
UCLA
Technical Reports

Title
Efficient and Practical Query Scoping in Sensor Networks

Permalink
https://escholarship.org/uc/item/1f27k34v

Authors
Henri Dubois-Ferriere
Deborah Estrin

Publication Date
2004

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1f27k34v
https://escholarship.org
http://www.cdlib.org/

Efficient and Practical Query Scoping in Sensor Networks

Henri Dubois-Ferrière∗

School of Computer and Communication Sciences
EPFL

Lausanne, Switzerland
henri.dubois-ferriere@epfl.ch

Deborah Estrin
Department of Computer Science

UCLA
Los Angeles, CA 90095

destrin@cs.ucla.edu

Abstract

A driving scenario for sensor networks is environmental
monitoring: nodes gather data and send it back to a sink
(i.e., a basestation with an internet connection or persis-
tent storage) via a multi-hop tree topology. In order to form
the data-gathering tree, and in order to configure the sen-
sor nodes, the sink periodically disseminates messages into
the network. For scaling, robustness, and load-balancing
reasons, it is desirable to introduce multiple sinks and have
nodes send data to their closest sink (under a metric, such
as hop-count or energy cost) rather than all nodes send-
ing to a unique sink. With multiple sinks, it becomes im-
portant to constrain dissemination of queries so that each
sink does not flood the whole network. In this work we pro-
pose Voronoi scoping, a distributed algorithm to constrain
the dissemination of messages from different sinks. It has
the property that a query originated by a given sink will
be forwarded only to the nodes for which that sink is the
closest sink (under the chosen metric). Thus each query is
forwarded to the smallest possible number of nodes, and
per-node dissemination overhead does not grow with net-
work size or with number of sinks. The algorithm has a
simple distributed implementation and requires only a few
bytes of state at each node. Experiments over a network of
55 motes confirm the algorithm’s effectiveness.

1 Introduction

Environmental monitoring is a driving application for
sensor networks. Some examples of environmental appli-
cations include habitat monitoring [1], micro-climate mon-
itoring [2], agricultural monitoring [3], structural, seismic,

∗The work presented in this paper was done while the author was visit-
ing UCLA. It was supported (in part) by the National Competence Center
in Research on Mobile Information and Communication Systems (NCCR-
MICS), a center supported by the Swiss National Science Foundation un-
der grant number 5005-67322.

and terrain monitoring, as well as surveillance and security
applications. For all of these applications, it is necessary
to measure physical phenomena with physically distributed
sensors and to communicate it back to a remote location.
This has been enabled by the emergence of inexpensive de-
vices (motes) [4] which combine sensing, computation, and
communication.

Such applications often use a data gathering tree, rooted
at the basestation (or sink). Each sensor sends its data to
its parent; intermediate nodes may perform some form of
aggregation or compression [5] [6]. However, a single-sink
system scales poorly with network size: data packets must
traverse an increasing number of hops as the network di-
ameter grows (thus reducing delivery ratio and increasing
energy consumption), and nodes near the root of the tree
carry a disproportionate amount of traffic. Of course there
is an infrastructure cost to deploy additional sinks. While
our purpose is not to derive an optimal relation between net-
work size and number of sinks, we do assume that in most
cases it will be worthwhile to have more than one. Thus we
expect that many large-scale data-gathering networks will
employ a tiered architecture with multiple sinks, placed at
different points in the coverage area. For example, the de-
ployment plan [2] driving this work is a habitat monitoring
sensor network with approximately 100 Berkeley motes and
5 Stargate [7] microservers which connect to the internet via
a 802.11 transit network.

Note that the tiered network model assumed here is not
the same as that used in related work on clustering in wire-
less sensor and ad hoc networks [8] [9]. Specifically, the
general clustering problem studied in these papers consid-
ers jointly the election of cluster-head nodes and the scope
of their clusters, whereas here the sinks are determined a
priori by virtue of special resources such as higher band-
width radios, continuous energy sources, storage, etc; and
therefore the algorithm itself is not responsible for selecting
who can be a cluster head or sink.

This paper addresses the problem of efficient query
dissemination and tree construction in a multi-sink data-

1

gathering network. The two tasks are respectively distribut-
ing a query to sensor nodes in the system, and constructing
paths from each source to a nearby sink. Note that because
of inherent environmental dynamics affecting RF connec-
tivity [10] [11] [12] [13], and because nodes may fail, paths
to sink points change over time and must be dynamically
configured, requiring continued dissemination of route and
query messages over time.

The simplest possible solution, adopted by one-phase
pull diffusion [14], is for each sink to disseminate mes-
sages1 throughout the whole network. Nodes thus learn
their next-hop and distance to every sink and can trivially
choose the cloest one. However, this is redundant, and
causes per-node overhead to increase linearly with the num-
ber of sinks. We therefore need a way to constrain the scope
of queries originating at different sinks so that each flood
does not propagate through the whole network. To sum-
marize, this work is motivated by the following question:
How can we scope the dissemination of query messages and
route advertisements from each sink to a subset of the net-
work that is as small as possible, while guaranteeing that
each node is reached by the message originating at its clos-
est sink?

This paper proposes a simple and practical algorithm
called Voronoi scoping. The algorithm disseminates mes-
sages from each sink only to the subset of nodes that lie
within the sink’s Voronoi cluster, without involving nodes
which lie outside of the cluster. The algorithm has zero
overhead, requiring no explicit communications to estab-
lish voronoi clusters or otherwise set up algorithm state. It
uses only local state and does not require nodes to have any
knowledge of network topology, nor of number and location
of sinks.

The remainder of this paper is organized as follows.
Sect. 2 defines Voronoi scoping, some properties, and il-
lustrates the algorithm at work. In Sect. 3 we review alter-
nate approaches to query scoping and survey some related
work. In Sect. 4 we describe our protocol implementation
and discuss protocol aspects which arise due to the channel
and topology dynamics of wireless networks. We show ex-
perimental results in Sect. 5 and finally conclude in Sect.
6.

2 Voronoi scoping.

2.1 Model and Assumptions

Our assumptions and model are driven first and foremost
by practical systems, as this work is motivated by an field
deployment. As such, our model matches that of existing
proposals such as one-phase pull [14] or TinyDB [6].

1We use the generic term message to refer indiscriminately to query
and route advertisement packets from a sink.

S1 S1
S2

S1
S2

S3

Figure 1: Voronoi clusters for 1, 2, 3 sinks. Shaded regions rep-
resent the cluster associated with each sink under a hop count dis-
tance metric. The underlying topology is shown with dotted lines,
and a Voronoi spanning tree is shown for each sink using solid
lines.

Distance metric and closest sink data gathering. A
data packet is successfully gathered when it arrives at any of
the sinks in the network. For efficiency reasons, we would
like nodes to send data to the closest sink. In other words
each interior node in Voronoi cluster Vk sends its data to
sink k. A border node may send its data packets toward
either of the equidistant sinks.

Which sink is the closest depends on the underlying dis-
tance metric. The primarily metric considered in this paper
is hop count; this results in choosing the sink which min-
imizes energy spent to deliver the data packet (assuming
here that each node transmits at the same power). More
sophisticated network metrics are also possible. For exam-
ple, we could define the closest sink as the one which can
be reached over a sequence of hops with highest cumulated
energy. Indeed, if nodes consume energy at uneven rates,
then it might be advantageous to take a longer path which
traverses nodes with high remaining energy.

Notation. We represent our network as the graph G =
(N, E), where N is a set of m + n nodes (containing m

sinks and n sources), and S ⊂ N is the set of sink nodes
(with |S| = m). The set of weighted edges is denoted E,
and we note di,j the distance along the shortest path be-
tween i and j. With each sink k we associate the Voronoi
cluster Vk containing the nodes whose closest sink is k.
More formally, we define a Voronoi cluster Vk as:

Vk = {i : min
j∈S

di,j = di,k}.

We say that any node belonging to more than one
Voronoi cluster (that is, a node having more than one
equidistant closest sinks) is a border node, and a node be-
longing only to one Voronoi cluster (that is, a node having
a unique closest sink) is an interior node. We call Voronoi
spanning tree a tree Tk that spans all the nodes in Vk. Fig 1
illustrates Voronoi clusters and Voronoi spanning trees.

Tree formation. We assume a simple reverse-path flood-
ing primitive is used to build the data-gathering tree (other
possible approaches such as MDCS are mentioned in Sect.
3.3). Route advertisement packets contain a hop-count field

2

indicating the number of hops has traversed since leaving
the sink. A node receiving an advertisement reforwards it,
until all nodes in the network have received it. Duplicates
are detected using sequence numbers and discarded. After
the advertisement has propagated throughout the network
each node knows its parent in the tree to its cloest sink. A
node subsequently forwards its (and its children’s) data to
this parent. Beside distance, the choice of parent may also
be based on both link quality or semantic (in-network pro-
cessing) concerns [15]. Such questions are not the focus
of this work; we simply note that Voronoi scoping applies
regardless of the policy applied.

Joint routing and query dissemination. Query dis-
semination and tree construction are logically distinct op-
erations. They might therefore be implemented separately,
with queries being disseminated in one phase, and routing
packets via another. In practice it is often more efficient
to piggy-back queries and route advertisements in a same
packet. We will assume such a model; of course Voronoi
scoping can be used equally well if queries and route adver-
tisements are disseminated via separate messages.

2.2 Algorithm

Our global objective is to constrain dissemination so
that route advertisement and query messages are not for-
warded beyond the originating sink’s Voronoi cluster. From
a node’s local perspective, this means that a message origi-
nated by sink k should only be reforwarded if the node is an
interior node of Vk. Specifically, a node knows that it is an
interior node of Vk when messages from sink k reach i via
fewer hops than messages from any other sink. If two sinks
reach i via an identical number of hops, then i is a border
node between these two sinks.

This leads to a simple distributed implementation: each
node keeps a record of its closest sink and of the network
distance to that sink. When a message arrives from a sink,
the recipient checks if the distance traversed by the packet
is less than the current estimate of closest sink distance. If
so, the node updates its closest sink and parent entries and
resends the message. A node also reforwards the message if
distance traversed is equal to closest distance and the mes-
sage came from the closest sink; this is necessary so that a
subsequent message is forward by nodes in the originating
sink’s cluster.

The algorithm pseudocode is given in Fig. 2. It is slightly
more general than the above description: messages are for-
warded beyond the border of a Voronoi cluster up to an
overlap increment of L, which is a fixed algorithm parame-
ter set consistently across all nodes. As a not terminology,
when we refer to Voronoi scoping with no further qualifi-
cation, we refer to the algorithm with L = 0, which is the
most restricted scoping. We remark that without the second

Algorithm Voronoi(k, d, n)
(∗ Called each time a query packet is received. ∗)
Input: A sink k, a distance d, a neighbor n

(∗ k and d are read off incoming packet header. ∗)
(∗ n is the neighbor which transmitted the packet. ∗)
(∗ d min is the distance to closest known sink. ∗)
1. 4← d− d min

2. if (4 ≤ 0)
(∗ Update if closer or equal dist. than to current sink. ∗)

3. then
4. parent← n

5. closest sink ← k

6. d min← d

7. if4 < L or (4 = 0 and k = closest sink)
(∗ Reforward if in Voronoi cluster or overlap region. ∗)

8. then
9. increment distance on packet()
10. reforward packet()

Figure 2: Voronoi scoping algorithm. Initially d min is set to
∞. L is a fixed algorithm parameter. When L = 0, we have
disjoint scopes; this is the setting we implicitly refer to as ’Voronoi
scoping’.

condition (4 = 0 and k = closest sink) on line 7, only
the first query from a sink would be forwarded by nodes
in that sink’s cluster. Indeed, when a node receives a sec-
ond packet from a sink via the same route we have4 = 0;
therefore without this check the packet would not be refor-
warded. Note that this check is only relevant when L = 0.

We use a soft-state model [16]: after some timeout, clos-
est sink and distance estimates are cleared to null values.
This means that if a sink goes offline or gets disconnected
from part of the network, nodes previously in that sink’s
Voronoi cluster will eventually discard their route to it and
accept messages from the next-closest sink.

2.3 Example

We illustrate the algorithm in a network with 3 sinks and
20 sources in Fig. 3. Nodes are disposed in a grid for clar-
ity; a real sensor network will typically have a less regular
layout. In (a), no sink has yet sent a query message; nodes
therefore do not know their distance to any any sink. Sink
A is the first to disseminate a message. For each node re-
ceiving this message, A is the only (and therefore closest)
known sink; therefore it is forwarded throughout the net-
work, as depicted in (b). Then in (c) and (d) B (resp C)
disseminate their queries which are only forwarded within
VB (resp. VC). Finally in (e) each sink has originated one
message and the network is in steady-state. The properties
stated in Sect. 2.4 now hold; further queries will be dissem-
inated only within the Voronoi cluster of their originating

3

sink. Fig. (e) shows two border nodes belonging both to VB

and VC are in a darker region; all other nodes are interior
nodes.

2.4 Properties

We now list some properties for disjoint Voronoi scoping
(L = 0). These are steady-state properties, i.e. they hold
only after each sink has originated one message (ie., in Fig.
3 (e)).
Property 1 : (Coverage and Scoping) If i ∈ Vk, then i re-
ceives packets disseminated by sink k. If i 6∈ Vk, i does not
receive packets originated by sink k. Equivalently, packets
are disseminated to all nodes in the Voronoi cluster of their
originating sink, and not beyond.
Property 2 : (Scalability) Since a message is never for-
warded beyond its Voronoi cluster, each node in the net-
work transmits at most one message when every sink has
originated one message. Therefore, per-node dissemination
overhead remains constant independently of network size
and number of sinks.
Property 3 : (Memory) The algorithm requires only keep-
ing 2 pieces of state: closest sink and distance to that sink.
Property 4 : (Distributed) Each node decides whether or
not to rebroadcast a flood (query or route advertisement)
packet using only information which is local to that node.
Property 5 : (Transparency) Operation of the algorithm
does not require sinks to behave any differently than they
would when originating a global, unscoped flood. Sinks
need not in any way keep track of other sinks going offline
or coming up. In fact, a sink need not even know the ex-
istence or location of other sinks. This obviates the need
for any inter-sink coordination mechanism and is key to the
algorithm’s simplicity.

2.5 Higher order Voronoi scoping and failover

The algorithm in Fig. 2.2 considers, at each node, only
the distance to the single closest sink. It can also be ex-
tended to take into account the N nearest sinks. We call this
generalization order-N Voronoi scoping, and note V N

k to be
the order-N Voronoi cluster associated with sink k. Under
this notation Vk = V 1

k .
In order-N scoping, cluster V N

k is defined as the set of
nodes for which k is one of the N nearest sinks. Imple-
menting order-N scoping in a distributed is done similarly
to order-1 scoping (Fig. 2), with the difference that each
node must keep track of N closest sinks rather than 1 sink.
We represent order-2 scopes in Fig. 4. This illustrates that
V N

k ⊆ V M
k for N < M , and of course Vk ⊆ V N

k for
N > 1. In other terms higher-order Voronoi scoping will
result in larger scopes and more dissemination overhead
than regular Voronoi scoping. Of course if N is equal to

or greater than the number of sinks in the network, order-N
scoping will result in global flooding.

With higher order scoping, each node effectively keeps
track of the N closest sinks. It is therefore useful to allow a
failover function, for applications that require the ability for
nodes to switch over to a backup sink available if the path
to the current closest sink breaks (or if the sink itself fails).
Order-N scoping thus constitutes a simple and cost effective
means to ensure that all nodes have N − 1 available backup
sinks.

Order-N scoping was not used for the data-gathering ap-
plication that motivates this work because the application is
loss-tolerant. Without end-to-end reliability, a source can
not learn about upstream path breaks or sink failures; these
failures are only corrected when a newer route advertise-
ment overrides the current entry. Therefore, a source would
not know when it is necessary to failover to another sink. In
a data-gathering application with reliability semantics (ie,
[17] [18]), order-N scoping can be used for rapid failover.

A

C

B

A

C

B

(a) Order-2 cluster around A. (b) Order-2 cluster around C.

Figure 4: Order-2 Voronoi clusters for sinks A and C, represented
as shaded areas, under a hop-count distance metric. The order-
2 cluster around node A (resp. C) contains all nodes for which
A (resp. C) is the closest or second-closest sink (in hops). In
comparison to Fig. 3 (e), we see that order-2 clusters contain more
nodes than order-1 clusters.

3 Background and Related Work

3.1 Alternative scoping techniques.

We now survey other possible scoping techniques and
discuss their respective merits and drawbacks.

Global dissemination. The simplest possible approach
(used in one-phase-pull diffusion [14]) is to do no scop-
ing at all, and have messages from each sink to dissemi-
nate its messages globally. Nodes then know their hop dis-
tance to each sink, and can trivially choose the closest to
send their data. This is simple and robust: since a node re-
ceives messages from all sinks at all times, even pathologi-
cal connectivity dynamics should not cause nodes to starve2

2We say that a node is starved when it does not receive any query due
to overly restrictive scoping

4

B

A

C

B

A

C

B

A

C

B

A

C

B

A

C

(a) (b) (c) (d) (e)

Figure 3: Voronoi scoping algorithm over a sensor network with 3 sinks (A, B, C) and 20 sources. Dotted lines represent radio connec-
tivity, solid lines represent possible resulting voronoi spanning trees.

(we explore this further in Sect. 4.2). The drawback is of
course that flooding overhead increases linearly with each
additional sink. For this reason global flooding may be too
costly for all but the smallest networks.

TTL scoping. A common scoping mechanism is time-
to-live (TTL) scoping. Here, one might use this technique
by placing a TTL value in messages originated by each each
sink; the TTL is decremented at every hop, until it reaches 0
and the packet is dropped. However, choosing TTL values
that guarantee coverage whilst avoiding excessive overlap
of different sinks’ floods is hard in a distributed and dy-
namic environment. Sinks might make a first exploratory
flood, and have each node report its distance to the closest
sink; then the TTL at each sink should be the distance to
its furthest child. This gives the smallest possible TTL such
that all nodes having a given sink as closest (ie, all nodes in
the sinks Voronoi cluster) are reached by that sink’s flood.
But this exploratory flood is costly and must be repeated
wheneve a sink fails or comes online; thus requiring that
sinks run an additional protocol to keep track of other sinks
status.

The second difficulty with TTL scoping is due to its
isotropic nature: all nodes within the prescribed radius will
be covered, in all directions. This is coarse and does not
always correspond to the “shape” of a Voronoi cluster. For
example, in the middle drawing of Fig. 1 both sinks must
choose a TTL approximately equal to network diameter in
order to cover all nodes. In such a situation both sinks es-
sentially flood the whole network and TTL scoping can not
help.

We ran some simulation experiments to quantify the
minimal penalty due to the isotropic nature of TTL scoping.
We considered a network of 500 nodes, varying the number
of sinks from 1 to 25. Nodes were randomly dispersed un-
der a uniform distribution. We then ran one round of dis-
semination (meaning that each sink originates one query)
for either protocol and counted the total number of packet
transmissions for TTL and Voronoi scopes. The TTL scopes
at each sink were determined offline, with global knowledge
of the network. For each sink, we determined the mini-
mal TTL value with which this sink’s flood would reach all
nodes in that sink’s Voronoi cluster. Even with these opti-

mal TTL assignments, and even without counting the over-
head to determine them, the cost of TTL scoping is greater
than the cost of Vornoi scoping by a factor of 2 to 3 (Fig.
5).

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25

P
ac

ke
t T

ra
ns

m
is

si
on

s

Number of Sinks

Dissemination Overhead

TTL
Voronoi

Figure 5: Comparison of dissemination overhead for Voronoi
scoping and optimal TTL scoping, as a function of number of
sinks, in a 500 node network. Even with optimal TTL assign-
ments, the overlap between TTL floods results in higher overhead
than Voronoi scoping. The protocol overhead for sinks to obtain
their optimal TTL assignment is not counted.

Geographic Scoping. Some data-gathering applications
are of geographic nature, when the user requires informa-
tion from a specific location. Of course, obtaining position
information is not always feasible for tiny, constrained, sen-
sor nodes. But in such applications, it is natural to use po-
sition information to disseminate queries only to the area of
interest, rather than disseminate queries via Voronoi scop-
ing or global dissemination.

Note that the Voronoi scoping can exploit geographic
information by using euclidean distances between nodes
rather than hop-count as a driving metric. In this case, the
scoping algorithm would be approximating the euclidean
Voronoi tessellation of the plane, where cluster boundaries
lie on points which are at equal euclidean distance to two
sinks.

Underlying flooding mechanism. This paper consid-
ers the use of Voronoi scoping in conjunction with a simple

5

flooding primitive. Another option would be to construct
a minimum dominating connected set (MDCS) and use it
for more efficient broadcasting [19] [20]. This optimisation
is orthogonal to Voronoi scoping: MDCS reduces the num-
ber of packet transmissions to reach a fixed set of nodes,
whereas Voronoi scoping limits the extent of floods from
different points. We believe Voronoi scoping is also appli-
cable when using a MDCS backbone, but a detailed investi-
gation is for further work.

3.2 Application to 802.11 multihop networks

Because our work was driven by an ongoing sensor net-
work deployment, this paper is primarily focused on the ap-
plication of Voronoi scoping to sensor networks. We believe
however that Voronoi scoping is also relevant in other con-
texts. In general terms, Voronoi scoping can be useful when
a few “vantage points” in a network need to send a message
in a cost-effective manner to all nodes, with the requirement
that each node receive at least one message, preferably from
closest originator.

We now outline another potential application, which is
that of a multi-hop wireless access network. This is a net-
work of fixed wireless (for example 802.11) nodes, with a
subset of nodes having internet access and offering inter-
net connectivity to the rest of the nodes. The MIT Roofnet
project [21] is an operational example of such a network.

Independently of the routing protocol used, such a sys-
tem requires gateways to periodically send an advertisement
saying that they have internet connectivity. A similar ques-
tion arises as for query dissemination in sensor networks:
how should these advertisements be scoped? One solu-
tion (as described in [21]) is for gateways to flood adver-
tisements to the whole network. This poses no problem
for small-scale networks (for example roofnet has approx-
imately 50 nodes, and 4 gateways). But if such a network
is to span a large city section, with hundreds of nodes and
dozens of gateways, then the overhead of periodic network-
wide floods from each gateway will become significant.

Similarly to sensor networks, Voronoi scoping can be ap-
plied to contain this flooding overhead so that it remains
constant at any network size. The underlying distance met-
ric could again be hops, or it could be a more sophisticated
metric such as ETX [22]. In this case, the border between
Voronoi clusters would correspond to nodes with equal path
quality to two sinks (expected transmission count) rather
than nodes with equal hop distances. One would likely set
the cluster overlap L (see Fig. 2) to be greater than 0 in or-
der to have still some controlled amount of redundancy and
overlap between different floods. One could also use order-
N Voronoi scoping (Sect. 2.5) to ensure that each node al-
ways has a route to the N nearest gateways.

3.3 Related Work

Many problems derived from monitoring applications
are the subject of ongoing research. To our knowledge, no
prior work addresses the issue of query dissemination in a
multiple-sink data-gathering context.

A large body of work in this area addresses ways to ex-
ploit the spatial correlations in sensed data in order to re-
duce communications overhead [5] [6]. This is also some-
times referred to as data fusion or in-network processing.
This can be seen as focusing on the upward flow of data
from sources to sink. Voronoi scoping is therefore comple-
mentary since it addresses the outward flow of queries and
routing packets from sinks to sources.

Directed diffusion [23] is a framework for data dissem-
ination protocols which is designed to support in-network
processing and operates in a data-centric manner. Diffusion
adopted a publish/subscribe API that isolates data produc-
ers (sources) and consumers (sinks) from the details of the
underlying multi-hop routing algorithm. Since the original
work on diffusion, some variations have been developped
[14]; one of these is one-phase pull. Our implementation of
Voronoi scoping was based on one-phase pull; we therefore
describe it in more detail in Section 4.

TAG [6] is an aggregation service through which users
express simple, declarative queries; TAG then distributes
and executes them efficiently in a network of wireless sen-
sors. TAG assumes an underlying routing substrate and is
chiefly concerned with the efficient use aggregation opera-
tors, and how to coordinate the aggregation process between
different nodes in the data gathering tree. Multiple sinks
are not explicitly considered in [6]; we believe that Voronoi
scoping would fit naturally within TAG if multiple sinks are
introduced.

In related work [9], a clustering-based protocol
(LEACH) is introduced with the objective of minimizing
energy dissipation in sensor networks. In LEACH, a sub-
set of sensor nodes are cluster-heads, and the other sensor
nodes choose a cluster-head to which they transmit their
data directly (no relaying). Once a cluster-head has received
data from all the nodes in its cluster, it transmits the ag-
gregate (and compressed) data to the basestation. Cluster-
heads rotate over time in order to balance energy load.
Other recent work on clustering in sensor networks includes
[24] and [8]. A key difference of the present paper with
these clustering algorithms is that they dynamically elect
cluster head nodes at runtime, whereas here the sinks are
determined a priori by virtue of special resources such as
higher bandwidth radios, continuous energy sources, stor-
age, etc; and therefore the algorithm itself is not responsible
for selecting who can be a cluster head or sink.

6

4 Protocol and Implementation

We now delve into the more protocol-oriented aspects
of Voronoi scoping, describing our implementation within
directed diffusion; we also discuss some of the challenges
and potential pathologies that might arise due to wireless
network dynamics.

4.1 Protocol Implementation

We used the one-phase pull [14] (OPP) diffusion pro-
tocol as a framework within which to implement Voronoi
scoping. We review it briefly before describing our changes.

In one-phase pull, sinks (subscribers) send query mes-
sages that disseminate throughout the network, establishing
routing entries3 from nodes to the originating sink. One-
phase pull employs an attribute-based naming system to
specify which data a sink is interested in; for example at-
tributes may encode the request for a temperature reading
at a given rate, or every time the magnetometer detects a
vehicle passing by.

When a node receives a given query for the first time, it
creates a routing entry associated with this query. It then
reforwards the query; the tree associated with this query is
thus built similar to the procedure described in Sect. 2.1.
In order to prevent a ’broadcast explosion’ queries are not
immediately forwarded; a randomized timer is used. When
a node receives a data packet from a child, it searches for
a next-hop entry matching the data attributes represented in
the packet. In other words, the packet is not addressed to a
sink, but to any node with a matching subscription for this
data type.

Diffusion state is maintained according to a soft state
model, with periodic refreshes from sinks as long as a query
is still alive. Queries are disseminated globally (as de-
scribed in Sect. 3.1). Our core modification to one-phase
pull was to implement Voronoi scoping. We then ran ex-
periments using both the original version of one-phase pull
(global dissemination of queries) and our modified version.
This allowed us to compare fairly Voronoi scoping with
global scoping, since all aspects of the protocol and imple-
mentation were identical save for the scoping of queries.

4.2 Connectivity Dynamics

Given vagaries of RF propagation such as interference,
path loss, and fading, wireless connectivity is often time-
varying and/or lossy, especially with simple, low-power de-
vices such as sensor nodes. Measurement-based studies
[10] [11] [12] [13] have shown that real networks behave
differently from a unit-disk graph in many aspects. For

3The terminology employed in [14] [23] for query message and routing
entry is respectively interest message and gradient.

one, wireless links have widely varying characteristics, with
links exhibiting poor, intermediate, or good packet delivery
ratios at any point in time. A second point is that connec-
tivity is not isotropic, does not decay monotonically with
distance, and is frequently asymetric. And a final challenge
is that connectivity between any two nodes can vary sub-
stantially over time (even for static nodes).

Given these observations, we should emphasize that it is
not a priori obvious that our scoping algorithm will behave
as predicted when subjected to a real environment. As an
example of how real RF conditions can affect the simplest
network primitive [13] shows how trees obtained through a
simple reverse-path flooding approach can have unexpected
topologies.

One problem that might arise due to RF dynamics is
node starvation. We say that a node is starved when, due to
packet loss, it does not receive a query. Such a starved node
delivers no information and is therefore useless. It is im-
portant to emphasize that the potential for node starvation
exists whenever we have lossy links; it does not arise only
as a consequence of using Voronoi scoping. Nonetheless,
since Voronoi scoping results in fewer messages being dis-
seminated, one might expect starvation to occur more often.

4.3 Link Estimation and Filtering

In wireless networks, selecting a parent by minimizing
hop count only can result in selecting long-range, high-loss
links, whereas a longer route with shorter-range, more re-
liable hops could be preferable [10] [22]. To address this
problem, we run a neighborhood tracking module at each
which estimate the quality of links to peers, by emitting pe-
riodic hello packets. The obtained values are then used to
perform link filtering: nodes estimate the delivery ratio to
and from their neighbors, and reject any packets arriving
over links with quality below some threshold. More pre-
cisely, the link to a neighbor is characterized by the (esti-
mated) incoming and outgoing delivery ratios. We set the
incoming threshold to 40% and the outgoing threshold to
80%. The reason for the emphasis on outgoing quality is
that route obtained is then used to send packets in the out-
going direction, toward the sink. A link below these thresh-
olds can still be used if it is a node’s best link; otherwise a
weakly connected node would filter out all its neighbors.

5 Experimental Results

We performed a number of experiments over a network
of 55 nodes. Our experiments were designed to mirror the
overall workload of a data-gathering application: sinks pe-
riodically flooded query packets, and sources injected (syn-
thetic) data packets. We compared Voronoi scoping with

7

the global flooding approach (the default behavior of one-
phase pull), because this technique is a simple and robust
alternative.

We measured a number of packet-level statistics. The
first quantity of interest was the flooding overhead (total
number of query packets transmitted). Naturally, seeing
that Voronoi scoping reduces overhead is not sufficient: an
overly agressive scoping scheme might reduce flooding to
the point that some nodes are starved and have no route
to any sink. We therefore examined end-to-end applica-
tion performance as well. In particular we counted the to-
tal number of data packets succesfully delivered to sinks.
This can be seen as a control metric: if Voronoi scoping is
too agressive and starves nodes, or results in poor routing
trees, we would then see overall data delivery be adversely
affected. We also compared some topological characteris-
tics of the obtained routing trees with and without Voronoi
scoping.

5.1 Experiment Setup

We ran experiments with 1, 2, 3, and 4 sinks with a net-
work of 54 motes. For each setup we ran identical exper-
iments with Voronoi scoping and with global scoping. We
also ran a second, identical set of experiments with link fil-
tering. There were therefore four protocol combinations for
each sink configuration, giving a total of 16 different config-
urations. For each of these 16 configurations we ran 5 iden-
tical experiments, each lasting 30 minutes. This amounts to
approximately 40 hours of run time for the results presented
here.

Protocol Constants. For completeness we give all pro-
tocol constants. Each 30 minute run included a 5 minute
warmup time during which statistics were not recorded.
Sinks flooded a query at a fixed interval of 120 seconds
(with a phase shift between sinks to avoid synchronisation).
Each source generated data packets at random, exponen-
tially distributed intervals; the mean was selected so as to
have 1 data packet per second generated over the whole net-
work.

These rates are high compared to what one might ex-
pect over the lifetime of a real deployment. The reason
we set these data rates was to scale down time so that we
would get more data points in a given duration. Note that
this time-scaling is neutral to the comparative evaluation
of the different protocols. A second point regarding traf-
fic rates is they were low enough to place our experiments
in a non-congested regime, meaning that the average traf-
fic load should not be inducing frequent packet collisions.
Note that running experiments in a congested regime would
have been more favorable to Voronoi scoping: since it re-
duces overhead, collisions would be less frequent and data
delivery would be higher relative to global flooding.

Nodes introduced a uniformly distributed random jitter
between reception and forwarding of query and data pack-
ets (mean 2.4, 0.8 seconds respectively), in order to reduce
collisions and avoid synchronization. Routing state had a
timeout interval of 5 times the default inter-flood period
(therefore, 10 minutes). Note that these jitter and soft-state
settings are the defaults used by OPP; we did not attempt to
otherwise tune these values for our experiments.

Hardware Setup. We used 55 Berkeley MICA1 motes,
attached in a grid pattern to the ceiling of our laboratory
over an area of approximately 20m by 20m. In order to
maximise network diameter, the transmission power was set
to the smallest value for which the network remained con-
nected, resulting in a diameter of 7 hops. These motes are
wired for power and have a serial-port connection back to a
server running linux. This environment is part of the Em-
Star framework [25].

5.2 Results

Dissemination Overhead. The first quantity of inter-
est was the overhead required to disseminate the periodic
query messages from sinks. This overhead is represented
in Fig. 6, comparing Voronoi scoping with global scoping
both with and without link filtering. As expected, Voronoi
scoping has same overhead as global scoping when a sin-
gle sink is used. Then, with each additional sink, overhead
increases linearly for global scoping; on the other hand it
remains roughly constant for Voronoi scoping. Even at the
moderate size of our network, this amounts to a substantial
difference: with 4 sinks, Voronoi scoping reduces overhead
by a factor of 3 when using link filtering, and 6.5 without.

Another observation is that for both global and Voronoi
scoping, link filtering reduces packet transmissions by a fac-
tor of 2 to 3. This is a nice side-effect since the primary
objective of link filtering is to improve the quality of routes
obtained.

Topology characteristics. We now examine some topo-
logical aspects of the resulting data-gathering trees in order
to see if Voronoi scoping introduces any distortion com-
pared to the trees obtained with global flooding. Fig. 7
shows a snapshot of the data-gathering trees obtained in a
3-sink experiment. Note that the data-gathering trees are
not static, due first to RF dynamics, and because of network
density (many nodes have more than one possible parent
with equal distance to a sink, and may change parent during
the experiment).

Since trees are continuously fluctuating, we cannot di-
rectly compare trees across different experiments. One way
to characterize these time-varying trees is to compute, for
each node, the average distance (in hops) to the closest sink.
We computed the time-weighted average distance for each
node. We then sorted the nodes by average distance (under

8

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 2 3 4 5

P
ac

ke
t T

ra
ns

m
is

si
on

s

Number of Sinks

Query Dissemination Overhead

Voronoi
Global

Voronoi-LF
Global-LF

Figure 6: Comparison of query dissemination overhead for
Voronoi scoping and global flooding, as a function of number
of sinks. Overhead is measured as the number of query packet
transmissions. With Voronoi scoping, additional sinks do not in-
crease overhead, because query scopes are adaptively reduced by
the network. With global flooding, each additional sink introduces
a linear increase in overhead. Filtering out poor links scales down
overhead similarly in both cases.

Figure 7: Voronoi trees using the EmView visualization com-
ponent of EmStar. The integer value inside each box shows the
number of sinks to which this node has a route, i.e., the number of
sinks from which this node has received a query. The value above
the box shows the number of hops to the closest (in hop-count)
sink.

global flooding) and plotted the results for both protocols in
Fig. 8.

These plots indicate that nodes have paths of similar
lengths with Voronoi and global dissemination. Indeed, for
85% of nodes, the difference in average distance is less than
0.15; for the remaining nodes the difference is less than 0.25
(barring one outlier at 0.4).

Of course, average node-sink distances are only one
characterisation of time-varying tree topologies; observing

similar distributions for both protocols is not sufficient to
state that the trees themselves are near-identical. But from
an application perspective, this is an important metric since
node-sink distances represent the number of hops that data
packets will traverse toward the sink.

We also observe in Fig. 8 a plateau-like levelling at hop-
counts 1 and 2, indicating that most nodes’ route lengths
remain quite stable. Some nodes have an average distances
which is “far” from an integer value (for example 1.5).
Such nodes therefore were less stable and alternated be-
tween closest sinks at different distances. The plots indicate
that stability is not adversely affected by Voronoi scoping,
since nodes are as close to an integer-valued average dis-
tance as with global flooding.

Application performance. The results on total dissemi-
nation overhead and tree topology characteristics, presented
above, are important in order to quantify the efficiency
of Voronoi scoping and get some insight on the resulting
routes. But this study would not be complete without an ex-
amination of application-relevant metrics. In the context of
an environmental sensor network, we consider the follow-
ing two aspects as indicators of overall application perfor-
mance.

The first aspect of application performance is data deliv-
ery. Counting the number of data packets succesfully deliv-
ered to sinks allows us to see, for example, if node starva-
tion (Sect. 4.2) is occuring more often with Voronoi scop-
ing. Data delivery is plotted in Fig. 9, for experiments both
with and without link filtering. In both cases, we see that
Voronoi scoping does not impact application performance.
In fact the data delivery ratio appears slightly higher with
Voronoi scoping; though this cannot be considered as defi-
nite evidence given the confidence intervals obtained.

The second aspect is energy longevity, or the time for
which nodes have sufficient power to operate. Of course
absolute energy longevity depends on many factors, such
as node power, consumption, and the traffic workload im-
posed on the network; for this reason we do not quantify it.
But qualitatively, since Voronoi scoping reduces communi-
cations overhead, it can only improve longevity.

6 Conclusions and Future Work

We have presented Voronoi scoping, a technique to con-
trol the dissemination of packets originated from multiple
sinks in a network, in a way that minimizes overall flooding
overhead. With Voronoi scoping, per-node flooding over-
head remains constant independantly of the network size
and number of sinks. This is particularly valuable in the
context of sensor networks, where energy is the limiting re-
source. We implemented and tested Voronoi scoping over
a network of 55 Berkeley motes; results confirm good ef-
ficiency compared to global flooding whilst maintaining a

9

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50

A
vg

. D
is

ta
nc

e
(h

op
s)

Node number

Distance to nearest sink (2 sinks)

Voronoi
Global

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50

A
vg

. D
is

ta
nc

e
(h

op
s)

Node number

Distance to nearest sink (4 sinks)

Voronoi
Global

(a) Network with 2 sinks. (b) Network with 4 sinks.

Figure 8: Average distance (in hops) to closest sink, as a function of node id. The nodes are sorted by increasing distance to their closest
sink under global scoping. Both algorithms result in near-equivalent distances for each sink, indicating that the source-sink route lengths
are not modified by introducing Voronoi scoping.

0

200

400

600

800

1000

1200

1 2 3 4 5

P
ac

ke
ts

 D
el

iv
er

ed

Number of Sinks

Data Packets Delivered to Sinks

Voronoi-FL
Global-FL

Figure 9: Comparison of data delivery for Voronoi scoping and
global flooding, as a function of number of sinks. Delivery is mea-
sured as the total number of data packets successfully received
at any sink. We see that voronoi scoping has similar delivery to
global flooding, indicating that it provides routes of similar qual-
ity despite the reduced dissemination overhead. In all cases de-
livery improves with increasing number of sinks because the path
lengths from node to closest sink are reduced, thus increasing the
probability of delivery.

similar level of application performance.
This work focuses on the application of Voronoi scoping

to sensor networks. Other applications are possible. As
possible future work, we envision the application of this
technique to multihop wireless networks [21], where a sub-
set of nodes serve as internet gateways, and each wishes to
broadcast route advertisements to those non-gateway nodes
which are closest to it.

7 Acknowledgements

The implementation and experimental work described
here leveraged a number of software and hardware facilites,
notably the emstar software environment, the directed dif-

fusion implementation, and the LECS laboratory ceiling
array. We would like to thank the authors of these tools
and in particular Alberto Cerpa, Jeremy Elson, Lew Girod,
Fabio Silva, and Thanos Stathopoulos for their availability
and help in using them. Many individuals made valuable
comments that helped improve previous versions of this pa-
per, including Razvan Cristescu, Deepak Ganesan and Lew
Girod.

References

[1] Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., Anderson,
J.: Wireless sensor networks for habitat monitoring. In: First ACM
International Workshop on Wireless Sensor Networks and Applica-
tions. (2002)

[2] CENS/UCLA: Extensible sensing system: An advanced network
design for microclimate sensing. http://www.cens.ucla.edu/Project-
Descriptions/Extensible%20Sensing%20System/index.html (2003)

[3] et al, R.B.: The wireless vineyard.
http://www.intel.com/labs/features/rs01031.htm (2003)

[4] Horton, M., Culler, D., Pister, K., Hill, J., Szewczyk, R., Woo, A.:
Mica: The commercialization of microsensor motes. In: Sensors V.
(2002)

[5] Cristescu, R., Beferull-Lozano, B., Vetterli, M.: On network corre-
lated data gathering. In: INFOCOM, Hong Kong (2004)

[6] Madden, S., Franklin, M.J., Hellerstein, J., Hong, W.: Tiny aggregate
queries in ad-hoc sensor networks. In: Proceedings of the Fifth Sym-
posium on Operating Systems Design and Implementation (OSDI),
Boston, USA (2002)

[7] Crossbow: X-scale single board computer and wireless networking
platform. http://www.xbow.com/Products/XScale.htm (2003)

[8] Bandyopadhyay, S., Coyle, E.J.: An energy efficient hierarchical
clustering algorithm for wireless sensor networks. In: Proceedings of
the IEEE Conference on Computer Communications (INFOCOM),
San Francisco (2003)

[9] Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-
efficient communication protocol for wireless microsensor networks.
In: HICSS. (2000)

10

[10] Woo, A., Tong, T., Culler, D.: Taming the underlying issues for re-
liable multhop routing in sensor networks. In: Proceedings of ACM
Sensys, Los Angeles, USA (2003)

[11] Zhao, J., Govindan, R.: Understanding packet delivery performance
in dense wireless sensor networks. In: Proceedings of ACM Sensys,
Los Angeles, USA (2003)

[12] Cerpa, A., Busek, N., Estrin, D.: Scale: A tool for simple connec-
tivity assessment in lossy environments. In: CENS Technical Report
0021. (2003)

[13] Ganesan, D., Krishnamachari, B., Woo, A., Culler, D., Estrin, D.,
Wicker, S.: Complex behavior at scale: An experimental study of
low-power wireless sensor networks. In: UCLA Computer Science
Technical Report UCLA/CSD-TR 02-0013. (2003)

[14] Heidemann, J., Silva, F., Estrin, D.: Matching data dissemination
algorithms to application requirements. In: Proceedings of ACM
Sensys, Los Angeles, USA (2003)

[15] Madden, S., Franklin, M.J., Hellerstein, J., Hong, W.: The design of
an acquisitional query processor for sensor networks. In: Proceed-
ings of the ACM SIGMOD, San Diego, USA (2003)

[16] Clark, D.D.: The design philosophy of the darpa internet protocols.
In: Proceedings of the ACM Symposium on Communications Archi-
tectures and Protocols (SIGCOMM), San Diego, USA (1988)

[17] Yogesh Sankarasubramaniam, Ozgur Akan, I.A.: Esrt : Event-to-
sink reliable transport in wireless sensor networks. In: Proceedings
of the ACM International Symposium on Mobile Ad Hoc Network-
ing and Computing (MOBIHOC). (2003)

[18] Stann, F., Heidemann, J.: Rmst: Reliable data transport in sensor
networks. In: Proceedings of the First International Workshop on
Sensor Net Protocols and Applications, Anchorage, Alaska, USA,
IEEE (2003) 102–112

[19] Das, B., Bharghavan, V.: Routing in ad hoc networks using minimum
connected dominating sets. In: ICC (1). (1997)

[20] Alzoubi, K., Wan, P.J., Frieder, O.: Message-optimal connected
dominating sets in mobile ad hoc networks. In: Proceedings of the
ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MOBIHOC). (2002)

[21] Aguayo, D., et al: MIT roofnet implementation.
http://www.pdos.lcs.mit.edu/roofnet/design/ (2003)

[22] Couto, D.S.J.D., Aguayo, D., Bicket, J., Morris., R.: A high-
throughput path metric for multi-hop wireless routing. In: In the Pro-
ceedings of the 9th ACM International Conference on Mobile Com-
puting and Networking (MobiCom ’03), San Diego, USA (2003)

[23] Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion:
a scalable and robust communication paradigm for sensor networks.
In: Mobile Computing and Networking. (2000) 56–67

[24] Younis, O., Fahmy, S.: Distributed clustering in ad-hoc sensor net-
works: A hybrid, energy-efficient approach. In: Proceedings of
the IEEE Conference on Computer Communications (INFOCOM),
Hong Kong (2004)

[25] Elson, J., et al: Emstar: An environment for developing wireless em-
bedded systems software. In: CENS Technical Report 0009. (2003)

11

