CPUs and GPUs to help programmers with

analyzing the performance bottlenecks of their programs. For example, Intel’s VTune [64] is a

performance analysis tool for x86 CPUs. VTune collects the profiling result on each line of code,

so that the users can identify and optimize the most frequently used portion of the code. VTune

also provides utilization analysis of CPU microarchitecture—such as the that of the instruction

fetch and the execution units of CPU. The experience is enhanced with a graphical timeline view

of the utilization. The users can also identify memory-related issues with parameters such as the

cache miss rate and the effective DRAM bandwidth.

NVIDIA’s NSight [94] provides a profiling result for GPU programs with details similar to

that of VTune. NSight provides utilization analysis on components specific to GPUs—such as

the number of warps [95] per multiprocessor or the effective shared memory bandwidth. If the

performance is lower than expected, the users can refer to NSight’s detailed analysis on the reason

for stall—such as the memory dependency or the synchronization problems. NSight also provides

a general advice on how to remove each type of stall and improve the performance.

2.2 Related Works on Performance Estimation

FPGA performance estimation models are used in design space exploration (DSE) tools such as

Lin-analyzer [138] and COMBA [137] to find the best design point among possible candidates.

Their models predict the performance for common optimizations such as unrolling, pipelining,

7

and array partitioning. Also, DSE flows such as Aladdin [111] can provide cycle estimation for

programs with dynamic behavior using the instruction trace from simulation. However, we will

explain in Section 3.2.7 why their models have limitations in accurately predicting the performance

of designs actually generated by HLS tools. We will also demonstrate that HLScope-S provides

the estimation result faster than the trace-based flows.

For external memory modeling, Aladdin [111] links a cycle-accurate trace-based DRAM sim-

ulator to a performance estimator, but cycle-accurate simulation takes a long time compared to the

high-level modeling we propose in Section 3.2.4. Work in [9, 13] describes approximately timed

transactional-level SystemC simulation with instruction set simulator (ISS), but we would like to

raise the level of abstraction to a level of function call or loops, which speeds up the simulation

process compared to modeling individual external memory requests. A simple high-level model

for a single external memory accessor has been provided in [97], but FPGA typically has multiple

processing elements competing for the shared external memory resource. Our model for multiple

PE contention will be explained in Section 3.2.4.2. The work in [72] uses a statistical model to

estimate the external memory latency of fetching a block, but it is uncertain that such predefined

template models for block access can be generalized for arbitrary access patterns.

2.3 Related Work on Simulation

As will be explained in Chapter 4, FLASH is a software-based HLS simulator that provides cycle-

accurate result. Previous work on software-based HLS simulation includes LegUp HLS [14],

which provides a speedup prediction based on the profiling result of the source code and the ex-

ecution cycle from its synthesis result. FlexCL [80] takes OpenCL code as input and performs

dynamic profiling with a control data flow graph (CDFG) simulation for performance and power

estimation. These works, however, do not guarantee cycle-accuracy like FLASH.

There are several SystemC simulators (e.g., [28, 92, 109]) that can achieve cycle-accuracy

for the source code that has explicit scheduling information specified by the programmer. How-

ever, such code transformation may be too difficult for non-experts. Our flow, on the other hand,

8

achieves cycle-accuracy for an HLS C source code without requiring user-defined scheduling in-

formation.

FLASH has a similar high-level optimization approach with transaction-level modeling (TLM)

works [9, 13, 54] in a sense that both FLASH and TLM works accelerate the simulation speed by

abstracting unnecessary implementation details. However, even if one tries to apply a similar strat-

egy to optimize the HLS simulation, several issues remain. One of the issue is that, among various

type of information created by HLS (e.g., allocation, binding, and scheduling information), it is

unclear which one should be kept or abstracted. Another issue is how to automate the abstraction

process so that even non-expert users can benefit from this approach. We address both issues in

Chapter 4.

There is a class of work that accelerates the simulation of an HLS tool’s output RTL code by

converting the RTL code into a cycle-accurate C model [83, 113]. Mahapatra, et al. [83] report a

speedup of 5X after removing the core computation and only maintaining the IO timing, but such

approach cannot be used for data-dependent benchmarks. Verilator [113], on the other hand, can be

used to provide a functionally correct and cycle-accurate HLS simulation as our work. Some of the

techniques Verilator uses are removal of time delays, randomized unknown value, and creation of

table lookups. However, the speedup in Verilator is limited because it is very difficult to completely

remove allocation and binding information from the RTL code—whereas our approach is free from

this overhead since it was never added in the first place. A quantitative comparison is presented in

Section 4.8.

2.4 Related Works on FPGA Hardware Debugging

Commercial FPGA vendors provide logic analyzers that can be synthesized into the FPGA to

extract logic values. Examples include Xilinx’s Chipscope [126] and Altera’s SignalTap [4]. These

tools typically require users to specify the monitored signals and the trigger conditions from the

RTL signal list. Trace buffers are then attached to the monitored signals. Next, the original FPGA

design and the monitoring logic are synthesized into a bitstream. The bitstream is executed until

9

the triggering condition is met, and the content of the trace buffer is offloaded for analysis. One

of the problems of using these synthesizable logic analyzers is that the manual selection from the

low-level netlist may be too difficult for novice FPGA programmers.

Whereas the synthesizable logic analyzers are typically used for RTL designs, there are FPGA

debugging works that target HLS designs [51–53, 89, 90]. These works maintain mapping between

the variables in the C source code and the hardware registers so that the programmers can select

the variables to be debugged in high-level. Similar to Chipscope and SignalTap, they store the

content of the variables in trace buffers (called Event Observability Buffer in [89, 90])—however,

they perform further optimizations such as storing only the data value that has changed [51] and

reconstructing the data value from other variables offline [53]. After offloading the recorded data

from the trace buffer, the program may be replayed as the user steps through the source code [51].

Chipscope, SignalTap, and works in [51–53, 89, 90] aim to provide correctness debugging ca-

pability. However, these work do not provide insight on solving the performance problems of an

FPGA design. To address this problem, some performance debugging tools have been proposed in

literature. Work in [71] profiles heterogeneous system consisting of CPUs and FPGAs to identify

the bottleneck nodes with high usage rate. Intel’s OpenCL HLS tool [62] profiles the commu-

nication channel between computation modules as well as the external memory ports. HwPMI

[108] provides comprehensive infrastructure of performance monitors for FIFOs, bus, BRAMs,

and finite-state machines (FSMs). Work in [42] targets the FSMs derived from if, while, and for

statements (written in C), and measurement modules are inserted in VHDL to collect the statistics

of the FSMs. Work in [120] is based on OpenCL and stores events’ timestamp and their sequence

numbers which can be used to measure the stall latency and monitor the memory access patterns.

We will explain the difference of HLScope-M compared to these previous works in Section 5.5.

2.5 Related Works on HLS Design Space Exploration

The automated DSE framework for HLS is described in several published works. The work in

[72] and [100] take high-level parallel patterns such as map and reduce and generate an FPGA

10

design based on the predefined templates and the statistical performance model. Aladdin [111]

omits synthesis and RTL generation and reuses optimization across a large design space for fast

exploration among ASIC accelerators. Lin-analyzer [138] takes a similar approach and further

considers the FPGA-specific resources (e.g., DSP, BRAM) during its scheduling. MPSeeker [139]

uses Gradient Boosted Machine (GBM) technique for resource modeling and explores trade-off

between fine-grain and coarse-grain parallelism. Most recently, COMBA [137] and AutoAccel

[37] have been proposed. COMBA explores a comprehensive set of HLS optimization directives

and finds the best configuration based on their metric-guided search. AutoAccel presents a push-

button flow based on their composable, parallel, and pipeline micro-architecture. These works,

however, do not guarantee finding an efficient design for applications with variable loop bounds.

A quantitative comparison will be provided in Section 6.5.

11

CHAPTER 3

Performance Debugging with Fast and Accurate HLS

Performance Estimator

In this chapter, we will first present the scope and the overall structure of our performance debug-

ging tool, HLScope. We will describe how HLScope performs analysis in high-level semantics

such as functions of loops, which is more intuitive than providing feedback from DRAM/inter-

module FIFO communication channels [42, 45, 62, 71, 76, 108] or finite-state machine of a loop

pipeline [42, 108]. We will next explain the performance debugging parameters that is provided

by HLScope. Based on the collected parameters, HLScope evaluates the level of application opti-

mization to identify potential performance bottleneck. This is followed by three sample debugging

sessions for various versions of quicksort.

HLScope requires cycle count of each module for its analysis. It is possible to obtain this

information from an on-board performance monitoring flow (HLScope-M). However, a drawback

of such approach is that the FPGA bitstream generation typically takes many hours. An alternative

approach is to use the performance estimate provided in the HLS tool’s synthesis report. However,

we will show that the synthesis report may become incomprehensible when the program has input-

dependent behavior. To solve this problem, we will describe a fast and accurate HLS-based cycle

estimation flow (HLScope-S) in this chapter. A high-level modeling of the hardware behavior

is inserted into the C source code, and the cycle information is extracted by running a software

simulation. We will describe an automated code transformation to enable this process.

12

3.1 Performance Debugging Framework: HLScope

3.1.1 Scope and Overall Tool Structure

Performance debugging is a process of identifying the performance bottleneck and finding an opti-

mization to fix the problem. We illustrate our performance debugging framework with Vivado HLS

[130] because of its widespread use in FPGA designs [20, 21, 23, 32, 34, 78, 79, 79, 105, 135, 138].

Similar to the level of information given in Vivado HLS report, we expect the HLS tool to pro-

vide iteration latency (IL), initiation interval (II), and trip count (TC) (will be defined in Sec-

tion 3.2.2) of loops and the latency of functions. An example of the expected cycle information for

the qsort_compute() function of the quicksort (Fig. 3.1 (c)) is shown in Table 3.1. We do not expect

the HLS tool to provide cycle information about every line of code; for example, in the graph rep-

resentation of the quicksort code in Fig. 3.2, the cycle information for the else statement in line 40

is not given in Table 3.1. Instrumentation methods to recover the missing cycle information (’?’ in

Table 3.1) will be extensively discussed in Section 3.2.3.

Table 3.1: Vivado HLS report for the computation part of quicksort code given in Fig. 3.1. IL, II,
and TC are explained in Section 3.2.2.

Name IL II TC
qsort_comp ? - -
Loop 1 ? - ?
Loop 1.1 ? - ?
Loop 1.1.1 4 4 ?
Loop 1.1.2 4 4 ?

As an input, HLScope takes a C code that may have Vivado HLS directives. Our tool will

analyze all modules in the top function as a default – or user may specify a particular submodule

of interest. Using the APIs in the ROSE compiler infrastructure [106], HLScope first transforms

the input code into a tree of nested code blocks. A code block consists of multiple operations with a

single program execution path. For the quicksort example in Fig. 3.1, the resulting graph is shown

in Fig. 3.2. Vivado HLS will schedule functions without true data dependency to be executed in

parallel– thus, HLScope analyzes the variables used in each function for data dependency detection

to match Vivado HLS’s schedule.

13

Figure 3.1: Initial unoptimized C code of non-recursive quicksort (modified from [49])

14

Figure 3.2: Dependency graph for qsort_comp() given in Fig. 3.1 (c). The dotted line denotes
synchronization barriers, and t denotes time frames divided by synchronization barriers.

For simplified execution control, Vivado HLS will schedule all submodules to wait for the com-

pletion of other submodules executed in parallel. In the example dependency graph for a modified

version of the quicksort in Fig. 3.3 (optimization will be explained in Section 3.1.3), loadstore()

function (combines load() and store() of Fig. 3.1) and unrolled functions of qsort_comp() execute

in parallel. After finishing execution, they will wait for all other functions to terminate as well.

This is similar to the barrier synchronization in GPU [95], and from now on, we will simply refer

to it as synchronization. Synchronization is expressed in the dependency graph with the dotted

lines as in Fig. 3.2 and Fig. 3.3. To keep track of the execution order, we also assigned time frames

t to the groups of blocks that execute in parallel.

In order to avoid the overhead of waiting for other modules to complete (synchronization over-

head), the user may use the dataflow pragma (#pragma HLS dataflow [130]) and FIFO communi-

cation channel (hls::stream<variable type> [130]). This will allow modules with data dependency

15

Figure 3.3: Quicksort code and corresponding dependency graph after applying double buffering
and unrolling. loadstore() function combines the load() and store() function given in Fig. 3.1,
and qsort_comp() function is the same as that of Fig. 3.1.

16

to continue with the execution as soon as the input data is available and the output buffer is not full.

From now on, we will refer to this module dependency as parallel by dataflow. In the dependence

graph, we place no barrier between the modules and assume they are executed in the same time

frame.

After converting the program into a graph structure, HLScope-S (Section 3.2) measures the

number of cycles for each block. HLScope-M (to be presented in Chapter 5), on the other hand,

measures the number of cycles only at a function level because of the monitoring logic overhead

(Table 5.4). Note that the measurement can be performed at a finer granularity in HLScope-S,

because the simulation time overhead is small (~4%, as shown in Table 3.10). In addition to

the cycle measurement, HLScope also record the number of DRAM transactions in bytes using

the Vivado HLS software simulation with a real input testbench. Based on these measurements,

HLScope computes several performance debugging parameters that will be explained in the next

subsection.

3.1.2 Performance Debugging Parameters

HLScope provides three groups of performance debugging parameters as shown in Table 3.2. The

first group indicates a module’s importance for performance debugging.

Table 3.2: List of performance debugging parameters
Probe name Description

cycle Execution cycle of each module
PCP Is this module on performance critical path?

LUT/DSP/BRAM LookUp Table / DSP48 / Block RAM
stall rate 1 - usage rate of computational resource

DBW DRAM bandwidth
ADBW Aggregate DBW among all modules executed in parallel

Reason for stall Stall type & the name of module causing stall

Parameter cycle is the total execution cycle of each module. Cycle information is obtained

from the in-FPGA flow (Section 5.2 and Section 5.3) or the simulation flow (Section 3.2.3 and

Section 3.2.4). We exclude the period when the module has been stalled due to other modules.

Assuming a hierarchical structure of code blocks such as Fig. 3.2 and Fig. 3.3, HLScope will

17

add the cycle estimate for a child block to its parent block depending on the static dependency

analysis of the code. There are three possibilities: serial, parallel, and parallel by dataflow. If true

dependency exists between blocks, they can be executed in a serial manner and will be assigned to

a different time frame. The execution time of the child blocks c (tc) will be added to its parent p

(tp) as:

tp =
∑
c

tc (3.1)

If there is no dependency, the blocks can execute in parallel and will be assigned to the same

time frame. The execution time is the maximum of the parallel blocks:

tp = max
c

(tc) (3.2)

For the modules running in parallel by dataflow (explained in Section 3.1.1), the execution time

is also bounded by the slowest block (Eq. 3.2). The difference is that they do have dependency

between them, so it takes
∑

c ILc for data to traverse from beginning to end:

tp = max
c

(tc) +
∑
c

ILc (3.3)

Also, the modules will be assigned to the same time frame.

Using the module dependency and the cycle information, we mark each module as to whether it

has an effect on the overall performance or not. We refer to this parameter as performance critical

path (PCP). The serially-executing modules are classified ‘yes’ in PCP. If there are several parallel-

executing modules in a time frame, a module with the longest execution time will be classified ‘yes’

in PCP. Also, going top-down hierarchically, submodules of a module marked ‘yes’ will be further

analyzed in a similar way for the critical path analysis; submodules in all other modules are marked

‘no’. For the modules running in parallel by dataflow, we only mark the module with the longest

execution time in a time frame as ‘yes’ and the rest as ‘no’.

Next, HLScope report shows compute resource (LUT/BRAM/DSP) for each function. This is

obtained from the HLS synthesis report. A function with large LUT/BRAM/DSP consumption and

18

a large stall rate can be identified as wasting the compute resource. This could be problematic if

the application is compute-intensive.

The next group of parameters provided by HLScope indicates the usage rate of resources. The

first parameter is stall rate. The stall rate stalli of each module is computed by:

stalli = 1− ti/ttot (3.4)

where ti is each module i’s execution time and ttot is the total execution time of all modules. This

rate shows the usage rate of FPGA computational resources.

Next, we determine DRAM bandwidth (DBW). It is computed by dividing the amount of data

written to or read from the external memory. The number of transferred bytes is obtained from

the software simulation that will be explained in Section 3.2.4. We also provide the aggregated

DRAM bandwidth (ADBW) which computes the combined DRAM bandwidth among all modules

executed in parallel. Note that the DRAM access is only measured in the software simulation flow,

HLScope-S. Thus, the performance debugging based on the on-board flow, HLScope-M, does not

provide DBW and ADBW parameter values.

Finally, we provide the reason for the stall and the name of the module that is causing the

stall. If a module is waiting for data from another module, it is classified as a dependency stall.

It includes stalls due to other modules executed in serial or stalls in inter-module communication

among parallel-executing modules by dataflow. If a module is waiting for other parallel-executing

modules to finish, the stall is classified as a synchronization stall. A module could have multi-

ple stall reasons depending on its place in HLS module hierarchy– an example will be shown in

Fig. 3.5, where qsort_comp PE0 has 2.2% synchronization stall waiting for qsort_comp PE27 to

finish. It also has 25.2% dependency stall for both load and store because qsort_comp PE 0-31,

load, and store are executed in serial.

Based on the reason for stall provided by HLScope, the programmer can decide which module

to focus his/her attention on for further optimization. An example performance debugging session

will be presented in the next section.

19

3.1.3 Performance Debugging for Quicksort

In this section, we will demonstrate performance optimization steps for the quicksort example

based on HLScope. We assume that we have 128 sets of 1024 single-precision floating-point

numbers to be sorted.

Fig. 3.4 lists the performance debugging parameters collected from initial unoptimized quick-

sort (code: Fig. 3.1a, dependency graph: Fig. 3.2). The cycle information has been collected from

the software simulation flow, HLScope-S. The most obvious performance problem that we can

identify from the report is that qsort_comp() takes most (96.5%) of the execution time, and prob-

ably should be the target for optimization. Note that the stall rate is very high (98.2%/98.3%) for

load() and store(), but does not cause too much computation resource to remain idle since the LUT

and DSP usage is small (481/445 and 4/4).

Figure 3.4: Performance debugging parameters collected from the initial unoptimized version
of quicksort. Parameter derived from HLScope-S result. (batch_num=128, n_per_batch=1024,
‘dram’: external DRAM port, ‘lmem’: local BRAM).

Based on the analysis from the initial version, we apply unrolling on the compute PEs. The

result is shown in Fig. 3.5. We can confirm that the qsort_comp() function indeed takes a consid-

erably shorter time—from 7.75M cycles to 231–258k cycles. For the nodes on the time-critical

path (load(), qsort_comp() PE 27, store()), however, the analysis shows that the proportion of

load() and store() increased to 25.2%, respectively. This suggests that memory access has now

become a major stall reason. A hint for solution can be found in the aggregate DRAM BW. Dur-

ing qsort_comp(), the ADBW is 0, which means that DRAM is not being utilized at all. This

suggests that modules that do use the DRAM, load() and store(), can probably be overlapped in

qsort_comp().

For memory and compute overlapping, we perform double buffering optimization. The code

after optimization was shown in Fig. 3.3, and the corresponding report is presented in Fig. 3.6.

20

Figure 3.5: Performance debugging parameters after unrolling qsort_comp() function 32 times.
Some PEs not shown for brevity.

For simplicity of design, we combined the load() and store() modules into one. Also, this report

contains cycle information from in-FPGA flow, because HLScope recommends taking a more

accurate approach when it detects several PEs running in parallel with similar execution time so

that it can provide correct PCP and stall reason analysis.

The report shows that there is some DRAM BW transaction while the qsort_comp() module is

being executed (ADBW=701M). Also, there are no more dependency stalls as reasons for a stall.

These two factors suggest that parallelization is properly taking place. Also, the fact that the stall

rate has decreased drastically from the initial version (98.2/3.5/98.3→ 0.0/11.0/16.4/7.4) suggests

that overall efficiency of the design has improved significantly.

Figure 3.6: Performance debugging parameters after applying double buffering optimization.

The report in Fig. 3.6 indicates that the bottleneck is now loadstore(), since all other modules

point to this module as their reason for stall, and only loadstore()’s PCP is ‘yes.’ Since the DRAM

BW reported that (701MB/s) is far less than ideal BW (9.05GB/s), we may perform some DRAM

access optimization for further performance improvement.

21

3.2 Performance Estimator for HLS

3.2.1 Introduction

The performance debugging process illustrated in Section 3.1 requires the cycle count of each

modules. One possible way of obtaining this information is to use the on-board performance

monitoring flow that will be explained in Chapter 5. However, a drawback of such approach is that

the FPGA bitstream generation typically takes many hours.

An alternative approach is to use the performance estimate provided in the HLS tool’s syn-

thesis report. However, the problem of using HLS synthesis report is that the report may become

incomprehensible when the program has dynamic execution paths and loop bounds that depend on

the input data. A motivating example for a well-known quicksort was presented in Fig. 3.1c) [49]

and is shown again in Fig. 3.7. Depending on the value of pivot, the number of iterations for Loop

1.1.1 and Loop 1.1.2 can vary from 1 to N. Also, it may or may not execute some of the conditional

statement (e.g., code A, B, and C). The synthesis report by Vivado HLS for this program is shown

in Table 3.3; it has not been successful in providing any estimate for the total execution time.

Table 3.3: Vivado HLS report for the quicksort code given in Fig. 3.7. IL, II, and TC are explained
in Section 3.2.2.

Name IL II TC
qsort_comp ? - -
Loop 1 ? - ?
Loop 1.1 ? - ?
Loop 1.1.1 4 4 ?
Loop 1.1.2 4 4 ?

There are several reasons why Vivado HLS was unable to provide a cycle estimate. One of

the reason is the variable trip count (TC) in the while loops (Loops 1, 1.1, 1.1.1, and 1.1.2). TC

is required in the loop cycle estimation (Eq. 3.5), but in many cases TC is provided by user or is

input-dependent. Also, quicksort contains dynamic execution path (conditional statements in code

A, B, and C) that is unavailable in the report.

Another aspect which Vivado HLS does provide an estimate but is incorrect by a wide margin

is the external memory modeling. Vivado HLS does allow setting a latency term for each port, but

22

Figure 3.7: C code of non-recursive quicksort [49]

this is a too-optimistic prediction that does not consider the effective DRAM bandwidth and the

memory contention. For an example design that has one read and one write port of 512b external

memory with very long burst access, Vivado HLS will provide a cycle estimate with the assumption

that the kernel may have a DRAM bandwidth of 25.6 GB/s (=2*200MHz*512b). However, [22]

reports that the effective bandwidth would be from 4.9 GB/s to 9.5 GB/s depending on the platform

and the configuration.

Our work addresses these shortcomings by providing a fast and accurate HLS-based cycle

estimate of the FPGA execution. In order to compensate the inaccuracy introduced by the imperfect

loops and the dynamic execution path, we provide a HLS-specific code instrumentation technique

to extract the best estimate of these inaccuracy sources from the HLS synthesis report. After

extracting this hidden performance information, we construct a new simulation file that models

the execution behavior of hardware. As we run the software simulation with an input dataset, the

23

instrumented simulation file provides performance estimate that reflects the dynamic behavior of

the design. We refer to this approach as simulation-based modeling (SBM). This will be explained

in Section 3.2.3.

We also provide a high-level external memory model for a typical FPGA architecture, where

multiple processing elements (PEs) are connected through a bus to the shared external memory.

We assume the PEs issue memory requests of various data bitwidth and burst length. Again, to

reduce the estimation time, the memory model is incorporated into the HLS software simulation.

The main challenge in this part is how to abstract the individual memory access into a high-level

model for fast estimation. Another challenge is that outstanding memory access from multiple PEs

occurs in parallel, whereas the software simulation is performed in serial. The solution will be

explained in Section 3.2.4.

3.2.2 Background: Cycle Estimation of Loops

The parameters used to estimate the execution cycle of a pipelined loop can be explained with

Fig. 3.8. The number of cycles to complete one iteration of a loop is called the iteration latency

(IL). The execution of each iteration is pipelined, and the input rate of the pipeline is called the

initiation interval (II). The number of iterations is referred to as trip count (TC). As can be deduced

from Fig. 3.8, the execution cycle for a pipelined loop is [79]:

t = II ∗ (TC − 1) + IL (3.5)

Figure 3.8: Loop pipelining parameters

24

3.2.3 Improving Cycle Estimation Accuracy for Loops and Conditional Statements

3.2.3.1 Estimation for Loops

However, for loops with input-dependent loop bound (see quicksort example in Fig. 3.7), Vivado

HLS cannot provide the cycle estimate because TC is unknown in Eq. 3.5. The tool will only

provide the II and IL. We can obtain the actual TC by inserting a simple counter statement, as

shown in bold statements in Fig. 3.9. Regardless of the existence of input-dependent loop bound

or conditional break statement, TC can be correctly estimated. Then the loop cycle estimation

code is inserted after the loop based on the run-time acquired TC. Finally, the cycle estimate for

Loop 1.1.1 is hierarchically added into its parent loop (Loop 1.1) cycle estimate.

Figure 3.9: Code instrumentation to find dynamic loop bound for loop 1.1.1 in Fig. 3.7. Instru-
mented code is in bold.

This instrumentation allows the cycle estimate of an unbounded loop to be found, but an ac-

curate estimate cannot be obtained if loops are not perfectly nested. An example can be found in

Loop 1.1. Even if the cycles for Loop 1.1.1 and 1.1.2 are found by the TC instrumentation, there is

no information about code A. The reason is that Vivado HLS did not give the IL of Loop 1.1 (’?’

for Loop 1.1’s IL in Table 3.1) because of the existence of unbounded Loops 1.1.1 and 1.1.2. The

same problem exists for Loop 1.

This problem can be formalized as follows. Suppose that a parent loop p is composed of

25

multiple child blocks c (loop, function call, or conditional statements), and only one of these child

blocks, c1, is a loop. p is not a perfectly nested loop due to the existence of c2, c3.... Assuming

true dependency exists between c, the iteration latency of the parent block (ILp) is the sum of child

block execution time (tc):

ILp =
∑
c

tc = (
∑
c 6=c1

tc) + IIc1 ∗ (TCc1 − 1) + ILc1. (3.6)

If dependency does not exist between c, the summation in Eq. 3.6 can be changed to max(), similar

to Eq. 3.2.

If the trip count of c1 (TCc1) is not known at compile time, the HLS compiler will be unable

to provide ILp even if the rest of child execution time (
∑

c 6=c1 tc) is known. The variable trip

count instrumentation (Fig. 3.9 [23]) on TCc1 allows estimation of IIc1 ∗ (TCc1 − 1) + ILc1 in

Eq. 3.6, but the estimate is not accurate since p’s non-perfectly nested region (
∑

c 6=c1 tc) has not

been considered.

To solve this problem, we can force the HLS compiler to provide the missing information∑
c 6=c1 tc by assigning an arbitrary TCc1. In Vivado HLS, this can be achieved with the pragma

“#pragma HLS loop_tripcount min=100 avg=100 max=100" where 100 is the arbitrary trip count.

With this instrumentation, HLS will provide ILp, IIc1, TCc1, and ILc1. Then the imperfect loop

part is estimated by subtracting (IIc1 ∗ (TCc1 − 1) + ILc1) from ILp. Whether the arbitrary

TCc1 matches the actual trip count in execution is irrelevant, since ILp also increases at the exact

same rate of IIc1, as shown in Eq. 3.6. If there are multiple child loops (c1,..,cN) in p, the cycle

estimation for the non-perfectly nested region of p can be generalized as

∑
c6=c1,..,cN

tc = ILp −
∑

c=c1,..,cN

(IIc ∗ (TCc − 1) + ILc). (3.7)

An example instrumentation for the quicksort is shown in Fig. 3.11. After pragma insertion

in Fig. 3.10, Vivado HLS will provide a report on the assumption that child loop bounds are fixed

(Table 3.4). An estimate for the non-perfectly nested region of Loop 1.1 can then be obtained by

26

Figure 3.10: Quicksort code after pragma insertion

subtracting the cycle estimate of Loops 1.1.1 and 1.1.2 from Loop 1.1 (811-400-400 =11). The

estimate for Loop 1 can be obtained in a similar way (81114-811*100 =14). The estimates for

Loop 1.1 and Loop 1 will be automatically inserted into the simulation code (Fig. 3.11). In the

software simulation process, the HLS estimate from the arbitrary loop bounds will be ignored and

will instead be estimated as Eq. 3.5 with the instrumented TC.

For the quicksort example, HLScope-S first automatically inserts the pragma on every loop to

make Vivado HLS assume that the loop bounds are fixed (Fig. 3.10). This allows Vivado HLS to

generate a report in Table 3.4. An estimate for the non-perfectly nested region of Loop 1.1 can then

be obtained by subtracting the cycle estimate of Loops 1.1.1 and 1.1.2 from Loop 1.1 (811-400-

400 =11). The estimate for Loop 1 can be obtained in a similar way (81114-811*100 =14). Both

cycle estimates will be automatically inserted into the simulation code as shown in Fig. 3.11. In

the software simulation process, the HLS estimate from the arbitrary loop bounds will be ignored

and will instead be estimated as Eq. 3.5 with the instrumented TC.

27

Figure 3.11: Quicksort code after inserting cycle estimation code

28

Table 3.4: HLS report for quicksort after code modification
Name IL II TC
qsort_comp 401~8111401 - -
Loop 1 4~81114 - 100
Loop 1.1 811 - 100
Loop 1.1.1 4 4 100
Loop 1.1.2 4 4 100

3.2.3.2 Estimation for Conditional Statements

The cycle estimate for most conditional statements will be automatically reflected because the cy-

cle addition routine will only be processed when certain paths have been executed. However, some

conditionals that exist between loops or functions will not be properly processed. For example,

Vivado HLS does not provide a separate estimate for the if and the else part of the conditional

statements in code A, B, and C.

Let us assume that a parent block p has multiple child blocks c, and HLS provides a range of

cycle estimates for p: tpmin~tpmax. If some of c are conditional statements, multiple execution

paths l will exist in p. For the quicksort example in Fig. 3.11, the dependency graph is again shown

in Fig. 3.12. In Loop 1, two execution path can be found: l1 along the if statement in line 22 and l2

along the else statement in line 40. The execution time for every execution path l is guaranteed to

have the minimum latency (tlmin) of its parent’s minimum latency (tpmin):

tlmin = tpmin (3.8)

If Eq. 3.8 was not true for an execution path l′ (i.e., tl′min < tpmin), p can be executed faster by

following path l′. This violates the assumption that tpmin is the minimum latency of p. Thus,

Eq. 3.8 is true.

Suppose that there are d (d ∈ c) child blocks along one of the execution paths l. Among d

blocks, e have a known latency and f do not (e, f ∈ d, e ∩ f = ∅). For example in Fig. 3.12, the

blocks with a known latency in Table 3.4 belong to e (e.g., Loop 1.1.1), and the rest of the blocks

belong to f (e.g., else part in line 40).

29

Figure 3.12: Dependency graph for qsort_comp() given in Fig. 3.11. The dotted line denotes syn-
chronization barriers, and t denotes time frames divided by synchronization barriers. Reproduced
from Fig. 3.2.

Then the minimum summed latency of unknown blocks f are:

(
∑
f

tf)min = tlmin −
∑
e

temax = tpmin −
∑
e

temax (3.9)

If an execution path contains a cycle estimation less than (
∑

f tf)min, the cycle difference is added

to the simulated code. Although exact cycle is still unknown, the cycle for unknown blocks are at

least partially compensated.

In the quicksort example, Loop 1 has a minimum latency of 4 (tpmin = 4, Table 3.4). The

execution path along the else part in line 40 has no known latency (
∑

e temax = 0). Thus, according

to Eq. 3.9, the cycle estimate for this execution path ((
∑

f tf)min) is compensated as (4-0) cycle.

30

The instrumented code is shown in Fig. 3.11.

Since this is a minimum analysis, the cycle estimate may have some error. In practice, however,

most of time-consuming blocks are in the form of loops, and Vivado HLS will report II of those

loops. Thus, we can still obtain an accurate estimate with the proposed techniques, as will be

evaluated in Section 3.2.5.2.

3.2.3.3 Estimation Result for Quicksort

After applying all the techniques explained in this section, our tool automatically generates the

code presented in Fig. 3.11. Running software simulation on this instrumented code with N=131072

elements provides a prediction of 14.6M cycles, which is a 2.0% difference from the cycle-accurate

RTL co-simulation (Table 3.5). The estimation time is four orders of magnitude faster. Compared

to the baseline software simulation, the instrumented code incurred a small 2.5% time overhead.

Also, the final instrumented version provides a 48% more accurate cycle estimate than the simple

TC counting version.

Table 3.5: Cycle estimation and simulation time for quicksort

Baseline
Simple TC + imperfect loop RTL

counting[23] & cond stmt est co-sim

Cycle Est N/A
7.42M 14.6M 14.9M
(-50%) (-2.0%) (0%)

Sim Time
0.0394s 0.0395s 0.0404s 817

(1X) (1.002X) (1.025X) (20736X)

3.2.4 External Memory Access Model for HLS Software Simulation

For our external memory access model, we assume an environment where there are several PEs

on an FPGA, and they are connected to a single external memory through a bus and a DRAM

controller. We do not model cache and instead assume that FPGA programmers explicitly control

the internal BRAM as a scratchpad memory for higher performance. We also assume that the bus

can accept several outstanding requests from PEs, as is the case with the AXI4 bus standard [125].

In Vivado HLS, the simulator will assume that data can be fetched from the external mem-

31

ory every cycle. As a result, the estimated DRAM BW will be (#ext_port ∗ bitw ∗ fbus), where

#ext_port is the number of external memory port, bitw is the data bitwidth, and fbus by the

frequency of the bus. As mentioned in the introduction, it will assume an ideal DRAM band-

width of 25.6 GB/s for a design with #ext_port=2, bitw=512b, and fbus=200MHz, but only

4.9GB/s~9.5GB/s is achieved during on-board testing [22].

A simple estimation model for a single DRAM transaction is [97]:

tMEM = DSIZE/DBW + DLAT (3.10)

where the DSIZE is the length of each transaction, DBW is the DRAM bandwidth, and DLAT

is the latency. DSIZE is obtained from the size field of the memcpy function. If the access is

in the form of global array reference, it is found from the length of the consecutive array index

from the loop bound of the loop iterator. Vivado HLS also informs programmers if it has flattened

several loops to extend the consecutive access length. Similar to the cycle estimate routine, the

length is used as a variable that is determined in simulation in run time. Note that if DSIZE is

larger than the maximum bus burst length (1KB for AXI), Vivado HLS will automatically divide

it into several outstanding memory requests of maximum bus burst length.

We test two boards: ADM-PCIE-7V3 [2] and ADM-PCIE-KU3 [3]. The external bandwidth

and the latency (DLATR and DLATW) for both boards are shown in Table 3.6. These figures were

measured using the methodology in [22]; but the listed bandwidth cannot be achieved when the

access is not consecutive or if the bus bitwidth varies. The refined model will be explained in the

following subsection.

Table 3.6: Read and write bandwidth and latency measured from ADM-PCIE-7V3 and ADM-P-
CIE-KU3 using the methodology in [22]

Bandwidth Latency
Read Write Read Write

ADM-PCIE-7V3 9.5 GB/s 8.9 GB/s 542ns 356ns
ADM-PCIE-KU3 10.3 GB/s 9.6 GB/s 434ns 325ns

32

3.2.4.1 Bandwidth Model Refinement

We refine the DRAM bandwidth (DBW) model by assuming it is bounded by all components

in the memory access pipeline: physical DRAM module bandwidth (DBWP), DRAM controller

bandwidth (DBWC), and the bus data bandwidth (DBWB). The effective bandwidth is computed

as:

DBW = min(DBWP , DBWC , DBWB) (3.11)

• Physical DRAM Bandwidth

In ADM-PCIE-7V3, we found that when short (4B) but many (>1MB) discrete memory data are

accessed, the effective external memory bandwidth is reduced to about 7% (0.053GB/s) of the

bandwidth achieved with the consecutive memory access of the same length (0.75GB/s). Such a

large reduction cannot be explained with Eq. 3.10 since the memory access latency would have

been amortized due to several outstanding requests (data size > 1MB) made on the bus.

The reason can be found in the bandwidth constraint of the physical DRAM module. For

illustration, let us consider outstanding requests to random memory location that is expressed in

Fig. 3.13.

f o r (i n t i = 0 ; i < N ; i ++) {
#pragma HLS p i p e l i n e I I =1

bram [i] = dram [addr [i]] ;
}

Figure 3.13: Random memory access example in HLS. Variable bram is a float-type local memory
and variable dram is an external port. Local memory addr has been pre-initialized with random
memory location.

Assuming a closed row policy [77], the minimum time between access in a different address

in a DRAM module is tRC = tRAS + tRP , where tRC is the row cycle time, tRAS is the row

address select (RAS) time, and tRP is the RAS precharge time [58]. For the ADM-PCIE-7V3

and ADM-PCIE-KU3, the DRAM specification [70] states that tRAS = 36ns, tRP = 13.5ns, and

tRC = 49.5ns. In practical implementation, this theoretical latency is often exceeded, and extra

33

overhead is added on the controller side (tCO)—that is, the latency becomes tRC + tCO. From the

random access experiment in Fig. 3.13, we found that the tRC + tCO is 76ns, which suggests that

the controller overhead (tCO) is (76ns-49.5ns)=26.5ns in ADM-PCIE-7V3. In ADM-PCIE-KU3,

tCO is calculated as (62ns-49.5ns)=12.5ns. Note that the average latency of 76ns for 4B of data is

0.053GB/s (=4B/76ns), which is the bandwidth obtained in the random access experiment.

We found that discrete memory access of stride 2, 4, 8, and 16 achieve similar external memory

bandwidth as the random access described in Fig. 3.13. This suggests that the Xilinx controller

does not concatenate outstanding requests of nearby memory addresses into a same burst DRAM

access. Thus, we model strided access in the same way as the random access.

If requested data length is larger than the number of DRAM data pins #dq = 128b, each #dq

bits of data will be sent every fddr = 1.33GHz cycle. In addition to tRC + tCO, the initial overhead

includes RAS to column address select (CAS) time (tRCD) added to CAS time (tCAS), which is

13.5ns. Since the CAS signal is given in parallel to RAS signal, the transaction time for burst

length len (unit of #dq = 64b) is tRCD + tCAS + len/fddr + tRP + tCO.

In summary, the physical DRAM module access time (tDP
) and DBWP can be approximated

as:

tDP
= max(tRAS, tRCD + tCAS + len/fddr) + tRP + tCO (3.12)

DBWP = len ∗#dq/tDP
(3.13)

• Bus Data Bandwidth

If the kernel’s external port data bitwidth (bitw) is less than the maximum bus data bitwidth sup-

ported (512b for SDAccel), the overall DRAM bandwidth might be limited by the bus data band-

width (DBWB). DBWB is computed by multiplying bitw (e.g., float: 32b, uint512: 512b) by the

frequency of the bus(fbus):

DBWB = fbus × bitw; (3.14)

• DRAM Controller Bandwidth

34

Since we do not have knowledge of the inner workings of Xilinx’s DRAM controller propriety,

it is difficult to construct a good model for the DRAM controller bandwidth (DBWC). Thus, we

indirectly measure it by putting many outstanding long consecutive access requests (>512MB)

with maximum bus data size (512b).1 Since DBWP and DBWB achieve their peak values in this

test method, the measured bandwidth, if lower than DBWP and DBWB, can be assumed to be

DBWC . As mentioned previously, the bandwidth for ADM-PCIE-7V3 is measured as 9.5GB/s

for read and 8.9GB/s for write, which is smaller than DBWPmax = 21GB/s and DBWBmax =

12GB/s. Thus, DBWC is set to 9.5GB/s for read and 8.9GB/s for write.

The external bandwidth modeling for ADM-PCIE-7V3 and ADM-PCIE-KU3 described in this

section is summarized in Table 3.7. Compared to the model in Eq. 3.10 [97] and the correspond-

ing measurement result in Table 3.6, the proposed model more accurately predicts the effective

bandwidth for non-consecutive external memory access or access with limited bus bitwidth. The

quantitative evaluation of the proposed model will be shown in Section 3.2.5.

Table 3.7: External bandwidth modeling for ADM-PCIE-7V3 and ADM-PCIE-KU3
ADM-PCIE-7V3 ADM-PCIE-KU3

DBW min(DBWP , DBWB, DBWC)

DBWP len ∗#dq/tDP
(see Eq. 3.13)

DBWB 200MHz × bitw 250MHz × bitw
DBWC 9.5 GB/s(RD) 8.9 GB/s(WR) 10.3 GB/s(RD) 9.6 GB/s(WR)

3.2.4.2 Modeling Multiple PE Contention

In this section we explain the cycle estimation process when multiple PEs try to access the mem-

ory at the same time. Rather than using a time-consuming cycle-accurate transaction model that

accounts for individual DRAM access, we propose a high-level estimation method for our fast

software simulation-based framework. As an example, we consider the for loop (p) in Fig. 3.14

which contains three PEs (c = c1, c2, c3): load(), qsort_comp(), store().

Since we assume a single external memory controller, contention among PEs may incur addi-

1Note that this measurement method itself coincides with the method used in [22], but [22] used this method to
obtain DRAM bandwidth (DBW), whereas we use it to obtain one constraint (DBWC).

35

f o r (i n t i = 0 ; i < N ; i ++) { / / p
load (dram_portA , bram_load [0] , . . .) ; / / c1
qsor t_comp (bram_load [1] , b r a m _ s t o r e [1] , . . .) ; / / c2
s t o r e (dram_portB , b r a m _ s t o r e [0] , . . .) ; / / c3

}

Figure 3.14: Code example for external memory access from multiple PEs, where load(), qs-
tore_comp(), store() have no dependency with double buffering

tional delay. Suppose that a block p contains c = c1, c2, ... PEs, and PE c1 (e.g., load()) has mc1

external memory transfers. According to Eq. 3.10, the execution time of c1 (tc1) would consist

of memory transfer time (tMEMc1 =
∑

mc1
(DSIZEmc1/DBWmc1 +DLAT)) and computation

time (tCOMPc1). However, tc1 may become larger than (tCOMPc1 + tMEMc1) if the data transfer

time of other PEs c (e.g., store()) executing in parallel cannot be completely overlapped with the

non-data-transfer time of PE c1, that is, (tCOMPc1 +
∑

mc1
DLAT). This is expressed in Eq. 3.15:

tc1 =
∑
mc1

DSIZEmc1

DBWmc1

+ max(tCOMPc1 +
∑
mc1

DLAT,
∑
c 6=c1

∑
mc

DSIZEmc

DBWmc

) (3.15)

Figure 3.15: Computing cycle estimate (Eq. 3.18 and Eq. 3.19) for the example given in Fig. 3.14,
in the for loop that contains load(), qsort_comp(), store() PEs

However, a major challenge in implementing Eq. 3.15 is that the software simulation process

is usually sequential, and we cannot model the concurrent execution of memory access. For the

example in Fig. 3.14, load(), qsort_comp(), and store() will execute in parallel in hardware, but

the software simulation process will compute them serially. Then, the estimation routine in load()

does not have the knowledge of DSIZEstore or DBWstore, since store() has not been executed yet.

36

Even if the HLS software simulation process does allow multi-threaded execution in the future so

that store() and load() can communicate in flight, having a mutex or semaphore for hundreds of

PEs will significantly slow down the simulation and diminish the advantage of having a high-level

prediction.

We solve this problem by carrying additional estimation results without DLAT and resolving

the summation part of Eq. 3.15 hierarchically. For each PE c1, we accumulate only the data term

(DSIZE/DBW) of tMEM , excluding the latency term (DLAT):

tBOc1 =
∑
mc1

DSIZEmc1/DBWmc1 (3.16)

where tBOc1 is the minimum bus occupation cycle of PE c1. The insight behind this term is that

the computation part and the DRAM latency might be overlapped in multiple outstanding requests,

but at least tBOc1 is needed for each data in PE c1 to be transferred through the bus.

We also keep track of tc1, as if there was only one PE:

tc1 = tCOMPc1 + tMEMc1 (3.17)

Next, we can hierarchically compute the cycle estimate for tBOp and tp at p (the for loop) of

the PEs:

tBOp =
∑
c

tBOc (3.18)

tp = max(max
c

(tc), tBOp) (3.19)

Eq. 3.18 represents that the bus occupation cycle of p is the sum of c’s bus occupation cycles

tBOc . This implies that the access to external memory is serialized. Finally, Eq. 3.19 2 represents

that the overall execution time is the maximum of c’s individual latencies and p’s minimum bus

occupancy cycle. Unlike Eq. 3.2 which simply takes the maximum of nested PEs’ cycles, the

2It is also possible to verify that inserting Eqs. 3.16, 3.17, and 3.18 into Eq. 3.19 will give the same equation if
Eq. 3.15 is inserted into Eq. 3.2. Also, note that the max function in Eq. 3.19 can be replaced with an add function if
the submodules are executed in serial rather than in parallel.

37

proposed equation can account for the case where combined DRAM access cycles of multiple PEs

dominate the compute time. This can be more easily understood graphically in Fig. 3.15, where

tBOp is the largest term in Eq. 3.19 because the system is memory bound.

Since the proposed estimation method does not account for the exact ordering of memory

access, the estimate of the individual parallel-running module’s execution time is not guaranteed

to be exact. For example, in Fig. 3.15 it is uncertain when load() or store() submodule will exactly

terminate. However, what this model does predict is the combined execution time of parallel-

running modules. This is more important since the performance critical path and the stall reason

is evaluated based on the most time-consuming module (Section 3.1.2). The accuracy evaluation

will be presented in Section 3.2.5.2.

3.2.5 Experimental Results

3.2.5.1 Experimental Setup

For our evaluation platform, we use Alpha Data’s ADM-PCIE-7V3 board [2] that has Xilinx’s

Virtex 7 690T FPGA and two Kingston’s DDR3L-1333 SDRAMs [70]. For the FPGA synthesis,

we use Xilinx’s SDAccel 2016.2 [128] and Vivado HLS 2016.3 [130] software tools. Also, we

have tested on Alpha Data’s ADM-PCIE-KU3 board [3] that has Xilinx’s Ultrascale KU060 FPGA

and two of Kingston’s DDR3L-1333 SDRAM. For this board, we used Xilinx’s SDAccel 2016.4

synthesis flow.

The benchmark we used includes quicksort [49], Cholesky [99], convolutional neural network

[135], matrix multiplication [68], logistic regression [6], decompression [78], and compression

[34]. We also use four applications from MachSuite [105], which is a collection of common

applications for accelerator environments. We exclude some applications that were similar to other

benchmarks or had some functional correctness problem. The original code has been optimized

with pipelining, double buffering, data reuse, longer DRAM access burst, and duplication.

38

3.2.5.2 Performance Estimation Accuracy

To evaluate the accuracy of our software simulation-based estimation model, we use the in-FPGA

cycle extraction flow (Chapter 5) so that the exact cycle count of individual submodules can be

obtained. For FIFO-based dataflow modules, we compare the number of active cycles obtained

from SAN monitors (Section 5.3.3) with the estimated result. The applications are classified as

having blocks with explicit synchronization (modules are only in serial or parallel) or parallel

by dataflow (Section 3.1.1). Also, we classified the submodules inside each application as being

mainly compute-bound or DRAM-bound.

The estimation error is obtained by averaging the absolute difference between on-board testing

and the simulated results. It is shown in Table 3.8. The compute-bound modules are on average

1.4% different, and the DRAM-bound modules are on average 13.6% different. On ADM-PCIE-

KU3, the averaged error rate is 2.5% for compute-bound and 22% for DRAM-bound on the same

benchmarks.

Table 3.8: Average cycle estimation error (absolute difference between on-board cycle measure-
ment and HLScope-S cycle estimation) for ADM-PCIE-7V3 and ADM-PCIE-KU3 boards.

Inter- Appl Compute-bound DRAM-bound
Comm Name #subm 7V3 KU3 #subm 7V3 KU3

Qsort[49] 33 4.0% 5.1% 5 8.5% 8.4%
Cholesky[99] 1 0.56% 1.7% 2 0.57% 20%
ConvNN[135] 1 0.05% 0.53% 3 1.5% 10%
Mat mul[68] 1 0.04% 0.04% 3 37% 39%

Explct Log reg[6] 3 1.4% 4.3% 1 0.76% 18%
Synch AES[105] 1 3.2% 3.2% 2 34% 32%

KMP[105] 1 0.36% 3.4% 1 0.90% 2.2%
NW[105] 1 0.03% 0.04% 2 43% 79%

SpMV[105] 1 3.24% 11% 2 12% 10%
Paral Vecadd 4 0.0% 0.0% 3 2.2% 7.5%

by Mat mul[68] 6 0.05% 0.0% 6 30% 34%
data Decomp[78] 3 1.3% 0.91% 2 0.17% 5.2%
flow Compr[34] 3 0.23% 1.2% 3 4.9% 22%
AVG - 1.1% 2.5% - 13.6% 22%

Even with the proposed method, some inaccuracy still exists. The reason for inaccuracy in

the compute part is the missing cycle information for some of the dynamic execution paths (Sec-

tion 3.2.3.2). The inaccuracy in DRAM part is due to constructing a high-level behavioral model

39

(Section 3.2.4), including the multiple PE contention model, rather than simulating each memory

access. In fact, the error rate is relatively higher for designs with more DRAM-bound modules exe-

cuted in parallel. However, as mentioned in Section 3.2.4.2, our model is more focused on making

accurate predictions for modules on the performance critical path, so that the performance debug-

ging framework can correctly analyze the stall reason. The error rate of the submodule with the

longest execution time among parallel-executing submodules is shown in Table 3.9. As expected,

the error rate has decreased from 13.6% to 5.0% for ADM-PCIE-7V3. For ADM-PCIE-KU3, it

decreases from 22% to 9.4%. This suggests that the proposed modeling is reliable for performance

debugging.

Table 3.9: Cycle estimation error rate of the most time-consuming among parallel DRAM-bound
submodules for ADM-PCIE-7V3 and ADM-PCIE-KU3 boards.

Inter-module Application AVG(|Dif |)
Comm Type Name 7V3 KU3

Qsort[49] 8.5% 8.4%
Cholesky[99] 0.17% 9.0%
ConvNN[135] 0.31% 1.8%
Mat mul[68] 12% 15%

Explct Log reg[6] 0.76% 18%
Synch AES[105] 8.0% 4.0%

KMP[105] 0.90% 2.2%
NW[105] 14% 14%

SpMV[105] 12% 10%
Paral Vecadd 2.7% 10%

by Mat mul[68] 2.0% 2.9%
data Decomp[78] 0.32% 0.32%
flow Compr[34] 3.6% 26%
AVG 5.0% 9.4%

3.2.6 Software Simulation Flow Overhead

The software estimation overhead consists of two parts: first, the code instrumentation for hard-

ware cycle estimation and second, overhead in the software simulation process. The code instru-

mentation takes 5-98 seconds. The software simulation overhead depends on the computational

complexity of the original code compared to the inserted code. The comparison between the orig-

inal software simulation time and the instrumented code software simulation time is shown in

40

Table 3.10. It shows that overhead is 4% on average. The code instrumentation and simulation

overhead is approximately two orders of magnitude faster than the FPGA bitstream generation.

This shows that the proposed flow is suitable for rapid analysis.

Table 3.10: Time overhead of SW simulation flow. Consists of code instrumentation and additional
SW simulation time (unit:s).

Appl Instr SW Sim Instr SW Bitstr
Name Time Unmodif Sim Est Gen

Qsort[49] 27 0.026 0.029 (1.12X) 1h27m
Cholesky[99] 5 0.083 0.089 (1.07X) 36m
ConvNN[135] 64 60 64 (1.07X) 1h47m
Mat mul[68] 43 62 65 (1.05X) 2h23m
Log reg[6] 36 563 564 (1.0X) 1h34m
AES[105] 51 62 65 (1.05X) 3h29m
KMP[105] 9 128 129 (1.01X) 1h21m
NW[105] 8 56 59 (1.05X) 1h38m

SpMV[105] 12 7.3 7.4 (1.01X) 2h5m
Vecadd 37 0.20 0.21 (1.05X) 1h30m

Mat mul[68] 76 125 125 (1.0X) 4h12m
Decomp[78] 98 0.80 0.80 (1.0X) 1h28m
Compr[34] 91 19 20 (1.05X) 5h35m

AVG (1.0X) (1.04X)

3.2.7 Comparison with Related Work

Although design space exploration (DSE) tools such as Aladdin [111], Lin-analyzer [138], COMBA

[137] consider various factors such as resource contention (e.g., number of BRAM accesses per

cycle) and data dependence, it is not guaranteed that HLS tools will generate a design that matches

their prediction. The HLS tools are known to update its scheduling, binding, and allocation

algorithms—this may result in loop’s II and IL to be changed in future HLS versions. Even for a

same HLS version, HLS tools may use a hardware IP (e.g., DSP) of different latency depending

on the FPGA platform or clock frequency. HLScope-S, on the other hand, builds the performance

estimation model based on the HLS synthesis report. This ensures that the performance model

reflects the actual architecture implemented by the HLS tool and allows the model to easily adapt

to any algorithmic changes in the HLS kernel.

Similar to HLScope-S, Aladdin [111] and Lin-analyzer [138] can be used to provide cycle

41

estimate for programs with dynamic behavior since they utilize the instruction trace generated in

C simulation. However, collecting instruction trace takes a relatively long time compared to our

high-level cycle estimator based on native C software simulation. For example, instruction trace

generation for sorting 131072 elements in Aladdin took 188 seconds, whereas HLScope-S took

0.0404 seconds (Table 3.5).

LegUp HLS [14] provides a flow to obtain hardware cycle estimation by profiling the software

for the number of times each basic block was executed. Then it multiplies the obtained execution

number by the basic block cycle given by Legup HLS. Our work, on the other hand, is more focused

on how to instrument the code to extract unknown basic block cycles that are apparently hidden by

HLS. Thus, HLScope-S only requires high-level synthesis reports like Table 3.4 and does not need

to extract HLS LLVM compiler’s internal data, which could be proprietary information.

3.2.8 Conclusion

In this chapter, we have described a high-level cycle estimation methodology for input-dependent

FPGA designs using the HLS software simulation process. A source-to-source code instrumenta-

tion technique was used to automate the cycle extraction process. Also, we provided a high-level

estimation model for DRAM access for a typical bus-based architecture with outstanding requests

and multiple PEs. Experiments showed that our estimation has an error rate of 1.1% in compute-

bound modules and 5.0% in performance-critical DRAM-bound modules, with a modest 4% time

overhead in software simulation.

42

CHAPTER 4

Cycle-Accurate Software Simulator for HLS

Although the performance estimation flow (HLScope-S) in Chapter 3 accurately reflects the input-

dependent behavior of an HLS design, it has some limitations. The issue is that its estimation rou-

tine depends on the HLS software simulation. As will be explained in Section 4.2, HLS software

simulators sometimes produce incorrect result in the cases where data ordering is not maintained,

module latency is ignored, or feedback path exists. Incorrect simulation often leads to incor-

rect performance estimation—for example, the performance estimation for a matrix multiplication

benchmark with data ordering and feedback problems has 60% error rate (Table 4.8) compared to

a RTL simulation result.

In this chapter, we present a new HLS simulation flow named FLASH. The main idea of

FLASH is to extract scheduling information from the HLS tool and automatically construct an

equivalent cycle-accurate simulation model. We show that the correctness of the simulation and

the accurateness of the performance estimation are both achieved by the proposed process. FLASH

runs slightly slower than HLScope-S because the code transformation and the simulation are per-

formed at the granularity of individual C statements—however, this can be justified by the fact

that FLASH achieves cycle-accuracy while running three orders of magnitude faster than the RTL

simulation. The formal problem statement and the details of the automated code transformation

process are described in the remainder of this chapter.

4.1 Introduction

Although the field-programmable gate array (FPGA) has many promising features that include

power-efficiency and reconfigurability, the low-level programming environment makes it difficult

43

for programmers to use the platform. In order to solve this problem, many high-level synthesis

(HLS) tools such as Xilinx Vivado HLS [31,130] and Intel OpenCL HLS [62] have been released.

These tools allow programmers to design FPGA applications with high-level languages such as C

or OpenCL. This trend is reinforced by recent efforts on FPGA programming with languages of

higher abstraction—such as Spark or Halide [110, 115, 134].

Even though such progress has been made on the design automation side, a large semantic gap

still exists on the simulation side. Programmers often need to use low-level register-transfer level

(RTL) simulators (e.g., ModelSim [86], NCSim [11], or VCS [117]) or on-board emulators (e.g.,

Palladium [12], Veloce [87], or Zebu [118]) and try to map the result back to HLS. The result is

often incomprehensible to those who are not FPGA experts. Moreover, low-level RTL simulation

takes a very long time. Some work has been done to automate hardware probe insertion from the

HLS source file [23, 51–53, 89, 90, 120]; however, this work requires regeneration of the FPGA

bitstream if there is a change in the debugging point, and the turnaround time is often in hours.

On-board emulators also have a similar problem and take a long time for the bitstream generation.

These problems can be partially solved by the software-based simulators provided by HLS

tools. The HLS software simulators compile the C or OpenCL source code for native execution

on the host machine. It takes little time to reconfigure the debugging points, and no semantic

gap exists between the simulation and the design. However, a well-known shortcoming of these

simulators is that most of them do not provide performance estimation. In addition, we found a

critical deficiency—they sometimes provide incorrect results.

An example can be found in the molecular dynamics simulation [33] (Fig. 4.1). Multiple

distance processing elements (Dist PEs) filter out faraway molecules above threshold and send

them to Force PE. The pruned molecules will create a bubble (empty data) in the FIFO, and Force

PE will process only the valid data (after non-blocking read) in the order they are received from

any of the FIFOs. However, if the modules are instantiated in the order of (Dist PE1, PE2, . .

. Force PE) in the source file, Vivado HLS software simulator will finish the simulation of Dist

PE1 first, followed by Dist PE2, and so on. As a result, by the time the Force PE is simulated, the

bubbles in the FIFOs are completely removed, and the Force PE output ordering can be entirely

44

Figure 4.1: Molecular dynamics simulation [33]

different from the RTL simulation. If one was trying to quickly trace the source of a problem that

was observed in the output of a RTL simulation, the person would not be able to reproduce the

problematic state in the software simulation.

Another problematic example can be found in the artificial deadlock situation [43], which

occurs when the depth of the FIFO is smaller than the latency difference among modules (details

in Section 4.2.2). The first issue is that the HLS software simulator cannot detect the deadlock

situation and proceeds as if there is no problem with the design. The second issue is that after we

apply a transformation to remove the deadlock, the HLS tool also cannot simulate the amount of

performance degradation (Section 4.8.3). We also found a problem in the simulation of feedback

loops where the feedback data is ignored by the HLS tool (Section 4.2.3).

The primary reason for the incorrect simulation result is that HLS software simulators do not

guarantee cycle accuracy. The comparison between the software simulator of the two most pop-

ular ([75]) commercial FPGA HLS tools, Xilinx Vivado HLS [130] and Intel OpenCL HLS [62],

is presented in Table 4.1. Vivado HLS assumes unlimited FIFO depth which makes it difficult

to accurately model FIFO fullness/emptiness. Also, the sequential simulation execution model

prevents correctly simulating designs with feedback loops (Section 4.2.3). Intel OpenCL HLS

45

Table 4.1: Comparison of the software simulation of Xilinx Vivado HLS [130] and Intel OpenCL
HLS [62]. Undesirable characteristics are in bold.

Xilinx Viv HLS C Sim Intel OpenCL HLS Sim
FIFO depth Unlimited Exact
Exec model Sequential Concurrent
Feedback Not supported Supported
Sim speed ∼5 Mcycle/s ∼1 Mcycle/s
Sim order Deterministic Non-deterministic

Max # mods No limit 256
Cycle-acc Not cycle-accurate Not cycle-accurate

Figure 4.2: HLS design steps [40] and simulation flows

simulates about 5X slower than Vivado HLS, but it correctly simulates the FIFO depth. The tool

assigns a thread to each module for concurrent simulation; however, the execution order of the

threads is not deterministic and may produce different results in different simulation runs for cases

in Section 4.2.

HLS design steps and conventional simulation flows are shown in Fig. 4.2. A software simu-

lator runs fast but provides no cycle estimation and may have the correctness problem. An RTL

simulator is accurate but runs slow since it incorporates low-level implementation details. Our

solution to these problems is based on the idea that it may be possible to tackle both problems

by simulating based on the scheduling information. It would be faster than the RTL simulation

without the allocation / binding information and the component libraries; and it would solve the

correctness problem of the software simulation and provide accurate performance estimation with

its cycle accuracy.

46

Although simulating solely based on the scheduler output (LLVM IR + scheduling informa-

tion) is a possible option, we have instead decided to simulate in C syntax and augment it with

scheduling information. The reason is that we wanted to raise the simulation abstraction level to

further accelerate the simulation process and also make it easier for programmers to understand

what is being simulated. To our knowledge, this is the first HLS-based software simulation flow

that takes such an approach.

By taking such an approach, however, several challenges were encountered (elaborated on in

Section 4.3). One problem is how to guarantee cycle-accuracy of untimed C statements. Moreover,

correctly simulating the task-level and pipelined parallelism that is inherent in hardware (and the

corresponding RTL simulation) in sequential C semantics is a significant challenge.

In this chapter we propose FLASH—an HLS software simulation (HSS) flow that addresses

these challenges. We describe transformations that allow cycle-accurate simulation of FIFO com-

munication (defined in Section 4.3). Also, a method will be presented to simulate task-level and

pipelined parallelism with C semantics. These steps will be described in Section 4.4.

In order to simulate pipelined parallelism, variables needs to duplicated to match the depth

of a loop pipeline (explained in Section 4.4.2.1). However, this results in a redundant data copy

which slows down the simulation. We propose optimization techniques to reduce this overhead in

Section 4.5.

We obtain the scheduling information from the HLS synthesis report and automatically gener-

ate a new simulation code based on the information. The new simulation code was made compati-

ble with the conventional HLS software simulator for easy integration with the existing tool. The

overall flow is described in Section 4.6.

FLASH also provide correctness and performance debugging support for programmers. In

order to reduce the debugging effort of detecting deadlocks or stalls, we provide a set of source-

level directives. Also, the debugging time is shortened by allowing variables to be added to the

capture list in the middle of simulation. This will be explained in Section 4.7.

The contribution of this chapter can be summarized as follows:

47

• We show that simulating based on the scheduling information can help solve the correctness

issue of HLS software simulators and rapidly provide accurate performance estimation.

• We develop a framework that allows fast cycle-accurate simulation of an HLS design. Sev-

eral code transformation techniques have been presented to enable this process. Moreover,

optimizations were proposed to accelerate the simulation speed.

• We propose unique debugging features for HSS.

Our current initial version is based on the Vivado HLS tool, but we hope to extend our work to

the Intel HLS tool if it provides detailed internal scheduling information in the future.

4.2 Problem Description and Motivating Examples

In this section we describe three classes of problems that cause current HLS tools to produce

incorrect software simulation results. The problems are demonstrated with relevant examples in

the literature.

4.2.1 Data Ordering Problem

The problem of incorrect output ordering in the HSS for molecular dynamics simulation was

presented in our introduction. In this section we discuss the cause of this problem in more de-

tail. Fig. 4.3 shows the timing diagram of the FIFO transactions among Dist PE1, Dist PE2, and

Force PE in Fig. 4.1. Dist PE1 and Dist PE2 communicate with Force PE through FIFO F1 and

F2 respectively. Consider a case where data (2) is written to F2 before data read from F1 and

F2, and F1 is written (data 5) afterwards (illustrated in the RTL simulation part of Fig. 4.3). At

the time of the first F1 non-blocking read attempt (tF1_RD1), the first F1 write (tF1_WR1) has not

yet occurred (tF1_RD1 < tF1_WR1), and the successful F2 read precedes the successful F1 read

(tF2_RD1 < tF1_RD2).

In the Vivado HLS software simulation however, data (5) is available in the first read attempt

to F1, because Dist PE1 is evaluated entirely before Dist PE2 and Force PE. That is, unlike the

48

Figure 4.3: Timing diagram of the molecular dynamics simulation in Fig. 4.1 (FIFO transactions
among only Dist PE1, Dist PE2, and Force PE are shown)

49

RTL simulation, the first F1 write has already occurred before the first F1 read attempt (tF1_RD1 >

tF1_WR1). As a result, the successful F2 read happens after the successful F1 read (tF2_RD1 >

tF1_RD2). The ordering of the data processed at Force PE is not maintained. If the HSS has

evaluated the FIFO write correctly before each FIFO read attempts (i.e., tF1_RD1 < tF1_WR1 <

tF1_RD2 and tF2_WR1 < tF2_RD1), this problem would not have occurred. In the Intel HLS, the

simulation order of the producer modules is undetermined, and a similar data ordering problem

occurs.

As demonstrated in the example, the HLS software simulator should evaluate the FIFO writes

before each non-blocking read attempt in the same order as in the RTL simulation. If not, data

ordering problem may occur. The data ordering problem is defined as a case where a consumer

module MC is reading data in a non-blocking fashion from multiple producer modules MP through

FIFOs, and the order of data processed at MC in the RTL simulation is not maintained in the HSS.

4.2.2 Artificial Deadlock and Stall

Consider an example in Fig. 4.4 where the module M2 has a latency of 5 and M3 has a latency

of 15. All FIFOs have a depth of 2. After M2 has produced two output elements, M4 cannot

consume any of them because fifo4 is still empty due to the long latency of M3. Because of

back pressure from M2 and fifo3, fifo1 becomes full. Then M1 will stop producing output to

fifo2 because fifo1 and fifo2 have to be written in the same cycle. fifo2 will eventually

become empty, which blocks the pipeline of M3. Even though M3 has consumed some remaining

data in fifo2, fifo4 is still empty because of M3’s long latency. Then none of the modules

can do any further useful work, and the circuit deadlocks. This is called an artificial deadlock.

The artificial deadlock is caused by the mismatching latency of multiple datapaths and inadequate

FIFO depth to balance the latency difference [43]. This can be observed in real applications, such

as the dataflow-based architecture for stencil computations in [17] that contains various modules

and FIFOs with different latencies and depths.

In order to reproduce the deadlock situation, an HLS software simulator should create the

output data after reading input with a delay that reflects the module latency. However, existing

50

Figure 4.4: Structure and code for motivating example toy_mpath

HLS software simulators evaluate each iteration of a loop as if the data is instantaneously passed

from input to output. Thus, the latency among different datapaths is not simulated, and the artificial

deadlock does not occur. As a result, even after running a HSS, the user is unaware of a potential

problem that might occur during actual on-board execution.

We will refer to this problem as the module latency problem. Suppose that a module has

a sequence of C FIFO read and write statements cstmt1, ... cstmtc, ... cstmtC . If cstmtc is

a blocking read/write, multiple read/write attempts may be performed before the read/write is

completed. If non-blocking, read/write is always completed on the first attempt. We assume that

the HLS tool has scheduled a delay of delayc cycles between the completion of cstmtc and the first

attempt of cstmtc+1. This delay reflects the computation latency. The module latency problem is

defined as a case where HSS fails to simulate delayc between the first attempt of cstmtc+1 and the

completion of cstmtc for some of c = 1 ... C − 1.

51

Figure 4.5: Modified code of M2 in Fig. 4.4 to avoid artificial deadlock

The second problem was found after we applied code transformation1 to avoid the deadlock.

Fig. 4.5 shows the transformation for M2 in Fig. 4.4. If the input FIFO is empty, a bubble is inserted

into the pipeline (line 4)—this allows the pipeline to keep processing the already-read data even if

there is no additional input. A similar transformation is applied on M3. The deadlock situation is

removed since M4 can now receive the output from M3.

However, even though the deadlock was avoided, it still takes several cycles for the module to

produce an output after reading the input data. This causes a delay that we call artificial stall. Since

HLS tools do not consider the delay due to the latency of a module, such performance degradation

cannot be simulated.

4.2.3 Missing Data from Feedback Path

As mentioned previously, the Vivado HLS software simulator evaluates functions in the order in

which they are instantiated in the source code. This causes a problem if a feedback path exists

that passes data from later instantiated functions to earlier ones. At the time earlier functions are

simulated, the data would not be available. As a result, Vivado HLS simulates the program as if

the feedback FIFOs are always empty. We will refer to this problem as the feedback problem. The

1Alternative solutions are presented in [43], but they require modification to the HLS scheduling, allocation, and
binding kernels. It is also possible to adequately increase the buffer size that can prevent the deadlock situation [74]
(the Intel HLS compiler has this functionality). However, since the efficiency of the solution for avoiding artificial
deadlock is not the focus of this work, we apply a solution that only requires simple source-to-source transformation
of the loops without an elaborate analysis of the whole circuit. This method cannot be used to resolve all deadlocks—
such as the one that is caused by circular wait.

52

Figure 4.6: Matrix multiplication with linear systolic array architecture

feedback problem refers to the case where at the time of a read from a FIFO in a feedback path, the

data in the FIFO buffer in the HSS does not match the data in the RTL simulation. The Intel HLS

simulator can simulate the feedback data from blocking read correctly because a thread simulating

each module can wait for others to pass the data. However, it is not guaranteed that the feedback

data from non-blocking read will arrive at the right timing.

We demonstrate this problem with matrix multiplication example (C = A × B) in linear

systolic array architecture [36, 68]. As shown in Fig. 4.6, each PE computes one column of the

matrix C (Cij += Aik ∗ Bkj). Data from the matrix A and B are fed into the array in the forward

direction, while the results of matrix C are collected in the backward direction. If the modules are

instantiated in the order of PE1, PE2, ..., and PEN , Vivado HLS will simulate PE1 assuming the

FIFO for C is always empty, and this will cause the tool to produce incorrect results.

4.3 Problem Statement and Challenges

Before we provide the problem statement, we will define the concept of FIFO communication

cycle-accurate (FCCA) simulation. The FIFO communication refers to the FIFO-accessing ex-

pressions in the source code (listed in the second column of Table 4.2). A FIFO communication

statement refers to a statement with a FIFO-accessing expression. Let us assume that a FIFO com-

munication has been evaluated in HLS software simulation (HSS) at cycle t. We declare that the

FIFO communication is simulated cycle-accurately if the FIFO input value and the FIFO output

value of the FIFO APIs (FAPIs) in the HSS match the FIFO input ports (din, rd_en, wr_en)

and the FIFO output ports (dout, empty, full) [127] in RTL simulation at the same cycle t.

53

Table 4.2: The FIFO communication in the C source code, the corresponding FIFO IP RTL ports
and C variables, and the corresponding FLASH simulation code (Vivado HLS FIFO APIs [130]
and FIFO IP RTL ports [127] are in monospace font)

Description FIFO comm in source code RTL ports & C variables FLASH simulation code
Blocking read rdata = fifo.read() 1 == !empty, rd_en = 1, rdata = dout (stall cond: fifo_rnum==0), test = (..rnum!=0),
Non-blk read test = fifo.read_nb(rdata) test = !rd_en = !empty, rdata = dout rdata = fifo_arr[fifo_rptr++]; fifo_rnum−−;
Blocking write fifo.write(wdata) 1 == !full, wr_en = 1, din = wdata (stall cond: fifo_wnum==0), test = (..wnum!=0),
Non-blk write test = fifo.write_nb(wdata) test = !wr_en = !full, din = wdata fifo_arr[fifo_wptr++] = wdata; fifo_wnum−−;
Empty test = fifo.empty() test = empty test = (fifo_rnum == 0)
Full test = fifo.full() test = full test = (fifo_wnum == 0)

That is, the C variables and the RTL signals have the same value as described in the third column

of Table 4.2 at the same cycle t. The FIFO input value of the FAPIs refers to the value of “wdata”,

and the FIFO output value of the FAPIs refers to the value of “test” and “rdata” in Table 4.2. If all

FIFO communication in a C source code is simulated cycle-accurately in HSS, the simulation will

be FCCA.

For example, the non-blocking read expression, “test = fifo.read_nb(rdata)", is cycle-accurately

simulated if the value of “rdata" matches dout and “test" has the toggled value of empty at the

same cycle as the RTL simulation.

We assume that we simulate an HLS design that is composed of multiple finite-state machine

(FSM) modules (inferred from C functions) that use streaming FIFOs to communicate between

modules. The modules execute concurrently (with directive #pragma HLS dataflow).

Our main goal is to construct an HLS software simulator that is FCCA. The input and output

of the simulator is defined as follows:

Input: (1) An HLS C source code (2) Scheduling information (3) Input data of the design

Output: Output data of the design

The scheduling information is defined as the information on the FSM state transition and the

assigned FSM state of FIFO communication, conditional statements, and loop statements.

FCCA simulator does not have the data ordering, module latency, and feedback problems that

were described in Section 4.2.

We will prove that an FCCA simulator does not have the data ordering problem. Recall that

the data ordering problem occurs when a consumer module MC is reading data in a non-blocking

54

fashion from multiple producer modules MP through FIFOs, and the order of data processed at MC

is not maintained in the HSS. Since FIFO communication is cycle-accurate, the relative ordering of

FIFO reads and writes matches that of the RTL simulation. That is, the number of FIFO reads and

writes and the data before each FIFO read match that of the RTL simulation. At the first FIFO read

attempt of MC , the first data processed in MC matches the RTL simulation, because MP ’s FIFO

writes before the first FIFO read attempt matches the RTL simulation. The data ordering problem

has not occurred in the first FIFO read attempt (base case). Let us assume that the data ordering

problem has not occurred up to the k’th FIFO read attempt. Among the k attempts, we assume

there were s successful reads. If a FIFO was empty after k’th FIFO read attempts and no FIFO

write has happened until (k + 1)’th FIFO read attempts, data ordering problem has not occurred in

the (k + 1)’th read attempt, because no new data was processed between k’th and (k + 1)’th read.

If FIFO was not empty at (k + 1)’th read, the data must be from the (s + 1)’th FIFO write. This is

because FIFO provides the data to the reader in the order data was written. The data in (s + 1)’th

FIFO write in HLS simulation matches that of the RTL simulation, because the relative ordering

of FIFO write is maintained in the FIFO communication cycle-accurate simulator. Thus, the data

ordering problem has not occurred in the (k + 1)’th read attempt (induction step).

We have explained that the feedback problem occurs because the relative ordering was not kept

among the writes and the reads to the FIFO in the feedback path. Since the ordering is maintained

in an FCCA simulator, the feedback problem also does not occur.

Since all FIFO transactions occur at the same cycle as in the RTL simulation, the delay between

any consecutive pair of FIFO reads and writes of a module matches that of the RTL simulation.

Thus, the FCCA simulator does not have the module latency problem.

In addition to the main goal of achieving cycle-accurate FIFO communication, the simulator

should be able to provide the execution cycles of each module to help programmers apply perfor-

mance optimization. Also, if the modules deadlock, the simulator should provide the content of

the registers (e.g., the state of a module or the number of empty FIFO buffers) for debugging pur-

poses. Moreover, the simulation code should be semantically similar to the source code as much

as possible (as opposed to being a low-level code such as RTL), so that users can easily understand

55

what is being simulated.

With such complicated requirements, several challenges arise:

• Challenge 1 : FCCA simulation

It is difficult to discover the exact cycle when statements are executed since the information

given by the HLS tool is very limited. For example, the Intel OpenCL HLS tool only provides

loop initiation intervals (II). The Vivado HLS tool provides slightly more information—it

provides a list of LLVM IR and the corresponding state of a FSM. However, mapping such

low-level representation (e.g., lines 27–31 of Fig. 4.7) back to the original C code is a diffi-

cult task.

Also, even if the schedule of all operations is known, the FCCA simulator has to selectively

execute statements that correspond to a particular FSM state at each cycle. Another issue is

that the simulator needs to model the FSM stalls due to FIFO being empty or full. Further-

more, the content of the variables in the previous state has to be available, and the updated

variables have to be stored for the next state simulation.

• Challenge 2 : Simulation of parallelism

HLS designs have multiple levels of parallelism including task-level parallelism and pipelined

parallelism. Cycle-accurately simulating parallelism in a C syntax becomes a difficult task

because the value of variables and the simulation order of the statements become different

from that of the source code. For example, if the statement in line 21 of Fig. 4.4 is executed

14 cycles after the statement in line 20, we would need to simulate line 21 with a “temp"

value that corresponds to iteration i and line 20 with that of iteration i+ 14 in a single cycle.

• Challenge 3 : Loop and function simulation

We would need to construct an equivalent model of high-level C semantic such as loops and

functions.

56

4.4 Automated Code Generation for Rapid Cycle-Accurate Simulation

In this section we provide a solution to each challenge in Section 4.3 and describe our proposed

automated simulation code generation flow. For illustration, we will use the toy_mpath example

(Fig. 4.4) after modifying the source code to avoid the deadlock as shown in Fig. 4.5.

4.4.1 FIFO Communication Cycle-Accurate Simulation

We will describe the properties of FLASH and the corresponding code transformation. Based

on these properties, we will explain how FLASH achieves FIFO communication cycle-accurate

(FCCA) simulation.

We make the following assumptions:

(A1) HLS tool schedules a FIFO communication of a C source code to be executed at a particular

FSM state of a module.

(A2) HLS tool provides the information on the assigned FSM state of its FIFO communication,

conditional statements, and loop statements.

(A3) HLS tool provides the information on a module’s FSM state transition.

(A4) An FIFO communication statement is composed of constants, operators, variables, and a

single FIFO API.

(A5) The value of all constants and the behavior of all operators in the HSS match that of the RTL

simulator.

(A6) A FIFO is a deterministic system which is simulated cycle-accurately by a HSS at t if the

FIFO input values of the FIFO APIs and the FIFO IP behavior at 1, 2, ..., t− 1 are simulated

cycle-accurately.

(A7) All FIFOs are initially (t=1) empty.

57

Figure 4.7: Vivado HLS scheduling report for M2 of Fig. 4.5

58

Table 4.3: FIFO IP behavior (assumes all FIFO APIs are evaluated at t)
Vivado HLS FIFO API FIFO IP Behavior

read()
while(1) {If empty is false at t,

dout=(first element in the FIFO buffer) at t and dequeue the element at t+ 1 and exit loop.}
read_nb() If empty is false at t, dout=(first element in the FIFO buffer) at t and dequeue at t+ 1. Else, do nothing.

write()
while(1) {If full is false at t,

enqueue the value of din at t to the FIFO buffer at t+ 1 and exit loop.}
write_nb() If full is false at t, enqueue at t+ 1 the value of din at t to the FIFO buffer. Else, do nothing.
empty() If there are no data in the FIFO buffer, empty=1 at t. Else, empty=0 at t.
full() If the number of data in FIFO matches the FIFO buffer size, full=1 at t. Else, full=0 at t.

Figure 4.8: Simulation function structure for selective simulation of an FSM state (M2_SIM is
simulated at line 9 of Fig. 4.10)

The FIFO IP behavior in (A6) refers to the behavior of FIFO IPs in response to the Vivado

HLS FIFO APIs (FAPIs) as specified in Table 4.3.

4.4.1.1 Matching Simulated State of Statements

As mentioned in (A1), let us assume that HLS tool schedules a FIFO communication of a C source

code to be executed at a particular FSM state (st) of a module. FLASH simulates the FIFO com-

munication at the same st scheduled by the HLS tool. In order to achieve this, we first need to

obtain the HLS scheduling information of the FIFO communication (A2). This is found from pars-

ing FIFO-related keywords in the scheduling report. For example, the state when FIFO “f_out"

performs the write operation (line 7 of Fig. 4.5) is found to be 6, because op_Write.ap_fifo

and “f_out" keywords are detected in line 29 of Fig. 4.7. Similarly, the FIFO read statement (line 5

59

of Fig. 4.5) is assigned to state 2 from the scheduling report (not shown in the figure).

Next, we need to ensure that only the FIFO communications statements assigned to each FSM

state are selectively simulated at every cycle. We declare an FSM state variable (line 2 of Fig. 4.8)

for each module and copy statements to the conditional block that correspond to its simulated state

(state conditional block). An example can be found for the M2 module in lines 4–7 (st = 1) and

lines 8–11 (st = 2) of Fig. 4.8. After the simulation function of a module has been called, only the

statements for a single FSM state are simulated, and then the function exits. That is, a single clock

event is simulated by a function entrance and exit.

Since FLASH aims for cycle-accuracy of FIFO communication, the computation statements do

not need to be evaluated cycle-accurately. For computation statements, we can assign an arbitrary

state as long as it does not violate the timing causality with the cycle-known FIFO communication

that has dependency with the computation statement. We group the computation statements to a

few FSM states as much as possible; if the statements are spread among multiple FSM states, the

variables shared across the states need to be declared local static variables (residing in .data or .bss

sections) which may be stored in DRAM. This is inefficient if the variable has a short life and

could have been optimized to a CPU register.

For example, the computation statement in line 6 of Fig. 4.5 has a dependency with both the

FIFO read and the FIFO write statements. It may be assigned to any state between 2 and 6 without

violating the time causality, but to reduce the number of FSM states with statements, it should

be assigned to either 2 or 6. We choose to assign it to state 2, following the as-soon-as-possible

scheduling policy, as it tends to reduce the number of variables being passed between the states.

In some cases we might need to change the evaluation order of some computation statements

even though it causes a dependency problem. For example, suppose that we add a statement

between line 7 and line 8 of Fig. 4.5 that is dependent on line 7 and references i. Since the loop

index update statement in line 8 is scheduled to state 2 (Section 4.4.3) and line 7 is scheduled

to state 6 from the scheduling report, the new statement between lines 7 and 8 will incorrectly

reference i which has already been updated to the next iteration. This is solved by copying i to a

temporary variable before evaluating the loop index update statement and renaming any reference

60

of i that has the dependency problem to this temporary variable.

4.4.1.2 Cycle-Accurate FSM State

FLASH cycle-accurately simulates the FSM state of a module at t (stt). By induction, stt is cycle-

accurate if the initial state at t = 1 is known (stt=1 = 1) and the state transition ∆t matches the RTL

simulation at 1, 2, ..., t-1. ∆t matches the RTL simulation, if the state transition information can

be obtained from the HLS tool report and a state transition statement that reflects this information

is evaluated at t. Also, ∆t should be stalled if empty or full signals have been asserted when

blocking reads or writes have been evaluated.

As mentioned in (A3), Vivado HLS provides the state transition information in its scheduling

report. For example, the loop in module M2 in Fig. 4.4 is evaluated in states 2 to 6, as shown in

line 6 of Fig. 4.7. The state transition of the loop is composed of intra-loop state transition (e.g.,

state 2 to 3, as shown in line 14 of Fig. 4.7) and loop exit (e.g., state 2 to 7, as shown in line 13).

FLASH obtains this information and inserts the state transition statement into the simulation code.

For example, line 10 of Fig. 4.8 reflects the loop exit state transition from state 2 to 7. The method

used by FLASH to correctly simulate the state transition stalls will be discussed in Section 4.4.1.4.

Vivado HLS schedules a module to finish its execution at a particular FSM state. Since FLASH

cycle-accurately simulates the FSM state of a module, the estimation of a module’s execution time

is cycle-accurate.

4.4.1.3 FIFO Behavior Modeling

FLASH simulates the FIFO IP behavior that has been specified in the Table 4.3. In the FLASH sim-

ulation code, the FIFO is implemented as a circular buffer with read/write pointers (fifo_rptr and

fifo_wptr) and an array (fifo_arr). In order to simulate the behavior of full FAPI (Table 4.3) cor-

rectly, the array length is set to FIFO buffer size (FIFO_SIZE) plus one, because one buffer space

is kept empty in circular buffer implementation [39]. Also, we declare fifo_rnum and fifo_wnum

variables to denote the number of data and buffer spaces available in the FIFO. FAPIs in the source

61

code are transformed based on the fourth column of Table 4.2. An example is shown in Fig. 4.9,

which is the transformed simulation code from M2 in Fig. 4.5. Line 7 of Fig. 4.5 is transformed to:

“fifo3_arr[fifo3_wptr++] = temp_st6; fifo3_wnum−−;" (lines 12-13 of Fig. 4.9). The comparison

of blocking FAPIs (write and read) with non-blocking FAPIs (write_nb and read_nb) in

Table 4.3 shows that the FIFO transaction should not occur if the FIFO full or FIFO empty con-

dition is satisfied. This behavior in reflected in the stall condition code in the fourth column of

Table 4.2. The stall condition will be further explained in Section 4.4.1.4.

In addition to decreasing the number of buffer spaces (fifo3_wnum−−) for FIFO write, we

would need to increase the number of available data (fifo3_rnum++). However, this process is

delayed until all other statements in the current cycle have been simulated. The reason is to match

the Xilinx FIFO IP behavior (Table 4.3) of allowing a data written to an FIFO to be available for

read one cycle after it has been written. The implementation details of this delayed processing will

be provided in Section 4.4.2.2.

4.4.1.4 FSM Stall Modeling

FLASH cycle accurately models the FSM stalls due to FIFO being full or empty. If a stall condi-

tion is met, none of the statements of current FSM state should be simulated, and the simulation

function should exit. To achieve this, the stall condition is placed at the beginning of a state con-

ditional block. The simulation code for the stall condition is “fifo_rnum==0" for FIFO empty and

“fifo_wnum==0" for FIFO full (Table 4.2). These codes are also used for stall conditions of block-

ing reads and writes. For example, the stall condition that corresponds to the FIFO blocking write

in line 7 of Fig. 4.5 is : “if(p1_en_st6 && fifo3_wnum==0)". This condition has been added to

line 5 of Fig. 4.9. Also, the simulation exit statement has been added to line 7 of Fig. 4.9. Note that

we add a enable signal “p1_en_st6" to the stall condition of a pipelined loop, because the FIFO

write occurs at FSM state 6 (more details in Section 4.4.2.1).

FLASH can detect a deadlock by checking if state transition did not occur (stalled) in all mod-

ules. It is enabled by the source-level trigger directive that will be explained in Section 4.7.2.

Also, it is worth noting that applying the classic event-driven simulation approach (e.g., [10,

62

114]) made little difference in the simulation speed of FLASH. The reason is that the stall condition

is placed at the beginning of a state conditional block and prevents most of the statements from

being evaluated when a module is stalled. That is, there is little overhead in processing a module

without an event that requires simulation, and this diminishes the benefit of applying the event-

driven approach.

4.4.1.5 Correctness of the Variable Reference

As explained in Section 4.4.1.1, all statements that have dependency with cstmt have been eval-

uated before the simulation of cstmt. The value of variables written by statements with the same

st as cstmt is correctly supplied to cstmt, because the they are simulated in the same state con-

ditional block. A problem occurs when reading variables written by statements with FSM states

other than st, because the simulation function exits after each cycle. This problem is solved using

the static keyword in a variable declaration (e.g., line 2 of Fig. 4.8 and line 2 of Fig. 4.9). By us-

ing this technique, the contents of the variables are restored and saved regardless of the simulation

function entrance or exit.

4.4.1.6 Proof of FCCA Simulation

We will prove the FLASH is an FCCA simulator.

Let us first focus our attention on finding the condition needed to obtain the correct FIFO input

value of the FAPIs. As explained in Section 4.4.1.2, the FSM state of a module matches the RTL

simulation at t in FLASH if FIFO empty and full signals (which cause state transition stalls) of

all FIFOs connected to the module match the RTL simulation at 1, 2, ..., t− 1. cstmt of a module

is simulated at the same FSM state as the HLS tool’s scheduling using the method explained in

Section 4.4.1.1. Thus, cstmt is simulated at the same cycle t as the RTL simulation if FIFO

empty and full (FIFO output signals) of all FIFOs connected to the module signals match the

RTL simulation at 1, 2, ..., t− 1.

Among the four components of cstmt (A4), we have assumed that constants and operators of

63

the HSS match that of the RTL simulation (A5). For variables (the third component) of cstmt,

FLASH evaluates all statements that has dependency with cstmt and passes the value of variables

from these statements to be read in cstmt (Section 4.4.1.5). If these statements with dependency

were also communication statements, it will produce correct value of variable if its FIFO output

value of the FAPIs match the RTL simulation. Such FAPIs may have been evaluated at any cycle

1, 2, ..., t. The modeling of FAPIs (the fourth component of cstmt) has been explained in Sec-

tion 4.4.1.3. The union of the discussed conditions needed to obtain the correct FIFO input value

of the FAPIs at t is that the FIFO output values of the FAPIs of all connected FIFOs at 1, 2, ..., t

needs to match the RTL simulation. This is summarized in Lemma 4.4.1.

Lemma 4.4.1. If the FIFO output values of the FAPIs of all FIFOs connected to a module at 1,

2, ..., t match the RTL simulation, the FIFO input values of the FAPIs of all FIFOs connected to a

module at t match the RTL simulation.

By induction, we can also show that the FIFO input values of the FAPIs of all FIFOs connected

to a module at 1, 2, ..., t− 1 match the RTL simulation. If we enlarge the scope of Lemma 4.4.1 to

all FIFOs fp=0...F and all modules mx=0...M of a design, we can conclude that:

Corollary 4.4.1.1. If the FIFO output values of the FAPIs in mx=0...M at 1, 2, ..., t match the RTL

simulation, the FIFO input values of the FAPIs in mx=0...M at 1, 2, ..., t match the RTL simulation.

Next, we move on to finding the condition needed to obtain the correct FIFO output value of

the FAPIs. As stated in (A6), we assume that a FIFO is a deterministic system which is simulated

correctly by a HSS at t if the FIFO input values of the FAPIs and the FIFO IP behavior at 1, 2,

..., t− 1 are simulated correctly. The FIFO IP behavior is simulated correctly using the method in

Section 4.4.1.3. Then Lemma 4.4.2 is derived from (A6):

Lemma 4.4.2. If the FIFO input values of the FAPIs at 1, 2, ..., t − 1 match the RTL simulation,

the FIFO output values of the FAPIs at t match the RTL simulation.

Similar to the argument made in deriving Corollary 4.4.1.1, the FIFO output values of the FAPIs

at 1, 2, ..., t− 1 match the RTL simulation as well. Also, we enlarge the scope of Lemma 4.4.2 to

all FIFOs and all modules of a design:

64

Corollary 4.4.2.1. If the FIFO input values of the FAPIs of mx=0...M at 1, 2, ..., t − 1 match the

RTL simulation, the FIFO output values of the FAPIs of mx=0...M at 1, 2, ..., t match the RTL

simulation.

From Corollary 4.4.1.1 and Corollary 4.4.2.1, we can reach the following conclusion:

Theorem 4.4.3. The FIFO input and output values of the FAPIs of in mx=0...M at 1, 2, ..., t match

the RTL simulation.

Proof: Since we assume that all FIFOs are initially empty (A7), all FIFO output values of the

FAPIs are known at t = 1. Then by Corollary 4.4.1.1, the FIFO input values of all FAPIs at t = 1

match the RTL simulation. The input and output values of all FIFO APIs match the RTL simulation

at t = 1 (base case). Let us assume that Theorem 4.4.3 is true at t = k. Since the input values of

all FIFO APIs at t = k match the RTL simulation, the output values of all FIFO APIs at t = k + 1

match the RTL simulation (Corollary 4.4.2.1). This implies that the input values of all FIFO APIs

at t = k+ 1 match the RTL simulation (Corollary 4.4.1.1). Thus, the input and output values of all

FIFO APIs match the RTL simulation at t = k + 1 (induction step). Thus, Theorem 4.4.3 is true

by induction.

Since the FIFO input and output values of the FAPIs of mx=0...M at all cycles 1, 2, ..., t match

the RTL simulation, FLASH is a FIFO communication cycle-accurate simulator.

4.4.2 Simulation of Parallelism

4.4.2.1 Pipelined Parallelism

At each cycle, all statements in a pipelined loop are executed in parallel in a pipelined fashion.

The number of FSM states to be simulated corresponds to the loop iteration latency (IL, also called

pipeline depth). If we simulate only a particular FSM state conditional block of a pipelined loop,

it would not be possible simulate this parallelism.

To solve this problem, we would need to simulate all FSM states of a pipelined loop. It is

possible to make an exception to the simulation structure by traversing through multiple state con-

65

Figure 4.9: Simulation code that models pipelined loop parallelism for M2 of Fig. 4.5 (provides
details for line 9 of Fig. 4.8)

66

ditional blocks in a single cycle for pipelined loops; but this would over-complicate the simulation

structure. For a simpler solution, we choose to move all of the pipelined loop’s state conditional

blocks into the conditional block of a single state. The reallocated conditional blocks are referred

to as pipeline stage conditional blocks. As shown in Fig. 4.9, the contents of FSM states 2, 3, and 6

have been moved to pipeline stage conditional blocks in lines 21-29, lines 16-20, and lines 10-14.

Note that if a pipelined loop’s II is larger than 1, FLASH makes II-1 state conditional blocks for

this loop, and the pipeline stage conditional blocks at state st are placed at the state conditional

block of st%II .

The contents of each pipeline stage conditional block may be computed if the value of enable

signals is one (lines 10, 16 of Fig. 4.9). For example, the FIFO write at lines 12-13 is evaluated

if the enable signal “p1_en_st6" is one. One of the purposes of using an enable signal is to selec-

tively simulate statements in the pipeline loop prologue and epilogue. Another reason is that the

enable signal can invalidate statements in a pipeline bubble (from the artificial deadlock avoidance

transformation in Section 4.2.2). The value of enable signals are propagated through the pipeline

stages as shown in line 18.

It is important to note that the order of each pipeline stage conditional block has been reversed

(st6, ... st3, st2). This limits the value of enable signals to be only copied to the immediate next

pipeline stage in simulation of a single cycle.

Even if a same variable is used in different statements of the original source code, we cannot

assume that they have the same value if they have been assigned to different pipeline stage con-

ditional blocks in simulation. For example, suppose that line 6 of Fig. 4.5 is performed at FSM

state 2, and line 7 is performed at state 6. In a single cycle of the pipelined loop simulation, “temp"

of line 7 would correspond to loop iteration i, whereas “temp" of line 6 would correspond to loop

iteration i+4. Thus, they would have different values.

For correct simulation, we keep multiple copies of the same variable for each pipelined stage

of a loop. The variables are copied through the pipeline like shift registers. For example, the

“temp" variable is copied from loop pipeline stage 3 to stage 4 at line 19 of Fig. 4.9. Variables

“data" and “i" are not copied to the next pipelined stage after performing cycle-based variable

67

Figure 4.10: Module/FIFO simulation scheduler to model task-level parallelism

liveness analysis that will be explained in Section 4.5.1. Similar to the enable signals, the content

of pipelined variables is only copied to the immediate next state in a single cycle, since the order

of the pipeline stage conditional block has been reversed. Optimization of the pipelined variables

is discussed in Section 4.5.

Because of the duplicated pipelined variables, the readability of the simulation code could be

reduced. In order to diminish this side effect, FLASH places the line number of the original vari-

able declaration in the source code as a comment of the duplicated pipelined variable declaration in

the simulation code. For example, the line number 6 of the original variable declaration of “temp"

in Fig. 4.5 is written as a comment of the duplicated pipelined variable declaration in line 2 of

Fig. 4.9. Also, the original line numbers of the computation and communication statements are

placed at the comments of the simulation statements (e.g., lines 21-26 of Fig. 4.9).

4.4.2.2 Task-Level Parallelism

As discussed in Section 4.4.1.1, the statements in an FSM state are simulated by calling the sim-

ulation function of a module. Thus, the task-level parallelism can be simulated by calling all

simulation functions in a round-robin fashion. This is processed in the module simulation loop

68

Figure 4.11: FIFO simulation code for fifo3 (F3_SIM is simulated at line 11 of Fig. 4.10)

shown in lines 8-9 of Fig. 4.10.

As mentioned in Section 4.4.1.3, the update of the buffer spaces and the number of available

data is delayed until all modules in the current cycle have been simulated. The variables update

code, shown in Fig. 4.11, is performed in the FIFO simulation loop (lines 10-11 of Fig. 4.10).

The module simulation loop and the FIFO simulation loop form the scheduler loop as shown

in lines 6-14 of Fig. 4.10.

4.4.3 Loop and Function Simulation

Simulation of statements inside a pipelined loop has been discussed in Section 4.4.2.1. The loop

initialization statement is simulated upon initial entrance to the first FSM state (stL) of a loop L.

The loop update is simulated at the end of each loop. If L is a pipelined loop with II of IIL, the

loop update occurs at the end of stL + IIL − 1, because FLASH uses IIL − 1 state conditional

blocks (Section 4.4.2.1). This causes loop iterator update statements (e.g., line 8 of Fig. 4.5) to be

evaluated to the end of stL + IIL − 1. If the loop condition is met after the update, state transition

for loop exit occurs. For a flattened loop (e.g., M1 in Fig. 4.4), the update and the loop condition

check is performed starting from the innermost nested loop, as illustrated in Fig. 4.12.

A function call is simulated by sending a module enable signal to the scheduler loop (Fig. 4.10).

Next, the function argument values are copied into the newly called module.

69

Figure 4.12: Loop condition and update for flattened loop in M1 of Fig. 4.4

4.5 Optimization of Pipelined Loops Simulation

Pipelined loops typically account for most of the execution time of many FPGA designs. To

simulate pipelined parallelism, we need copies of variables for each iteration latency of a pipelined

loop (Section 4.4.2.1). However, a naive implementation could lead to making redundant copies

of the variables. This section discusses how to optimize this routine. The effect of optimizations

presented in this section will be evaluated in Section 4.8.2.

4.5.1 Cycle-Based Variable Liveness Analysis

The pipelined variables are only needed in the pipeline stages where the variables are being ac-

cessed. To ensure this, we first perform variable liveness analysis [1] to find the range of state-

ments where each pipelined variable is alive. Next, the FSM state of communication statements

and the computation statements are obtained from the scheduling report and the dependency anal-

ysis. From the FSM state information of statements, the statement liveness range of each variable

is translated into a cycle liveness range. Based on this cycle information, we place a limit on the

pipeline stages where each pipelined variable is copied.

For the example in M2 of toy_mpath (Fig. 4.5), we first perform liveness analysis on each

variable to find that variable “data" is live in lines 5–6, variable “i" in line 8, and variable “temp"

in lines 6–7. Then we assign the states for communication and computation statements in M2 of

toy_mpath as was shown in Section 4.4.1.1. That is, statements in lines 5, 6, and 8 of Fig. 4.5

are assigned state 2, and the statement in line 7 is assigned state 6. Based on this information,

70

Figure 4.13: The code after applying pointer-based variable access optimization to the initial code
provided in Fig. 4.9

the statement liveness range is converted into a cycle liveness range—variables “data" and “i" are

live at cycle 2 and variable “temp" from cycles 2 to 6. As a result, only variable “temp" is copied

through the pipeline stages.

4.5.2 Pointer-Based Variable Access

One of the problems of declaring a pipelined variable for each pipeline stage (as in Fig. 4.9) is that

the same value is copied repeatedly. Assuming a pipelined loop has I iterations, V variables, and

IL iteration latency, the complexity of copying pipelined variables is O(I×V×IL).

71

We propose an alternative method of copying the value of a pipelined variable only once and

changing the pointer to the pipelined variable. The modification to the initial code provided in

Fig. 4.9 is shown in Fig. 4.13. We first exploit the fact that the value of the pipelined variable is

used in the immediate next pipeline stage—thus, the pipeline variable pointer for stage st (ptrst)

update can be simplified into (ptrst + 1)%IL (lines 24–25). Next, the pipeline variable pointer

is shared among all variables and enable signals in the same pipeline stage since all variables and

enable signals are copied together to the next pipeline stage if the loop pipeline has not been stalled.

An example is shown for “temp" variable (line 20) and “p1_en" enable signal (line 17). Note that

this optimization has not been applied to variables “i" and “data", because “i" and “data" are only

used in pipeline stage 2 (Section 4.5.1). Finally, we remove the pipeline stage conditional blocks

that do not evaluate any statement (line 13—pipeline stages 3, 4, and 5 are removed), because

variables and enable signals no longer need to be copied.

Since the data is copied only once, the complexity of pipelined variable copy is O(I×V).

The pipelined variable pointers are shared among all variables in the same pipeline stage—thus,

the complexity of the pointer update appears to be O(I×IL). However, as mentioned in Sec-

tion 4.4.1.1, we group statements to only a few FSM states. The pointer update is not performed

on pipeline stages that do not evaluate any statement (e.g., lines 24-25). Assuming there are C

stages with communication statements (C�IL), the pointer update complexity is O(I×C). Thus,

the overall pipeline variable complexity of the proposed method is O(I×(V+C)), which is a large

improvement over O(I×V×IL).

4.6 Overall Flow

The overall simulation framework of FLASH is shown in Fig. 4.14. Given an input Vivado HLS

C design source code, users specify optional debugging directives such as module execution cycle

measurement or deadlock triggering (to be explained in Section 4.7). Then FLASH performs

a preprocessing step of adding labels to the source code so that loops and functions can be easily

identified. The transformation step uses the APIs in the ROSE [106] and the Merlin [48] compilers.

72

Figure 4.14: Overall simulation framework of FLASH

Table 4.4: Debug directives for FLASH
Syntax Description Target

Trigger-related

DEADLOCK Triggered at deadlock Module with dataflow pragma
STALL Triggered when module or loop has been stalled Any module or loop
MODULE_DONE Triggered when a module completes its execution Any module
FIFO_FULL FIFO=<name> Triggered at FIFO full condition Any FIFO
FIFO_EMPTY FIFO=<name> Triggered at FIFO empty condition Any FIFO
EQUAL VAR=<name> VAL=<val> Triggered when variable equals to value provided Any stmt with a variable reference
GREATER VAR=<name> VAL=<..> Triggered when variable is greater than value provided Any stmt with a variable reference

Data-related DUMP VAR=<name> FILE=<name> Dumps variable data into the specified file Any stmt with a variable reference
COMP VAR=<name> FILE=<name> Triggered when variable differs from golden data in file Any stmt with a variable reference

Perf-related

TRIP_COUNT Measures the loop trip count (e.g. for data-dependent loop) Any loop
EXEC_CYCLE Measures the number of execution cycles for module or loop Any module or loop
STALL_CYCLE Measures the number of stalled cycles for module or loop Any module or loop
FULL_CYCLE Measures the number of cycles when FIFO was full Any FIFO
EMPTY_CYCLE Measures the number of cycles when FIFO was empty Any FIFO
AVG_BUFFER Measures average number of buffer space available in FIFO Any FIFO

The transformed code is fed into the Vivado HLS for synthesis. Based on the scheduling report

given by the HLS tool, the input code is automatically transformed for rapid FCCA simulation

(Section 4.4 and Section 4.5). The simulation code has been made compatible with the Vivado

HLS software simulator for easy integration with the existing tool. As a final output, FLASH

provides the total execution cycles and other user-specified debugging results in addition to the

output data that the design is expected to produce.

4.7 Source-Level Correctness Debugging and Performance Debugging

FLASH provides an option of enabling various source-level correctness and performance debug-

ging features that will be explained in this section.

73

Figure 4.15: An example debugging session for deadlock detection using FLASH

4.7.1 Live Capture

FPGA tools such as Xilinx’s ChipScope [126] or Intel’s SignalTap [63] capture the data in the

FPGA and display it to users for debugging. One of the problems with these configurable logic

analyzers is that additional signals often need to be inserted into the capture list to continue tracing

the source of a bug after the initial analysis. This requires iterative adjustment of the signal capture

list until the bug has been isolated, and the bitstream generation for each analysis often takes hours

to finish. Many of the hardware-based HLS debuggers described in Section 2.3 also require a long

turnaround time due to similar reasons.

Software debuggers, on the other hand, do not require signals to be listed in advance. However,

due to the lack of cycle accuracy, putting a trigger (breakpoint) on a C source code does not allow

the users to observe the signals at a particular cycle of interest. Another problem is that users have

limited visibility. For example, local variables in a function different from the trigger cannot be

observed unless the user progresses to that function—by which time the content of many variables

would have been changed.

To solve these problems, we exploit the fact that FLASH stores intermediate variables (Sec-

tion 4.4.1) and the fact that FLASH runs on top of an established commercial tool, the Vivado

HLS, that provides software debugging features. Upon detection of a trigger condition (details

in Section 4.7.2), FLASH sets a debug stall flag. All modules are stalled upon the detection of

this flag (implementation is similar to the pipelined loop stall modeling in Section 4.4.1.4). When

the simulation has been stalled for debugging, users can step into any function and observe any

74

local variables of interest by adding a new variable into the HLS debugger variable watch list. The

variables to be captured no longer need to be predetermined.

In the debugger variable watch list, the users can expect variables in the FIFO communication

and the FSM state variables to match the RTL simulation at all cycles (Section 4.4.1). However,

the timing when the variables in the computation statements match the RTL simulation may not be

accurate.

In order to pause at the trigger point, FLASH guides the users to place a breakpoint on the

source code line where the debug stall flag is set. The breakpoint is detected by the Vivado HLS

debugger. To resume the simulation after observation, the user can modify the value of the debug

stall flag to 0 using the Vivado HLS debugger.

4.7.2 Source-Level Event Trigger and Performance Measurement

In the Xilinx Chipscope [126], users are required to specify signal names and their value for the tool

to start capturing the data (trigger condition). Since the HLS tool applies several transformations in

generating RTL file from a C source code, manually identifying the correct trigger condition from

a RTL file may be error-prone for novice users. To ease this process, many hardware-based HLS

debuggers [51–53, 89, 90, 120] allow users to specify variables to be traced or put breakpoints on

the source code; however, none of these abstract the trigger condition of events such as deadlock

or module/FIFO stall.

FLASH provides a set of source-level directives which can be specified by users to halt com-

putation upon an event of interest. The list is given in the trigger-related row of Table 4.4. The

directive is always preceded by: #pragma FLASH <syntax>. For example, the deadlock de-

tection directive is #pragma FLASH DEADLOCK. FLASH automatically converts the directives

into a stall condition that increments a debug variable that counts the number of stalled modules.

For the case of M2 in Fig. 4.4, it will be stalled if the FIFO is full (line 14). If the directive for

deadlock detection is found in the source code, FLASH inserts a code that increments the de-

bug variable “debug_stall_mod_cnt" upon stall (line 6 of Fig. 4.9). After simulating each cycle,

FLASH checks to see if “debug_stall_mod_cnt" matches the number of all modules in the design.

75

If so, FLASH sets the debug stall flag that would pause the simulation (Section 4.7.1).

An example debugging session for deadlock detection is shown in Fig. 4.15. After the user

places a directive in the source code for deadlock triggering, FLASH translates the directive into a

code that stalls the simulation of all modules. Then the user can step into any function and observe

the value of any variable with the Vivado HLS debugger. The user may choose to continue the

simulation by resetting the debug stall flag to 0.

FLASH also supports directive-based performance measurement. The list is given in the

performance-related row of Table 4.4. The functionality includes module execution and stall cycle

measurement, as well as FIFO full and empty cycle measurement.

4.7.3 Large Data Debugging

Hardware-based HLS debuggers such as [51–53, 89, 90, 120] optimize the storage and transfer of

variable data in an FPGA to be analyzed for correctness. However, the amount of traced vari-

able is still limited by the BRAM size and the DRAM bandwidth. Being a software-based de-

bugger, FLASH is not limited by the FPGA hardware resource restriction when performing such

data-driven debugging—even for multiple variables. Examples include large data dump and large

golden reference comparison—the user directives for these functions are shown in the data-related

row of Table 4.4.

4.8 Experimental Results

4.8.1 Experimental Setup

For HLS synthesis, we use the Vivado HLS 2018.2 [130]. For FPGA, we target Xilinx’s Ultrascale

KU060 [129]. The target clock frequency is 250MHz. The simulation is conducted with a server

node that has an Intel Xeon Processor E5-2680v4 [66] and 64GB of DRAM. The simulation files

were compiled with –O3 flag.

The experiment is performed on toy_mpath (Fig. 4.4) and several dataflow benchmarks:

76

Table 4.5: Simulation preparation time breakdown (preprocessing, HLS synthesis, and simulation
file generation: Fig. 4.14)

Benchmark Preproc HLS Synth SimFile Gen Total
Toy_mpath 7.6s 25s 7.9s 40s
Stencil 19s 68s 30s 117s
MD_sim 9.2s 38s 8.8s 56s
Mat_mul 8.7s 36s 12s 57s
Cholesky 15s 98s 37s 150s

NW 18s 99s 26s 143s
LUD 7.1s 21s 8.9s 37s
SpMV 13s 78s 25s 116s

stencil [17], molecular dynamics simulation [33] (Fig. 4.1), matrix multiplication [36], Cholesky

decomposition [82], Needle-Wunsch [105], LU decomposition [99], and sparse matrix-vector mul-

tiplication [136]. The benchmarks ([99,105]) that were not originally designed to execute modules

in parallel with FIFO communication were modified to incorporate this optimization.

The FLASH simulation result is compared to that of Vivado HLS C and RTL simulation (Ver-

ilog), and Verilator 4.012 simulation [113]. Since Vivado HLS RTL files contain core library calls

that cannot be processed by Verilator, we have manually replaced them with a behavioral Verilog

model.

4.8.2 Execution Time

As mentioned in Section 4.6, preprocessing, HLS synthesis, and simulation file generation steps

are needed to prepare the files for the proposed simulation. The time breakdown of the steps is

presented in Table 4.5.

The effect of optimizations in Section 4.5 is shown in Table 4.6. The baseline version uses

the techniques introduced in our earlier publication [18] and does not have cycle-based variable

liveness analysis (Section 4.5.1) and pointer-based variable access (Section 4.5.2) optimizations.

The table shows that the proposed optimizations result in 1.55X speedup on average. The speedup

is greater for benchmarks that have a large (>12) averaged pipeline depth among all variables.

The average speedup for Stencil, MD_sim, LUD is 2.28X, and the averaged speedup for the

77

Table 4.6: Speedup after applying optimizations (cumulative spedup shown)

Benchmark
Avg pipe

Baseline
Var liveness Ptr var acc

var depth (Section 4.5.1) (Section 4.5.2)

Toy_mpath 5.4
0.522s 0.483s 0.441s
(1.00X) (1.08X) (1.18X)

Stencil 13
2.43s 1.16s 1.12s

(1.00X) (2.09X) (2.17X)

MD_sim 34
0.184s 0.0728s 0.0565s
(1.00X) (2.53X) (3.26X)

Mat_mul 7.8
0.0802s 0.0722s 0.0716s
(1.00X) (1.11X) (1.12X)

Cholesky 8.7
0.0617s 0.0600s 0.0530s
(1.00X) (1.03X) (1.16X)

NW 3.2
0.236s 0.224s 0.224s
(1.00X) (1.05X) (1.05X)

LUD 19
0.0345s 0.0266s 0.0242s
(1.00X) (1.30X) (1.43X)

SpMV 10
0.0853s 0.0808s 0.0803s
(1.00X) (1.06X) (1.06X)

AVG - (1.00X) (1.41X) (1.55X)

rest of the benchmarks is 1.12X. This is because the proposed optimizations reduce copies of the

variables in loop pipelines.

As explained in Section 4.4.1, FLASH use the FSM state assignment information and the FSM

state transition information. The resource allocation / binding information, and the component

library that exist in RTL code have been abstracted in FLASH, and the computation statements

are instead simulated natively on the host machine. The result of this abstraction can be seen in

Table 4.7. FLASH is about 1,630X (=2,800/1.72) faster than the RTL simulation. This confirms

our initial speculation that simulating based on the scheduling information will result in much

faster speed while solving the correctness problems.

Since our flow reflects the scheduling information, we can expect some slowdown compared

to the Vivado HLS C simulation. One source of overhead is the frequent FIFO stall which length-

ens the simulation process. Another source of overhead is copying pipeline variables and enable

signals (this overhead is reduced by the optimizations in Section 4.5 as was shown in Table 4.6).

However, it is interesting to note in that for some benchmarks such as Toy_mpath and Stencil

78

Table 4.7: Simulation time comparison among Vivado HLS C simulation, Vivado HLS RTL sim-
ulation, Verilator, and FLASH simulation

Benchmark
Viv HLS Viv HLS

Verilator FLASH
C Sim RTL Sim

Toy_mpath
0.765s 519s 120s 0.441s
(1.00X) (678X) (157X) (0.576X)

Stencil
1.92s 101s 119s 1.12s

(1.00X) (52.6X) (62.0X) (0.583X)

MD_sim
0.0652s 89s 7.3s 0.0565s
(1.00X) (1,370X) (112X) (0.867X)

Mat_mul
0.0680s 180s 29.2s 0.0716s
(1.00X) (2,650X) (429X) (1.05X)

Cholesky
0.0124s 90s 27.7s 0.0530s
(1.00X) (7,260X) (2,230X) (4.27X)

NW
0.136s 68s 27.1s 0.224s
(1.00X) (500X) (199X) (1.65X)

LUD
0.0319s 129s 16.4s 0.0242s
(1.00X) (4,040X) (514X) (0.759X)

SpMV
0.0200s 117s 55.5s 0.0803s
(1.00X) (5,850X) (2,780X) (4.0X)

AVG (1.00X) (2,800X) (810X) (1.72X)

in Table 4.7, FLASH was even faster than the Vivado HLS C simulation. This suggests that there

was an unexpected factor which has negated the simulation speed overhead of the proposed flow.

We found that this is largely attributed to the fact that the Vivado HLS tool can allocate an unlim-

ited FIFO buffer for C simulation (Table 4.1). To model FIFO, the Vivado HLS C simulator uses

the C++ Standard Template Library (queue.h), which incurs the overhead of dynamically allocat-

ing buffer and copying its content. For example, the C simulation time of Toy_mpath reduces

from 0.765s to 0.128s if we replace FIFO library calls with fixed-size arrays (array size is set to the

number of total FIFO elements written). FLASH simulation flow does not have this problem, be-

cause the FIFO library calls have been replaced with array-based communication (Section 4.4.1.3).

The average slowdown of FLASH compared to the Vivado HLS C simulation is 1.72X.

Compared to the RTL simulation, Verilator increases the simulation speed by 3.45X (=2,800X/810X).

However, as mentioned in Section 2.3, the speedup is limited because it is difficult to completely

remove resource allocation and binding information from the RTL file after they have been added.

FLASH does not have this overhead, and as a result, FLASH outperforms Verilator by two orders

79

of magnitude while also achieving the cycle accuracy.

Please note that in our initial research stage, we also evaluated a similar code transformation

flow that produces a SystemC simulation file. However, the overhead in the SystemC simulation

environment caused a 2-3X slowdown compared to the proposed C-based flow, which motivated

us to follow the current approach. Despite the slowdown, SystemC-based approach could be more

useful to some tool developers if compatibility with existing SystemC simulation frameworks has

a higher priority.

4.8.3 Accuracy

As explained in Section 4.3, the correctness problem is solved by simulating FIFO communication

in a cycle-accurate manner. The data value and the data ordering has been verified by comparing

the output of the FLASH simulator with that of the Vivado HLS RTL simulator.

In Table 4.8 we compare the cycle estimation accuracy with the Vivado HLS synthesis report

after we specify the maximum loop bound for each loop. The estimation error rate is small for

Stencil, because [17] has a built-in mechanism to allocate adequate buffers. For the rest of

the benchmarks, we have applied a small (1–2) FIFO depth (an example was shown in Fig. 4.4).

This causes the FIFO buffer to be frequently full and empty and leads to worse performance.

Thus, the HLS synthesis reports’ estimate is smaller than the RTL simulation result. For LUD and

SpMV, on the other hand, the Vivado HLS tool provides a very large overestimate of the execution

cycles. The reason is that these applications have variable loop bounds, and Vivado HLS generates

the cycle estimate based on the maximum possible loop bounds [24]. FLASH simulates FIFO

stalls and loops with variable bounds in a cycle-accurate fashion, and the estimated execution time

accurately matches that of RTL simulation.

4.9 Concluding Remarks

With a new HLS software simulation flow based on the scheduling information, we were able

to solve the correctness issue and also provide accurate performance estimation. A cycle-accurate

80

Table 4.8: Total execution cycle estimated by Vivado HLS synthesis report and FLASH, and its
error rate compared to the RTL-simulated result

Benchmark RTL sim Viv HLS syn rpt FLASH

Toy_mpath
4,500,010 4,000,019 4,500,010

- (-11%) (0%)

Stencil
524,309 524,299 524,309

- (~0%) (0%)

MD_sim
12,089 10,524 12,089

- (-13%) (0%)

Mat_mul
330,006 131,075 330,006

- (-60%) (0%)

Cholesky
40,741 34,996 40,741

- (-14%) (0%)

NW
245,725 131,112 245,725

- (-47%) (0%)

LUD
201,260 561,153 201,260

- (180%) (0%)

SpMV
163,859 395M 163,859

- (240K%) (0%)

simulation result was obtained three orders of magnitude faster than from RTL simulation, because

the new simulation flow is not slowed by allocation / binding information and component library.

We have described an automated code generation flow that enables this new simulation flow.

We hope that the promising results presented in this work will motivate the HLS commercial

tool industry to provide additional routines that simulate based on the scheduling information only.

This will substantially decrease the validation time of the customers who wish to rapidly estimate

cycle-accurate performance, obtain correct output data, or detect possible deadlock situations.

81

CHAPTER 5

On-Board Monitoring for Performance Debugging

5.1 Introduction

In Chapters 3 and 4, simulation-based performance debugging flows were proposed. These flows

have high accuracy in predicting the performance of HLS designs when representative input datasets

exist for simulation purpose. However, if the input may vary at the time of FPGA deployment, on-

board monitoring becomes necessary. Another problematic case is where high-level models do

not exist for all components of the FPGA design. For example, a design may have an RTL sub-

component or DRAM with unknown characteristics.

To address these challenges, on-board monitoring becomes necessary. Although there are some

works that provide on-board correctness debugging capability for HLS designs [51–53, 89, 90],

these works do not provide insight on solving the performance problems. Instead, we propose an

HLS-based in-FPGA performance monitoring flow called HLScope-M. Using non-blocking FIFO

access and pipelining, we propose a source-to-source (S2S) transformation method that can be

expressed in HLS without the need for mixed HLS-HDL flow. The code instrumentation for pa-

rameter extraction is automated, as we will be demonstrating with the quicksort example. Finally,

we will propose Stall Analysis Network (SAN) that analyzes the stall reason even for designs

without explicit synchronization.

5.2 Cycle Extraction Based on In-FPGA Monitoring

An in-FPGA monitoring flow can be used to extract cycle information more accurately than the

simulation-based flow, at the cost of spending time on generating the FPGA bitstream. For easy in-

82

tegration with HLS-based synthesis flow [128], we would like the monitoring logic to be expressed

in pure HLS code. Then the biggest challenge is to extract cycle information, which is hidden from

programmers in HLS. To solve this problem, we propose a technique of using non-blocking FIFO

read and pipelining.

HLScope-M instruments two types of probes: ‘pX’ probes (e.g., p0, p1, and p2) to signal

start and end of module execution (‘1’ for start and ‘0’ for end) and ‘p_endmtr’ to signal monitor

termination. It also inserts ‘dbg_memX’ debug registers (declared as global variable) to record

accumulated execution cycle of each module. Finally, a monitor logic is added for overall process-

ing.

A sample code instrumentation is given in Fig. 5.1 for quicksort. HLScope-M inserts a mon-

itoring logic monitor_3p() to run in parallel with qsort_top() which contains three submodules

under analysis - load(), qsort_comp(), and store() (Fig. 5.1a). For each submodule, ‘pX’ probe

sends 1/0 to signal module start/end (Fig. 5.1b). These ‘pX’ probes are connected to the monitor

through FIFO (Fig. 5.1a). For monitor termination, ‘p_endmtr’ sends a value of 0 at the end of

qsort_top() module (Fig. 5.1a). Note that a monitor start signal is unnecessary, because the monitor

begins its operation as soon as the whole design has been reset.

In the monitoring logic, variable ‘cycle’ corresponds to the actual hardware cycle. This is pos-

sible since the loop is pipelined to II=1, and all FIFO reads are declared non-blocking (Fig. 5.1c).

Then the loop can run continuously regardless of the input. Note that ‘cycle’ is incremented by

one for each loop iteration.

Based on ‘cycle’ variable, we subtract the cycle obtained at the start of submodule 0 execution

from the cycle obtained at the end, and accumulate to ‘dbg_mem0’ (Fig. 5.1d). The same is

done for submodule 1 and 2. After the ‘p_endmtr’ has been processed for program termination

(Fig. 5.1c), ‘dbg_memX’ content is written to DRAM for offline analysis (Fig. 5.1e).

83

Figure 5.1: Code instrumentation for in-FPGA monitoring (instrumented code in bold)

84

Figure 5.2: Dataflow vector add connected through FIFO. Circled number is the module ID.

5.3 In-FPGA Stall Analyzer for FIFO-based Dataflow Application

The in-FPGA monitor insertion proposed in the previous section can provide a stall reason analysis

only when modules have explicit synchronization among them. The analysis will not be accurate

if modules have no explicit synchronization and utilize FIFOs as means of communication. For a

simple example of vector add in Fig. 5.2, all modules will execute in parallel and wait for data to

be produced or consumed by other modules. Thus, module 5 (C=A+B) will stall even if only one

of the modules in the A/B read pipeline (FIFO being empty) or C write pipeline (FIFO being full)

stalls. Then the challenge becomes tracing the exact source of stalls in run-time.

We solve this problem by instrumenting a series of probes into modules under analysis (MUA)

and FIFOs. Also, we instantiate a network of the probe processing logic (monitors). The details

will be presented in the following subsections.

5.3.1 Code Instrumentation for Module Under Analysis

We start by regaining the visibility of the module status (in execution or stalled) that is hidden due

to HLS abstraction. Fig. 5.3 describes the process for module 1 (Read A), and Table 5.1 lists the

series of probes used. Probe p_status is inserted to indicate whether the module is in inter-module

communication mode or not. p_status.write(1) is inserted before start of the pipeline that contains

the inter-module communication (fifo_512.write()), and p_status.write(0) is inserted to signal the

end of pipeline. 2

Even if the module is executing the inter-module communication pipeline, it may stall if the

2It is also possible to analyze the stall reason due to DRAM access with two-bit (e.g., 0:in computation, 1:in
inter-module communication pipeline, 2:accessing DRAM) status probe, rather than one-bit.

85

Figure 5.3: Code instrumentation for Read A module. Instrumented code in bold.

Table 5.1: List of probes for module under analysis
Probe name Description

p_status Is in inter-module communication mode?
p_active Is the communication pipeline not stalled?

p_exit_mtr Terminate signal for stall analysis monitor.
p_exit_fifo Terminate signal for instrumented FIFO.

FIFO is full or empty. To observe this, we instrument p_active that writes ‘1’ if the communication

pipeline is active. If stalled, it will not write anything.

Finally, we also instrument logic termination signal (value of 0) for the monitor logic (p_exit_mtr)

and instrumented FIFOs (p_exit_fifo) that will be explained in the following subsections.

5.3.2 Code Instrumentation for FIFOs

The activeness of the module under analysis can be observed using the previous techniques, but if

multiple FIFOs are connected to a module, it is difficult to find which FIFO is causing the stall. For

this analysis, we also instrument measurement logics into the inter-module FIFOs. An example

is given for the FIFO between module 1 and module 3 in Fig. 5.2. Two measurement logics are

inserted between the write and the read module: full_mtr and empty_mtr that generate the fullness

86

Figure 5.4: Instrumentation of full_mtr and empty_mtr for FIFO

(fifo_512_full) and emptiness (fifo_512_empty) signal of the FIFO (Fig. 5.4).

The detailed code of the full_mtr logic is shown in Fig. 5.5. If fifo write to fifo_512 is blocked,

it will send ‘1’ via wire fifo_A_full to the monitor logic (explained in the next subsection) to signal

fullness of the FIFO. Also, all data reads and writes are performed in non-blocking mode, and the

pipeline is set to II of 1. As a result, the throughput of the original FIFO is maintained, and the

instrumented logic does not cause additional stall to the original logic. In addition, a temporary

data buffer is used to store a read data that was not written due to output being stalled. Though

omitted, similar code is used for empty_mtr logic that monitors the emptiness of the FIFOs.

5.3.3 Monitor for Stall Analysis Network

In order to analyze the stall reason for module 5, for example, we would have to observe the status

of all read pipelines (modules 1, 2, 3, 4) and write pipelines (modules 6, 7). However, this is not

scalable since an interconnect of quadratic complexity would be needed between all MUAs and all

monitors.

Instead, we propose a distributed stall analysis network (SAN). Part of the proposed logic is

shown in Fig. 5.6. One monitor is instantiated per module under analysis. Each monitor classifies

its host MUA as being active, or being stalled due to its neighbor. As described in Table 5.2, module

being “active” is the period when the module is not in inter-communication mode (p_status=0) or

when it is in communication and the pipeline is active (p_status=1 and p_active=1). The module

being stalled is when the module is in communication and the pipeline is not active (p_status=1

and p_active=N/A). The reason for stall can be found by observing the empty or full signal sent

from the monitored FIFO logic. If multiple stall reasons are asserted, we designed monitor to

87

Figure 5.5: Code for full_mtr logic

Figure 5.6: Distributed stall analysis network

88

arbitrarily select one of the reasons for the simplicity of the implementation.

Table 5.2: List of states in the SAN monitor 3

Monitor state Active
Stalled Stalled
due to 1 due to 5

Input

p_status 0 1 1 1
p_active - 1 N/A N/A

f_512_empty - - 1 0
f_float_full - - 0 1

Output st_reas3 3 st_reas1 st_reas5

Register
act_cyc +=1 - -

st_cyc[st_reas1] - +=1 -
st_cyc[st_reas5] - - +=1

If the FIFO port that causes the stall is identified, each monitor will record the stall reason sent

from a neighbor monitor as being the root cause of the stall. This reason is generated at each mon-

itor. If the MUA is active (p_status=0 || (p_status=1 && p_active=1)), the monitor will broadcast

its own ID to its neighbor monitors. If its MUA is inactive (p_status=1 and p_active=N/A), it will

pass on the stall reason (st_reasX) of the FIFOs that have been stalled.

We record the amount of cycles for each monitor state (active or stalled due to particular mod-

ule) in registers (act_cyc or st_cyc[X]). When monitoring has finished (p_exit_mtr=0), each mon-

itor will write its register contents to the DRAM for offline analysis.

Since each module passes the stall reason from its neighbors, it can identify the stall module

even if it is several hops away. Also, SAN is scalable because the connection of each monitor is

limited to its MUA, instrumented FIFOs, and the neighbor monitors.

5.4 Experimental Results

The in-FPGA flow is cycle accurate by its nature and does not need accuracy testing. In this

section, we provide the time and logic overhead.

89

5.4.1 Experimental Setup

For our evaluation platform, we use the Alpha Data ADM-PCIE-7V3 board [2] that has Xilinx’s

Virtex 7 690T FPGA. For the FPGA synthesis, we use the Xilinx SDAccel 2016.2 [128] and Vivado

HLS 2016.3 [130] software tools.

5.4.1.1 Time Overhead

The time taken to perform code instrumentation, module dependency analysis, critical path anal-

ysis, and stall reason analysis of various versions of quicksort (Section 3.1.3) is 13–33 seconds

(shown in Table 5.3). The synthesis takes takes several hours.

Table 5.3: Overhead of in-FPGA debugging flow for various versions of quicksort.
Dbg Bitstr
Time Gen

unopt 13s 1h27m
unrolled 22s 2h4m

doublebuf 33s 1h55m

5.4.2 Logic Overhead

The in-FPGA flow has logic overhead for the performance monitor insertion (Table 5.4). The logic

consumption increases with the number of modules to be monitored at the rate of approximately

170 LUTs per probe. Also, one BRAM per probe is needed since it is FIFO-based.

Table 5.4: Logic overhead of monitors for in-FPGA flow.
of probes LUT DSP BRAM

4 654 0 4
16 2802 0 16
35 6072 0 35

SAN requires extra logic for on-board implementation. Each probes (e.g., p_active and p_status)

in a MUA consumes about 20 LUTs. The instrumented FIFO consumes LUT that approximately

increases linearly with the data bitwidth, as shown in Table 5.5. The monitor resource usage

slightly increases with the number of neighboring monitors, as shown in Table 5.6. None of them

90

consume any DSP or BRAM.

Table 5.5: Logic overhead of instrumented FIFO
empty_mtr full_mtr

bitw float uint512 float uint512
LUT 46 526 49 529

Table 5.6: Logic overhead of SAN monitor
of neighbors 1 2 3

LUT 903 930 957

5.5 Comparison with Related On-board Debugging Work

As explained in Section 2.4, on-board debugging flows such as Chipscope, SignalTap, and works

in [51–53, 89, 90] provide functional correctness debugging capability. HLScope-M, on the other

hand, can be used to provide insight on solving the performance problems of an FPGA design

(please refer to Section 3.1 for detailed performance debugging process).

Compared to other on-board performance debugging works [42, 62, 71, 108, 120] described in

Section 2.4, HLScope-M has two main differences. The first difference is that HLScope-M ana-

lyzes the stall reason of individual modules and points to the root cause of the stall in high level.

Such analysis assists programmers to quickly identify the performance bottleneck. The second

difference is that HLScope-M’s monitor is based on pure HLS code for easy integration with the

existing HLS synthesis flows. Note that mixed HDL-HLS flow complicates the integration process

in synthesizing FPGA program—for example, Intel’s OpenCL HLS tool [62] does not allow mixed

HLS-HDL flow, and Xilinx’s SDAccel [128] (based on Vivado HLS [130]) allowed it only in their

recent versions.

5.6 Concluding Remarks

In this chapter, we have described on-board cycle measurement framework for HLS-based FPGA

performance debugging. Also, SAN has been proposed to analyze stall reason of modules without

91

explicit synchronization. The code instrumentation and measurement has been automated in our

tool. The flow is cycle-accurate, and the monitor consumes few hundreds of LUTs per monitored

module.

92

CHAPTER 6

Fast Design Space Exploration for Applications with Dynamic

Behavior

6.1 Introduction

The performance debugging flows introduced in previous chapters help FPGA designers collect

information such as the number of cycles, the stall rate, and the DRAM access time. Based on

this information, FPGA designers would perform optimization. However, there are many different

combinations of HLS directives that can be applied for each design, and it takes several minutes

for the HLS tool to transform a C-level design into a RTL code. This makes it difficult for a HLS

designer to find the set of parameters that will maximize the performance. This calls for automated

design space exploration (DSE) for HLS. A considerable amount of literature can be found on

this topic (Section 2.5). However, the previous work has difficulties finding an efficient design for

applications with variable loop bounds in the innermost loops. For example, the average speedups

for Polybench [99] benchmarks with variable loop bounds [99] are 2.3X and 1.0X using AutoAccel

[37] and COMBA [137], while our proposed approach achieved a 75X speedup.

The main reason for such small speedup in conventional DSE works is that commonly used

HLS directives unroll and pipeline may not be suitable for this type of application. As will be

explained in Section 6.2, these common directives would generate processing elements (PE) with

low utilization (<0.2) unless the code is properly transformed. For this reason, existing DSE tools

that simply insert optimization directives will not be able to fully optimize the application.

Another reason for the poor optimization is due to the difficulty in performing cycle analysis.

Vivado HLS will provide a very large range of cycles for variable loops, and the exact performance

93

after each optimization becomes difficult to predict. It is possible to estimate the performance of

applications with variable bounds based on the software simulation flow as proposed in HLScope

[23,24]. However, HLScope requires HLS synthesis of every design point to extract the loop cycle

parameters—which is often infeasible. Works such as [111, 137, 138] use their own schedulers

without the actual Vivado HLS synthesis; however, the accuracy might not be very satisfactory for

loops with variable bound as will be shown in the experimental result.

To solve these problems, we present our initial work on an HLS-based optimization and DSE

framework that improves the performance—even in the presence of variable loop bounds. First,

we will demonstrate the deficiency in commonly used HLS pragma unroll and pipeline if used

on variable loops. As a solution, we will propose source-to-source HLS code transformations

that increase the utilization of the compute resources for variable loops with partial unrolling and

pipelining in Section 6.2.2.

Furthermore, we identify the efficiency challenge that originates from the loop-carried de-

pendency and the variable loop bounds. In particular, we analyze floating-point variable-loop

reduction and prefix sum patterns that frequently appear in Polybench [99]. We will present code

transformations to optimize these computation patterns in Sections 6.2.3 and 6.2.4.

Next, we present a cycle and resource estimation model for the variable loops in Section 6.3.

In order to make an accurate resource estimation for large design spaces in a short time, our model

interpolates based on a small number of actual HLS synthesis runs and considers the sharing of

operands and arrays for various unrolling and array partitioning factors. The cycle estimation

model has its basis on the flow in Chapter 3 (HLScope-S), because the performance estimation can

be obtained most quickly with the high-level approach of HLScope-S (quantitative comparison will

be provided in Section 7.1.3). The difference is that whereas HLScope-S provides cycle estimate

for a single design, the work in this chapter uses the data collected from the software simulation to

predict the execution time for multiple designs. The details will be explained in Section 6.3.

The overall framework and the DSE flow are explained in Section 6.4. Finally, the experi-

mental result and the comparison with other works on the Polybench benchmark are presented in

Section 6.5.

94

Figure 6.1: Variable loop bound example in LU benchmark

6.2 HLS Code Transformation for Variable-Bound Loops

In this section we will first identify the limitation of applying directives for pipelining and unrolling

based on the maximum bound. Next, we will demonstrate the effectiveness of applying source-

to-source transformation. In Polybench [99] the applications with variable loop bounds can be

classified into three patterns: completely parallel, reduction, and prefix sum. We will discuss the

transformation for each pattern in the following subsections.

6.2.1 Loop Pipelining and Loop Unrolling Based on the Maximum Loop Bound

Since HLS tools cannot unroll the loops with variable bounds, a common optimization strategy is

to pipeline the loop. For illustration, we optimize loop 2 of the LU baseline code (Fig. 6.1), which

has matrix size N=512. After pipelining, the loop can be executed in 130,831 cycles (measured

using technique described in [24]). However, pipelining cannot exploit the data-level parallelism

that exists in the loop.

Another intuitive optimization strategy is to unroll based on the maximum loop bound mea-

sured from testbench profiling. The loop bound is fixed to a constant value as shown in Fig. 6.2.

Condition (if(j >= k + 1&&j < N)) is added to invalidate the execution of iterations where the

loop index is not between the upper bound and the lower bound of the loop.

However, the resulting unrolled architecture suffers from a severe PE efficiency problem. Even

if the dividers were all instantiated, profiling shows that the architecture can process only 130,816

divisions in 4,440,576 cycles—resulting in no speedup. On average, a divider PE is only perform-

95

Figure 6.2: Loop unrolling for loop 2 of baseline LU code (Fig. 6.1) based on the maximum loop
bound found in profiling

ing 0.000057 divisions per cycle. There are two reasons for such inefficiency: First, many PEs are

left idling when the loop trip count is smaller than the maximum loop bound. Second, the unrolled

PEs are not pipelined. Due to such a low PE utilization problem, Vivado HLS only instantiates a

single divider and shares it across the loop iterations.

6.2.2 Partial Unrolling with Pipelining

In order to exploit the loop parallelism while solving the PE inefficiency problem described in the

previous subsection, we apply code transformations based on partial unrolling and pipelining. The

idea is to place fewer PEs but allow them to proceed to other iterations in a pipelined fashion so

that the effective PE utilization ratio would be increased.

Vivado HLS-compatible code transformation steps for the LU benchmark (Fig. 6.1) are as

follows. As a preprocessing step, a common array reference (e.g., A[k][k]) that is invariant to the

loop is replaced with a temporary scalar variable (lc1) and moved out of the loop, as shown in line

3 and line 10 of Fig. 6.3. The reason is that Vivado HLS will synthesize it to an actual BRAM

lookup and unnecessarily consume additional read port per iteration.

Next, we separate the original loop into two loops L2_1 (line 4) and L2_2 (line 7). The inner

loop bound L2_2 is fixed to a constant L2_UF (line 7) so that the HLS tool may fully unroll it

after inserting a pipeline directive on the outer loop (line 5). Assuming the original loop has lower

bound lb and upper bound ub, the outer loop’s lower/upper bound is set to lb/L2_UF and (ub −

1)/L2_UF + 1 (line 4), so that the boundary iterations will be included as well. Arrays referenced

in the loop are partitioned (line 2) to the unrolling factor (L2_UF) in the array dimension (dim=2)

96

Figure 6.3: Code after applying the proposed partial unrolling and pipelining techniques to loop 2
of Fig. 6.1

referenced by the unrolled loop’s index (j). If the loop index exists in more than one dimension

(e.g., A[j][j]), the proposed transformation is not valid. We also place a conditional statement to

exclude iterations that were not between lb and ub (line 9).

As a last step, if there was no loop-carried dependency before splitting into two loops, we insert

a pragma to declare inter-loop dependency to false (line 6) for better performance [130]. This is

legal because j (= j1∗L2_UF +j2) increases monotonically, and thus A[k][j] will never reference

the same array address in previous iterations.

The cycle estimation model of the proposed transformation will be presented in Section 6.3.2.1.

Comparison of the execution cycles and the PE efficiency (average divisions per cycle per divider

PE) is shown in Table 6.1. The proposed transformation exploits the loop parallelism and allows

exploring various partial unrolling factors for wider design space exploration.

Table 6.1: Comparison of the execution cycles and the PE efficiency for loop pipelining (Sec-
tion 6.2.1), loop unrolling based on the maximum bound (Section 6.2.1), and the proposed partial
unrolling with pipelining (Section 6.2.2)

Pipeline Max Unr
Proposed Transformation

UFT = 2 UFT = 4 UFT = 8
Ex cyc 130,831 4,440,576 81,792 49,088 32,736
PE eff 1.0 0.000057 0.80 0.67 0.50

97

Figure 6.4: Variable reduction example in Cholesky benchmark

6.2.3 Transformation for Variable Reduction

A reduction pattern is detected when a reduction operator [15] (e.g., addition or multiplication) is

applied on multiple array elements over a loop, and the result is reduced to a single variable or an

array element. Subtraction can also be computed as a reduction pattern after replacing subtraction

with addition, and the sign of the final reduction result is flipped. An example can be found in

loop 4 of Polybench’s Cholesky benchmark (Fig. 6.4). Note that in a strict sense, a floating-point

addition is not a reduction operation (needs to have commutative and associative property), but it

can be computed as a reduction pattern if some errors are tolerable [15, 27].

Many FPGA designs utilize a binary tree structure when implementing a reduction circuit

[91, 140]. In Vivado HLS, this structure is inferred by specifying directive: “#pragma HLS un-

roll factor=xxx.” However, this implementation style is inefficient for floating-point variable loop

reduction. The width of the tree has to be set to half of the maximum of the loop bound (256 in the

example), and the depth has to be set to the log2 of the width (8 in the example). If the loop bound

is much smaller than the maximum, many adders will be left idle. To increase the PE efficiency,

Vivado HLS will share the adders between different levels in the reduction tree. However, the effi-

ciency is still low, because Vivado HLS does not properly pipeline the PEs when a partial unrolling

factor is specified (Section 6.2.1). For example, when loop 4 of Cholesky benchmark is unrolled

to the factor of 256 times (could not be fully unrolled to 512 due to the resource limitation), the

floating-point adder (FADD) efficiency is 0.008 (= 22M adds / 21M cycles / 256 FADDs).

Inserting pipelining directive is also not very efficient for floating-point reduction. The reason

98

Figure 6.5: The computation pattern of variable reduction

is that there is a true loop-carried dependency, and the result of the previous iteration cannot be

immediately produced because of the long latency of the floating-point operations (FADD_LAT).

In loop 4 of the Cholesky example, FADD_LAT is 8 cycles. Thus, the average PE efficiency

for pipelining is only 0.12, and requires 179M cycles to complete. To solve this problem, the

work in [62,142] proposes using shift registers (of length that matches FADD_LAT) to remove the

dependency. The average PE efficiency improves to 0.16, but the parallelism is still limited.

We propose a code transformation to address these problems and to enable design space ex-

ploration. The reduction operation is divided into two stages (Fig. 6.5) depending on whether the

number of elements to be reduced exceeds UF or not (UF : addition unrolling factor).

The first stage (lines 9 15 in Fig. 6.5) is called parallel partial reduction (PPR) stage. In

this stage, a large number of input numbers are reduced to an array of partial sums. In order

to increase the efficiency, we adopt the dependence-free pipelining [62, 142] by allowing a single

FADD to write intermediate results to FADD_LAT registers. This is achieved by specifying II to

FADD_LAT (line 10 of Fig. 6.6). This will induce HLS to schedule FADD_LAT additions in

FADD_LAT cycles—effectively achieving II=1 for each FADD. For higher performance, we in-

99

Figure 6.6: HLS code for loop 4 of Fig. 6.4 after transformation

100

crease the parallelism to UF/FADD_LAT . In order to reduce the number of iterations for small

loop bound, early termination within a reduction level is allowed by setting the loop bound of the

PPR stage to (ub− 1)/UF + 1 to lb/UF (line 9).

The second stage (lines 18 23 in Fig. 6.5) is called variable tree reduction (VTR) stage. With

UF/2 FADDs, each level can be computed after FADD_LAT (=8) cycles, because the number of

elements to be added per level is equal to or less than UF/2. In order to reduce the tree depth for

a small loop bound TC, we support early termination by pipelining each level with a variable loop

bound (line 18 of Fig. 6.6). VTR stage loop bound (limit = log2(min(TC,UF))) is precomputed

based on the table lookup (lines 16–17). Note that Vivado HLS instantiates only UF/4 FADDs for

VTR stage, which increases the pipeline depth of the loop by 1 (FADD_LAT+1 cycles in total).

The cycle estimation model of the proposed transformation will be presented in Section 6.3.2.2.

The performance comparison of the proposed reduction scheme with conventional pipelining,

dependence-free pipelining [62, 142], and conventional unrolling is presented in Table 6.2. The

DSP efficiency of the proposed scheme is higher than the conventional unrolling scheme with the

same unrolling factor by 41X (UF=4) to 29x (UF=16). Similar high efficiency can be observed in

FF and LUT as well. The high efficiency diminishes with the larger unrolling factor—but nonethe-

less, the proposed scheme was able to find a final design point that is 14X, 2.2X and 1.7X faster

than the conventional pipelining, dependence-free pipelining, and conventional unrolling. Also,

due to the early termination functionality for small variable bound across and within reduction

levels, the latency for loop bound of 1 (42 cycles) is smaller than dependence-free pipelining (56

cycles) and conventional unrolling of factor 256 (168 cycles).

6.2.4 Transformation for Variable Prefix Sum

A prefix sum is a computational pattern where the output array y contains a running sum of the

input array x (yk =
∑k

j=0 xj) [27, 57]. The prefix sum pattern is detected when there exists a loop

with an assignment statement written to an array element y[k] with a value that is the sum of the

array element assigned in the previous iteration (y[k − 1]) and an element from the input array

(x[k]). An example is presented in loop L2_2 of Fig. 6.7 for rotated integral image application [81]

101

Table 6.2: Comparison of the total execution cycles, resource consumption, and latency of various loop
bounds (for cases min=1, max=512) for the proposed variable-bound reduction scheme with conventional
pipelining, dependence-free pipelining [62, 142], and conventional unrolling, for loop 4 of the Cholesky
benchmark

Unr Total Resource Latency
Fac Cycles DSP FF LUT LB=1 LB=512

Pipe - 179M 5 653 680 15 4103
DPip - 29M 11 3131 2904 56 560

U
nr

ol
lin

g 4 537M 16 1922 1674 4104 4104
8 336M 32 3706 3036 2568 2568

16 202M 64 7234 5691 1544 1544
256 22M 1K 114K 86K 168 168

Pr
op

os
ed

4 30M 7 2016 2911 42 570
8 20M 14 3760 5032 42 322

16 16M 28 7192 9252 42 202
128 13M 224 56K 67K 42 114

Figure 6.7: Baseline code for rotated integral image computation [81] used in face recognition.

102

Figure 6.8: Kogge-Stone prefix sum algorithm [73].

in face detection. Similar to the reduction pattern (Section 6.2.3), the true dependency between

psum[k] and psum[k − 1] prohibits II becoming 1 when the loop is pipelined and psum is a

floating-point variable. Applying an unrolling directive as suggested in [69] results in a serialized

addition due to the dependency and does not bring any speedup.

In order to increase the performance with parallelization, we use the Kogge–Stone algorithm

[73]. Although the algorithm is not work-efficient [27, 57], the consecutive and regular memory

access pattern helps simplify the data fetch circuitry between BRAMs and PEs. The algorithm is

presented in Fig. 6.8. In each level l, addition is performed with an array element that is d apart:

ylk = yl−1k + ((k ≥ d)?yl−1k−d : 0). (6.1)

Distance d is multiplied by a factor of 2 in each level.

However, direct implementation of Eq. 6.1 [57] results in a performance improvement of only

0.94X, 1.1X, and 1.2X with unrolling factor 2, 4, and 8, compared to the pipelined version. There

are two reasons for such a small speedup.

The first reason is that Vivado HLS will assume that the memory access stride would be an

arbitrary number when the stride is a variable (e.g., d in Eq. 6.1, since d increases in a power of 2).

Thus, Vivado HLS will infer wiring from each adder to all memory partitions (M) that results in a

large II. However, the actual wiring required for each adder is only logM (d=1, 2, 4, ..., M /2).

103

Figure 6.9: Proposed transformation of variable prefix sum in loop L2_2 of rotated integral image
computation (Fig. 6.7)

104

The second reason is that, as can be seen from Eq. 6.1, two read (yl−1k , yl−1k−d) and one write (ylk)

ports are required per iteration. This requirement holds regardless of whether d is a multiple of

the memory partition M . Since Vivado HLS schedules up to two read or write ports per memory

partition each cycle, II=1 cannot be achieved. Another related problem is that yl−1k of Eq. 6.1 is

later accessed by the term yl−1k−d when k = d. This will result in overwriting yl−1k with ylk and

cause an access conflict problem. Note that [57] solves the latter problem with a double buffering

technique, but this requires additional loops to copy the result back from the ping-pong buffer

when the number of levels is odd. Also, HLS cannot achieve II=1 with double-buffering coding

style. The reason is that HLS will make a conservative assumption that up to two reads and one

write could occur per cycle.

We will present solutions for both problems. The first problem is solved by explicitly enumer-

ating all possible memory access strides. The code transformation for loop L2_2 of rotated integral

image example (Fig. 6.7) is shown in Fig. 6.9. We assume the number of FADD (UF) is same as

the memory partitioning factor. As can be seen in lines 8-18 (d=1) and lines 19-22 (d=2), all levels

with d less than M are explicitly enumerated. When d is a multiple of M , all the operands for

Eq. 6.1 can be obtained from the same memory partition of psum, and thus can be packed into a

single loop, as shown in lines 23-35.

Figure 6.10: Proposed computation pattern for variable prefix sum (UF=1, d=4)

The second problem is solved by making a duplicate copy of y and traversing the array in a

decreasing order. The duplicated copy of y is referred to as dpsum. The proposed computation

pattern is shown in Fig. 6.10. For simplified presentation, the figure shows the case for the unrolling

105

factor (UF) is 1, and the stride (d) is 4. At each cycle, psum[k] and dpsum[k − d] is read and the

added result is written to psum[k] and dpsum[k]. That is, one read and one write is performed for

both psum and dpsum per cycle. This allows the loop to be executed with II=1. The corresponding

code is shown in lines 23-35 of Fig. 6.9. Starting from the upper bound of the loop iterator (lines 25

and 28), we perform the addition in Eq. 6.1 (line 31), with yl−1k−d in array dpsum and yl−1k in array

psum. The result ylk is updated to both arrays psum[k] and dpsum[k] (line 32). Although yl−lk

is now overwritten, this does not cause a problem since this value is never accessed again with

monotonically decreasing loop iterators k1 and k2.

Unlike the double buffering solution [57], the proposed solution not only solves the access

conflict problem but also achieves II=1. It is worth noting that the proposed scheme takes ad-

vantage of the fact that the computation and memory access schedule can be controlled by FPGA

HLS programmer. It is not applicable to CUDA GPU environment [57], because execution in a

monotonically decreasing order cannot be guaranteed among multiple CUDA threads.

The cycle estimation model of the proposed scheme will be presented in Section 6.3.2.3. The

comparison of the proposed scheme with the conventional pipelining, unrolling [69], and direct

implementation of Kogge-Stone [57] is shown in Table 6.3. Both pipelining and unrolling infers

an architecture that lacks parallelism and has low PE efficiency because of the dependency that

exists between y[k] and y[k − 1]. Direct implementation of Kogge-Stone has a limited speedup

with increasing parallelism due to the large II. The performance of the proposed scheme is superior,

because we were able to achieve II=1 for all loops. Also, support for early termination (lines 6,

8, 19, 24 of Fig. 6.9) reduces the cycle for short loop bounds. As a result, the proposed scheme

allows DSE to find a design point that is 9.7X faster than the pipelined version.

6.3 Cycle / Resource Estimation

Vivado HLS provides cycle and resource estimate for a single design in its synthesis report. If the

design space is large, generating an HLS report for every possible space is not feasible since it

takes several seconds to minutes to generate a single design. Aladdin [111], Lin-analyzer [138],

106

Table 6.3: Comparison of the total execution cycles, resource consumption, and latency of various loop
bounds (for cases min=1, max=512) for the proposed variable-bound prefix sum scheme with conventional
pipelining, unrolling [69], and Kogge-Stone algorithm [57] for loop L2_2 of rotated integral image

Unr Total Resource Latency
Fac Cycles DSP FF LUT LB=1 LB=512

Pipe - 917K 0 575 814 9 3586
Unr 4 2.4M 2 877 1372 4637 4637
[69] 8 2.4M 2 1525 3026 4674 4674
K-S 4 974K 6 2876 3911 35 3781
[57] 8 822K 8 5385 7166 35 3141

Pr
op

os
ed

4 331K 8 2679 3820 19 1253
8 198K 16 5299 7590 22 691
16 134K 32 11K 16K 25 417
64 95K 128 43K 71K 31 229

and COMBA [137] solve this problem by estimating cycles based on their own scheduling/bind-

ing/allocation algorithms. However, the problem with this approach is that there is no guarantee

that the HLS tool’s algorithm will match such behavior. Even if their model accurately predicts

one version of the HLS tool, it cannot account for the future improvement to the HLS tool. Also,

it might not correctly reflect the latency difference from using another platform (with different

hardware IPs) and various clock frequency settings. This might increase the chance of performing

DSE based on inaccurate cycle / resource estimate.

In our framework, we extract basic cycle and resource information from the HLS tool for few

designs. Based on this information, we predict the cycle and resource consumption for the entire

design space based on our model. The details of this process will be explained in the following sub-

sections. Compared to making predictions from independent scheduling/binding/allocation algo-

rithms, making prediction from designs that has already been implemented by HLS tool increases

the likelihood that the estimation will match that of the actual design. Quantitative evaluation of

the proposed approach will be shown in Section 6.5.

The cycle estimation process described in this section is based on the performance estimator

HLScope-S in Chapter 3. The reason we have chosen HLScope-S rather than FLASH or HLScope-

M is that HLScope-S requires shortest amount of time for cycle estimation (Table 7.2). The simi-

larity of the cycle estimation process between this DSE work and HLScope-S is that we instrument

107

code to extract the number of trip counts in the software simulation. Also, we obtain latency/II in-

formation of loops and functions from the HLS synthesis report. The difference is that we use this

information to estimate cycle for multiple designs, rather than a single design. The cycle model

reflects the design parameters to quickly estimate the execution time of a large design space. The

cycle model will be presented in Section 6.3.2.

6.3.1 Resource Estimation

The resource consumption for pipelined loops is obtained from the synthesis report of the Vivado

HLS tool. For loop unrolling and array partitioning, however, synthesizing every possible design

with the HLS tool becomes difficult due to the large design space. Assuming there are L innermost

loops that may each be unrolled up to U times, and A arrays that may each be partitioned up to P

times, a naive approach would be to perform UL ∗ PA HLS synthesis.

One alternative approach could be to linearly interpolate from a few unrolling factors and

array partitions for every loop, assuming all loops’ resource consumption is independent from one

another. This assumption is not true, however, because of the resource sharing between the loops.

As explained by Li, et al., [79], modern HLS tools, including Vivado HLS, will share operators

that exceed certain thresholds across loops for high operator utilization. Floating-point operators

exceed this threshold and will be shared across loops. Then a new challenge arises to efficiently

predict the resource sharing for many possibilities of unrolling factors and array partitions.

We propose a resource prediction method that reduces the number of HLS synthesis and is still

based on the actual HLS synthesis report. The high-level strategy is to separate sharable and non-

sharable operators from a loop and linearly interpolate the non-sharable resource. The resource for

sharable operators is estimated as a maximum of all loops. Finally, we estimate the mux required

for sharing the operators and the arrays.

For each loop l=(0, ..., L) that is to be unrolled (after applying transformations described in

Sections 6.2.2, 6.2.3, and 6.2.4), we generate and synthesize a new version of code with R different

unrolling factor for each loop. R is the number of data points we use to estimate the resource usage

for the rest of the design space. Next, we compute the resource difference between each version to

108

estimate the increase rate of resource consumption. By referring to the sharable operator (floating-

point operators) usage report, the resource increment is separated into sharable resource and non-

sharable resource consumption (NSl). Based on the non-sharable resource consumption for R

designs, we use a linear regression technique to find the slope and the intercept of the data points.

Then the non-sharable resource of a loop can be estimated for arbitrary unrolling factors.

The estimation error with different R for LU benchmark is shown in Table 6.4. Since large R

increases the number of synthesis runs, we have decided to limit R to 3. Our framework gener-

ates loops with unrolling factor 4, 8, and 16 (R=3), since non-linear characteristic is sometimes

observed for small (1, 2) unrolling factors.

Table 6.4: FF/LUT estimation error rate for various R for LU benchmark
R=2 R=3 R=4

FF/LUT 1.2% / -6.9% 0.9% / -5.5% 0.5% / -7.2%

To estimate the resource for sharable operators, we find the maximum of each type k of opera-

tors (e.g., floating-point adder or multiplier) after loop unrolling each loop (Slk). Next, we estimate

the resource consumed by mux used for sharing each type of operator among loops. Likewise for

the arrays, we estimate the mux needed for different loops to have access to the same a arrays.

Then we estimate LUT consumption for the input operands of each operator and the address/data

of arrays based on the bitwidth and the number of sharing ports. The LUT consumption model for

mux can be found in [35].

The above resource consumption estimation can be summarized as:

∑
l

NSl +
∑
k

max
l

(Slk) +
∑
k

mux(l, k) +
∑
a

mux(l, a) (6.2)

Since only R + 1 (=4) synthesis are required for each unrolled loop, the number of HLS syn-

thesis runs to estimate the resource for various unrolling factors is (R + 1) ∗ TL, where TL is the

number of innermost loops. This is a large improvement over the naive approach of performing

UL ∗ PA synthesis. As a result, the design space exploration time is reduced to a few hundreds of

seconds, as will be presented in the experimental section.

109

Our resource estimation method differs from AutoAccel [37] in that AutoAccel does not model

resource sharing among loops. Our work has more similarity with [79] in a sense that we sepa-

rate sharable and non-sharable resource of a loop. The difference is that [79] does not explore

loop unrolling or array partitioning and thus does not perform any linear regression or function

separation. Instead, they assume that the non-sharable part stays constant over multiple designs.

However, assuming a constant non-sharable resource increases the LUT/FF estimation error rate

from 0.9%/-5.5% to 32%/-48% in LU because non-sharable resource can increase very rapidly

with loop unrolling.

6.3.2 Cycle Estimation

6.3.2.1 Model for Partial Unrolling with Pipelining

For the LU benchmark in Fig. 6.3, if the transformed loop’s (L2_1’s) initiation interval, iteration

latency, and unroll factor is IIT , ILT , UFT , the number of execution cycle is IIT ∗{(ub−1)/UFT +

1− (lb/UFT)− 1}+ ILT [79]. This is approximated as

' IIT ∗ (ub− 1− lb)/UFT + ILT = IIT ∗ (TC − 1)/UFT + ILT (6.3)

where TC(= ub− lb) is the trip count of the original loop (loop 2 in Fig. 6.1).

6.3.2.2 Model for Variable Reduction

For the Cholesky benchmark in Fig. 6.6, the execution cycles of the PPR stage can be directly

derived from Eq. 6.3: IIPPR ∗ (TC − 1)/(UF/FADD_LAT) + ILPPR. The loop in the VTR

stage will be executed log2(min(TC,UF)) times. Thus the total estimated cycle is

IIPPR ∗ (TC − 1)/(UF/FADD_LAT) + ILPPR

+ IIV TR ∗ (log2(min(TC,UF))− 1) + ILV TR (6.4)

110

6.3.2.3 Model for Variable Prefix Sum

The code in Fig. 6.9 is a collection of partially unrolled loops modeled in Eq. 6.3. The number of

levels is lmax = logTC. Thus, the total estimated cycle is

lmax∑
l=0

(IIl ∗ (TC − 1)/UF + ILl). (6.5)

6.3.2.4 Total Cycles

If the trip counts of all variable loops were available, the total cycle would simply be an accumu-

lated number of the cycles computed in Eqs. 6.3, 6.4, 6.5. However, since storing all trip counts

is an expensive process, we simplify the computation by first computing the average of trip counts

(AV G_TC) and the number of loop occurrences (OCC) during the software simulation. Then the

trip counts TC in Eqs. 6.3, 6.4, 6.5 are replaced with AV G_TC, and the entire equation is multi-

plied by OCC. Also, we approximate the II, IL of the unrolled loops based on the value already

obtained from the selected (R=3) synthesis. As will be shown in the experimental section, these

approximations result in a relatively small cycle error rate of 12%.

6.4 Overall Flow and the Design Space Exploration

The overall flow is shown in Fig. 6.11. The input code is first profiled with the Vivado HLS soft-

ware simulation flow. In this stage, the loop trip counts TC and the number of loop occurrences

OCC are recorded. Next, possible transformed codes are generated from the input code discussed

in Section 6.2. Next, R design points for each loop are synthesized with the HLS tool (Sec-

tion 6.3.1). Based on the synthesized result, cycle count and resource consumption are estimated

as discussed in Section 6.3. Among possible design points that satisfy the resource constraint, the

one with the least latency is chosen and presented as the final output.

Following Lin-analyzer [138], the design parameters evaluated in the framework are shown in

Table 6.5. Loops can be unrolled to their maximum loop bound, and the array can be partitioned

111

Figure 6.11: Overall DSE framework

to its array size. For simplification, the loop unrolling factor and the array partitioning factor

are explored in power of 2s (1, 2, 4 ...). We also explore the loop pipelining. As mentioned in

Section 2.5, the optimization is performed on the innermost loops for fine-grain parallelization and

pipelining.

Table 6.5: Design parameters evaluated in DSE
Parameter Range

Loop unrolling factor 1 : Max loop bound (pow of 2)
Pipelining True, False

Array partitioning factor 1 : Array size (pow of 2)

In order to reduce the design space, we prune away design spaces that are not promising. First,

we do not consider array partitions that are larger than the number that can be simultaneously

consumed or produced by PEs. Second, we do not consider pairs of optimizations that require

partial partitioning on multiple dimensions of a local memory, because this complicates routing,

and the number of BRAM instances increases rapidly.

112

Table 6.6: Effect of the proposed code transformations (unit: cycles)
Baseline +Part Unr +Var Rdct +Var PSum

Cholesky
404M

-
14.2M

-
(1.0X) (28X)

LU
942M 2.96M

- -
(1.0X) (317X)

Trisolv
2.50M

-
63.9K

-
(1.0X) (39X)

RotIntImg
11.1M 1.61M

-
246K

(1.0X) (6.9X) (45X)

Durbin
5.25M

- -
522K

(1.0X) (10X)

Dynprog
872M

- -
98.8M

(1.0X) (8.8X)

6.5 Experimental Result

6.5.1 Experimental Setup

For evaluation, we use the Polybench benchmark [99] that was also used in Lin-analyzer [138]

and COMBA [137]. To demonstrate the effectiveness of our framework, five benchmarks with

variable loop bounds have been chosen—Cholesky, LU, Trisolv, Durbin, and Dynprog. We also

constructed rotated integral image benchmarks from [81]. The matrix size is set to 512, and the

variable types are set to single-precision floating-point for all benchmarks, except Dynprog which

was set to have a matrix size of 128 to fit FPGA. The design is synthesized using Vivado HLS

2018.2 [130] software. For the platform, we target the ADM-PCIE-KU3 board [3] with Xilinx’s

Ultrascale KU060 FPGA [129] at 250MHz. The FPGA resource (DSP/FF/LUT) limit is set to half

of the total resource on KU060 to ease the place-and-route process.

6.5.2 Performance

The performance after applying the proposed transformations to the unmodified baseline code is

8.8X to 317X, as shown in Table 6.6. LU has a large speedup due to the abundant parallelism;

other applications have loop-carried dependencies (reduction or prefix sum patterns) that limit

performance improvement. On average, the proposed transformations achieved a 75X speedup.

113

Table 6.7: Comparison of the performance, design space exploration speed, and the prediction
accuracy among proposed, COMBA, and AutoAccel flows (the performance and the prediction
error rates are that of the final output design)

Application Flow Exec Time Design Space Exploration Prediction Error Rates
(cycles) # Design # HLS Runs Expl Time Exec Time DSP FF LUT

Cholesky
Proposed 14.2M 100 11 625s 12% 0% 7.7% 1.3%
COMBA 21.1M NA 0 872s -86% NA NA NA

AutoAccel 180M 32 NA 252s 500% 0% 0% 0%

LU
Proposed 2.96M 100 11 451s -3.7% 0% 0.89% -5.5%
COMBA 1.01B NA 0 416s -99.9% NA NA NA

AutoAccel 403M 16 NA 145s 201% 0% 0% 0%

Trisolv
Proposed 63.9K 10 5 232s 14% 0% -1.7% -0.85%
COMBA 103K NA 0 431s -98% NA NA NA

AutoAccel 2.10M 32 NA 131s 101% 0% 0% 0%

RotIntImg
Proposed 247K 1000 20 1370s -29.0% 0% -18% -20%
COMBA 21.5M NA 0 1,490s -99.9% NA NA NA

AutoAccel 2,13M 32 NA 103s 98% 0% 0% 0%

Durbin
Proposed 522K 10 5 245s -2.5% 0% 1.2% 4.4%
COMBA 8.12M NA 0 2,540s -99% NA NA NA

AutoAccel 1.08M 32 NA 203s 96% 0% 0% 0%

Dynprog
Proposed 98.8M 64 9 436s 10% 0% 0.54% 2.4%
COMBA 1.87B NA 0 2,200s -99.9% NA NA NA

AutoAccel 234M 32 NA 121s 454% 0% 0% 0%

Average
Proposed 1.0X - - - 12% 0% 5.1% 5.7%
COMBA 78X - - - 97% NA NA NA

AutoAccel 32X - - - 241% 0% 0% 0%

For comparison, we obtained access to the source code for two of the latest DSE works, Au-

toAccel [37] and COMBA [137], and produced the output for the same benchmarks. We adjusted

the parameters in AutoAccel and COMBA to match the characteristics of the KU060 FPGA. Since

COMBA does not provide code on how to unroll variable bound loops, we applied the conventional

unrolling with maximum bound (Section 6.2.1) with the unrolling factor instructed by the tool.

COMBA had a tendency to over-unroll the loops beyond the given resource threshold—probably

because its resource estimation is mostly based on the operators only. In this case, we manually

reduced the unrolling factor to fit the given threshold. For the LU benchmark, Vivado HLS was

unable to unroll the loops (as discussed in Section 6.2.2), and achieved no speedup when using the

configuration suggested by COMBA. Similarly, for prefix sum patterns, the unroll directive infers

fixed-length serialized addition (Section 6.2.4) which does not improve the performance.

The performance comparison is shown in the “Exec Time” column of Table 6.7. Our frame-

work outperforms COMBA and AutoAccel by 78X and 32X on average. The main reason is that

COMBA and AutoAccel do not perform code transformation that can solve the PE efficiency prob-

lem of the variable loops (Section 6.2). Thus, the design space explored by these tools is limited

114

and results in a relatively worse performance. Another reason is that their cycle estimation model

does not properly consider variable loop bounds.

6.5.3 Exploration Speed and Prediction Accuracy

The execution time, DSE result, and the prediction error rates are shown in Table 6.7. The execu-

tion times of the variable loops are measured using the method proposed in [24], and the resource

usage is compared to the Vivado HLS synthesized result.

The result shows that the number of HLS synthesis performed is on average only 23% of the

entire design spaces explored. The performance and the resource consumption of the rest of the

design points are estimated using the model presented in Section 6.3. Thus, the exploration time is

maintained at a few hundreds of seconds.

The table also shows that the prediction error rate of execution time, DSP, FF, LUT, with the

proposed model is on average 12%, 0%, 5.1%, 5.7%, respectively. Such a low error rate helps the

DSE process find the best design point accurately.

The exploration time and the prediction accuracy for AutoAccel and COMBA is also shown

in Table 6.7. The execution time error of COMBA is probably caused by the mispredicted II and

IL compared to the actual Vivado HLS synthesized result. This is due to the fact that COMBA

does not reference the HLS report. On the other hand, AutoAccel does refer to the HLS report—

however, its execution time is also not very accurate. The reason is that Vivado HLS reports the

cycle based on the maximum of the variable loop. The resource estimated for AutoAccel is the

result given by the HLS tool itself, and thus has an error rate of 0%.

6.6 Comparison with Related Work

The review of other DSE works can be found in Section 2.5, and the comparison with our pro-

posed framework was explained in Section 6.1. Other related works include [29] and ElasticFlow

[119] which provide efficient HLS-based methodologies to distribute the dynamic workload among

coarse-grain PEs. However, many examples, such as those found in Polybench benchmarks, do

115

not have coarse-grain parallelism in outer loops (e.g., row-wise parallelism in sparse matrix-vector

multiplication [29, 119]). Instead, there are several variable loops that are executed in serial, sim-

ilar to the examples presented in [79]. Thus, our DSE work is more focused on optimizing these

innermost loops by exploiting fine-grain parallelism and pipelining, accurately estimating resource

sharing among these serial loops, and efficiently allocating non-sharable resource for overall la-

tency minimization. Another difference that we see in these works is that they require modifica-

tion of HLS scheduling and binding kernels—whereas our DSE work is based on source-to-source

transformation to produce HLS codes that can be easily integrated into existing HLS frameworks.

6.7 Conclusion

Optimization of variable loop bounds with conventional HLS directives for pipelining and un-

rolling often leads to a low PE utilization problem. We have shown that techniques such as partial

unrolling with pipelining or loop early termination will help solve this problem. HLS-based code

transformations were devised to demonstrate how these techniques can be applied to common

computational patterns. Also, we have proposed a resource estimation method that models oper-

ator sharing with a small number of HLS syntheses. The experimental result shows that a 75X

speedup was achieved compared to the baseline implementation. As a future work, we are con-

sidering to support more patterns for loops with variable bounds beyond those in the Polybench

benchmarks.

116

CHAPTER 7

Quantitative Comparison among Proposed Frameworks and

Concluding Remarks

7.1 Quantitative Comparison with Sparse Matrix-Vector Multiplication Bench-

mark

In previous chapters, we have described our performance debugging frameworks for various stages

of the design process. However, it was difficult to compare each framework’s accuracy and the

required time. In this section, we will provide a quantitative comparison among the proposed

framework based on a common benchmark—sparse matrix-vector multiplication (SpMV).

There are two main reasons we have chosen this benchmark. The first reason is the impor-

tance of the sparse matrix processing. Sparse matrix processing has been widely used in many

applications such as computer vision, linear algebra, chemical engineering, medical imaging, and

circuit simulation (please refer to the University of Florida sparse matrix collection [44] for a com-

prehensive list). Recently, a greater emphasis is being placed on the sparse matrix processing to

reduce the computational complexity in deep learning applications [55, 56]. The second reason is

the potential large benefit of customized computing in SpMV. It is well known that GPU cannot

achieve its peak performance for irregular applications (e.g., SpMV) due to the thread divergence

and load balancing problems [112, 136]. FPGA, on the other hand, can customize its architecture

for various irregular applications [19–21, 29, 34, 50, 78, 119].

In Section 7.1.1, we will provide background information on the recurrent neural network and

the sparse matrix-vector multiplication architecture. In Section 7.1.2, we will provide a quanti-

tative comparison among the proposed frameworks—HLScope-S, FLASH, and HLScope-M. The

117

performance comparison with CPU and GPU implementations is provided in Section 7.1.3.

7.1.1 Sparse Matrix-Vector Multiplication

The SpMV kernel performs multiplication between a sparse matrix A and an input array x and pro-

duces an output array y. The sparse matrix can be represented in various formats such as coordinate

list (COO), compressed sparse row (CSR), and compressed sparse column (CSC). Among them,

we choose the CSR format because of its most frequent use [50]. The CSR format compresses the

non-zero elements and the row address of the matrix elements. The CSR format is composed of

array rows (list of the starting address of the matrix elements in each row of matrix A), val (value

of the matrix elements), and col (column address of the matrix elements). The SpMV kernel in

CSR format is computed as follows:

f o r (r = 0 ; r < N; r ++) / / L1
f o r (c = rows [r] ; c < rows [r + 1] ; c ++) / / L2

y [r] += v a l [c] ∗ x [c o l [c]] ;

Figure 7.1: The SpMV kernel

The existence of the input-dependent and irregular loop bound in L2 (rows[r]~rows[r + 1]) of

Fig. 7.1 often creates challenges in accelerating SpMV applications.

The dataflow architecture for SpMV computation is shown in Fig. 7.2. One row of matrix will

be distributed in a round-robin fashion to PE groups. Each PE group is composed of four modules.

Based on the column range of each row (rows[r]~rows[r + 1]), the first module reads the matrix

element value (val[c]), and the second module reads the column value (col[c]). The third module

uses col[c] as a read address of x, that has been pre-loaded into local BRAM. In order to achieve

high throughput, x[col[c]] and val[c] are packed and sent to the fourth module in a chunk of UF,

which corresponds to the fine-grain unrolling factor in the accumulation PE. The fourth module

accumulates the multiplied value of val[c] and x[col[c]] using the reduction technique introduced in

Section 6.2.3. Finally, y[r] is collected and written to DRAM. The modules communicate through

FIFOs, and the depth of each FIFO is set to 4.

118

Figure 7.2: Overall architecture for SpMV computation

As shown in Fig. 7.2, we simplify the design space into two parameters: coarse-grain PE du-

plication (PD) and fine-grain accumulator unrolling factor (UF). The coarse-grain PE duplication

exploits the row-wise parallelism [29, 119, 136] in L1 of Fig. 7.1, and the fine-grain unrolling

exploits the parallelism in the reduction tree (Section 6.2.3).

The SpMV dataset we use for the case study is from electroencephalogram (EEG), which mon-

itors the electrical signal of the brain [16]. It can be used to diagnose various neurological diseases

such as epilepsy or depression. From the raw EEG signal, recurrent neural network (RNN) [67]

is used to extract analytic signal. RNN consists of several hidden nodes, and the interconnection

among the nodes is represented by a sparse matrix A. The output y of the hidden layer is computed

by performing sparse matrix-vector multiplication (SpMV) between A and the internal signal x

of each node. Matrix A has a dimension of 500×500, and the sparsity of the matrix (proportion

of zero elements among all matrix elements) is 82%. The EEG signal was obtained at a 32kHz

sampling rate, and we perform SpMV on 100,000 samples, which corresponds to an observation

119

duration of 3.1s (=100K/32KHz).

Using the EEG dataset and the SpMV architecture in Fig. 7.2, we have performed the design

space exploration process explained in Chapter 6. We set the resource usage limit to 60% of the

Xilinx’s Ultrascale KU060 FPGA [129] to ease the placement and the routing process. The result

of exhaustive search among all design spaces (PD, UF) is shown in Figure 7.3. The result shows

that the configuration with the best performance is achieved with PE duplication factor of 32 and

fine-grain reduction unrolling factor of 1. The FPGA resource consumption of this design point is

shown in Table 7.1.

Figure 7.3: Design space exploration result of SpMV (cycles per sample)

Table 7.1: FPGA resource consumption of the design with the best performance
BRAM DSP FF LUT

of resource used 334 288 145k 130K
Utilization (15%) (10%) (21%) (39%)

7.1.2 Comparison of the Proposed Performance Debugging Frameworks

In this subsection, we compare the performance debugging frameworks proposed in previous chap-

ters. We have chosen the design point obtained in Section 7.1.1 that provides the best performance—

120

(PD, UF)=(32, 1). In order to clearly show the difference in cycle estimation accuracy between

HLScope-S and FLASH, we have intentionally reduced the buffer size of all FIFOs to 2. Table 7.2

shows the comparison of the cycle estimation accuracy and the time taken to obtain the result. In

addition to the result from HLScope-S, FLASH, and HLScope-M, we also show the result from

the HLS synthesis report and the HLS RTL co-simulation for comparison. The simulation time

is obtained from running 100,000 EEG signal samples as an input (x) for SpMV. Due to the long

time required for the RTL simulation, the RTL simulation time is estimated by running SpMV on

one sample and multiplying by 100,000 times.

Table 7.2: Comparison of the proposed performance debugging frameworks for the best SpMV
design space (100,000 samples, FIFO depth set to 2)

Synth Rpt HLScope-S FLASH RTLSim HLScope-M
(Viv HLS) (Chapter 3) (Chapter 4) (Viv HLS) (Chapter 5)

Cycles for one sample 9281 1487 2594 2594 2594
(Error Rate) (257%) (-43%) (0%) (0%) (0%)

S2S transf time - 2.0min 15min - 1.3m
HLS synth time 13min 16min 15min 13min 16min

PnR time - - - - 215min
Sim (exec) time - 15min 54min 1.3 ∗ 106min 0.04min

Total time 13min 33min 84min 1.3 ∗ 106min 232min

The synthesis report provides the cycle estimate based on the maximum loop trip count. In

SpMV, the number of non-zero elements varies per row. As a result, the synthesis report cycle

estimate is much larger than the actual cycle count (257% over-estimation). HLScope-S does not

have this problem, since it is based on the software simulation of the input dataset. However, the

reduction of FIFO depth has induced frequent FIFO stalls, and the HLS software simulator cannot

estimate the FIFO stalls (Section 4.2.2). As a result, HLScope-S has cycle under-estimation of

-43%. FLASH, on the other hand, is based on a cycle-accurate software simulation and provides

accurate estimation (0% error rate). HLScope-M accurately measures the cycle count with its

on-board monitors.

Table 7.2 also provides the breakdown of the time taken to apply each framework. First, the

table shows the time taken to apply the source-to-source (S2S) code transformation process. Unlike

HLScope-S and HLScope-M that performs code transformation in loops or functions, FLASH

121

performs transformation for each statement. This makes the code transformation time of FLASH

about 10X slower compared to HLScope-S and HLScope-M.

The next row in the table shows the Vivado HLS synthesis time and the Vivado placement

and route time (if applicable). Since HLScope-S and FLASH makes code modification to the

original source code, the synthesis time for HLScope-S and FLASH differs slightly from that of

the unmodified code. HLScope-S and FLASH only require HLS synthesis run, whereas HLScope-

M requires place and route (PnR) process to generate the FPGA bitstream. As a result, HLScope-M

requires much more initial preparation time than HLScope-S and FLASH to begin its performance

debugging process.

In terms of simulation (execution) time, HLScope-M is several orders of magnitude faster

than HLScope-S or FLASH because it takes advantage of the FPGA acceleration. HLScope-

S and FLASH simulation speed is much faster than RTL simulation because they are based on

HLS software simulation. HLScope-S is slightly faster than FLASH, because the performance

estimation code is instrumented in a higher level (granularity of loops or functions) than FLASH

(granularity of statements).

Note that the total time taken to apply HLScope-S (33 mins) and FLASH (84 mins) on SpMV

is slightly longer than the time needed for most designs (reported as 1–10 mins in Table 1.1). The

reason is that this particular SpMV design is composed of a large number (130 = 32 × 4 + 2 —

see Fig. 7.2) of modules.

In summary, HLScope-S is most advantageous in obtaining a fast performance estimation—

however, its accuracy drops in cases where the FIFO depth is inadequate. FLASH requires long

source-to-source transformation time and simulates slower than HLScope-S, but provides cycle-

accurate result. HLScope-M requires a long time for bitstream generation and typically does not

have advantage over HLScope-S or FLASH—however, this flow may be necessary for cases where

the input dataset does not exist and on-board measurement is required.

122

Table 7.3: Performance comparison of SpMV among CPU, GPU, and FPGA implementations
Compute Node (Year, Frequency, Technology) # Thrds/PEs Exec Time (Spdup, GFLOPs)

CPU Intel Xeon E5-2666 (2015, 2.9GHz, 22nm) 36 3.1s (1.0X, 3.1GF)
GPU NVIDIA Tesla M60 (2015, 899MHz, 28nm) 100K × 512 0.71s (4.4X, 13GF)

FPGA Xilinx Ultrascale KU060 (2015, 196MHz, 20nm) 32 × 1 1.4s (2.2X, 6.8GF)

7.1.3 Comparison with GPU and Multithreaded CPU Implementation

We will compare the performance of SpMV on different architectures in this subsection. For FPGA

implementation, we use the design found by the DSE process in Section 7.1.1. For CPU imple-

mentation, we use OpenMP to exploit the row-wise parallelism of SpMV. Dynamic scheduling is

applied to balance the irregular workload. For GPU implementation, we use OpenCL. Each sample

is processed by a workgroup (coarse-grain parallelism) and each row is processed by a workitem

(fine-grain parallelism). Array x is stored in the local memory so that the array can be shared

among multiple threads.

Compute nodes of similar technology and release date have been selected for comparison. For

CPU, we use Intel Xeon E5-2666 [65]. For GPU, we use NVIDIA Tesla M60 [96]. For FPGA,

we use Xilinx’s Ultrascale KU060 FPGA [129]. Although Tesla M60 has the best performance

among the Maxwell Tesla processors, Xeon E5-2666 only has 73% performance of E5-2699 (best

among Haswell Xeon E5 processors) [41] and Ultrascale KU060 only has the half the resource of

Ultrascale KU115 (best among Kintex Ultrascale FPGAs) [129]. Thus, we only use one out of two

GM204 chips on Tesla M60 GPU for fair comparison.

The performance comparison is shown in Table 7.3. Although the GPU has a theoretical

single-precision peak performance of 3.7 TFLOPs, it only achieved 13GFLOPs (0.4% of peak

performance) for the SpMV example. The main reason is that the number of floating-point multi-

plications and additions is different on each row, and this leads to thread divergence [95]. Another

reason can be found in the access pattern to x (Fig. 7.1)—the random local memory access leads

to frequent local memory bank conflict.

In the FPGA implementation, the efficiency of floating-point multipliers is 56% and the ef-

ficiency of floating-point adders is 19%. The operator efficiency is relatively higher than that of

123

GPU. The reason is that FPGA can efficiently process the irregular loop bounds of SpMV by cus-

tomizing its architecture to process the next row as soon as the previous row is computed. Also,

the local memory architecture can be customized to provide high-throughput data (row, col, val,

x) to the accumulation modules. However, the FPGA implementation only has a comparable per-

formance to the implementation in other platforms due to the low clock frequency (196MHz).

7.2 Concluding Remarks and Future Work

In Chapter 3, we have described our performance debugging flow. In order to provide an accurate

cycle estimation for performance debugging, we have also proposed a performance estimation flow

called HLScope-S. We have shown that the performance estimation accuracy of the designs with

input-dependent behavior can be improved by instrumenting analytical models into the source code

and running the HLS software simulation. We have also described methods to extract performance-

related information that has been abstracted by the HLS tool. Moreover, we have proposed high-

level model for various external memory access patterns. Experiments on an ADM-PCIE-7V3

board showed that HLScope-S on average has an estimation error rate of 1.1% in compute-bound

modules and 5.0% for performance-criticial DRAM-bound modules, with 4% time overhead in

software simulation. This shows that the proposed modeling techniques can be used to rapidly

provide accurate performance estimation for input-dependent HLS applications.

In Chapter 4, we have proposed a new HLS software simulation flow (FLASH) that extracts the

scheduling information from the HLS synthesis report and automatically generate a cycle-accurate

simulation model. The experimental results shows that the proposed flow simulates three order of

magnitude faster than the RTL simulation, because FLASH is not slowed by the allocation / binding

information and the component library in the RTL files. This confirms that simulating based on

the scheduling information can help solve the correctness issue of HLS software simulators and

rapidly provide accurate performance estimation. We also proposed debugging features that allow

users to describe their needs in high-level and enabled live capturing of variables to reduce the

debugging effort of HLS users. We expect that our findings and the techniques in this chapter could

124

motivate commercial HLS tool developers to adopt a similar simulation and debugging flows and

significantly decrease the validation time of the HLS customers.

Chapter 5 describes an on-board performance debugging framework (HLScope-M) that could

be used in the case where input dataset is not available for simulation. The monitor used for

debugging was described in pure HLS C language for easy integration with existing HLS flows

and only consumed few hundreds of LUTs. In addition to the automated cycle measurement flow,

we have also proposed a method to trace the reason for stall in dataflow applications. This could

be used to help programmers to quickly identify the performance bottleneck of a HLS design.

Based on the performance estimation techniques in Chapter 3, we have devised a DSE frame-

work which is described in Chapter 6. The proposed method achieves a large speedup of 75X even

on applications with variable loop bounds and outperformed state-of-the-art DSE frameworks. We

have shown that conventional method of applying HLS directives for pipelining and unrolling on

applications with variable loop bounds often leads to a low PE utilization problem. Instead, we

have shown that techniques such as partial unrolling with pipelining or loop early termination helps

solve this problem. HLS-based code transformations were devised to demonstrate how these tech-

niques can be applied to common computational patterns such as reduction and prefix sum. Also,

we have proposed methods to predict execution time and resource usage for multiple design points

based on few HLS synthesis runs.

One of the limitation of the HLS performance estimation and the simulation frameworks in

Chapters 3 and 4 is that they are based on single-threaded software simulation. As a result, the cur-

rent flows are not suitable for benchmarks that require long simulation time. To solve this problem,

we plan to add parallelization using Pthread/OpenMP in the future so that large-scale simulation

can be accelerated by exploiting the multicore architecture. One challenge in applying paralleliza-

tion to the simulation framework is the frequent synchronization that is needed after the module

and the FIFO simulation loops (lines 8-11 in Fig. 4.10). Asynchronous execution and localized

clock would be needed to increase the granularity of workload for each thread. Also, we would

need a mapping of modules and FIFOs to the threads that reduces the inter-thread communication

and the false sharing.

125

In terms of coverage, HLScope-M and HLScope-S is comprehensive because HLScope-M

monitors any type of modules and HLScope-S models the DRAM access latency. However,

FLASH and the DSE framework only models computation and intra-FPGA communication. One

of our future plan is to generalize FLASH and the DSE framework so that they can model the

DRAM access latency.

Some of the techniques in the HLScope-S framework in Chapter 3 was applied to the DSE

framework in Chapter 6 to provide fast performance estimation. However, HLScope-S may pro-

vide inaccurate performance estimation when FIFOs do not have adequate FIFO depth (Sec-

tion 4.2.2). This may result in the DSE process providing a design space with low performance.

The FIFO depth problem can be solved by exploiting the FLASH framework (Chapter 4), since

it accurately models the FIFO depth and provides cycle-accurate result. However, in contrast

to HLScope-S which performs code instrumentation in the granularity of loop or module level,

FLASH performs instrumentation on each statements. As demonstrated in Section 6.3.2, it is often

enough to collect the input-dependent behavior information only on the loop level for performance

estimation in DSE. Therefore, additional code instrumentation routines would be needed to extract

a program’s execution information on a higher level than that of the current FLASH framework,

so that we can accelerate the DSE process that includes the FIFO depth as a design space.

Another limitation of the DSE framework is that the design space is limited the fine-grain

unrolling, fine-grain pipelining, and array partitioning. As demonstrated in COMBA [137], better

performance can be achieved with additional design space such as function pipelining, function

inlining, and dataflow (coarse-grain pipelining). Our goal for future work is to improve the DSE

framework so that it would apply most of the known FPGA optimization techniques and rapidly

find the best design space even for input-dependent benchmarks.

The proposed performance debugging frameworks can benefit both experienced HLS program-

mer and novice HLS programmer with algorithmic expertise. For an experienced HLS program-

mer, HLScope-S can quickly provide a feedback with an accurate performance estimation for each

optimization the programmer has applied. HLScope-S also provides the stall rate (e.g. Fig. 3.5)

which helps the programmer to focus on optimizing the module with low utilization. The FLASH

126

simulator may be used instead of HLScope-S for more accurate performance estimation if the

design has a feedback path or frequent FIFO stalls (Section 4.2). If a bitstream has been gener-

ated and the on-board performance result does not match the expectation, the programmer could

use HLScope-M to analyze the reason. Our frameworks help shorten such FPGA development

process.

A novice HLS programmer with algorithmic expertise would need a help of DSE work such

as the one proposed in Chapter 6 or the work in [37, 72, 100, 111, 137, 138] to obtain an optimized

HLS design. Then our performance debugging frameworks can be used to open up a wider possi-

bility for further performance optimization with the expertise of algorithm developers. The DSE

work optimizes the FPGA design by applying a different combination of directives or by varying

the coding structure of loops or functions. Our framework, on the other hand, reports the stall rate

and the reason for the stall (Chapter 3.1), which are used to calculate the usage rate of the FPGA

compute and memory resources. Such analysis could motivate a programmer to develop a new

algorithm that use less of the resource that has been identified as the bottleneck. For example,

although the LUT has the highest resource consumption rate (Table 7.1) in the SpMV benchmark,

the usage rate (efficiency) of the compute units is only 56% for floating-point multipliers and 19%

for floating-point adders (Section 7.1.3). In this case, a programmer could try to increase the ef-

ficiency of the FPGA compute units with a modified algorithm that interleaves the computation

between the rows [46]. As another example, the performance bottleneck in the final version of the

quicksort example in Section 3.1.3 was analyzed to be the DRAM access module (Table 3.6). In

this case, a programmer may try to develop an algorithm with a higher data reuse ratio. With such

help from both DSE work and performance debugging framework, algorithmic developers with

little previous HLS experience will also succeed in obtaining the best design for their applications.

127

REFERENCES

[1] R. Allen and K. Kennedy, Optimizing compilers for modern architectures: a dependence-
based approach, Morgan Kaufmann, San Francisco, CA, 2002.

[2] Alpha Data, Alpha Data ADM-PCIE-7V3 Datasheet, 2017, http://www.alpha-
data.com/pdfs/adm-pcie-7v3.pdf.

[3] Alpha Data, Alpha Data ADM-PCIE-KU3 Datasheet, 2017, http://www.alpha-
data.com/pdfs/adm-pcie-ku3.pdf.

[4] Altera, SignalTap II with Verilog Designs, 2012, http://www.altera.com/.

[5] Amazon, Amazon EC2 F1 Instance, 2019, https://aws.amazon.com/ec2/instance-types/f1/.

[6] Apache Spark examples, http://spark.apache.org/examples.html.

[7] K. Asanovic, et al., “A view of the parallel computing landscape,” Commun. ACM, 52(10),
pp. 56–67, 2009.

[8] M. Beister, D. Kolditz, and W. Kalender, “Iterative reconstruction methods in X-ray CT,”
Physica Medica, vol. 28, no. 2, pp. 94–108, 2012.

[9] L. Benini, et al., “SystemC cosimulation and emulation of multiprocessor SoC designs,” Com-
puter, 36(4), 53–59, 2003.

[10] F. Bouchhima, et al., “A SystemC/Simulink co-simulation framework for
continuous/discrete-events simulation,” IEEE Int. Behavioral Modeling and Simulation
Workshop, pp. 1–6, 2006.

[11] Cadence, “Incisive Enterprise Simulator,” http://www.cadence.com, 2019.

[12] Cadence, “Palladium Z1 Enterprise Emulation Platform,” http://www.cadence.com, 2019.

[13] L. Cai and D. Gajski, “Transaction level modeling: an overview,” in Proc. Int. Conf. Hard-
ware/software Codesign and System Synthesis, 19–24, 2003.

[14] A. Canis, et al., “From software to accelerators with LegUp high-level synthesis,” in Proc.
Int. Conf. CASES, 18–26, 2013.

[15] R. Chandra, et al., Parallel Programming in OpenMP, Morgan Kaufmann, San Francisco,
CA, 2001.

[16] Z. Chen, A. Howe, H. T. Blair, and J. Cong, “CLINK: Compact LSTM inference kernel
for energy efficient neurofeedback devices,” in Proc. Int. Symp. Low Power Electronics and
Design (ISLPED), 2018.

[17] Y. Chi, J. Cong, P. Wei, and P. Zhou, “SODA : stencil with optimized dataflow architecture,”
Proc. IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD), 2018.

128

http://www.alpha-data.com/pdfs/adm-pcie-7v3.pdf
http://www.alpha-data.com/pdfs/adm-pcie-ku3.pdf
ftp://ftp.altera.com/up/pub/Altera_Material/12.1/Tutorials/Verilog/SignalTap.pdf
https://aws.amazon.com/ec2/instance-types/f1/
http://spark.apache.org/examples.html
http://ieeexplore.ieee.org/document/1193229/
http://ieeexplore.ieee.org/document/4062043
http://ieeexplore.ieee.org/document/4062043
http://dl.acm.org/citation.cfm?id=944651
http://dl.acm.org/citation.cfm?id=2555747
https://dl.acm.org/citation.cfm?id=3218637
https://dl.acm.org/citation.cfm?id=3218637
http://ieeexplore.ieee.org/document/8587691

[18] Y. Chi, Y. Choi, J. Cong, and J. Wang, “Rapid cycle-accurate simulator for high-level synthe-
sis,” Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, pp. 178–183, 2019.

[19] Y. Choi, K. You, J. Choi, and W. Sung, “A real-time FPGA-based 20,000-word speech rec-
ognizer with optimized DRAM access,” IEEE Trans. Circuits and Systems I: Regular Papers
(TCAS1), 57(8), pp. 2119–2131, 2010.

[20] Y. Choi, J. Cong, and D. Wu, “ FPGA implementation of EM algorithm for 3-D CT re-
construction,” in Proc. 22nd IEEE Int. Symp. Field-Programmable Custom Comput. Mach.
(FCCM), pp. 157–160, 2014.

[21] Y. Choi and J. Cong, “Acceleration of EM-based 3D CT reconstruction using FPGA,” IEEE
Trans. Biomedical Circuits and Systems (TBCAS), 10(3), pp. 754–767, 2016.

[22] Y. Choi, et al., “A quantitative analysis on microarchitectures of modern CPU-FPGA plat-
forms,” in Proc. DAC, pp. 109–114, 2016.

[23] Y. Choi and J. Cong, “HLScope: High-Level performance debugging for FPGA designs,” in
Proc. IEEE Int. Symp. Field-Programmable Custom Computing Machines (FCCM), pp. 125–
128, 2017.

[24] Y. Choi, P. Zhang, P. Li, and J. Cong, “HLScope+: Fast and accurate performance estimation
for FPGA HLS,” in IEEE/ACM Int. Conf. Computer Aided Design (ICCAD), pp. 691–698,
2017.

[25] Y. Choi and J. Cong, “HLS-based optimization and design space exploration for applications
with variable loop bounds,” in IEEE/ACM Int. Conf. Computer Aided Design (ICCAD), 2018.

[26] Y. Choi, et al., “In-depth analysis on microarchitectures of modern heterogeneous CPU-
FPGA platforms,” ACM Trans. Reconfigurable Technology and Systems (TRETS), 12(1), 2019.

[27] N. Chong, A. Donaldson, and J. Ketema, “A sound and complete abstraction for reasoning
about parallel prefix sums,” ACM SIGPLAN Notices, 49(1), pp. 397–409, 2014.

[28] M. Chung, J. Kim, and S. Ryu, “SimParallel: A high performance parallel SystemC simulator
using hierarchical multi-threading,” IEEE Int. Symp. Circuits and Systems (ISCAS), pp. 1472–
1475, 2014.

[29] J. Cong, and Y. Zou, “A comparative study on the architecture templates for dynamic nested
loops,” IEEE Ann. Int. Symp. Field-Programmable Custom Computing Machines (FCCM),
pp. 251–254, 2010.

[30] J. Cong, V. Sarkar, G. Reinman, and A. Bui, “Customizable domain-specific computing,”
IEEE Design & Test of Computers, 28(2) pp. 6–15, 2010.

[31] J. Cong, et al., “High-level synthesis for FPGAs: From prototyping to deployment,” IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems, 30(4), pp. 473–491, 2011.

129

http://dl.acm.org/citation.cfm?id=3293918
http://dl.acm.org/citation.cfm?id=3293918
http://ieeexplore.ieee.org/abstract/document/5418887
http://ieeexplore.ieee.org/abstract/document/5418887
http://ieeexplore.ieee.org/abstract/document/6861610/
http://ieeexplore.ieee.org/abstract/document/6861610/
http://ieeexplore.ieee.org/abstract/document/7294697/
http://dl.acm.org/citation.cfm?id=2897972
http://dl.acm.org/citation.cfm?id=2897972
http://ieeexplore.ieee.org/abstract/document/7966664/
https://ieeexplore.ieee.org/document/8203844/
https://ieeexplore.ieee.org/document/8203844/
https://dl.acm.org/citation.cfm?id=3240815
https://dl.acm.org/citation.cfm?id=3240815
https://dl.acm.org/citation.cfm?id=3294054
https://dl.acm.org/citation.cfm?id=3294054
https://dl.acm.org/citation.cfm?id=2535882
https://dl.acm.org/citation.cfm?id=2535882
https://ieeexplore.ieee.org/document/6865424
https://ieeexplore.ieee.org/document/6865424
https://ieeexplore.ieee.org/document/5474041/
https://ieeexplore.ieee.org/document/5474041/
https://ieeexplore.ieee.org/document/5661750/
https://ieeexplore.ieee.org/document/5737854/

[32] J. Cong, et al., An optimal microarchitecture for stencil computation acceleration based on
non-uniform partitioning of data reuse buffers, in Proc. DAC, 1–6, 2014.

[33] J. Cong, Z. Fang, H. Kianinejad, and P. Wei, “Revisiting FPGA acceleration of molecular
dynamics simulation with dynamic data flow behavior in high-level synthesis,” ArXiv Preprint,
2016.

[34] J. Cong, et al., “CPU-FPGA co-optimization for big data applications: A case study of in-
memory Samtool sorting,” in Proc. Int. Symp. FPGA, 291, 2017.

[35] J. Cong, P. Wei, C. Yu, and P. Zhou, “Bandwidth optimization through on-chip memory
restructuring for HLS,” Proc. Ann. Design Automat. Conf., 2017.

[36] J. Cong and J. Wang, “PolySA: polyhedral-based systolic array auto compilation,” Proc.
IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD), 2018.

[37] J. Cong, P. Wei, C. Yu, and P. Zhang, “Automated accelerator generation and optimization
with composable, parallel and pipeline,” Proc. Ann. Design Automat. Conf., pp. 154–159,
2018.

[38] J. Cong, et al., A multi-paradigm programming infrastructure for heterogeneous architec-
tures, 2017, www.nsf.gov.

[39] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Introduction to Algorithms,” The
MIT Press, Cambridge, MA, 2005.

[40] P. Coussy, et al., “An introduction to high-level synthesis,” IEEE Design & Test of Comput.,
26(4), pp. 8–17, 2009.

[41] CPU Benchmarks, https://www.cpubenchmark.net, 2019.

[42] J. Curreri, et al., “Performance analysis framework for high-level language applications in
reconfigurable computing,” ACM Trans. Reconfigurable Technology and Systems, 3(1), 2009.

[43] S. Dai, M. Tan, K. Hao, and Z. Zhang, “Flushing-enabled loop pipelining for high-level
synthesis,” Proc. Ann. Design Automation Conf. (DAC), 2014.

[44] T. A. Davis and Y. Hu, “The University of Florida sparse matrix collection,” ACM Transac-
tions on Mathematical Software (TOMS), 38(1), 2011.

[45] R. Deville, I. Troxel, and A. George, “Performance monitoring for run-time management of
reconfigurable devices,” in Proc. IEEE Int. Conf. Engineering of Reconfigurable Systems and
Algorithms, 175–181, 2005.

[46] B. Dickov, et al., “Row-interleaved streaming data flow implementation of sparse matrix
vector multiplication in FPGA,” in 4th Workshop on Reconfigurable Computing, 104, 109–
118, 2010.

130

https://arxiv.org/pdf/1611.04474.pdf
https://arxiv.org/pdf/1611.04474.pdf
http://dl.acm.org/citation.cfm?id=3021787
http://dl.acm.org/citation.cfm?id=3021787
https://ieeexplore.ieee.org/document/8060327/
https://ieeexplore.ieee.org/document/8060327/
https://ieeexplore.ieee.org/document/8587678
https://dl.acm.org/citation.cfm?id=3195999
https://dl.acm.org/citation.cfm?id=3195999
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1723773&HistoricalAwards=false
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1723773&HistoricalAwards=false
https://ieeexplore.ieee.org/document/5209958
http://dl.acm.org/citation.cfm?id=1661443
http://dl.acm.org/citation.cfm?id=1661443
https://ieeexplore.ieee.org/document/6881403
https://ieeexplore.ieee.org/document/6881403
https://dl.acm.org/citation.cfm?id=2049663
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.469.8743
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.469.8743
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.185.4523
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.185.4523

[47] H. Esmaeilzadeh, et al., “Dark silicon and the end of multicore scaling,” IEEE Ann. Int. Symp.
Computer Architecture (ISCA), 365–376, 2011.

[48] Falcon Computing Solutions, “Merlin Compiler,” https://www.falconcomputing.com/merlin-
fpga-compiler/, 2019.

[49] D. Finley, Optimized QuickSort, 2007, http://alienryderflex.com/quicksort.

[50] J. Fowers, et al., “A high memory bandwidth FPGA accelerator for sparse matrix-vector
multiplication,” IEEE Ann. Int. Symp. Field-Programmable Custom Computing Machines
(FCCM), pp. 36–43, 2014.

[51] J. Goeders and S. J. Wilton, “Effective FPGA debug for high-level synthesis generated cir-
cuits,” IEEE Int. Conf. Field Programmable Logic and Appl. (FPL), 2014.

[52] J. Goeders and S. J. Wilton, “Using dynamic signal-tracing to debug compiler-optimized HLS
circuits on FPGAs,” IEEE Ann. Int. Symp. Field-Programmable Custom Computing Machines
(FCCM), pp. 127–134, 2015.

[53] J. Goeders and S. J. Wilton, “Signal-tracing techniques for in-system FPGA debugging of
high-level synthesis circuits,” IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, 36(1), pp. 83–96, 2017.

[54] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design with SystemC, Kluwer Academic
Publishers, 2002.

[55] S. Han, et al., “EIE: efficient inference engine on compressed deep neural network,”
ACM/IEEE Ann. Int. Symp. Computer Architecture (ISCA), 2016.

[56] S. Han, et al., “ESE: Efficient speech recognition engine with sparse LSTM on FPGA,” Proc.
ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays (FPGA), pp. 78–84, 2017.

[57] M. Harris, S. Sengupta, and J. Owens, “Parallel Prefix Sum (Scan) with CUDA”,
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch39.html, 2008.

[58] IBM, Application Note: Understanding DRAM Operation, 1996.

[59] Intel, Intel Quickpath interconnect FPGA core cache interface specification.

[60] Intel, Intel HLS Compiler, 2019, https://www.altera.com/products/design-software/high-
level-design/intel-hls-compiler/overview.html.

[61] Intel, V-Series Transceiver PHY IP Core User Guide, 2017,
https://www.altera.com/en_US/pdfs/literature/ug/xcvr_user_guide.pdf.

[62] Intel, “Intel FPGA SDK for OpenCL Pro Edition,”
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-
sdk/aocl-best-practices-guide.pdf, 2019.

131

http://ieeexplore.ieee.org/document/6307773
http://alienryderflex.com/quicksort
http://ieeexplore.ieee.org/document/6861585
http://ieeexplore.ieee.org/document/6861585
http://ieeexplore.ieee.org/document/6927498
http://ieeexplore.ieee.org/document/6927498
http://ieeexplore.ieee.org/document/7160056
http://ieeexplore.ieee.org/document/7160056
https://ieeexplore.ieee.org/document/7466842
https://ieeexplore.ieee.org/document/7466842
http://ieeexplore.ieee.org/document/7551397
https://dl.acm.org/citation.cfm?id=3021745
https://www.altera.com/products/design-software/high-level-design/intel-hls-compiler/overview.html
https://www.altera.com/en_US/pdfs/literature/ug/xcvr_user_guide.pdf

[63] Intel, “Quartus Prime Pro Edition Handbook,”
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-
design/quartus-prime/user-guides.html, 2019.

[64] Intel, Intel VTune Amplifier, 2019, http://www.intel.com/.

[65] Intel, “Intel Xeon Processor E5-2666 v3,” www.intel.com/, 2016.

[66] Intel, “Intel Xeon Processor E5-2680 v4,” www.intel.com/, 2016.

[67] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic systems and saving
energy in wireless communication,” Science, 304(5667):78–80, 2004.

[68] J. Jang, S. Choi, and V. Prasanna, “Energy-and time-efficient matrix multiplication on FP-
GAs,” IEEE T. VLSI, 13(11):1305–1319, 2005.

[69] R. Kastner, M. Matai, and S. Neuendorffer, “Parallel Programming for FPGAs”, ArXiv E-
prints, http://kastner.ucsd.edu/hlsbook/, 2018.

[70] Kingston, KVR13LSE9/8 memory module specifications, 2012,
http://www.kingston.com/datasheets/.

[71] S. Koehler, J. Curreri, and A. George, “Performance analysis challenges and framework for
high-performance reconfigurable computing,” Parallel Computing, 34(4–5):217–230, 2007.

[72] D. Koeplinger, et al., “Automatic generation of efficient accelerators for reconfigurable hard-
ware,” in Proc. ISCA, 115–127, 2016.

[73] P. Kogge, and H. Stone, “A parallel algorithm for the efficient solution of a general class of
recurrence equations,” IEEE Trans. Computers, 100(8), pp. 786–793, 1973.

[74] S. Kundu and I. F. Akyildiz, “Deadlock free buffer allocation in closed queueing networks,”
Queueing Systems, 4(1), pp. 47–56, 1989.

[75] S. Lahti, P. Sjövall, and J. Vanne, “Are we there yet? A study on the state of high-level
synthesis,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, 38(5),
pp. 898–911, 2019.

[76] J. Lancaster, J. Buhler, and R. Chamberlain, “Efficient runtime performance monitoring of
FPGA-based applications,” in Proc. IEEE Int. System-on-Chip Conf., 2009.

[77] C. Lee, O. Mutlu, V. Narasiman, and Y. Patt, “Prefetch-aware DRAM controllers,” in Proc.
Int. Symp. Microarchitecture, 200–209, 2008.

[78] J. Lei, Y. Chen, Y. Li, and J. Cong, “A high-throughput architecture for lossless decompres-
sion on FPGA designed using HLS,” in Proc. Int. Symp. FPGA, 277, 2016.

[79] P. Li, P. Zhang, L. Pouchet, and J. Cong, “Resource-aware throughput optimization for high-
level synthesis,” in Proc. Int. Symp. FPGA, 200–209, 2015.

132

https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://ark.intel.com/products/91754/Intel-Xeon-Processor-E5-2680-v4-35M-Cache-2_40-GHz
https://science.sciencemag.org/content/304/5667/78
https://science.sciencemag.org/content/304/5667/78
http://ieeexplore.ieee.org/document/1564083/
http://ieeexplore.ieee.org/document/1564083/
http://www.kingston.com/datasheets/KVR13LSE9_8.pdf
http://www.sciencedirect.com/science/article/pii/S0167819108000203
http://www.sciencedirect.com/science/article/pii/S0167819108000203
https://ieeexplore.ieee.org/document/7551387
https://ieeexplore.ieee.org/document/7551387
http://ieeexplore.ieee.org/document/5009159/
http://ieeexplore.ieee.org/document/5009159/
https://link.springer.com/article/10.1007/BF01150855
https://ieeexplore.ieee.org/document/8356004
https://ieeexplore.ieee.org/document/8356004
http://ieeexplore.ieee.org/document/5398106/
http://ieeexplore.ieee.org/document/5398106/
http://dl.acm.org/citation.cfm?id=1521796
http://dl.acm.org/citation.cfm?id=2847305
http://dl.acm.org/citation.cfm?id=2847305
http://dl.acm.org/citation.cfm?id=2689065
http://dl.acm.org/citation.cfm?id=2689065

[80] Y. Liang, S. Wang, and W. Zhang, “FlexCL: a model of performance and power for OpenCL
workloads on FPGAs,” IEEE Trans. Computers, 67(12), pp. 1750–1764, 2018.

[81] R. Lienhart, A. Kuranov, and V. Pisarevsky, “Empirical analysis of detection cascades of
boosted classifiers for rapid object detection,” Joint Pattern Recognition Symp., pp. 297–304,
2003.

[82] J. Liu and J. Cong, “Dataflow systolic array implementations of matrix decomposition us-
ing high level synthesis,” Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays
(FPGA), pp. 187–187, 2019.

[83] A. Mahapatra, Y. Liu, and B. C. Schafer, “Accelerating cycle-accurate system-level simula-
tions through behavioral templates,” Integration, 62, 282–291, 2018.

[84] G. Martin and G. Smith, “High-level synthesis: Past, present, and future,” IEEE Design &
Test of Computers, 26(4), 18–25, 2009.

[85] B. Meng, G. Pratx, and L. Xing, “Ultrafast and scalable cone-beam CT reconstruction using
MapReduce in a cloud computing environment,” Med. Physics, vol. 38, no. 12, pp. 6603–6609,
2011.

[86] Mentor Graphics, “ModelSim PE,”
http://s3.mentor.com/public_documents/datasheet/products/fv/modelsim_pe_ds.pdf, 2019.

[87] Mentor Graphics, “Veloce Emulation Platform,” https://www.mentor.com/products/fv/emulation-
systems/, 2019.

[88] Microsoft, “Microsoft Azure”, https://azure.microsoft.com/, 2009.

[89] J. S. Monson and B. L. Hutchings, “New approaches for in-system debug of behaviorally-
synthesized FPGA circuits,” IEEE Int. Conf. Field Programmable Logic and Appl. (FPL),
2014.

[90] J. S. Monson and B. L. Hutchings, “Using source-level transformations to improve high-
level synthesis debug and validation on FPGAs,” Proc. ACM/SIGDA Int. Symp. Field-
Programmable Gate Arrays (FPGA), pp. 5–8, 2015.

[91] G. Morris and V. Prasanna, “An FPGA-based floating-point Jacobi iterative solver,” Proc. Int.
Symp. Parallel Architectures, Algorithms and Networks (ISPAN), 2005.

[92] M. Nanjundappa, et al., “SCGPSim: A fast SystemC simulator on GPUs,” Proc. Asia and
South Pacific Design Automation Conf., pp. 149–154, 2010.

[93] R. Nane, et al., “A survey and evaluation of FPGA high-level synthesis tools,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, 35(10), 1591–1604, 2015.

[94] NVIDIA, NVIDIA Nsight, 2019, http://www.nvidia.com/.

[95] NVIDIA, CUDA C Programming Guide, 2019, http://www.nvidia.com/.

133

https://ieeexplore.ieee.org/document/8365849
https://ieeexplore.ieee.org/document/8365849
https://link.springer.com/chapter/10.1007/978-3-540-45243-0_39
https://link.springer.com/chapter/10.1007/978-3-540-45243-0_39
https://dl.acm.org/citation.cfm?id=3293969
https://dl.acm.org/citation.cfm?id=3293969
https://doi.org/10.1016/j.vlsi.2018.03.014
https://doi.org/10.1016/j.vlsi.2018.03.014
http://ieeexplore.ieee.org/document/5209959
http://ieeexplore.ieee.org/document/6927495
http://ieeexplore.ieee.org/document/6927495
https://dl.acm.org/citation.cfm?id=2689087
https://dl.acm.org/citation.cfm?id=2689087
http://ieeexplore.ieee.org/document/1575859/
https://dl.acm.org/citation.cfm?id=1899753
https://ieeexplore.ieee.org/document/7368920
https://developer.nvidia.com/nsight-visual-studio-edition
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

[96] NVIDIA, NVIDIA Tela M60 GPU Accelerator, 2016, https://www.nvidia.com/.

[97] J. Park, P. Diniz, and K. Shayee, “Performance and area modeling of complete FPGA designs
in the presence of loop transformations,” IEEE T. Computers, 53(11):1420–1435, 2004.

[98] D. Pellerin and S. Thibault Practical FPGA programming in C, Prentice Hall, 2005.

[99] L. Pouchet, “PolyBench/C”, http://web.cse.ohio-state.edu/ pouchet.2/software/polybench/,
2015.

[100] R. Prabhakar, et al., “Generating configurable hardware from parallel patterns,” in Proc.
ASPLOS, 50(2), 651–665, 2016.

[101] J. Pu, et al., “Programming heterogeneous systems from an image processing DSL,” ACM
Trans. Architecture and Code Optimization, 14(3), 26, 2017.

[102] A. Putnam, et al., “A reconfigurable fabric for accelerating large-scale datacenter services,”
ACM SIGARCH Computer Architecture News, 42(3), 13–24, 2014.

[103] W. Qadeer, et al., “Convolution engine: balancing efficiency & flexibility in specialized
computing,” ACM SIGARCH Computer Architecture News, 41(3), 24–35, 2013.

[104] J. Ragan-Kelley, et al., “Halide: A language and compiler for optimizing parallelism, local-
ity, and recomputation in image processing pipelines,” ACM SIGPLAN Notices, 48(6), 519–
530, 2013.

[105] B. Reagon, et al., “Machsuite: Benchmarks for accelerator design and customized architec-
tures,” in Proc. IISWC, 110–119, 2014.

[106] ROSE compiler infrastructure, http://rosecompiler.org/.

[107] R. Sampson, et al., “Sonic millip3de: A massively parallel 3d-stacked accelerator for 3d
ultrasound,” in IEEE Int. Symp. High Performance Computer Architecture (HPCA), 318–329,
2013.

[108] A. Schmidt, N. Steiner, M. French, and R. Sass, “HwPMI: an extensible performance mon-
itoring infrastructure for improving hardware design and productivity on FPGAs,” Int. J. Re-
configurable Computing, 2012.

[109] T. Schmidt, G. Liu, and R. Dömer, “Exploiting thread and data level parallelism for ultimate
parallel SystemC simulation,” Proc. Ann. Design Automation Conf. (DAC), 2017.

[110] O. Segal, et al., “Sparkcl: A unified programming framework for accelerators on heteroge-
neous clusters,” ArXiv Preprint, 2015.

[111] Y. Shao, et al., “Aladdin: A pre-rtl, power-performance accelerator simulator enabling large
design space exploration of customized architectures,” in Proc. ISCA, 97–108, 2014.

[112] Y. Shan, et al., “FPGA and GPU implementation of large scale SpMV,” in IEEE Symp.
Application Specific Processors (SASP), 64–70, 2010.

134

https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/solutions/resources/documents1/nvidia-m60-datasheet.pdf
http://ieeexplore.ieee.org/document/1336763/
http://ieeexplore.ieee.org/document/1336763/
http://dl.acm.org/citation.cfm?id=1405756
http://dl.acm.org/citation.cfm?id=2872415
https://dl.acm.org/citation.cfm?id=3107953
https://dl.acm.org/citation.cfm?id=2665678
https://dl.acm.org/citation.cfm?id=2485925
https://dl.acm.org/citation.cfm?id=2485925
http://dl.acm.org/citation.cfm?id=2462176
http://dl.acm.org/citation.cfm?id=2462176
http://ieeexplore.ieee.org/document/6983050/
http://ieeexplore.ieee.org/document/6983050/
http://rosecompiler.org/
http://ieeexplore.ieee.org/document/6522329/
http://ieeexplore.ieee.org/document/6522329/
https://dl.acm.org/citation.cfm?id=3062243
https://dl.acm.org/citation.cfm?id=3062243
https://arxiv.org/abs/1505.01120
https://arxiv.org/abs/1505.01120
http://ieeexplore.ieee.org/document/6853196/
http://ieeexplore.ieee.org/document/6853196/
http://ieeexplore.ieee.org/document/5521144/

[113] W. Snyder, “Verilator: Speedy Reference Models, Direct from RTL,”
https://www.veripool.org/papers/Verilator_Modeling_UMass2017b_pres.pdf, 2017.

[114] L Soule and T. Blank, “Parallel logic simulation on general purpose machines,” Proc.
ACM/IEEE Design Automation Conf. (DAC), pp. 166–171, 1988.

[115] E. Sozzo, et al., “A common backend for hardware acceleration on FPGA,” IEEE Int. Conf.
Comput. Design (ICCD), pp. 427–430, 2017.

[116] J. Sun, H. Shum, and N. Zheng, “Stereo matching using belief propagation,” IEEE Trans.
Pattern Anal. Mach. Intell., 25(7), pp. 787–800, 2003.

[117] Synopsys, “VCS Functional Verification Solution,”
https://www.synopsys.com/verification/simulation/vcs.html, 2019.

[118] Synopsys, “ZeBu Fast Emulation,” https://www.synopsys.com/verification/emulation.html,
2019.

[119] M. Tan, et al., “Elasticflow: A complexity-effective approach for pipelining irregular loop
nests,” Proc. IEEE/ACM Int. Conf. Computer Aided Design (ICCAD), pp. 78–85, 2015.

[120] A. Verma, et al., “Developing dynamic profiling and debugging support in OpenCL for
FPGAs,” in Proc. DAC, 56–61, 2017.

[121] Z. Wang, B. He, W. Zhang, and S. Jiang, “A performance analysis framework for optimizing
OpenCL applications on FPGAs,” in Proc. High Performance Computer Architecture (HPCA),
pp. 114–125, 2016.

[122] D. J. Warne, N. A. Kelson, and R. F. Hayward, “Comparison of high level FPGA hardware
design for solving tri-diagonal linear systems,” Procedia Computer Science, 29, pp. 95–101,
2014.

[123] M. Wissolik, D. Zacher, A. Torza, and B. Day, Virtex UltraScale+
HBM FPGA: A revolutionary increase in memory performance, 2017,
https://www.xilinx.com/support/documentation/white_papers/wp485-hbm.pdf.

[124] All Programmable FPGAs and 3D ICs, Xilinx, 2015, Available:
http://www.xilinx.com/products/silicon-devices/fpga.html.

[125] Xilinx, AXI Reference Guide UG761, 2012, http://www.xilinx.com/.

[126] Xilinx, “ChipScope Pro Software and Cores (UG029),”
https://china.xilinx.com/support/documentation/sw_manuals/xilinx14_7
/chipscope_pro_sw_cores_ug029.pdf, 2012.

[127] Xilinx, “FIFO Generator v13.2 (PG057),”
https://www.xilinx.com/support/documentation/ip_documentation/fifo_generator/v13_2/pg057-
fifo-generator.pdf, 2017.

135

https://dl.acm.org/citation.cfm?id=285757
https://ieeexplore.ieee.org/document/8119248
https://dl.acm.org/citation.cfm?id=2840831
https://dl.acm.org/citation.cfm?id=2840831
http://dl.acm.org/citation.cfm?id=3062230
http://dl.acm.org/citation.cfm?id=3062230
https://www.sciencedirect.com/science/article/pii/S1877050914001860
https://www.sciencedirect.com/science/article/pii/S1877050914001860
https://www.xilinx.com/support/documentation/white_papers/wp485-hbm.pdf
https://www.xilinx.com/support/documentation/white_papers/wp485-hbm.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf

[128] Xilinx, SDAccel Development Environment, 2016, http://www.xilinx.com/.

[129] Xilinx, “UltraScale architecture and product data sheet: overview (DS890)”,
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf,
2018.

[130] Xilinx, Vivado High-level Synthesis UG902, 2018, http://www.xilinx.com/.

[131] F. Xu and K. Mueller, “Real-time 3D computed tomographic reconstruction using commod-
ity graphics hardware,” Physics in Med. Biol., 52, pp. 3405–3417, 2007.

[132] Y. Xu, et al., “Belief propagation implementation using CUDA on an NVIDIA GTX 280,”
Advances in Artif. Intell., pp. 180–189, 2009.

[133] M. Yan and L. Vese, “Expectation maximization and total variation-based model for com-
puted tomography reconstruction from undersampled data,” in SPIE Med. Imag., pp. 79612X–
1–8, 2011.

[134] C. Yu, et al., “S2FA: an accelerator automation framework for heterogeneous computing in
datacenters,” Proc. Ann. Design Automation Conf., 2018.

[135] C. Zhang, et al., “Optimizing FPGA-based accelerator design for deep convolutional neural
networks,” in Proc. Int. Symp. FPGA, 161–170, 2015.

[136] Y. Zhang, et al., “FPGA vs. GPU for sparse matrix vector multiply,” IEEE Int. Conf. Field-
Programmable Technology (FPT), pp. 255–262, 2009.

[137] J. Zhao, et al., “COMBA: A comprehensive model-based analysis framework for high level
synthesis of real applications,” Proc. Int. Conf. Computer Aided Design (ICCAD), pp. 430–
437, 2017.

[138] G. Zhong, et al., “Lin-analyzer: A high-level performance analysis tool for FPGA-based
accelerators,” in Proc. DAC, 136–141, 2016.

[139] G. Zhong, et al., “Design Space exploration of FPGA-based accelerators with multi-level
parallelism,” in Proc. DATE, 2017.

[140] L. Zhou and V. Prasanna, “Sparse matrix-Vector multiplication on FPGAs,” Proc. Int. Symp.
Field-Programmable Gate Arrays (FPGA), pp. 63–74, 2005.

[141] Q. Zhu and M. Tatsuoka, “High quality IP design using high-level synthesis design flow,”
Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 212–217, 2016.

[142] H. Zohouri, et al., “Evaluating and optimizing OpenCL kernels for high performance com-
puting with FPGAs,” Int. Conf. High Performance Computing, Networking, Storage and Anal-
ysis (SC), pp. 409–420, 2016.

136

http://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug902-vivado-high-level-synthesis.pdf
https://dl.acm.org/citation.cfm?id=3196109
https://dl.acm.org/citation.cfm?id=3196109
http://dl.acm.org/citation.cfm?id=2689060
http://dl.acm.org/citation.cfm?id=2689060
https://ieeexplore.ieee.org/document/5377620
http://ieeexplore.ieee.org/document/8203809/
http://ieeexplore.ieee.org/document/8203809/
http://dl.acm.org/citation.cfm?id=2898040
http://dl.acm.org/citation.cfm?id=2898040
http://ieeexplore.ieee.org/document/7927161
http://ieeexplore.ieee.org/document/7927161
https://dl.acm.org/citation.cfm?id=1046202
http://ieeexplore.ieee.org/document/7428013/
http://ieeexplore.ieee.org/document/7877113/
http://ieeexplore.ieee.org/document/7877113/

