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Abstract

Learning to Design and Engineer Proteins from Evolution, 3D Structures, and Experiments

By

Chloe Hsu

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Jennifer Listgarten, Co-chair

Professor Moritz Hardt, Co-chair

Proteins serve many crucial functions in maintaining life, but have also been co-opted for
human endeavors such as gene editing, immunotherapy, and plastic degradation. To bet-
ter serve such needs, we re-engineer naturally existing proteins or design de novo proteins.
In recent years, data at an unprecedented scale from evolution, 3D structures, and exper-
iments became available for learning to design and engineer proteins. These distinct data
types provide different yet complementary information about proteins. This thesis presents
new machine learning methods that learn from multiple types of data for the problems of
sequence-based protein fitness prediction and structure-based fixed backbone protein design.

For sequence-based protein fitness prediction, machine learning-based models typically learn
from either unlabelled, evolutionarily-related sequences, or variant sequences with experi-
mentally measured labels. For regimes where only limited experimental data are available,
combining both sources of information could improve protein fitness prediction. Toward
that goal, we propose a simple combination approach that is competitive with, and on aver-
age outperforms more sophisticated methods. The comparative analysis also highlights the
importance of systematic evaluations and sufficient baselines.

For structure-based fixed backbone protein design, prior machine learning approaches to this
problem have been limited by the number of available experimentally determined protein
structures. We present a strategy to augment the training data by nearly three orders of
magnitude by predicting millions of structures using AlphaFold2. Graph neural network
and Transformer models trained with this additional data achieves an overall improvement
of almost 10 percentage points over existing methods in native sequence recovery rate. We
also study the generalization to a variety of more complex tasks including design of protein
complexes, partially masked structures, binding interfaces, and multiple states.
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Chapter 1

Introduction

Naturally occurring proteins serve many crucial functions in maintaining life. They can be
enzymes to catalyze essential chemical reactions, hormones to regulate various physiological
processes, transporters to carry molecules across cell membranes, as well as structural com-
ponents to support the shape of cells and tissues. Evolution creates new proteins primarily
through the stochastic, generative mechanisms of mutation and recombination, coupled with
the screening filter of natural selection.

Beyond naturally occurring proteins, proteins have also been co-opted for human endeav-
ors such as gene editing [32, 58]; lighting up specific parts of cells [23]; therapeutic drugs [78];
and herbicide-resistant crops [97]. In many of these cases, we re-engineer proteins to better
serve our needs. For example, we might enhance the original function, such as when we
increase enzyme activity [69] or make green fluorescent proteins (GFPs) brighter [50]. Or,
we might modify the original function to a related but different one, such as when we change
an antibody to bind to a new target [16].

1.1 From Directed Evolution to Machine

Learning-Guided Design

In the past few decades, new, useful, proteins have been engineered with directed evolu-
tion, which mimics natural generative mechanisms to create candidate amino acid sequences
for user-specified selection. Figure 1.1 illustrates the directed evolution process. For a
given protein function or property of interest, we typically start with a known protein se-
quence. This starting sequence is often known as the wild-type sequence and usually has a
related function. From a starting sequence, the directed evolution approach then leverages
laboratory-based generative mechanisms—such as error-prone PCR, site-saturated mutagen-
esis, and site-specific recombination, among others—to create a library of diversified protein
sequence variants. This library of sequences is then experimentally screened for the function
of interest, and subsequently the functionally enriched sequences among the screened candi-
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dates are identified as an improved library. This library construction and screening process
can be iterated for many rounds.

As DNA synthesis becomes increasingly scalable in the recent decades, correspondingly it
is becoming feasible to replace the more constrained sequence construction approaches used
in directed evolution with the most general mechanism: specifying entire protein sequences,
amino-acid-by-amino-acid. To fully take advantage of the experimental capability to synthe-
size and screen large numbers of exact protein sequences, we need to more efficiently explore
protein space in silico to find desired protein sequences to synthesize.

Prior to the recent adoption of machine learning for protein engineering and protein
design, computational protein design typically relied on physics-based rational design [3,
72]. While researchers have successfully designed many de novo proteins with rational design,
the computational methods for rational design can be computationally intensive and time-
consuming and are limited by the accuracy of the energy functions used in the modeling
process. Moreover, rational design often required significant domain knowledge about the
specific protein families of interest.

Recently, machine learning points to a tantalizing new path for protein engineering and
protein design. In the past two years, machine learning-based structure prediction meth-
ods [71, 11, 83, 143] have revolutionized structural biology; language models for protein
sequences [105, 85] emerged with many downstream applications in protein design and in
variant effect prediction; generative models for protein structures [140, 62, 5, 35] can in many
cases generate feasible backbone structures based on functional sites or binding partners.

Figure 1.1: In the directed evolution approach, protein engineers typically generate a library
of protein sequence variants related to a starting sequence, screen these variants for the
desired properties or functions, and then iteratively construct new libraries for screening.
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1.2 Learning from Evolution, 3D Structures, and

Experiments

The rapid progress of machine learning in protein engineering and protein design is only
possible with data becoming available at an unprecendented scale from evolution, 3D struc-
tures, and experiments. For example, structure prediction models such as AlphaFold not
only learn from hundreds of thousands of 3D structures in the Protein Data Bank but also
leverage evolutionary information from billions of metagenomic sequences. Among evolu-
tion, 3D structures, and experiments as three common data sources, they each have their
own advantages and limitations. Evolutionary data are the most abundant. 3D structures
are the most universal lens into protein functions. Experimental assays most directly get at
each given function of interest. Rather than focusing on learning from a single data type,
this thesis presents new methods that learn from multiple types of data.

In Chapter 2, we consider sequence-based protein fitness prediction, where fitness can
refer to any protein property ranging from stability to enzyme activity and ligand binding.
Protein fitness prediction models can be used to systematically screen all protein variants
in a constrained design space; to search through vast design spaces in combination with an
optimization algorithm; or to additionally filter candidate protein sequences generated by
another design procedure. Machine learning-based models of protein fitness typically learn
from either unlabeled, evolutionarily related sequences or variant sequences with experimen-
tally measured labels. For regimes where only limited experimental data are available, we
propose a simple approach to jointly learn from evolutionary data and experimental assay-
labelled data to better inform protein fitness prediction models (Figure 1.2).

Figure 1.2: When experimental data are limited, combining evolutionary data and experi-
mentally measured data improves protein fitness prediction.
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Figure 1.3: The 3D structures of proteins can be viewed as an intermediate representation
between protein function and protein sequence.

In Chapter 3, we consider the structure-based protein design problem for a fixed back-
bone. Although in most applications ultimately we are interested in designing for protein
functions, structure is nevertheless a very useful intermediate between sequence and function.
Structures are particularly relevant for designing de novo proteins, as there are no similar
naturally existing proteins as starting points for directed evolution. Today, to generate de
novo protein designs with machine learning, researchers typically first generate the backbone
structure and then generate sequences conditioned on the fixed backbone (Figure 1.3). We
focus on the later step of generating sequences for a fixed backbone in Chapter 3. While
previous fixed-backbone design methods typically only learn from experimentally determined
3D structures, we augment the existing set of experimentally determined 3D structures by
generating orders of magnitude more predicted structures for evolutionary sequences.

In Chapter 4, we do not present any original research but comment on the potential of
conditional generative models in protein design and protein engineering, intended for an au-
dience less familiar with machine learning. The “inverse folding” model for fixed-backbone
design in Chapter 3 is an example of a conditional generative model, which generates se-
quences conditioned on the backbone structure. We discuss what types of problems are
well-suited to being tackled by conditional generative models, touch upon their training and
sampling procedures, and introduce two instantiations of conditional generative models in
protein engineering for sequence and structure generation respectively.

Looking forward, there are many other interesting data sources for learning important
information about proteins. For example, transcriptomics can suggest the occurrence of
proteins in their cellular contexts; proteomics can directly profile proteins along with their
post-translational modifications; physical simulations and new imaging technologies can il-
lustrate the conformational flexibility and the dynamics of proteins. Effectively learning
from all these data sources will expand the reach of machine learning. Beyond proteins,
now it is also an exciting time to envision truly general machine learning models for biology
encompassing biochemistry, biophysics, cell biology, genetics, physiology, and more.
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Chapter 2

Learning Protein Fitness Models from
Evolutionary and Assay-labelled Data

Machine learning-based models that predict protein fitness from sequence can allow in silico
screening to complement the existing protein engineering approaches of directed evolution
and rational design. Here, fitness is a broad term that refers to any protein property ranging
from stability to enzyme activity and ligand binding. In this chapter, we focus exclusively
on machine learning (ML) methods for protein fitness prediction from protein sequences.

2.1 Background

Protein fitness models can be useful in many ways. Depending on the size of the design
space and the computational cost of the protein fitness model, the model can be used either
to systematically screen all protein variants in the design space [107, 109, 108, 141], or in
combination with an optimization algorithm to search through vast design spaces [21, 20,
146, 120]. When in-depth knowledge of protein structure can be coupled to the phenotype of
interest, physics-based methods such as FoldX [111], PoPMuSiC [30] and IMutant [22] can be
used to model protein fitness. Applicable more generally, in the absence of such knowledge,
machine learning models can learn from unlabelled, evolutionarily-related sequences, or from
variant sequences with experimentally measured labels, to predict protein fitness.

There have been two main ML-based strategies for estimating protein fitness models.
The first strategy uses implicit fitness constraints present in naturally occurring protein
sequences, so-called evolutionary data. Such evolutionary methods start from one query
protein with the desired property (e. g., a particular GFP that fluoresces at some wave-
length), and search through databases of naturally occurring proteins to find a set of related
proteins—typically by sequence homology—that are assumed to be enriched for the same
property as the query sequence. Then, a probability density model of this set of protein
sequences is estimated; finally, sequence density evaluations are used to predict the relative
fitness of protein variants of interest [53, 104]. Early methods for the related problem of
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Figure 2.1: Machine learning methods for protein fitness prediction. (a) Overview of meth-
ods considered, divided into three learning strategies: (i) weak-positive-only learning meth-
ods which rely on probability density modelling of evolutionarily-related sequences (profile
HMM [116], EVmutation [53] and DeepSequence [104]); (ii) semi-supervised learning meth-
ods which rely on unlabelled UniRef50 protein sequences, supervised data, and optionally
evolutionarily-related sequences (fine-tuned ESM-1b [106] and eUniRep regression [17]); (iii)
weak-positive semi-supervised learning methods which rely on evolutionaryily-related se-
quences and supervised data (the integrated Potts model [12], TLmutation [114], and aug-
mented models). (b) Depiction of the augmented approach to predicting fitness wherein
evolutionary and assay-labelled data are combined, and it is assumed that the probabil-
ity density model has already been fully trained. In particular, the augmented approach
uses linear regression with two kinds of features: first, evolutionary density evaluations (i. e.,
the inferred sequence log-likelihoods or pseudo log-likelihoods from a sequence density model
trained on evolutionarily related sequences), and, second, one-hot encoded site-specific amino
acids, to perform supervised training on assay-labelled data.



CHAPTER 2. LEARNING PROTEIN FITNESS MODELS 7

pathogenicity prediction, such as SIFT [119] and Polyphen-2 [1], used position-specific sub-
stitution matrices (PSSMs), or Hidden Markov models [116]. In the context of protein fitness
prediction, Potts models [87, 25, 41, 53, 109], which can model pairwise interactions in the
sequence, have been shown to outperform SIFT and PolyPhen-2 at fitness prediction [53].
Deep-learning models such as variational autoencoders (VAEs) can capture higher-order in-
teractions, and may provide more accurate predictions still [104]. Most evolutionary methods
assume that the evolutionarily-related proteins have been aligned into a Multiple Sequence
Alignment (MSA) [119, 1, 116, 87, 25, 41, 53, 109, 104]. Although the set of evolutionarily-
related proteins doesn’t typically have associated measurements for the property of interest,
the homology search itself is assumed to implicitly provide a weak, positive labeling of all
proteins in the set. Thus, we refer to these evolutionary methods as weak-positive-only
learning, rather than unsupervised learning. The number of sequences used for training in
such cases can range from hundreds to hundreds of thousands when standard procedures are
used to curate the set [53].

In the second main ML strategy for learning protein fitness models, supervised regres-
sion models are trained using variant sequences coupled with fitness labels measured in the
laboratory. Depending on the protein and the property of interest, a supervised data set
may comprise hundreds to hundreds of thousands of examples [10, 93]. The laboratory assay
may be a relatively direct measurement of the fitness of interest [110], or a crude proxy [89].
Additionally, the set of variant sequences may be restricted to one or two mutations away
from a query sequence [10, 89, 93], or be more heterogeneously distributed [110], with the
former setting being more common. The labelled variant sequences may vary at only a few
sequence positions (e. g., four positions [142]), or vary more broadly [93]. By their limited
construction, these data sets are not typically sufficiently rich to comprehensively charac-
terize protein fitness landscapes, but are a good starting point. As time progresses, more
comprehensive data sets, revealing increasingly more nuances of fitness landscapes, will ex-
pand our understanding. The simplest supervised approach is a linear regression model
with one-hot encoded site-specific amino acid features; this approach can be extended to
include pairwise features, and a non-linear transformation [96]. Richer supervised models
used for protein fitness prediction include convolutional neural networks (CNNs) [141, 115],
LSTMs [101, 4], and Transformers [101, 106, 84]. In some cases, such as that of LSTMs
and Transformers, a large and broad set of unlabelled protein sequences is also used during
training [4, 101, 106, 84, 17]; these data are thought to help find effective representations
for the supervised learning component. Note that some of these classes of models, such
as LSTMs and Transformers, can be employed either as probability density models or as
supervised models.

Recently, several proposals have been made to combine these two ML strategies: us-
ing weak-positive-only learning on evolutionarily-related sequences together with supervised
learning on assay-labelled variant sequences [17, 114, 12]. We refer to this setting as weak-
positive semi-supervised learning. For many scenarios of practical importance, property
labels can only be assayed for hundreds of protein sequences. Especially in such a regime,
but not only, it is important to combine both sources of data. Barrat-Charlaix et al. [12]
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introduce an elegant approach to do so, the integrated Potts model, which assumes the Potts
model energy function is identical to the supervised regression model; these are then trained
jointly. Shamsi et al. [114] instead “transfer” information from a learned evolutionary model
to a supervised version of the model by learning a binary masking of parameters. Motivated
by the field of Natural Language Processing (NLP) [55, 31], Biswas et al. [17] first train an
unsupervised autoregressive multiplicative LSTM (mLSTM) on a large database of natu-
rally occurring protein sequences, then fine-tuning it with evolutionary data to produce a
fixed-length latent representation called eUniRep. This representation is then used as the
features in a regularized linear regression on the assay-labelled data.

In this chapter, we report on a systematic assessment of these “combined” methods as
well as “pure” methods comprised within them, such as probability density-only models,
or supervised-only models. We also introduce a simple baseline combined approach that
turns out to be competitive with and often outperforms more sophisticated methods. In one
instantiation, our approach achieves maximal performance on 15 of the 19 data sets used in
our assessment—more than any other method—and is typically among the top competitors
when it does not. Our simple approach can make use of any evolutionary probability density
model, and adds little computational burden to it.

2.2 Results

Published machine learning methods assessed

We assessed a total of 13 published machine learning methods for protein fitness prediction
that use evolutionary data, assay-labelled data, or both. Some [4, 106, 17] additionally
make use of a large “universal” set of unlabelled protein sequences, namely the UniRef50
database [128]. In addition to the three combined methods summarized earlier (eUniRep
regression, the integrated Potts model, and TLmutation), we also included methods that use
only one or the other type of data so as to glean their relative importance across a range
of settings. In particular, we included three representative purely evolutionary methods: a
profile HMM [116], a Potts model (EVmutation [53]) and a VAE (DeepSequence [104]). We
also included two supervised methods that do not use evolutionary data: a linear regression
model with one-hot encoded site-specific amino acid features that uses only assay-labelled
data, and the ESM-1b Transformer [106] model which was pre-trained on UniRef50 (un-
supervised), and then fine-tuned with the assay-labelled data (supervised). While several
Transformers have been developed and published for protein sequences [101, 37], we chose
the ESM-1b model because at the time of our assessment, it was shown to have had superior
performance on a number of prediction tasks when compared to other Transformers [106].
Figure 2.1a shows a graphical overview of all of these methods.

To enable all of these methods to run on our entire suite of benchmarking data sets
we made minor modifications to some of the training procedures so that they could run
in a reasonable amount of time. For each modification used, we show that the resulting
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performance closely matches the performance of the original procedure on data sets used in
the original papers (see Methods).

A simple baseline approach

We developed a simple approach that makes use of both evolutionary and assay-labelled data,
and that turns out to be competitive with much more expensive and complicated approaches.
For any already-trained evolutionary probability density model, we use ridge regression on
one-hot encoded site-specific amino acid features augmented with one other feature—the
sequence density evaluation (Figure 2.1b). We refer to this approach as “augmenting” a
probability density model. For example, when the evolutionary probability density model
is a Potts model, our baseline yields an augmented Potts model. Beyond augmented Potts
models, we also compare to augmented VAEs and so forth. The augmented Potts model
in particular can be interpreted in a Bayesian light as updating a prior from the evolution-
ary data, with assay-labelled data (see Methods). Because we use only site-specific amino
acid features in the regression augmentation, the Bayesian update is focused on the site-
specific parameters (as opposed to the pairwise coupling parameters). If we had included
also pairwise amino acid features, then we would be more directly updating all parameters
in the Potts model prior, which would yield an approach that is conceptually similar to the
integrated Potts model [12], albeit with a different optimization objective. Given an already-
trained probability density model, the augmentation entails only training a linear regression
model, thus incurring little computational burden. Although incorporating richer evolution-
ary density-derived features, such as pairwise potentials, into the augmented regression could
yield further improvements, we sought a baseline that did not require feature selection or
specialized regularization[2]. We did, however, investigate extending our augmented regres-
sion features to include density evaluations from multiple models, such as from both a Potts
model and a VAE, or from both a Potts model and a Transformer, and so forth. However,
doing so resulted in only marginal gains on top of the augmented DeepSequence VAE model
(data not shown). We speculate that this may be because the different probability density
models were not providing sufficiently independent information.

Assay-labelled and evolutionary data sets

We assessed all methods on 19 labelled mutagenesis data sets, each comprising hundreds to
tens of thousands of mutant sequences. Most related work [114, 106, 104, 12] evaluates on
a subset of, or all of the mutation effect data sets in EVmutation [53]. We obtained our 19
data sets by including all EVmutation [53] protein data sets with at least 100 entries (in
order to have sufficient data to glean insights from), and also included a GFP fluorescence
data set [110] as in Biswas et al. [17] (however, their exact data set was not available at
the time of our assessment). Other data sets that might have been relevant had insufficient
evolutionary data in the MSAs [93, 142]. In each data set used, mutations were spread
across either a domain, or the whole protein. Although most (16 out of the 19) labelled data



CHAPTER 2. LEARNING PROTEIN FITNESS MODELS 10

sets consisted only of sequences that were one mutation away from a fixed wild-type protein
(“single mutants”), we also include detailed case studies of the three data sets [110, 89, 121]
that contained sequences more than one mutation away from a wild-type protein (‘higher-
order mutants’). Table A.1 provides a detailed overview of these data sets. Each labelled
data set was paired with an evolutionary data set found by searching through the UniRef100
database [128] for sequences similar to a single, relevant wild-type protein sequence, using
Jackhmmer [42, 104, 53, 17]. For ease of comparison with other papers [114, 104, 53], when
available, we directly used MSAs curated in this way and provided by EVmutation [53].
Otherwise, we used Jackhmmer with parameters set as in EVmutation.

Experimental overview

For each data set we always used 20% of the available labelled data for test sets (which by
definition are not used to train or perform hyper-parameter selection). Given a fixed test set,
we systematically varied the supervised training data set size by randomly sampling each
of 48, 72, · · · , 216, 240 training examples from the non-test sequences (each training data set
size was increased in intervals of 24). In addition to these fixed training data set sizes, for
more direct comparison with TLmutation [114] and ESM-1b [106], we also used all remaining
80% of the available data not used for testing, which we refer to as an 80%-20% train-test
split. When computationally feasible, we used 5-fold cross-validation on the training data set
for hyper-parameter selection, and otherwise held out 20% of the training data as validation
data. For each training data set size, including the the 80-20 split, we averaged performance
over 20 random seeds that randomized the data partitions.

We used two measures of predictive model performance: (i) a Spearman rank correlation
between the true and predicted fitness values [53, 104, 106, 12, 109], and (ii) a ranking
measure from the information retrieval community called normalized discounted cumulative
gain (NDCG) [64, 141], which gives high values when the top predicted results are enriched
for truly high fitness proteins—that is, when the model is predicting the ranking well. In
contrast to Spearman correlation, where errors at the top of the true ranked list carry the
same weight as mismatches at the bottom, NDCG puts a higher weight on ranking the
top of the list correctly and can be seen as a smoothed version of top-k average fitness
without a fixed k. No one metric is necessarily the most relevant, as this will depend on the
task at hand. For example, in using the model to propose a list of candidates for protein
engineering, we may be interested only in the best performance among the top k proteins
that will be assessed in the laboratory. In contrast, if using the model to understand the
fitness landscape of a protein, we may be interested in more general accuracy. By using both
Spearman correlation and NDCG, we hope to be broadly informative across a wide variety
of settings. For each Spearman correlation result in the main text, the corresponding result
with NDCG is found in the Extended Data and the Supplementary Information. Generally,
the two metrics yielded similar qualitative conclusions.

Results for TLmutation [114] are omitted from the main figures for several reasons. First,
TLmutation is conceptually similar to our augmented Potts model, but is restricted to only
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allow for zeroing out of the evolutionary Potts model parameters by way of supervised learn-
ing. Second, TLmutation was much more computationally expensive than the augmented
Potts model. And finally, in a set of exploratory experiments, TLmutation performed worse
than our augmented Potts model (see Figure A.3).

Performance of existing methods and the augmented Potts model

When comparing existing methods to each other and to our augmented Potts model, averaged
over all data sets, the augmented Potts model typically outperformed existing methods,
including more sophisticated methods such as eUniRep regression [17] (Figure 2.2). The
sole exception was that the purely evolutionarily-based VAE outperformed the augmented
Potts model on the double mutant data in the low data regime. However, later we show that
the augmented VAE outperforms the VAE, suggesting that either the Potts model is not
sufficiently expressive in some cases, or that the VAE has a more suitable inductive bias, or
both. As expected, with increasing labelled training data, the supervised methods increase
in accuracy. When breaking down the average performance into individual data sets, the
augmented Potts model is competitive on a majority of data sets (Figure 2.8 and Figure 2.9
and Figures A.1-A.2). Somewhat surprisingly, the extremely simple, supervised-only, linear
regression on one-hot encoded amino acid features, is also among the top performers in the
80%-20% split setting. Due to limited availability of data sets that include double mutants,
the reported double mutant performance is averaged over only the three relevant data sets
and hence is heavily influenced by their characteristics. We refer the reader to Figure 2.5
for the double mutant performance breakdown.

Augmented models as a general, simple, and effective strategy

Next we also augmented the profile HMM, the DeepSequence VAE, the eUniRep mLSTM,
and the ESM-1b Transformer, comparing them to each other and to the augmented Potts
model. Note that the Transformer is the only method that does not make use of evolutionary
data, but was pre-trained on UniRef50. Overall, we found that the augmented VAE achieved
the highest average performance among the augmented models, with the augmented Potts
model a close second (Figure 2.3). No matter which density model we augmented, the
augmented model always outperformed the corresponding non-augmented existing method,
regardless of the training data set size.

Among all approaches evaluated here, and earlier, the augmented DeepSequence VAE
tended to be the best performer on most data sets (Figure 2.4b). It worked particularly well
relative to others when predicting enzyme activity, achieving maximal performance in all 9
of those protein data sets (Figure 2.4b). For binding affinity, the different augmented models
performed comparably (Figure 2.4b).

Generally all models that make use of evolutionary data achieved higher Spearman cor-
relation with larger effective MSA size—the weighted number of sequences in MSA after
accounting for sequence similarity with sample reweighting. Meanwhile, the relative rank-
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Figure 2.2: Performance of existing methods and the augmented Potts model. (a) Average
performance across all 19 data sets, as measured by Spearman correlation. The horizontal
axis shows the number of supervised training examples used. Error bars are centered at
the mean and indicate bootstrapped 95% confidence intervals estimated from 20 random
splits of training and test data. Note some bars are so small as to be almost invisible.
Asterisks (*) indicate that P < 0.01 among all two-sided Mann-Whitney U tests that the
augmented Potts model has different performance from each other method, at a given sample
size. In particular, the largest such p-value for each training set size was respectively, P =
9.0× 10−3, 3.9× 10−7, 9.2× 10−8, 7.7× 10−4, 6.8× 10−8, 6.8× 10−8, 6.8× 10−8 and 7.7× 10−4

for training data size 72, 96, 120, · · · , 240 and P = 7.7×10−4 for the 80-20 split. (b) Average
performance across all three data sets containing higher-order mutant sequences (sequences
that are two mutations away from the wild-type), and restricted to testing on only double
mutants. Asterisks (*) indicate same as in panel a), with largest p-values here, respectively,
P = 3.4×10−4, 2.7×10−6 and 7.7×10−4 for training data size 192, 216, 240 and P = 7.7×10−4

for the 80-20 split. See Figure 2.7 for NDCG and Figure 2.8 and Figure 2.9 and Figure A.1
and Figure A.2 for performance on individual data sets.
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Figure 2.3: Augmented approach using different probability density models. Using the same
evaluation setup as in Figure 2.2a, methods are compared with their augmented counterpart,
using matching colors on each pair. Flat, horizontal lines represent evolutionary density
models that do not have access to assay-labelled data. Dashed lines indicate previously-
published methods. Error bars are centered at the mean and indicate bootstrapped 95%
confidence interval from 20 random data splits. See Figure 2.10 for performance measured
by NDCG.
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Figure 2.4: Performance on individual data sets. (a) Other than EVmutation, DeepSequence
VAE, and Profile HMM, which do not use supervised data, all other methods here used 240
labelled training sequences. Each colored dot is the average Spearman correlation from 20
random train-test splits. Random horizontal jitter was added for display purposes. The
bottom row of black dots indicates the effective MSA size after accounting for sequence
similarity with sample reweighting at 80% identity cutoff. (b) Summary of how often each
modelling strategy had higher Spearman correlation than all other strategies. Such modelling
strategies were determined by first identifying the top-performing strategy for any given
scenario, and then also identifying any other strategy that came within the 95% confidence
interval of the top performer. See Figure 2.11 for analogous plots for NDCG and Figure 2.12
for evaluation on varying numbers of training examples.
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ing of models appears to be unrelated to the effective MSA size (Figure 2.4a). Although
each data set had a fixed MSA, we chose the data set with the largest effective MSA size
(poly(A)-binding protein) to systematically reduce the size in order to observe the conse-
quences of decreasing size. In this case study, we considered the augmented Potts model and
linear regression (Figure A.4). The augmented Potts model performance degraded gradually
when subsampling the MSA, while always outperforming linear regression, even with only
32 evolutionary sequences.

Extrapolation from single to higher-order mutants

Because 16 of the 19 supervised data sets consisted of only single mutants of a wild type,
we next more closely examined the three data sets with higher-order mutants, namely, the
green fluorescent protein (GFP) [110], Poly(A)-binding protein (PABP) RRM domain [89],
and ubiquitination factor E4B (UBE4B) U-box domain [121] data sets. Earlier we divided
each data set at random into train, validation and test, irrespective of the edit distance to
wild-type. Here, however, we trained the models using only single-mutant labelled data,
and then evaluated on single, double, triple, and quadruple mutants separately (Figure 2.5
and Figure A.5). We also tried training on both the single- and double-mutant data, and
the results were qualitatively similar to using just the single mutant data for training, albeit
with the relative difference in performance between any two models generally decreasing
with more data (Figure 2.13 and Figure A.6). The extrapolative performance depends on
how much epistasis contributes to the fitness landscape, and also on the ability of a model to
capture such epistasis. The poor extrapolative performance on UBE4B may also stem from
its evolutionary data not providing as much relevant information to the property of interest
(i. e., the assayed property).

In data sets where the assay-labelled variants comprise a variety of edit distances from
the wild type, we find that simply using the edit distance itself is quite predictive of fitness
relative to the ML models evaluated. For example, for GFP fluorescence, edit distance
as a predictive model achieves a Spearman correlation of 0.45 (Figure 2.6), presumably
because most mutations are deleterious and roughly additively so. This result suggests that
correlation measures can be driven by simple features, even if captured by complex models. In
contrast to GFP, mutation count is not as strongly predictive for the UBE4B U-box domain
data (Figure 2.14), presumably because the mutational effects are more heterogeneous in
the sense that they comprise either more diverse (both deleterious and beneficial), or non-
additive effects, or both. Note that despite the bimodality of the experimentally measured
fitness values, the predicted fitness values were unimodal from all five methods.

Adding in structure-based information

The augmentation approach can easily incorporate structure-based features or predictions
from existing methods as additional regression inputs. Recent studies [43, 46, 61, 107, 141]
have shown that protein structures, Rosetta energy terms, and molecular dynamics provide
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Figure 2.5: Extrapolative performance from single mutants to higher-order mutants. Each
column shows the performance when training on randomly sampled single mutants and then
separately testing on single, double, or triple mutants, none of which were in the training
data. The “TS” value indicates the total number of mutants of a particular order in all
of the data. For example, “TS=613” for single mutants means there were 613 total single
mutants in the data set that we sampled from. Error bars are centered at the mean and
indicate bootstrapped 95% confidence interval from 20 random data splits. Figure A.5 shows
quantitatively similar results when measuring performance by NDCG, while Figure 2.13 and
Figure A.6 show results for extrapolation when training on more than just single mutants
(and therefore for larger training data set sizes).
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Figure 2.6: Sequence distance from wild-type sequence as a predictive model. On the GFP
fluorescence data set, we compared the performance of non-augmented evolutionary density
models to two predictive models that use only the distance of a sequence to the wild type.
One is the edit distance, defined by the number of mutations away from the wild type. The
other uses BLOSUM62 to compute the distance from wild type, which thus accounts not
only for the number of mutations, but also the type of mutation. Each dot represents a GFP
sequence, with darker colors indicating larger distances from the wild-type. See Figure 2.14
for the comparison on the UBE4B U-box domain data set.

valuable information for fitness prediction. A comprehensive study of how such features
may improve fitness prediction is beyond the scope of the present work. However, to get an
initial sense of where such future work may lead, we added FoldX-derived stability features
to our models on the three data sets with higher-order mutants (Figure 2.15 and Figure A.7).
The structure-based FoldX-derived features improved performance on GFP relative to the
augmented VAE, but such improvements were not observed on PABP-RRM or UBE4B.
These initial results suggest that whether structure-based features provide complementary
information to the evolutionary and assay-labelled data may depend on the property of
interest and on the quality of available structures.

2.3 Discussion

We compared ML-based methods that make use of both evolutionary and assay-labelled
data for protein fitness prediction. In addition to comparing published methods, we intro-
duced a simple baseline approach, wherein evolutionary density models are augmented with
supervised data in a linear regression model on site-specific amino acid features. We instan-
tiated this approach using density models in the form of a profile HMM, a Potts model,
a VAE, an LSTM, and a Transformer. Across a wide range of settings, the augmented
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Potts model was competitive with higher capacity and more computationally expensive ap-
proaches, such as the deep learning-based Transformer and LSTMs. Even in the relatively
larger data regimes—which were still quite small—the extremely simple linear regression
using site-specific one-hot encoded amino acid features performed quite well.

One may initially be puzzled as to how linear models with only site-specific features can
generalize at all to mutations not seen at train time, let alone surpass non-linear models
in this task. However, as detailed in the Methods, such generalization can emerge from a
particular form of l2-regularized linear regression with one-hot encoded features. In effect,
through the regularization, the model learns about the importance of each position, even
though each amino acid at each position has its own parameter. Thus if the effects of
different mutations at the same position are in the same direction, the regularized linear
models can do a reasonable job at generalizing in such a manner. Although higher-capacity
deep learning-based approaches can in principle also pick up on this predictive power, they
may be struggling to do so effectively, possibly owing to more degrees of freedom combined
with a less suitable inductive bias. Having said that, deep learning models are not well-
understood, with even the classical bias-variance trade-off now in question [48].

When comparing different augmented models, the augmented VAE was most effective
at ranking mutational effects overall. Interestingly, even though the augmented ESM-1b
Transformer does not use evolutionary data (but does use a large, “global” set of proteins
for unsupervised pre-training), the augmented ESM-1b Transformer was competitive with
methods that do have access to evolutionary data in the regime of relatively large training
data sets. Thus, an augmented Transformer may be a promising choice for proteins with
limited evolutionary data and a sufficiently large number of labelled training data. More
accurate approximations to the Transformer sequence log-likelihood could improve perfor-
mance further.

Approaches now considered standard in the mainstream ML community that use super-
vised data to fine-tune deep probability density models, such as Transformers and LSTMs,
were herein outperformed by the augmented Transformers and LSTMs. These results high-
light that state-of-the-art techniques from NLP should be carefully considered in the context
of protein modelling. One substantial difference present in our setting is the existence of
weak-positively labelled evolutionary data, which has no direct analogue in traditional NLP
data sets.

As larger and more variable assay-labelled data sets emerge, we expect that increasingly
richer models will dominate. Moreover, different machine learning strategies are likely needed
for smaller and larger labelled data regimes, both of which are likely to remain relevant
in protein engineering into the future. Therefore, when making general methodological
recommendations, researchers should either consider implications across the full range of
labelled data sizes or restrict recommendations to the regime tested.

To get an initial sense of how bringing in structure-based prediction might alter our
narrative, we compared augmentation approaches with and without FoldX on three data sets,
finding that FoldX-derived stability features could provide new, useful information. Going
forward, it will be beneficial to examine this topic more comprehensively, including the use
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of other tools such as Polyphen-2 [1], PoPMuSiC [30], IMutant [22], and AlphaFold2 [71], for
example. As more features go into the augmentation, there are likely opportunities to use
higher-capacity models for the augmentation model, beyond linear regression. These could
be based on, for example, regression trees, or deep learning.

Although our goal was to assess different methods on real data rather than assuming
certain simulation settings are representative, these real data sets have their limitations
and are not necessarily representative of the test sets that one might encounter for protein
engineering. In particular, in a protein engineering setting, one would like to understand how
the model performs across a larger swath of protein space. Most importantly, one would like
predictive models to extrapolate as accurately as possible to higher fitness areas than that
observed in the data [40], and to be able to gauge when such extrapolations are unreliable [20].
While it may be possible to leverage techniques from covariate shift adaptation to help in
this regard [127, 40], such approaches come with their own problems. We thus focused on
directly evaluating methods without such corrections.

While the Spearman rank correlation has been used in previous studies [53, 104, 106,
114, 101], it does not capture all aspects of predictive performance. The Spearman rank
correlation reflects a monotonic association between predicted and experimental mutational
effects, but does not necessarily speak to anything about the mean squared error of those
predictions, their scale, or any distributional characteristics of the fitness landscape, such
as bimodality. However, as demonstrated by Wittman et al. [141], even modest Spearman
correlation can be useful for speeding up iterative directed evolution. Our auxiliary use
of NDCG, which does reflect aspects beyond the rank, provided added insight into the
robustness of Spearman to assess predictive accuracy, as conclusions drawn from it were
generally concordant to those based on the Spearman rank correlation. Ultimately, the
specific task at hand will determine the suitability of any given metric, and any metric will
have its shortcomings for a given task.

While we have focused on evaluating predictive performance, in cases where the predictive
model is used in conjunction with a design strategy [146, 141, 120, 20, 40], one should
additionally evaluate how these perform in tandem, in addition to independently.

2.4 Methods

Evolutionary sequences

We use the MSAs provided by EVmutation [53] whenever possible. For the green fluorescent
protein (GFP), the only exception, we follow the same procedure as EVmutation to gather
sequences using the profile HMM homology search tool Jackhmmer [42]. We determine
the bit score threshold in Jackhmmer search with the same criterion from EVmutation. In
particular, for GFP, we started with 0.5 bits/residue and subsequently lowered the threshold
to 0.1 bits/residue to meet the sequence number requirement (redundancy-reduced number
of sequences ≥ 10L where L is the length of the aligned region). For sensitivity analysis,
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when using the bit score to 0.5 bits/residue or increasing the number of iterations to 10,
the resulting MSAs on GFP still lead to similar downstream model performance (data not
shown).

Mutation effect data sets

Hopf et al. [53] identified a list of mutation effect data sets generated by mutagenesis ex-
periments of entire proteins, protein domains, and RNA molecules. We exclude the data
sets for RNA molecules and influenza virus sequences, as well as excluding data sets that
contain fewer than 100 entries, in order to have meaningful train/test splits with at least 20
examples in test data. This leaves us with 18 data sets from EVmutation.

Following the convention in EVmutation and DeepSequence, we exclude sequences with
mutations at positions that have more than 30% gaps in MSAs, to focus on regions with
sufficient evolutionary data. On most data sets, this excludes less than 10% of the data,
although for a few proteins such as GFP this affects as much as half of the positions. For
example, on GFP, out of 237 positions, only positions 15-150 pass the criterion of less than
30% gaps in the MSA. Coincidentally, the selected position 15-150 region covers the 81 amino
region studied by Biswas et al. [17].

Among those 18 EVmutation data sets, only two on the poly(A)-binding protein activ-
ity [89] and the UBE4B auto-ubiquitination activity [121] include higher-order mutants.†

While EVmutation only evaluates performance on the single mutants from the UBE4B U-
box domain data [121], we also include higher-order mutants in evaluation. Additionally, we
also include a green fluorescent protein (GFP) fluorescence data set [110], since GFP is a
core example used by Biswas et al. [17]. The GFP data also include higher-order mutants.
This results in 19 data sets total as listed in Table A.1.

Amino acid encodings

In addition to an overparameterized one-hot amino acid encoding (one binary feature for each
amino acid possibility per position), we also experiment with the 19-dimensional physico-
chemical representation of the amino acid space developed by Georgiev [44], also used by
Wittman et al. [141]. The features in Georgiev representation are principal components of
over 500 amino acid indices from the AAIndex database [73]. As shown in Figure A.8, the
Georgiev encoding achieves better performance than the one-hot amino acid encoding on
data sets with higher-order mutants when presented with sufficient training data (bottom
right), agreeing with previous findings [141]. However, on single-mutant only data sets or
on limited training examples, the Georgiev encoding leads to almost identical performance
as the one-hot encoding. For the augmented Potts model, the Georgiev encoding also does
not improve performance compared to the one-hot encoding in any setting.

†Even though EVmutation Supplemental Table 1 indicates that the YAP1 (WW domain 1) peptide
binding data set also include higher-order mutants, the supplemental data for YAP1 only contain single-
mutant sequences, and no higher-order mutant data are available in the original publication [10] either.
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Since the other evaluated methods, such as EVmutation [53], DeepSequence [104], and
UniRep [4], all use the one-hot amino acid encoding as inputs to their models, we omit the
Georgiev encoding results in the main text for fair comparison.

Linear model with one-hot encoded amino acid features

For a sequence s = (s1, · · · , sL) of length L, with elements si ∈ A = {all amino acids},
the linear model with one-hot encoded amino acid features maps the sequence to a scalar
regression output by

f(s; θ) = θ0 +
L∑
i=1

∑
a∈A

1a(si)θi(a) = θ0 +
L∑
i=1

θi(si), (2.1)

where θ0 ∈ R is the bias term (which we deem not to be part of the encoding), 1a(si) is
an indicator function equal to 1 when a = si and to 0 otherwise, and each θi ∈ R|A| is an
|A|-dimensional vector. Together, we refer to all of these parameters as θ. Each coefficient,
θi(a) ∈ R, corresponds to the effect of a amino acid a at position i, and we use θi(si) to
denote the coefficient corresponding to the particular amino acid si.

Importantly, this linear model is overparameterized by virtue of the one-hot encoding.
In particular, there are |A| × L + 1 parameters for at most (|A| − 1) × L + 1 degrees of
freedom. Additionally, if not all amino acids are observed at all positions in the training
data, then the model will be correspondingly more overparameterized. As a consequence
of this overparameterization, further constraints are needed to identify a unique solution.
While there are different approaches for adding constraints, we chose to use ℓ2-regularized
regression (also known as ridge regression). We used five-fold cross-validation to determine
the setting of the regularization parameter (λ below).

We deliberately chose to use this overparameterized approach over an approach with |A|−
1 non-redundant features, for reasons that will be explained shortly. Without regularization,
this choice would be of no consequence. However, with regularization, the choice becomes
consequential—both for the linear model with redundant one-hot encodings, and also for our
augmented models which have a similar component. The main consequence of this choice is
in how the trained model will make predictions on test sequences containing amino acids at
positions that were not observed in the training data. Next we explain this in more detail.

Effects of ℓ2 regularization on generalization

Minimizing the ℓ2-regularized loss arising from the linear regression model in Equation 2.1
is equivalent to minimizing the following objective function,

g(θ) :=
N∑

n=1

(y(n) − f(s(n); θ))2 + λ

L∑
i=1

∑
a∈A

θi(a)
2, (2.2)
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where the scalar λ is the regularization hyper-parameter that dictates the strength of the
regularization, and (s(n), y(n)) are the sequence-fitness pairs observed in the training data.

Generally we think of ℓ2-regularized linear regression as tantamount to putting a spherical
Gaussian prior on the regression parameters and obtaining a point estimate of the parame-
ters, if one is a Bayesian. Alternatively, one may view it as a shrinkage penalty that pushes
the weights towards zero. However, in the specific context herein—of an overparameterized
model with one-hot encoded features—the ℓ2 regularization has some further interesting
properties that are not widely known. First, the use of any positive value for λ in the ℓ2
regularization in this context implies that at any given position, i, the optimal parameters,
θ̂i(a) (i. e., those that minimize Equation 2.2), at that position, sum up to zero. We refer
to this as the zero-sum condition, which we now more formally define and prove, before
discussing its consequences in more detail.

Lemma 1 (Zero-sum condition). Let θ̂ be the optimal parameters that minimize the ℓ2-
regularized linear regression objective (Equation 2.2) on a linear model with one-hot encoded
amino acid features (Equation 2.1). For any position i, the coefficients over all the amino
acids always sum to zero. That is, ∑

a∈A

θ̂i(a) = 0.

Proof. By first order optimality conditions, at a solution to Equation 2.2, all of the partial
derivatives of the ℓ2-regularized objective (Equation 2.2) must all be equal to zero, namely,

∂g(θ)

∂θ0
=

∂
∑N

n=1(y
(n) − f(s(n); θ))2

∂θ0

∣∣∣∣∣
θ=θ̂

= 0, and (2.3)

∂g(θ)

∂θi(a)
=

∂
∑N

n=1(y
(n) − f(s(n); θ))2

∂θi(a)

∣∣∣∣∣
θ=θ̂

+ 2λθ̂i(a) = 0 for all i = 1, . . . , L and all a ∈ A.

(2.4)
Furthermore, the sum of the indicator functions appearing in Equation 2.1, for position i,
over all amino acids, is always equal to one,∑

a∈A

1a(si) = 1, (2.5)

from which we see that∑
a∈A

∂f(s; θ)

∂θi(a)
=

∑
a∈A

∂(θ0 +
∑L

i=1 θi(si))

∂θi(a)
=

∑
a∈A

1a(si) = 1. (2.6)

It also straightforwardly holds that the partial derivative of the model with respect to the
bias is always equal to one, and therefore by the previous result is also equal to the sum of
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partial derivatives,

∂f(s; θ)

∂θ0
=

∂(θ0 +
∑L

i=1 θi(si))

∂θ0
= 1 =

∑
a∈A

∂f(s; θ)

∂θi(a)
. (2.7)

It therefore follows by two applications of the chain rule that for any value of θ,

∂
∑N

n=1(y
(n) − f(s(n); θ))2

∂θ0
= −2

N∑
n=1

(y(n) − f(s(n); θ0))
∂f(s(n); θ)

∂θ0
(2.8)

= −2
N∑

n=1

(y(n) − f(s(n); θ))
∑
a∈A

∂f(s(n); θ)

∂θi(a)
(2.9)

=
∑
a∈A

−2
N∑

n=1

(y(n) − f(s(n); θ))
∂f(s(n); θ)

∂θi(a)
(2.10)

=
∑
a∈A

∂
∑N

n=1(y
(n) − f(s(n); θ))2

∂θi(a)
. (2.11)

Now, more specifically at the optimal θ̂ that minimizes the objective, combining Equation 2.3
with Equation 2.11, we have

∑
a∈A

∂
∑N

n=1(y
(n) − f(s(n); θ))2

∂θi(a)

∣∣∣∣∣
θ=θ̂

=
∂
∑N

n=1(y
(n) − f(s(n); θ))2

∂θ0

∣∣∣∣∣
θ=θ̂

= 0, (2.12)

which when combined with Equation 2.4, shows that

2λ
∑
a∈A

θ̂i(a) = 0. (2.13)

Therefore, so long as λ > 0, the ℓ2-regularized solution must satisfy the zero-sum condition
stated above,

∑
a∈A θ̂i(a) = 0.

Generalization to mutations not seen at train time. If amino acid, α, at position i was
not seen in the training data, then ridge regression sets θ̂i(α) = 0, so as to minimize the
ℓ2 penalty (Lemma 2, below). While we use a to generally denote amino acids, we use α
to specifically refer to amino acids that are not seen at position i in the training data. A
consequence of this property, jointly with the zero-sum condition, is that the effect, θ̂i(α),
of mutation α at position i on the predicted fitness, is precisely equal to the average effect
of all amino acids seen at train time at that position, namely, θ̂i(α) =

1
|Atrain

i |
∑

a∈Atrain
i

θ̂i(a)

(proof below), where Atrain
i denote the set of all amino acids (including the wild type) seen

at position i in the training data.
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Consequently, the model will generalize to unseen amino acids at a given position in a
manner that “understands” how mutable a site is, where mutability is the ability of the
site to tolerate mutations while maintaining fitness. That is, if a given site tends to yield
poor fitness when mutated, then its average training data effect will tend to be poor, and
the extrapolated fitness at test time to a new amino acid will be predicted to be poor. To
elucidate how much that information (mutability at a site) might perform on its own, we
also tried a predictive model consisting of nothing but the position of the mutation (0/1)
in a linear regression model (Figure 2.16 and Figures A.9-A.11). We found that this model
is surprisingly predictive given that it is unaware of the specifics of any particular amino
acids. In particular, it performs close to, but slightly worse than the linear model with
one-hot encoded amino acid features. Notably, use of a non-redundant encoding in the same
ℓ2 modelling framework would not enable such predictions based on mutability to be made.
In particular, in using one parameter per possible mutation from wild type at each position,
the model would predict zero effect for mutations not seen at train time.

The mechanism for the site-specific generalization described above is similarly present in
the augmented models because of their ℓ2-regularized linear regression with one-hot encoded
features, which retain an analogue to these properties even when augmented with a density
feature. Note that one might consider altering the regularization to a more nuanced version
wherein the emergent average amino acid prediction at a site is weighted in a manner to
account for chemical similarity of amino acids, their frequency in the training data, and so
forth.

Lemma 2 (Site-specific generalization effect). Let Atrain
i := {s(n)i for s ∈ Dtrain} denote the

set of all amino acids (including the wild type) seen at position i in the training data Dtrain.
Let α /∈ Atrain

i be an amino acid at position i that was not seen in the training data. For the
optimal parameters θ̂ that minimize the ridge regression objective, we must have θ̂i(α) = 0.
Furthermore, θ̂i(α) is the average effect of all seen amino acids at that position in the sense
that θ̂i(α) =

1
|Atrain

i |
∑

a∈Atrain
i

θ̂i(a) and θ̂i(α)− θi(aWT ) =
1

|Atrain
i |

∑
a∈Atrain

i
(θ̂i(a)− θi(aWT )).

Proof. Since s
(n)
i ̸= α for any sequence s(n) in the training data, the first term in the objective

function (Equation 2.2) does not depend on θi(α). From the first-order optimality condition
we therefore have

∂g(θ)

∂θi(α)

∣∣∣∣
θ=θ̂

= 2λθ̂i(α) = 0 =⇒ θ̂i(α) = 0.

From the zero-sum condition, ∑
a∈Atrain

i

θ̂i(a) +
∑

a/∈Atrain
i

θ̂i(a) = 0. (2.14)

Since θ̂i(a) = 0 for a /∈ Atrain
i , we are then left with∑

a∈Atrain
i

θ̂i(a) = 0. (2.15)
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Therefore, for any α /∈ Atrain
i

θ̂i(α) = 0 =
1

|Atrain
i |

∑
a∈Atrain

i

θ̂i(a). (2.16)

If we prefer to consider instead the mutational effect relative to wild-type, then we can
obtain an analogous results simply by subtracting off θi(aWT ) from both sides of the above
equation (where aWT denotes the wild-type amino acid), to get

θ̂i(α)− θi(aWT ) =
1

|Atrain
i |

∑
a∈Atrain

i

(θ̂i(a)− θi(aWT )), (2.17)

indicating that the results are true both for absolute and relative effects.

EVmutation Potts model

Briefly, EVmutation learns a sequence distribution under site-specific constraints and pair-
wise constraints for each protein family. Under a Potts model (also sometimes known as a
generalized Ising model) with alphabet A, the probability of a sequence s = (s1, · · · , sL) ∈
AL of length L is given by a Boltzmann distribution:

P (s) =
1

Z
exp{−H(s)}, H(s) = −

L∑
i<j

Jij(si, sj)−
L∑
i

hi(si)

where Z is a normalization constant, hi ∈ R|A| are site-specific amino-acid-specific parame-
ters, Jij ∈ R|A|×|A| are pair-specific amino-acid-specific parameters, and si ∈ A indicates the
amino acid at position i. The h and J parameters are estimated by regularized maximum
pseudo-likelihood. See EVmutation paper for the full modeling fitting details of sequence
re-weighting, pseudolikelihood approximation, regularization, and optimization. We use the
same plmc package (May 2018) as EVmutation to fit Potts models with default parameters.

Under the assumption that learned sequence probabilities are correlated with sequence
fitness, EVmutation predicts the mutation effect of a mutant according to the log-odds ratios
of sequence probabilities between the wild-type and mutant sequences, which is equivalent
to the log-likelihood of the mutant up to a constant.

Profile HMM

Profile hidden Markov models (HMMs) [33] are probabilistic models that capture position-
specific information about the amino acid distribution at each site, assuming that the amino
acid at a particular position is independent of the amino acid at all other positions. Com-
pared to Potts models, profile HMMs do not contain pairwise interactions, and are also
referred to as the independent model or the independent site model. We evaluated the
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HMMER suite profile HMM implementation [42] and the EVmutation independent model
implementation [53] on the same evolutionary sequences. There is a minor performance
difference (Figure A.12) between the two implementations due to algorithmic differences,
and the “profile HMM” and “augmented HMM” methods in this chapter are based on the
HMMER version.

DeepSequence VAE

Similar to EVmutation, DeepSequence [104] also models a sequence distribution for each
protein family and predicts mutation effects according to approximations of log-odds ratios
of sequence probabilities between the wild-type and mutant sequences. Here, the sequence
distribution is modeled by a nonlinear variational autoencoder model with a multivariate
Gaussian latent variable z. A neural network parameterizes the conditional distribution
p(s | z, θ), and the sequence likelihood p(s | θ) is then

p(s | θ) =
∫

p(s | z, θ)p(z)dz. (2.18)

While the exact log likelihoods are intractable, they are lower-bounded by the evidence lower
bound (ELBO)

L(ϕ; s) = Eq[log p(s | z, θ)]−DKL(q(z|s, ϕ)||p(z)),

where q(z | s, ϕ) is a variational approximation for the posterior distribution p(z | s, θ) that
is also modeled by a neural network. As an approximation to log-likelihoods, the ELBO can
also be used to predict mutation effects. Whenever possible, we use the available ensemble
predictions from DeepSequence [104]. For the GFP, the UBE4B U-box domain, and the
BRCA1 ring domain, we followed the DeepSequence code in Theano and parameters to
train an ensemble of VAE models (5 models with different random seeds). When computing
the evidence-based lower bound (ELBO) as sequence log-likelihood estimations, we follow
DeepSequence to take the average of 2000 ELBO samples (400 samples from each of the 5
VAE models in the ensemble).

eUniRep mLSTM

The UniRep [4] multiplicative long short-term memory network (mLSTM) can also be viewed
as a sequence distribution. Given the first i amino acids of a sequence, a neural network
parameterizes the conditional probabilities of the next amino acid P (si+1 | s1 · · · si). From
the conditional probabilities we can also reconstruct the sequence probability as

P (s) = ΠL
i=1P (si | s1 · · · si−1).

For convenience, artificial start and stop tokens are added at the two ends of sequences.
Under this probabilistic interpretation, the unsupervised pre-training on UniRef50 sequences
with next-step predictions is equivalent to finding model parameters that maximize likelihood
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on UniRef50 sequences. We omit the performance of the pre-trained (not evo-tuned) UniRep
model in our results since generally it is largely outperformed by the eUniRep described
below.

To adapt the UniRep model to specific protein families, Biswas et al. [17] propose the
“evo-tuning” procedure, which fine-tunes the UniRep model by minimizing the same next-
step prediction loss on evolutionary sequences in addition to on UniRef50 sequences. Follow-
ing the naming convention [17], We refer to the model after “evo-tuning” as eUniRep. After
fine-tuning, Biswas et al. [17] then perform supervised regression with the 1900-dimensional
average embeddings (averaged over sequence length axis) from the final hidden layer in the
eUniRep model as regression features.

While the original fine-tuning procedure for eUniRep [17] optimizes for next-step predic-
tion loss on entire evolutionary sequences up to length 500 (discarding longer sequences),
we find that next-step prediction on aligned portions of evolutionary sequences (with gaps
included as gap tokens) works as well on GFP and beta-lactamase (Figure A.13), and there-
fore fine-tune on only aligned portions to lower computational costs as the mLSTM memory
usage scales quadratically with respect to sequence length. We used the open-source UniRep
code in tensorflow.

For each protein family, we randomly split the evolutionary sequences from the MSA into
an 80% training set and a 20% validation set to check for over-fitting. When training for
10,000 gradient steps with the same learning rate 1×10−5 as Biswas et al. [17], the validation
loss eventually plateaus but does not increase. Since the validation loss typically plateaus
before 10,000 steps, we chose to stop training at 10,000 steps.

ESM-1b Transformer

The ESM-1b Transformer [106] is pre-trained on UniRef50 representative sequences with the
masked language modeling objective, where a fraction (15%) of amino acids in each input
sequence are masked and the model is trained to predict the missing tokens. We chose the
ESM-1b model to represent Transformers as it has the best performance on downstream
secondary structure prediction and contact prediction tasks [106] among Transformers from
prior works [101, 37] and other Transformer architectures tested. While the original mutation
effect prediction results [106] were based on the older 34-layer ESM-1 model, we found that
ESM-1b slightly improves performance over the ESM-1 model (data not shown).

When using Transformer models for sequence fitness predictions, Rives et al. [106] mask
the mutated positions and used the difference in conditional log-likelihoods (conditioned on
non-mutated amino acids) between the mutated amino acids and the wild-type amino acids
as fitness prediction. We explain below that this could be viewed as an approximation for
pseudo log-likelihoods (PLLs).

Masked token language models can also be viewed as sequence distributions, where the
sequence distribution is implicitly represented by conditional likelihoods P (si | s−i), where
s−i indicates all other sequence positions excluding position i, i.e. s−i = s1 · · · si−1si+1 · · · sL.
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Since exact likelihood are too computationally expensive for Transformers, we resort to
pseudo-likelihoods. In general, given a sequence s of length L, its pseudo-likelihood [15]
is defined as the product of conditional likelihoods for each site. Hence, the pseudo-log-
likelihood of a sequence s is

PLL(s) =
L∑
i=1

logP (si | s−i).

However, even the evaluation of pseudo log-likelihoods (PLLs) is computationally expensive,
since it requires L inferences for a sequence of length L. As a more computationally efficient
approximation, we only compute conditional likelihoods on the mutated positions, and then
use the difference between the conditional log-likelihoods of the mutated sequence and the
wild-type sequence as an approximation for pseudo-log-likelihoods. More specifically, for a
mutant sequence ϕ and wild-type sequence σ, we approximate the PLL difference by the
following, as equivalent to the existing formula used by Rives et al. [106]:

PLL(ϕ)− PLL(σ) =

ℓ∑
i=1

log p(ϕi | ϕ−i)−
ℓ∑

i=1

log p(σi | σ−i)

=
∑

i:ϕi ̸=σi

(log p(ϕi | ϕ−i)− log p(σi | σ−i)) +
∑

i:ϕi=σi

(log p(σi | ϕ−i)− log p(σi | σ−i))︸ ︷︷ ︸
≈ 0

The underlying assumption here is that the conditional log-likelihoods of wild-type amino
acids on mutant backgrounds are roughly the same as on wild-type backgrounds. While this
might be accurate for mutant sequences that are close enough to wild-type sequences, in
general there is no support for this approximation on high-order mutant sequences and the
full pseudo-log-likelihoods will likely be more accurate for mutation effect predictions.

For supervised learning, we evaluated two approaches with the same Transformer model.
The first one (“fine-tuned Transformer”) is to fine-tune the entire Transformer model with
fitness labels as done by Rives et al. [106], using the PLL difference between the mutant
and the wild-type as a predictor for fitness. We perform 20 epochs of supervised fine-
tuning with learning rate 3×10−5 and with early stopping according to validation Spearman
correlation, using the open-source ESM code in PyTorch. For a given training data size,
we keep 20% of the data for validation (early-stopping) and use the remaining 80% for fine-
tuning. Using Spearman correlation as opposed to validation loss for early stopping is crucial
for performance, especially on small data sizes. Although the implementation details might
not exactly match those from Rives et al. (since the fine-tuning code is not available), we
show that our method is able to reproduce the same results on most of the Envision data
sets used by Rives et al., as shown in Figure A.14.

In the second approach (“augmented Transformer”), while keeping the Transformer
model constant, we concatenate the PLL difference inferred from the pre-trained (not fine-
tuned) model together with one-hot amino acid encoding as features for regression.
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We also attempted unsupervised fine-tuning (“evo-tuning”) of the ESM-1b Transformer
model on evolutionarily related sequences from MSAs, although our preliminary efforts on
β-lactamase and PABP-RRM do not result in improved performance (data not shown).

Integrated (tied-energy) Potts model

The integrative approach [12] for Potts models optimizes the joint log-likelihood for model
parameters on both evolutionary data and labelled data. Given evolutionary sequences
σ1, · · · , σM , the log-likelihood on evolutionary data is

logP (σ1, · · · , σM | J, h) = −
M∑
k=1

H(σk)−M logZ,

where

H(σ) = −
L∑
i<j

Jij(σi, σj)−
L∑
i

hi(σi).

On the other hand, given sequence-fitness pairs (s1, y1), · · · , (sN , yN), assuming i.i.d. Gaus-
sian noise drawn from N (0,∆2), the log-likelihood on labelled data is

logP (s1, · · · , sM , y1, · · · , yM | J, h) = − 1

2∆2

N∑
k=1

[yk −H(sk)]2 − N

2
log(2π∆2).

The integrated Potts model is learned by maximizing the joint log-likelihood

logP (σ1, · · · , σM | J, h) + logP (s1, · · · , sM , y1, · · · , yM | J, h)

with ℓ2-regularization.
The noise variance ∆2 determines the relative weighting between the two losses in the

joint log-likelihood. Using existing notation [12], the relative weighting parameter is

λ =
1

1 + ∆2
.

In practice, since we do not know the noise variance, we use 20% of the training data for
validation and choose the best λ according to Spearman correlation on validation set. An-
other practical complication is that we only have fitness labels that are up to some monotonic
transformation from the energies. Following Figliuzzi et al. [41], we use a monotonic mapping
between sorted energy values and sorted fitness labels.

Following recommendations from the authors, the Potts model parameters are initialized
with parameters estimated by pseudo-likelihood. Before introducing labelled data, we first
give the model a warm start by training 500 iterations only on evolutionary data. Then,
we optimize the regularized joint log-likelihood for 100 iteration for each λ value. The only
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exception is for β-glucosidase, where the protein sequences are too long (> 500 amino acids)
and lead to very high memory consumption and long run-time (> 2 days) for the integrated
Potts model. Therefore, for β-glucosidase alone we use the Potts model performance without
labelled data as a substitute for the integrated model performance.

We follow the publicly available code (https://github.com/PierreBarrat/DCATools/tree/
master/src) with slight modifications to use zero-sum gauge instead of wild-type gauge for
Potts models. In Potts models for categorical variables, there are more free parameters than
independent constraints, and gauge fixing refers to reducing the number of independent
parameters to match match the number of independent constraints [123]. The wild-type
gauge forces all parameters corresponding to wild-type amino acids to be zero, while the zero-
sum gauge requires

∑
ω∈A hi(ω) = 0 and

∑
ω∈A Jij(ω, α) =

∑
ω∈A Jij(α, ω) = 0. When there

is regularization involved, different gauge fixings lead to non-equivalent models. Although
gradient calculations are easier in the wild-type gauge, we found that the zero-sum gauge
led to better predictive performance (Figure A.15) and hence adopted the zero-sum gauge.

Alternative tied-energy models

In addition to integrated Potts models, we also evaluate alternative ways to train a density
model of a protein family and a predictive model of fitness in an integrated fashion (Fig-
ure A.16). Rather than using a fixed and possibly incorrect monotonic mapping between
sorted energy values and sorted fitness labels [41], we consider a differentiable proxy of the
Spearman correlation [18] between the predicted and true fitness values. Specifically, given
N sequence-fitness pairs, (s1, y1), · · · , (sN , yN), let (s1, r(y1)), · · · , (sN , r(yN)) denote the cor-
responding sequence-ranking pairs, where r(yk) ∈ {1, . . . , N} gives the rank in descending
order of the value yk among the values {y1, . . . , yN}. We fit a Potts model by optimizing the
joint loss

1

M
logP (σ1, · · · , σM | J, h) + λ

1

N

N∑
k=1

[r(yk)− r̂(H(sk))]2

with ℓ2-regularization, where r̂(H(sk)) is a differentiable proxy [18] of the rank r(H(sk)).
For tractability, we optimize the pseudo-likelihood approximation of the log-likelihood term
in the joint loss. We choose the value of λ ∈ {0.0001, 0.001, 0.01, 0.1, 0.9} with 5-fold cross-
validation.

To explore the effect of training energy-based models (EBMs) other than the Potts model
in this fashion, we use the same procedure to fit an EBM with an energy function parame-
terized by a two-layer feed-forward neural network with hidden layer sizes of (300, 100) and
RELU activations. As with the Potts model, we optimize the pseudo-likelihood approxima-
tion of the log-likelihood term in the joint loss.
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BLOSUM62 substitution scores

For a mutant sequence, we sum the BLOSUM62 substitution scores between every amino
acid in the wild-type sequence and the mutant sequence. The scores are then offset by the
a constant such that a score of zero is obtained for the wild-type sequence.

Augmented models

For augmentation, we rely on an already-trained probability density model on a set of
evolutionarily-related sequences, that does not get altered. To augment this existing density
model, we concatenate the sequence density estimation from the original model together
with one-hot encoded site-specific amino acid features, as illustrated in Figure 2.1b. Math-
ematically, following the same notation for linear models with one-hot encoded features,
given a density model with sequence probability distribution p(s;φ) and fixed density model
parameters φ, the corresponding augmented model is

f(s;φ, θ, β) = β log p(s;φ) + θ0 +
L∑
i=1

θi(si),

where the parameters θi ∈ R|A|, θ0 ∈ R, and β ∈ R are learned from assay-labelled data.
When performing ridge regression with this augmented model, the regularization strength
for β was set to make this feature practically unregularized (regularization strength, 10−8),
while the other parameters, θ, were regularized using a common strength determined by
cross-validation. For density models where computing exact log-likelihoods is challenging,
we use one of various approximations. For Potts models and Transformers, we use the
pseudo-log-likelihood, and for VAEs, the evidence lower bound (ELBO). Similarly to the
setup of a linear model with one-hot encoded site-specific amino acid features, we again
used the overparameterized one-hot site-specific amino acid encoding with |A| features per
position (one binary feature for each amino acid possibility per position) in combination
with ℓ2 regularization. See the section on “Effects of ℓ2 regularization” above in Methods
for more details on how this choice influences model prediction on mutations not seen in the
training data.

The augmented Potts model as an evolutionary prior for linear
regression

One can view the augmented Potts model as a tailoring of the implicit prior in the ℓ2-
regularized (ridge) linear regression with site-specific amino acid features, where the tailoring
is based on evolutionary information from the density model. First, note that in the Bayesian,
maximum a posteriori (MAP) interpretation of ridge regression, a zero-mean Gaussian prior
probability has been given to the ridge regression parameters, θi(α) ∼ N (0, τ 2). Now con-
sider the augmented Potts model, with already-fitted Potts model, p(s;φ ≡ {hi, Jij}), with
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site-specific parameters, {hi(α)} at position i for amino acid α and analogous coupling pa-
rameters, {Jij(α1, α2)}. If in the augmented Potts model, the Potts model density feature
was independent from the site-specific amino acid features, one could in a two-step procedure
first fit the density-associated parameter, β = β̂ ∈ R, and having fit that, then fit the re-
maining parameter vector, θ. Under the independence assumption, the resulting parameter
estimates from the two-step procedure would be identical to having estimated them jointly
as in regular ridge regression (with no regularization on the density feature, as done for the
augmented Potts model). In such a two-step fitting procedure, the second step would corre-
spond to performing ridge regression on the residuals y′ = y − β̂ log p(s;φ). Correspondingly,
the implicit prior of ridge regression gets tailored by shifting its mean by an amount, β̂h̃i(α),
corresponding to the Potts model site-specific parameters, to back-interpret the prior over
the parameters to be θi(α) ∼ N (β̂h̃i(α), τ

2). Note that the effect of the coupling parame-
ters in the Potts model is entirely mediated through the estimate of β̂. Also note that the
assumption of independence of the Potts model density feature from the other features is
unlikely to be true in most practical cases; however, this does not necessarily detract from
the overall intuitive interpretation.

Model evaluation

For each data set, we randomly sample 20% of the data set as held-out test data. Among
the remaining 80% data, we randomly sample N = 24, 48, 72, 96, · · · , or 240 single mutant
sequences as training data in separate experiments, or use all single mutant sequences in the
80% training data in the 80-20 split experiments. When computationally feasible (for the lin-
ear model, eUniRep regression, and all augmented models), we use five-fold cross-validation
to determine hyperparameters. Otherwise, for the fine-tuned Transformer and the integrated
Potts model, we set aside 20% of the training data to determine hyperparameters (i. e., the
number of fine-tuning epochs for the Transformer and the relative weighting between evo-
lutionary and assay-labelled data for the integrated Potts model). For each fixed sample
size, the model evaluation procedure is repeated 20 times with different random seeds for
uncertainty estimation. The only exception is for the integrated Potts model, where we only
use 5 random seeds due to the long computation time. The 95% confidence intervals of the
means are estimated via bootstrapping.

NDCG

Discounted cumulative gain (DCG) and its normalized version NDCG are both widely-used
measures of ranking quality in information retrieval. NDCG has also recently been used in
the protein engineering community to assess fitness prediction [141]. Intuitively, the NDCG
score can be seen as a smoothed version of the mean fitness of the top k predictions, without
having to fix an arbitrary k. In the top-k mean metric, the true fitness values of variants are
summed with a binary weight of either 1/k or 0 depending on whether the variant is in the
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top k or not. Instead of the binary weight, NDCG sums over the variants with a smoothed
logarithmic weight.

Given a model’s prediction on M protein variants, to calculate DCG we first sort all
variants by predicted scores into an ordered rank list ŷ1 ≥ ŷ2 ≥ · · · ≥ ŷM . Then, DCG sums
the true fitness values y with a logarithmic discount according to the rank order, where a
variant’s true fitness value contributes more to the sum if it is more highly ranked,

DCG =
M∑
i=1

yi
log(i+ 1)

.

The best (highest) possible DCG on a set of M protein variants occurs when all protein
variants are predicted to be in the exact same rank order as the true fitness. On different
data sets, the value of the best possible DCG is different, depending on the true fitness
values in the data set. Consequently, the DCG is often normalized to make the values more
comparable between data sets. To do so, we first standardize the true scores y to have zero
mean and unit variance. Then, we normalize the DCG by dividing by the best possible DCG
(i. e., obtained for a perfect ranking) to obtain the NDCG, which therefore lies between 0
and 1 for all data sets.

As an example, consider three protein variants A, B, and C with respectively true fit-
ness values, −0.8, 0.6, 0.2, and predicted fitness values, 0.1, 0.9,−0.1. First we sort them in
predicted order B > A > C. Then the DCG from the predicted model is 0.6/ log(2) +
(−0.8)/ log(3) + 0.2/ log(4) = 0.195, while the ideal DCG from the perfect ranking is
0.6/ log(2) + 0.2/ log(3) + (−0.8)/ log(4) = 0.326. The ratio between the DCG and the
ideal DCG, 0.195/0.326 = 0.598, is then the NDCG.

Mann–Whitney U test

We use the two-sided nonparametric Mann–Whitney U test for comparing average perfor-
mance between different methods. The null hypothesis of the U-test is that, for randomly
selected values X and Y from two populations, the probability of X being greater than Y is
equal to the probability of Y being greater than X. The alternative hypothesis is that one
population is stochastically greater than the other. In the context of Figure 2.2, since we are
comparing the average performance over all data sets, the population consists of the average
performance of a given method computed from different random seeds. This satisfies the
assumption that the observations in each population are independent of each other.

FoldX

The FoldX suite [111] evaluates the effect of mutations on the stability of proteins. To
derive stability features from FoldX, we use the “total energy” output from the BuildModel
command in FoldX 5.0. We used PDB structure 2WUR for the green fluorescent protein
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(GFP) following Sarkisyan et al. [110], and PDB structures 6R5K and 2KR4 for the poly(A)-
binding protein RRM domain and the ubiquitination factor E4B U-box domain respectively.
Unfortunately, among these three proteins, only the GFP has atomic resolution structure
determined by X-ray crystallography. The only structures available for the other two domains
are determined by nuclear magnetic resonance (NMR) and electron microscopy (EM) at lower
resolutions. Higher-resolution structures could potentially make FoldX-derived features more
useful on those two domains.

Data availability

All protein fitness data were publicly available through citations. A processed version of
these data and our evaluation results are available on Dryad with doi:10.6078/D1K71B. All
protein structures used in the study are available publicly with PDB IDs 2WUR, 6R5K, and
2KR4.

Code availability

The code to reproduce the results is available at https://github.com/chloechsu/combining-
evolutionary-and-assay-labelled-data.
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Figure 2.7: Comparison of existing machine learning approaches and the augmented Potts
model (NDCG version of Figure 2.2). The left column indicates performance on the full test
data, while the right column indicate performance among all double mutants in the test data.
Error bars are centered at mean and indicate bootstrapped 95% confidence interval from 20
random data splits. Asterisks (*) indicate statistical significance (p < 0.01) from a two-sided
Mann-Whitney U test that the average NDCG from augmented Potts model is different from
every other method. The p-values are p = 3.9e−2, 6.9e−7, 2.2e−7, 7.9e−8, 7.7e−4, 6.8e−8,
6.8e−8, 6.8e−8 and 7.7e−4 for training data size 48, 72, 96, · · · , 240 and p = 7.7e−4 for the
80-20 split.

2.5 Extended Data Figures
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Figure 2.8: Performance on individual data sets when trained on limited labelled data (break-
down of Figure 2.2a). See Figure A.1 for the same breakdown in normalized discounted cu-
mulative gains (NDCG). Error bands are centered at mean and indicate bootstrapped 95%
confidence interval from 20 random data splits.
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Figure 2.9: Performance on individual data sets when trained on 80% data (breakdown of
Figure 2.2a mini-panel). See also Figure A.2 for performance measured by NDCG. Error
bars indicate bootstrapped 95% confidence interval from 20 random data splits. Box-and-
whisker plots show the first and third quartiles as well as median values. The upper and
lower whiskers extend from the hinge to the largest or smallest value no further than 1.5×
interquartile range from the hinge.
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Figure 2.10: Comparison of augmented density models by NDCG (the NDCG version of
Figure 2.3a). Dashed lines show evolutionary density model performance, while solid lines
in the matching color show the corresponding augmented model. Error bars are centered at
mean and indicate bootstrapped 95% confidence interval from 20 random data splits.
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Figure 2.11: Detailed performance analysis by NDCG (the NDCG version of Figure 2.4). (a)
Each dot shows the average performance on each data set 20 random training data samples
of 240 training examples. The bottom row indicates the effective MSA size after accounting
for sequence similarity with sample reweighting at 80% identity cutoff. (b) Best model(s)
on each data set. The horizontal axis shows the number of times a given modelling strategy
had better NDCG than all other methods. This count is computed by first identifying the
top-performing method for any given scenario, and then also counting any other methods
that come within the 95% confidence interval of this top performer.
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Figure 2.12: Best model(s) on each data set (detailed version of Figure 2.4b with varying
training data sizes). (a) Frequency of each method achieving the highest Spearman correla-
tion per data set. The horizontal axis shows the number of times a given modelling strategy
had better Spearman correlation than all other methods. This count is computed by first
identifying the top-performing method for any given scenario, and then also including any
other methods that come within the 95% confidence interval of this top performer. Then
both the top performer and those within the 95% confidence interval are counted. Four
settings are used: with no labelled data, when training on 48 or 240 labelled single-mutant
examples, and in the 80-20 train-test split setting. (b) Frequency of each method achieving
the highest NDCG per data set. Similar to (a) but identifying the best model by NDCG
instead of Spearman correlation.
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Figure 2.13: Extrapolation performance from single and double mutants to higher-order
mutants. Instead of training on single mutants as done in Figure 2.5, here we train on a
random sample from both single and double mutants. Each column measures the model
performance among single, double, triple, and quadruple mutants separately. See Figure A.6
for NDCG version. The “TS” value indicates the total number of mutants of a particular
order in all of the data. For example, “TS=613” for single mutants means there were 613
total single mutants in the data set that we sampled from. Error bands are centered at mean
and indicate bootstrapped 95% confidence interval from 20 random data splits.
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Figure 2.14: Correlations between sequence density estimations of the UBE4B U-box do-
main and experimentally measured fitness values. Each dot represents a mutant sequence,
with darker color indicating further distance from the wild-type. Unlike the case for GFP
(Figure 2.6), here mutation count is not a good predictor for fitness.
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Figure 2.15: FoldX predictions as additional features in augmented models. The FoldX suite
evaluates the effect of mutations on the stability of proteins. We evaluate augmented models
with FoldX-derived stability features on the three data sets with higher-order mutants. Error
bands are centered at mean and indicate bootstrapped 95% confidence interval from 20
random data splits. On green fluorescent protein (GFP), stability predictions from FoldX as
additional features further improves the performance of augmented models. DeepSequence
VAE and FoldX add to each other in augmented models, likely because the two methods
incorporate different information. The augmented model with both DeepSequence VAE and
FoldX outperform all other augmented models on GFP. On the poly(A)-binding protein
RRM domain and the ubiquitination factor E4B U-box domain, however, FoldX-derived
features do not add to the augmented VAE model, possibly due to the limited resolution of
the available structures for these two domains. See Figure A.7 for comparison by NDCG.
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Figure 2.16: Linear model with only position features. Similar to the setup in Figure 2.5,
here we train on single mutants and test on higher-order mutants on three case studies: the
green fluorescent protein (GFP), the RRM domain of Poly(A)-binding protein (PABP), and
the U-box domain of ubiquitination factor E4B (UBE4B). Error bands are centered at mean
and indicate bootstrapped 95% confidence interval from 20 random data splits. The linear
model with only position-specific features matches the performance of the linear model with
one-hot encoded amino acid features on single mutants, but with a slight performance gap
on double, triple, and quadruple mutants. This is as expected since all single mutants in
the test set have non-overlapping mutations with the train set, while double mutants might
have mutations that also appeared in the train set.
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Chapter 3

Learning Inverse Folding from
Millions of Predicted Structures

Designing novel amino acid sequences that encode proteins with desired properties, known
as de novo protein design, is a central challenge in bioengineering [59]. The most well-
established approaches to this problem use an energy function which directly models the
physical basis of a protein’s folded state [3].

Recently a new class of deep learning based approaches has been proposed, using genera-
tive models to predict sequences for structures [61, 126, 7, 67], generate backbone structures
[6, 36], jointly generate structures and sequences [9, 138], or model sequences directly [105,
84, 117, 45, 21, 27]. The potential to learn the rules of protein design directly from data
makes deep generative models a promising alternative to current physics-based energy func-
tions.

However, the relatively small number of experimentally determined protein structures
places a limit on deep learning approaches. Experimentally determined structures cover less
than 0.1% of the known space of protein sequences. While the UniRef sequence database
[128] has over 50 million clusters at 50% sequence identity; as of January 2022, the Protein
Data Bank (PDB) [14] contains structures for fewer than 53,000 unique sequences clustered
at the same level of identity.

Here in this chapter we explore whether predicted structures can be used to overcome
the limitation of experimental data. With progress in protein structure prediction [71, 39,
11], it is now possible to consider learning from predicted structures at scale. Predicting
structures for the sequences in large databases can expand the structural coverage of protein
sequences by orders of magnitude. To train an inverse model for protein design, we predict
structures for 12 million sequences in UniRef50 using AlphaFold2.

This chapter focuses on the problem of predicting sequences from backbone structures,
known as inverse folding or fixed backbone design. We approach inverse folding as a
sequence-to-sequence problem [61], using an autoregressive encoder-decoder architecture,
where the model is tasked with recovering the native sequence of a protein from the coordi-
nates of its backbone atoms.
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We make use of the large number of sequences with unknown structures by adding them
as additional training data, conditioning the model on predicted structures when the exper-
imental structures are unknown (Figure 3.1). This approach parallels back-translation [113,
34] in machine translation, where predicted translations in one direction are used to improve
a model in the opposite direction. Back-translation has been found to effectively learn from
extra target data (i.e. sequences) even when the predicted inputs (i.e. structures) are of low
quality.

We find that existing approaches have been limited by data. While current state-of-the-
art inverse folding models degrade when training is augmented with predicted structures,
much larger models and different model architectures can effectively learn from the additional
data, leading to an improvement of nearly 10 percentage points in the recovery of sequences
for structurally held out native backbones.

We evaluate models on fixed backbone design benchmarks from prior work, and assess the
generalization capabilities across a series of tasks including design of complexes and binding
sites, partially masked backbones, and multiple conformations. We further consider the use
of the models for zero-shot prediction of mutational effects on protein function and stability,
complex stability, and binding affinity.

CATH sequences 
(~16,000)

UniRef50 sequences 
(12 million)

CATH structures 
(~16,000)

Predicted structures 
(12 million)

AlphaFold2
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Figure 3.1: Augmenting inverse folding with predicted structures. To evaluate the potential
for training protein design models with predicted structures, we predict structures for 12
million UniRef50 protein sequences using AlphaFold2 [71]. An autoregressive inverse folding
model is trained to perform fixed-backbone protein sequence design. Train and test sets are
partitioned at the topology level, so that the model is evaluated on structurally held-out
backbones. We compare transformer models having invariant geometric input processing
layers, with fully geometric models used in prior work. Span masking and noise is applied
to the input coordinates.



CHAPTER 3. LEARNING INVERSE FOLDING 47
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?

Figure 3.2: Illustration of the protein design tasks considered.

3.1 Learning Inverse Folding from Predicted

Structures

The goal of inverse folding is to design sequences that fold to a desired structure. In this
work, we focus on the backbone structure without considering side chains. While each of the
20 amino acid has a specific side chain, they share a common set of atoms that make up the
amino acid backbone. Among the backbone atoms, we choose the N, Cα (alpha Carbon),
and C atom coordinates to represent the backbone.

Using the structures of naturally existing proteins we can train a model for this task by
supervising it to predict the protein’s native sequence from the coordinates of its backbone
atoms in three-dimensional space. Formally we represent this problem as one of learning
the conditional distribution p(Y |X), where for a protein of length n, given a sequence X
of spatial coordinates (x1, . . . , xi, . . . , x3n) for each of the backbone atoms N, Cα, C in the
structure, the objective is to predict Y the native sequence (y1, . . . , yi, . . . , yn) of amino acids.
This density is modeled autoregressively through a sequence-to-sequence encoder-decoder:

p(Y |X) =
n∏

i=1

p(yi|yi−1, . . . , y1;X) (3.1)

We train a model by minimizing the negative log likelihood of the data. We can design
sequences by sampling, or by finding sequences that maximize the conditional probability
given the desired structure.

Data

Predicted structures We generate 12 million structures for sequences in UniRef50 to
explore how predicted structures can improve inverse folding models. To select sequences for
structure prediction we first use MSA Transformer [102] to predict distograms for MSAs of
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all UniRef50 sequences. We rank the sequences by distogram LDDT scores [112] as a proxy
for the quality of the predictions. We take the top 12 million sequences not longer than
five hundred amino acids and forward fold them using the AlphaFold2 model with a final
Amber [54] relaxation. This results in a predicted dataset approximately 750 times the size
of the training set of experimental structures (Appendix B.1).

Training and evaluation data We evaluate models on a structurally held-out subset
of CATH [94]. We partition CATH at the topology level with an 80/10/10 split resulting
in 16153 structures assigned to the training set, 1457 to the validation set, and 1797 to
the test set. Particular care is required to prevent leakage of information in the test set
via the predicted structures. We use Gene3D topology classification [79] to filter both the
sequences used for supervision in training, as well as the MSAs used as inputs for AlphaFold2
predictions (Appendix B.1). We also perform evaluations on a smaller subset of the CATH
test set that has been additionally filtered by TM-score using Foldseek [74] to exclude any
structures with similarity to those in the training set (Appendix B.4).

Model architectures

We study model architectures using Geometric Vector Perceptron (GVP) layers [67] that
learn rotation-equivariant transformations of vector features and rotation-invariant transfor-
mations of scalar features.

We present results for three model architectures: (1) GVP-GNN from Jing et al. [67]
which is currently state-of-the-art on inverse folding; (2) a GVP-GNN with increased width
and depth (GVP-GNN-large); and (3) a hybrid model consisting of a GVP-GNN structural
encoder followed by a generic transformer (GVP-Transformer). All models used in evalua-
tions are trained to convergence, with detailed hyperparameters listed in Table B.1.

In inverse folding, the predicted sequence should be independent of the reference frame of
the structural coordinates. For any rotation and translation T of the input coordinates, we
would like for the model’s output to be invariant under these transformations, i.e., p(Y |X) =
p(Y |TX). Both the GVP-GNN and GVP-Transformer inverse folding models studied in this
work are invariant (Appendix B.3).

GVP-GNN We start with the GVP-GNN architecture with 3 encoder layers and 3
decoder layers as described in [67], with the vector gates described in [66] (GVP-GNN,
1M parameters). As inputs to GVP-GNN, protein structures are represented as proximity
graphs where each amino acid corresponds to a node in the graph. The node features are a
combination of scalar node features derived from dihedral angles and vector node features
derived from the relative positions of the backbone atoms, while the edge features capture
the relative positions of nearby amino acids.

When trained on predicted structures, we find a deeper and wider version of GVP-GNN
with 8 encoder layers and 8 decoder layers (GVP-GNN-large, 21M parameters) performs
better. Scaling GVP-GNN further did not improve model performance in preliminary ex-
periments (Figure 3.6c).
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Figure 3.3: Example AlphaFold prediction compared with experimental structure for a
UniRef50 sequence (UniRef50: P07260; PDB: 1AP8). The experimental structure is shown
as pink with transparency. The prediction is coloured by the pLDDT confidence score, with
blue in high-confidence regions.

GVP-Transformer We use GVP-GNN encoder layers to extract geometric features,
followed by a generic autoregressive encoder-decoder Transformer [134]. In GVP-GNN, the
input features are translation-invariant and each layer is rotation-equivariant. We perform
a change of basis on the vector features from GVP-GNN into local reference frames defined
for each amino acid to derive rotation-invariant features (Appendix B.3). In ablation studies
increasing the number of GVP-GNN encoder layers improves the overall model performance
(Figure B.3), indicating that the geometric reasoning capability in GVP-GNN is comple-
mentary to the Transformer layers. Scaling improves performance up to a 142M-parameter
GVP-Transformer model with 4 GVP-GNN encoder layers, 8 generic Transformer encoder
layers, and 8 generic Transformer decoder layers (Figure 3.6c).

Training

Combining experimental and predicted data During training, in each epoch we mix
the training set of experimentally derived structures (∼16K structures) with a 10% random
sample of the AlphaFold2-predicted training set (10% of 12M), resulting in a 1:80 experi-
mental:predicted data ratio. For larger models, a high ratio of predicted data during training
helps prevent overfitting on the smaller experimental train set (Figure 3.6b). While adding
predicted data improves performance, training only on predicted data leads to substantially
worse performance (Table B.4).

The loss is equally weighted for each amino acid in target sequences. We mask out
predicted input coordinates with AlphaFold2 confidence score (pLDDT) below 90, around
25% of the predicted coordinates. See Figure 3.3 for visualization of the pLDDT confidence
score. Most often these low confidence regions are at the start and the end of sequences
and may correspond to disordered regions. We prepend one token at the beginning of each
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Perplexity Recovery %
Model Data Short Single-chain All Short Single-chain All
Natural frequencies 18.12 18.03 17.97 9.6% 9.0% 9.5%
Structured GNN CATH 7.91 6.48 6.49 31.5% 37.1% 37.1%

GVP-GNN
CATH 7.14 5.36 5.43 34.0% 42.7% 42.2%
+ AlphaFold2 8.55 6.17 6.06 29.5% 38.2% 38.6%

GVP-GNN-large
CATH 7.68 6.12 6.17 32.6% 39.4% 39.2%
+ AlphaFold2 6.11 4.09 4.08 38.3% 50.8% 50.8%

GVP-Transformer
CATH 8.18 6.33 6.44 31.3% 38.5% 38.3%
+ AlphaFold2 6.05 4.00 4.01 38.1% 51.5% 51.6%

Table 3.1: Fixed backbone sequence design. Evaluation on the CATH 4.3 topology split
test set. Models are compared on the basis of per-residue perplexity (lower is better; low-
est perplexity bolded) and sequence recovery (higher is better; highest sequence recovery
bolded). Large models can make better use of the predicted UniRef50 structures. The best
model trained with predicted structures (GVP-Transformer) improves sequence recovery by
8.9 percentage points over the best model (GVP-GNN) trained on CATH only.

sequence to indicate whether the structure is experimental or predicted. For each residue
we provide the pLDDT confidence score from AlphaFold2 as a feature encoded by Gaussian
radial basis functions.

Adding Gaussian noise at the scale of 0.1 angstroms to the predicted structures during
training slightly improves performance (Table B.3). This finding is consistent with Edunov
et al. [34], who observe that backtranslation with sampled or noisy synthetic data provides
a stronger training signal than maximum a posteriori (MAP) predictions.

Span masking To enable sequence design for partially masked backbones, we introduce
backbone masking during training. We experiment with both independent random masking
and span masking. In natural language processing, span masking improves performance over
random masking [70]. We randomly select continuous spans of up to 30 amino acids until 15%
of input backbone coordinates are masked. The communication patterns in the geometric
layers are adapted to account for masking with details in Appendix B.2. Span masking
improves the performance of GVP-Transformer both on unmasked backbones (Table B.3)
and on masked regions (Figure 3.4).

3.2 Results

We evaluate models across a variety of benchmarks in two overall settings: fixed backbone
sequence design and zero-shot prediction of mutation effects. For fixed backbone design, we
start with evaluation in the standard setting [61, 67] of sequence design given all backbone
coordinates. Then, we make the sequence design task more challenging along three di-
mensions: (1) introducing masking on coordinates; (2) generalization to protein complexes;
and (3) conditioning on multiple conformations. Additionally, we show that inverse folding
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Figure 3.4: Perplexity on regions of masked coordinates of different lengths. The GVP-GNN
architecture degrades to the perplexity of the background distribution for masked regions
of more than a few tokens, while GVP-Transformer maintains moderate accuracy on long
masked spans, especially when trained on masked spans.

models are effective zero-shot predictors for protein complex stability, binding affinity, and
insertion effects.

Fixed backbone protein design

We begin with the task of predicting the native protein sequence given its backbone atom (N,
Cα, C) coordinates. Perplexity and sequence recovery on held-out native sequences are two
commonly used metrics for this task. Perplexity measures the inverse likelihood of native se-
quences in the predicted sequence distribution (low perplexity for high likelihood). Sequence
recovery (accuracy) measures how often sampled sequences match the native sequence at
each position. To maximize sequence recovery, the predicted sequences are sampled with
low temperature T = 1e−6 from the model. While the model is calibrated (Figure B.7), a
lower temperature results in sequences with higher likelihoods (and hence typically higher
sequence recovery) and lower diversity. Empirically at temperature as low as 1e−6 the sam-
pling is almost deterministic. Table 3.1 compares models using the perplexity and sequence
recovery metrics on the structurally held-out backbones.

We observe that current state-of-the-art inverse folding models are limited by the CATH
training set. Scaling the current 1M parameter model (GVP-GNN) to 21M parameters
(GVP-GNN-large) on the CATH dataset results in overfitting with a degradation of sequence
recovery from 42.2% to 39.2% (Table 3.1). On the other hand, the current model at the
1M parameter scale cannot make use of the predicted structures: training GVP-GNN with
predicted structures results in a degradation to 38.6% sequence recovery (Table 3.1), with
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Figure 3.5: Comparison of perplexity and sequence recovery by structural context according
to two different measures: number of neighbors (top) and solvent accessible surface area
(bottom). Top: Breakdown for core and surface residues. Residues are categorized by
density of neighboring Cα atoms within 10A of the central residue Cα atom (core: ≥ 24
neighbors; surface: < 16 neighbors). Each box shows the distribution of perplexities for
the core or surface residues across different sequences. Bottom: Perplexity and sequence
recovery as a function of solvent accessible surface area. Increased sequence recovery for
buried residues suggests the model learns dense hydrophobic packing constraints in the core.

performance worsening with increasing numbers of predicted structures in training (Figure
3.6a).

Larger models benefit from training on the AlphaFold2-predicted UniRef50 structures.
Training with predicted structures increases sequence recovery from 39.2% to 50.8% for
GVP-GNN-large and from 38.3% to 51.6% for GVP-Transformer over training only on the
experimentally derived structures. The improvements are also reflected in perplexity. Similar
improvements are observed on the test subset filtered by TM-score (Table B.2). The best
model trained with UniRef50 predicted stuctures, GVP-Transformer, improves sequence
recovery by 9.4 percentage points over the best model, GVP-GNN, trained on CATH alone.

As there are many sequences that can fold to approximately the same structure, even an
ideal protein design model will not have 100% native sequence recovery. We observe that
the GVP-GNN-large and GVP-Transformer models are well-calibrated (Figure B.7). The
substitution matrix between native sequences and model-designed sequences resembles the
BLOSUM62 substitution matrix (Figure B.6), albeit noticeably sparser for the amino acid
Proline.

When we break down performance on core residues and surface residues, as expected,
core residues are more constrained and have a high native sequence recovery rate of 72%,
while surface residues are not as constrained and have a lower sequence recovery of 39%
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Figure 3.6: Ablation studies on training data. (a) Effect of increasing the number of predicted
structures. The original GVP-GNN degrades with training on additional data, but GVP-
GNN-large and GVP-Transformer improve with increasing numbers of predicted structures.
(b) Effect of increasing the mixing ratio during training between predicted and experimental
structures. A higher ratio of predicted structures improves performance for both GVP-GNN-
large and GVP-Transformer. (c) GVP-GNN and GVP-Transformer model size.

(Figure 3.5; top). Generally perplexity increases with the solvent accessible surface area
(Figure 3.5; bottom). Despite the lower sequence recovery on the surface, sampled sequences
do tend not to have hydrophobic residues on the surface (Figure B.8).

As an example of inverse folding of a structurally-remote protein, we re-design the re-
ceptor binding domain (RBD) sequence of the SARS-CoV-2 spike protein (PDB: 6XRA and
6VXX; illustrated in Figure B.5) with the two models. The SARS-CoV-2 spike protein
has no match to the training data with TM-score above 0.5. Both GVP-GNN and GVP-
Transformer achieve high sequence recovery (49.7% and 53.6%) for the native RBD sequence
(Table B.6).

While perplexity and sequence recovery are informative metrics, low perplexity and
high sequence recovery do not necessarily guarantee structural similarity. One empiri-
cally observed failure mode in sampled sequences is repetition of the same amino acid, e.g.
EEEEEEE. It would be interesting to further identify more failure modes by studying the
experimental or predicted structures of sampled sequences.

Partially-masked backbones We evaluate the models on partial backbones. While
masking during training does not significantly change test performance on unmasked back-
bones (Table B.3), masking does enable models to non-trivially predict sequences for mask
regions. Although GVP-GNN-large has low perplexity on short-length masks, its perfor-
mance quickly degrades to the perplexity of the background distribution on masks longer
than 5 amino acids (Figure 3.4). By contrast, the GVP-Transformer model maintains mod-
erate performance even on longer masked regions, with less degradation if trained with span
masking instead of independent random masking (Figure 3.4).
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Perplexity
Model Chain Complex
Natural frequencies 17.93
GVP-GNN 7.80 5.37
GVP-GNN-large+AF2 6.32 3.90
GVP-Transformer+AF2 6.32 3.81

Table 3.2: Sequence design performance on complexes in the CATH topology test split
when given the backbone coordinates of only a chain (“Chain” column) and when given all
backbone coordinates of the complex (“Complex” column). The perplexity is evaluated on
the same chain in the complex for both columns.
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Figure 3.7: Dual-state design. GVP-Transformer conditioned on two conformations results
in lower sequence perplexity at locally flexible residues than single-conformation conditioning
for structurally held-out proteins in PDBFlex (see Appendix B.5 for details).

Protein complexes Although the training data only consists of single chains, we find that
models generalize to multi-chain protein complexes. We represent complexes by concatenat-
ing the chains together with 10 mask tokens between chains, and place the target chain for
sequence design at the beginning during concatenation. We include all complexes in the
CATH 4.3 test set up to 1000 amino acids in length. For chains that are part of a protein
complex, there is a substantial improvement in perplexity of both models when given the full
complex coordinates as input, versus only the single chain (Table 3.2 and Figure B.4), sug-
gesting that both GVP-GNN and GVP-Transformer can make use of inter-chain information
from amino acids that are close in 3D structure but far apart in sequence.
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Spearman correlation

Model No coords No RBM coords No ACE2 coords All coords

ESM-1v 0.03
ESM-1b 0.02
ESM-MSA-1b (few-shot) 0.51

GVP-GNN -0.10 0.50 0.60
GVP-GNN-large+AF2 -0.05 0.52 0.69
GVP-Transformer+AF2 -0.06 0.53 0.64

Table 3.3: Zero-shot performance on binding affinity prediction for the receptor binding
domain (RBD) of SARS-CoV-2 Spike, evaluated on ACE2-RBD mutational scan data [122].
The zero-shot predictions are based on the sequence log-likelihood for the receptor binding
motif (RBM), which is the portion of the RBD in direct contact with ACE2 [76]. We
evaluate in four settings: 1) Given sequence data alone (“No coords”); 2) Given backbone
coordinates for both ACE2 and the RBD but excluding the RBM and without sequence
(“No RBM coords”); 3) Given the full backbone for the RBD but no information for ACE2
(“No ACE2 coords”); and 4) Given all coordinates for the RBD and ACE2.

Multiple conformations Multi-state design is of interest for engineering enzymes and
biosensors [77, 100]. Some proteins exist in multiple distinct folded forms in equilibrium,
while other proteins may exhibit distinct conformations when binding to partner molecules.

For a backbone X, the inverse folding model predicts a conditional distribution p(Y |X)
over possible sequences Y for the backbone. To design a protein sequence compatible with
two states A and B, we would like find sequences with high likelihoods in the conditional
distributions p(Y |A) and p(Y |B) for each state. We use the geometric average of the two
conditional likelihoods as a proxy for the desired distribution p(Y |A,B) conditioned on the
sequence being compatible with both states.

We compare single-state and multi-state sequence design performance on 87 test split pro-
teins with multiple conformations in the PDBFlex dataset [56]. On locally flexible residues,
multi-state design results in lower sequence perplexity than single-state design (Figure 3.7).
See Appendix B.5 for more details on the PDBFlex data.

Zero-shot predictions

We next show that inverse folding models are effective zero-shot predictors of mutational
effects across practical design applications, including prediction of complex stability, binding
affinity, and insertion effects. To score the effect of a mutation on a particular sequence,
we use the ratio between likelihoods of the mutated and wildtype sequences according to
the inverse folding model, given the experimentally determined wildtype structure. Exact
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likelihood evaluations are possible from both GVP-GNN and GVP-Transformer as they are
both based on autoregressive decoders. We then compare these likelihood ratio scores to
experimentally-determined fitness values measured on the same set of sequences.

de novo mini-proteins Rocklin et al. [107] performed deep mutational scans across a
set of de novo designed mini-proteins with 10 different folds measuring the stability in re-
sponse to point mutations. The likelihoods of inverse folding models have been shown to
correlate with experimentally measured stability using this dataset [61, 67]. We evaluate the
GVP-Transformer and GVP-GNN-large models on the same mutational scans, and observe
improvements in stability predictions from using predicted structures as training data for 8
out of 10 folds in the dataset (Table B.5). Further details are in Appendix B.5.

Complex stability We evaluate models on zero-shot prediction of mutational effects on
protein complex interfaces, using the Atom3D benchmark [129] which incorporates binding
free energy changes in the SKEMPI database [63] as a binary classification task. We find
that sequence log-likelihoods from GVP-GNN are effective zero-shot predictors of stability
changes of protein complexes even without predicted structures as training data (Table B.7),
performing comparably to the best supervised method which uses transfer learning. While
we observe a substantial improvement in perplexity when predicted structures are added
to training (Table 3.2), this does not further improve complex stability prediction for the
single-point mutations in SKEMPI (Table B.7), indicating potential limitations of evaluating
models only on single-point mutations.

Binding affinity While the SKEMPI dataset features one mutation entry per protein,
we also want to evaluate whether inverse folding models can rank different mutations on
the same protein, potentially enabling binding-affinity optimization, which is an important
task in therapeutic design. We assess whether inverse folding models can predict mutational
effects on binding by leveraging a dataset generated by Starr et al. [122] in which all single
amino acid substitutions to the SARS-CoV-2 receptor binding domain (RBD) were exper-
imentally measured for binding affinity to human ACE2. Given potential applications to
interface optimization or design, we focus on mutations within the receptor binding motif
(RBM), the portion of the RBD in direct contact with ACE2 [76]. When given all RBD and
ACE2 coordinates, the best inverse folding model produces RBD-sequence log-likelihoods
that have a Spearman correlation of 0.69 with experimental binding affinity measurements
(Table 3.3). We observe weaker correlations when not providing the model with ACE2 co-
ordinates, indicating that inverse folding models take advantage of structural information
in the binding partner. When masking RBM coordinates (69 of 195 residues, a longer span
than masked during model training), we no longer observe correlation between RBD log-
likelihood and binding affinity, indicating that the model relies on structural information
at the interface to identify interface designs that preserve binding. Zero-shot prediction via
inverse folding outperforms methods for sequence-based variant effect prediction, which use
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the likelihood ratio between the mutant and wildtype amino acids at each position to pre-
dict the impact of a mutation on binding affinity. These likelihoods are inferred by masked
language models, ESM-1b, ESM-1v, and ESM-MSA-1b, as described by Meier et al. [88]
(Table 3.3); additional details are given in Appendix B.5.

Sequence insertions Using masked coordinate tokens at insertion regions, inverse folding
models can also predict insertion effects. On adeno-associated virus (AAV) capsid variants,
we show that relative differences in sequence log-likelihoods correlate with the experimentally
measured insertion effects from Bryant et al. [21]. As shown in Table B.8, both GVP-GNN
and GVP-Transformer outperform the sequence-only zero-shot prediction baseline ESM-
1v [88]. When evaluating on subsets of sequences increasingly further away from the wild-
type (≥ 2, ≥ 3, and ≥ 8 mutations), the GVP-GNN-large and GVP-Transformer models
trained with predicted structures have increasing advantages compared to GVP-GNN trained
without predicted structures.

3.3 Related Work

Structure-based protein sequence design Early work on design of protein sequences
studied the packing of amino acid side chains to fill the interior space of predetermined
backbone structures, either for a fixed backbone conformation [125, 26, 29], or with flexi-
bility in the backbone conformation [47]. Since then, the Rosetta energy function [3] has
become an established approach for structure-based sequence design. An alternative non-
parametric approach involves decomposing the library of known structures into common
sequence-structure motifs [149].

Early machine learning approaches in structure-based protein sequence design used frag-
ment and energy-based global features derived from structures [82, 92]. More recently,
convolution-based deep learning methods have also been applied to predict amino acid
propensities given the surrounding local structural environments [7, 19, 118, 81, 99, 148,
24, 137]. Another recent machine learning approach is to leverage structure prediction net-
works for sequence design. Anishchenko et al. [9] carried out Monte Carlo sampling in the
sequence space to invert the trRosetta [145] structure prediction network for sequence design,
while Norn et al. [91] backpropagated gradients through the trRosetta network.

Generative models of proteins The literature on structure-based generative models of
protein sequences is the closest to our work. Ingraham et al. [61] introduced the formulation
of fixed-backbone design as a conditional sequence generation problem, using invariant fea-
tures with graph neural networks, modeling each amino acid as a node in the graph with edges
connecting spatially adjacent amino acids. Jing et al. [67, 66] further improved graph neural
networks for this task by developing architectures with translation- and rotation-equivariance
to enable geometric reasoning, showing that GVP-GNN achieves higher native sequence re-
covery rates than Rosetta on TS50, a benchmark set of 50 protein chains. Strokach et al.
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[126] trained graph neural networks for conditional generation with the masked language
modeling objective, adding homologous sequences as data augmentation to training. Most
recently, contemporary with our work, Dauparas et al. [28] improved an existing graph neu-
ral network [61] by combining additional input features and edge updates, and validated
designed protein sequences through X-ray crystallography, cryoEM and functional studies.
Also contemporary with our work, Yang, Zanichelli, and Yeh [147] showed that pretrained
sequence-only protein masked language models can be combined with structure-based graph
neural networks to improve inverse folding performance.

Recently models have been proposed to jointly generate structures and sequences. An-
ishchenko et al. [9] generate structures by optimizing sequences through the trRosetta struc-
ture prediction network to maximize their difference from a background distribution. The
joint generation approach is also being explored in the setting of infilling partial struc-
tures. Contemporary to this work, Wang et al. [138] apply span masking to fine-tune the
RosettaFold model [11] to perform infilling, although conditioning on both coordinates and
amino acid identities instead of considering the inverse folding task. Also contemporary
to this work, Jin et al. [65] develop a conditional generation model for jointly generating
sequences and structures for antibody complementarity determining regions (CDRs), con-
ditioned on framework region structures. Anand and Achim [5] introduced an equivariant
denoising diffusion approach for jointly generating protein structures and sequences for in-
filling, loop completion, and beyond.

So far there has been little work on generative models of structures directly. Interesting
examples include Anand and Huang [6] who model fixed-length protein backbones with
generative adversarial networks (GANs) via pairwise distance matrices, and Eguchi et al.
[36] who generate antibody structures with variational autoencoders (VAEs).

Language models A large body of work has focused on modeling the sequences in indi-
vidual protein families. Shin et al. [117] show that protein-specific autoregressive sequence
models trained on related proteins can predict point mutation and indel effects and de-
sign functional nanobodies. Trinquier et al. [130] also studied protein-specific autoregressive
models for sequence generation.

Recently language models have been proposed for modeling large scale databases of pro-
tein sequences rather than families of related sequences. Examples include [13, 4, 51, 101,
86, 38, 105, 102]. Meier et al. [88] found that the log-likelihoods of large protein language
models predict mutational effects. Madani et al. [84] study an autoregressive sequence model
conditioned on functional annotations and show it can generate functional proteins.

Structure-agnostic protein sequence design We point the reader to Wu et al. [144]
for a review of the many machine learning-based sequence design approaches that do not
explicitly model protein structures. Additionally, as an alternative to sequence generation
models, model-guided algorithms design sequences based on predictive models as oracles [146,
8, 20, 120].
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Back-translation For machine translation (MT) in NLP, Sennrich, Haddow, and Birch
[113] studied how to leverage large amounts of monolingual data in the target language, a
setting that parallels the situation we consider with protein sequences (the target language
in our case). Sennrich et al. found it most effective to generate synthetic source sentences
by performing the backwards translation from the target sentence, i.e. back-translation.
This parallels the approach we take of predicting structures for sequence targets that have
unknown structures. Edunov et al. [34] further investigated back-translation for large-scale
language models.

3.4 Conclusions

While there are billions of protein sequences in the largest sequence databases, the number
of available experimentally determined structures is on the order of hundreds of thousands,
imposing a limit on generative methods that learn from protein structure data. In this work,
we explored whether predicted structures from recent deep learning methods can be used in
tandem with experimental structures to train models for protein design.

To this end, we generated structures for 12 million UniRef50 sequences using AlphaFold2.
As a result of training with this data we observe improvements in perplexity and sequence
recovery by substantial margins, and demonstrate generalization to longer protein complexes,
to proteins in multiple conformations, and to zero-shot prediction for mutation effects on
binding affinity and AAV packaging. These results highlight that in addition to the geometric
inductive biases which have been the major focus for work on inverse-folding to date, finding
ways to leverage more sources of training data is an equally important path to improved
modeling capabilities.

Contemporary with our work, the AlphaFold Protein Structure Database [133] is rapidly
growing, featuring 1 million predicted structures as of June 2022. Structure-based protein
design models will likely continue to benefit from this new data source as the coverage ex-
pands to encompass more of the structural universe. Additionally, with the recent progress in
structure prediction for multi-chain protein complexes [39, 60], predicted complex structures
could be another valuable source of data for learning protein-protein interactions.

We also take initial steps toward more general structure-conditional protein design tasks.
By integrating backbone span masking into the inverse folding task and using a sequence-
to-sequence transformer, reasonable sequence predictions can be achieved for short masked
spans.

If ways can be found to continue to leverage predicted structures for generative models of
proteins, it may be possible to create models that learn to design proteins from an expanded
universe of the billions of natural sequences whose structures are currently unknown.
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Chapter 4

Perspectives on Conditional
Generative Models

The inverse folding model presented in Chapter 3 is an example of a conditional generative
model—one that can directly generate protein sequences based on a condition. This chapter
aims to give a broader perspective of conditional generative models in the context of protein
engineering and protein design, oriented towards an audience newer to machine learning.

To generate proteins from a conditional generative model, we specify a desired condition
as input. The condition is a property of the protein, such as the backbone structure, melting
temperature, or cellular localization. Once this condition is specified, the model allows us to
sample—that is to generate stochastically—proteins that are likely to satisfy the condition.
We might sample the protein in the form of a backbone structure, or a sequence, or both,

ATLDSWLSNEATVARTAILNNIGADGAWVSGA
DSGIVVASPSTDNPDYFYTWTRDSGLVIKTLVD
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Function Active site Structure Sequence

Fixed backbone designScaffolding

Condition
Conditional generative model

Output

Family-specific sequence generation

Structure generation from annotations

Figure 4.1: Conditional generative models can condition on, and generate, different types
of entities in protein engineering, such as generating sequence from structure (i. e., fixed
backbone sequence design), sequence from function, and structure from active site geometry
(i. e., scaffolding).
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for example. Technically, we are sampling a protein, X, from a conditional probability
distribution, pθ(X | Y = y), where θ are the learned parameters of the conditional generative
model, and Y is the condition. Each setting, Y = y, corresponds to a conditional probability
distribution over X.

Within protein engineering, conditional generative models have gained attention primar-
ily for their use in generating sequences conditioned on fixed backbones, known as fixed
backbone sequence design or “inverse folding” [61, 68, 28, 57]; and in generating backbone
structure conditioned on the geometry of a known functional site—so-called “functional site
scaffolding” [140, 62, 131]. There has also been work in generating sequences conditioned on
a particular protein family [85]. See Figure 4.1 for some examples of the use of conditional
generative models in protein engineering. For simplicity, we anchor our discussion on models
that generate amino acid sequences or 3D structures, but much of our discussion applies
equally to other types of modeling problems. Below, we discuss what types of problems are
well-suited to being tackled by conditional generative models, touch upon their training and
sampling procedures, and introduce two instantiations of conditional generative models in
protein engineering for sequence and structure generation respectively.

4.1 When to use Conditional Generative Models?

As there are other ML approaches to sequence generation, it is helpful to first understand
when it might be worthwhile to adopt a strategy of conditional generative modeling. First
and foremost, conditional generative models are built to be general-purpose, in the sense
that they aim to handle a variety of conditions, rather than being bespoke solutions for just
one condition. For example, while a structure-based conditional generative model always
takes 3D coordinates as inputs, it can in principle handle a wide variety of structures as
input conditions. In contrast, one might instead devise a model that could only generate
sequences that fold into the structure of a particular fold—a single condition by way of a
specialized unconditional generative model. The generality of conditional generative models
means that they correspondingly need to be trained on a wide variety of data that sufficiently
encapsulates the intended use cases.

In comparison to unconditional generative models, one appeal of conditional generative
models is that they need not be re-trained for every new condition. Moreover, by modeling all
the different conditions together in the same model, conditional generative models can learn
each conditional distribution in a way that “borrows” relevant information from “similar”
conditions. Therefore, a particularly compelling setting arises when the exact condition of
interest is rarely present in the training data, but related conditions are abundant. For
example, we may not have examples of the exact backbone structure, but a conditional
generative model can learn from other similar backbones, or backbones that have parts that
are similar. By leveraging the data for all conditions in one model, a conditional generative
model may also be better able to overcome measurement noise inherent to many biological
data, as compared to unconditional generative models. More specialized, unconditional
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approaches for sequence generation might work just as well as general-purpose conditional
generative models when there are abundant data examples for the one condition of interest.
For example, when there are many evolutionarily related homologs for the protein of interest,
a specialized “evolutionary” model for this protein family could be a fruitful strategy [109,
49].

4.2 Training Conditional Generative Models

Machine learning models come with parameters to be learned during the training procedure.
When we train the model on data, we select (“learn”) one specific set of parameter values
that is best suited to the training data. To learn the parameters of a model, be it a neural
network or a classical statistical model, we must define a loss function which tells us how
much we “lose” by using a particular set of parameters—that is, how “inappropriate” a
parameter setting is for the training data. We then find the most appropriate parameter
values—those that minimize the loss. A classical objective function from statistics is that
of the likelihood of the observed data, which, when optimized, yields maximum likelihood
estimation (MLE) of the parameters. MLE has the nice statistical property that, assuming
the model class encompasses the true data distribution, then as we get increasingly more
training data from that distribution, the estimated parameters become closer and closer to
the true parameters. Due to this property of consistency and other favorable properties in
statistical theory, a broad range of ML models are typically trained according to the MLE
principle. When applied to conditional generative models, the MLE principle maximizes
the average conditional log-likelihoods of the observed data. In deep learning, MLE is often
described as minimizing the cross-entropy between the observed distribution and the pre-
dicted distribution—an information theoretic notion to measure the difference between two
distributions. To minimize the loss, we start of with some initial setting of the parameters,
typically at random, and then iteratively refine them using techniques from numerical opti-
mization, mostly gradient descent, until they converge to a steady-state parameter setting.

The choice of training data directly influences the loss function, and hence, the resulting
model. This choice is a subjective decision, and a very important one. In choosing our
training data we express our beliefs about which sequence distribution we seek to learn. For
example, suppose we train a structure-conditional generative model for generating sequences
with data from the Protein Data Bank (PDB). And suppose there exist two sequences,
which according to the principles of physics, both fold up equally well into a particular
structure condition. Then our trained model will be more likely to generate the sequence
that “appears” most similar to PDB sequences. Sometimes we may chose to weight each
training example to coerce the trained model to represent a different distribution from the
training data. Or, instead of re-weighting training examples, we may choose to exclude
some. For example, we might group together individual training data (i. e., cluster them)
and then only train on one or a few representatives from each cluster, so that the model is not
biased towards larger protein clusters. Note, however, that it is almost always impossible to
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obtain the training data that expresses our modeling goals. For example, even when trying
to approximate the distribution of naturally occurring protein sequences, we are subject to
the whims of science that has had some proteins sequenced, and others not.

4.3 Sampling from Conditional Generative Models

Sampling is the statistical term that refers to generating sequences (or other entities such
as structures), x, according to the conditional distribution pθ(X | Y = y) for a given con-
dition y, written x ∼ pθ(X | Y = y). For example, in fixed backbone sequence design,
we sample sequences conditioned on a backbone structure. In functional site scaffolding,
we sample entire protein backbone structures conditioned on the functional site structure.
Focusing on the example of sampling sequences: as there may be numerous sequences that
satisfy a given condition, and also uncertainty in how well the condition is satisfied by each
sequence, samples from the probability distribution are typically non-deterministic (i. e.,
stochastic). Sequences that are more likely to satisfy the condition will have higher (con-
ditional) likelihood, and are more likely to be sampled. However, by chance alone, we may
sample sequences that do not satisfy the condition at all.

Naively, the conditional distribution over all possible outputs can be unwieldy to model,
and difficult to draw samples from. For conditional generative models over sequences, there
are 20L possible amino acid sequences that can be generated for a protein of length L. For
conditional generative models over 3D structures, there is an even larger space of possible
generated structure outputs. Different strategies can be used to break down the modeling
and sampling problem into smaller, more manageable parts. For example, we can factor the
conditional probability distribution—that is, decompose the likelihood into separate factors,
each of which is manageable, and all of which can be easily be combined together as a
product. In the next section, we discuss the commonly used autoregressive factorization
of conditional generative models for sequences. An alternative approach for more easily
generating samples from large output spaces is to use a class of models wherein we break
down the sampling approach into an iterative process. In this class of models each sample
depends on the previous sample, in a relatively simple way, such that after many iterations,
we can obtain good quality samples. We discuss this diffusion model strategy in the section
on generating structures.

When sampling a set of sequences to be synthesized and assayed in the laboratory, we
may be interested in controlling the diversity of those sequences so as to not waste our
budget with highly similar sequences. Broadly, in many ML application areas, diversity is
controlled by modulating the statistical entropy of the distribution. Sampling from a low-
entropy distribution will tend to generate the same sequences over and over. Sampling from
a high-entropy distribution will be much less likely to do so. Although by virtue of training
a model to learn its parameters, we fix the entropy of the model, for many ML models, a
post hoc procedure can be used to control the entropy to be higher or lower. To do so, we
use a single scalar, a “temperature” parameter, T , which is introduced to the model after it
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has been trained. Implicitly, without this temperature parameter, the model already has the
default value T = 1, which thus serves as a reference point for the entropy of the training
data (according to the model). The higher the temperature, the higher the entropy. As we
increase the diversity of a set of sampled sequences, we correspondingly reduce the average
likelihood of those sequences under the model, indicative of an inherent trade-off between
these. In other words, if we want more cards to bet with, then we’re going to have to go
down into the lower cards of the deck, having run out of Aces, Kings and Queens.

Next, we discuss two instantiations of conditional generative models for protein engineer-
ing in more detail. One is for sequence generation, and the other, for structure generation.

4.4 Conditional Generative Models for Sequences

As mentioned in the last section, modeling and sampling distributions over large output
spaces are difficult to directly work with, requiring strategies such as factorization to make
them more manageable. One particularly effective factorization strategy for sampling se-
quences is to use a chain-rule factorization, which models each amino acid based on all the
previous amino acids (according to, for example, the sequential ordering on the backbone
chain) and on the input condition. Such a factorization, by itself, doesn’t make any assump-
tions about the distribution that can be captured by the model. Generative models that use
this factorization are referred to as autoregressive models.

For any sequence, x with L positions, x = x1x2 . . . xL, the chain rule factors the condi-
tional sequence likelihood, pθ(X1 = x1, X2 = x2, . . . , XL = xL | Y = y), into the following
product: the likelihood of X1 = x1, multiplied by the likelihood of X2 = x2 conditioned on
X1 = x1, multiplied by the likelihood of X3 = x3 conditioned on X1 = x1 and X2 = x2, . . .,
and so on and so forth. One limitation of autoregressive models is that naively the model
can only be used to generate sequences in the chosen sequential ordering. To address this
limitation, one could explicitly train models with different orderings [28]. The factorization
of a conditional distribution need not (and typically does not) reflect any causal mechanism
so any ordering is mathematically valid, although different choices of ordering of the variables
will generally lead to different models [130]. A common alternative to autoregressive models
in ML are “masked language models” which can be better at capturing the rich interplay
between positions in a sequence. However, the likelihood of such models cannot be readily
computed, nor can we easily sample from them.

Modern day autoregressive conditional generative models typically employ a neural net-
work architecture to parameterize their class of probability distributions. Consequently,
the same neural network considerations that emerge in other general ML settings, similarly
emerge here. For example, we must consider architecture choices, such as whether or not
to use convolution, attention, and how large of a network to use—how many layers, and
the width of each layer. The neural network architecture could be graph-based and could
encode certain symmetries of the physical world, such as that a protein is the same protein
no matter how we rotate it in space (e. g., equivariant to 3D rotations). As these neural net-
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work modeling considerations depend on the specific problem settings, there is no universal
solution.

Having said that, in practice, we often use an encoder-decoder architecture for autore-
gressive conditional generative models. The encoder network encodes the input condition y
into a “hidden”/latent representation, and the decoder network decodes the hidden represen-
tation into a conditional sequence distribution. Within autoregressive conditional generative
models, special care is required in constructing the decoder (e.g., with “causal masking” and
“teacher forcing”), since the decoding proceeds in a step-wise fashion for one amino acid
at a time, each time considering the previous amino acids already generated. Beside the
encoder-decoder architecture, decoder-only architectures have also been used for conditional
generation, whereby sequences are conditioned directly on a label for the protein family [85].

4.5 Conditional Generative Models for Structures

While protein sequences consist of a finite vocabulary of 20 amino acids, the 3D coordinates
of protein structures are real-values and therefore introduce a different set of modeling chal-
lenges. While there are many existing approaches to generating protein structures [5, 80,
35, 52, 139, 135, 103], recently diffusion models have emerged as a powerful class of models
for both unconditional and conditional generation [131, 140, 62, 5]. Instead of estimating a
(conditional) probability distribution over structures, diffusion models estimate how a (con-
ditional) probability distribution behaves in local neighborhoods of structure space. That
is, how the likelihood changes as we perturb a protein structure, at any point in structure
space. Formally, we learn the gradient of the probability distribution rather than the dis-
tribution itself. The probability distribution can implicitly be recovered from the gradient
information. At train time, we iteratively “diffuse” a protein structure in the training data
by gradually adding random noise to it, until it is unrecognizable. We train a neural network
to learn how to reverse the diffusion process, step-by-step, such that we can go from the un-
recognizable structure, to the original, well-formed protein structure. To generate structures
from a trained diffusion model, we use the reverse diffusion process, starting with a random
structure, and incrementally adjusting the set of 3D coordinates to “move” towards more
likely coordinates. While this may seem analogous to following a force field in molecular
dynamics simulations, the diffusion process in diffusion models does not necessarily carry
physical meaning.

There are two main approaches to enable diffusion models to be conditional diffusion
models, and both have been used in protein structure generation. In “classifier-free guid-
ance” [131, 140], the neural network that reverses the diffusion takes in a “condition tag”
that enables it to tailor the process accordingly. Such models must be trained with the con-
ditions as the conditions are tied into the neural network. In contrast, in “classifier-guided”
conditioning [62], the conditioning does not happen in the neural network, rather, the neu-
ral network is paired with an external classifier that has been separately trained to classify
whether a 3D structure is likely to satisfy the condition of interest. Consequently, the diffu-
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sion process, and the guidance, are conveniently decoupled. In particular, classifier-guided
conditioning allows the same unconditional diffusion model to be easily re-purposed for a
wide range of conditions without re-training. Of course the quality of the conditional gener-
ation depends on the quality of the classifier. In the reverse diffusion process, the external
classifier is used in a technically precise way (that leverages Bayes’ rule) to enable the dif-
fusion process to sample from the desired conditional distribution. Using a classifier-guided
approach has enabled conditional generative models to accommodate a wide range of differ-
ent input condition modalities in a plug-and-play manner, including: secondary structures,
coarse contact maps, partial structural motifs, symmetry, and biochemical properties [62].

Although in principle, it is possible to jointly model/generate the structure and sequence
together in diffusion models, this remains a challenging task. Currently, diffusion models for
generating protein structures typically require a second modeling step to find sequences for
the backbone structures.

4.6 Alternative Use: Evaluating Candidates by

Conditional Likelihoods

Although named “generative” models, many conditional generative models can also be used
to evaluate existing candidate sequences (or candidate structures) by their conditional like-
lihoods. The conditional likelihood, pθ(X = x | Y = y), can be used to rank how likely a
sequence, x, is to satisfy the given condition y, in comparison to other possible sequences.
We can only obtain a ranking, rather than an absolute probability, for the following rea-
sons. The conditional likelihood does not take into account whether the condition itself is
inherently easy or difficult to satisfy. We would have to enumerate all possible sequences to
“normalize” the likelihoods to get the desired probability.

Nevertheless, these conditional likelihoods can be useful for the relative ranking of candi-
date sequences. For example, from a conditional generative model for backbone-conditional
sequence generation, we may evaluate say 1,000 different candidate sequences to ask which
one is our best bet for forming a specified backbone. To do so, we compare the conditional
likelihoods of each sequence conditioned on the same backbone; all else being equal, those
with higher conditional likelihoods are more likely to adhere to the input condition. For a
fixed backbone, the relative ranking of the conditional likelihoods of these sequences has been
shown to correlate well with experimental measurements of stability [61, 68, 57]. Despite
that the models were not explicitly trained with stability measurements, stability can be
implicitly learned because sequences corresponding to more stable proteins were more likely
to appear in the training data—highlighting how the choice of data infiltrates the modeling
process, for good or for bad.
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4.7 Final Considerations

Unlike the case for generated images and texts, the average human cannot look at a generated
protein sequence or structure and decide whether it meets their needs or not. Rather, we
require expensive and time-consuming experimental work to validate any candidates. Hence
generative biology is in a much more difficult position than generative modeling for images
and texts. But the potential rewards, for engineering therapeutics and enzymes, for example,
are, arguably, correspondingly larger.

A potential danger of conditional generative models is a belief that once we build such a
model and sample from it, we will obtain the proteins that we set out to find. In practice,
these models are only as good as the parts that comprise it, including the data it was trained
on and the auxiliary models used in conditioning.

It’s worth noting that while ML has rapidly transformed the field of structure prediction,
there remains a large amount of work to be done to reliably predict protein functions of al-
most any kind. Consequently, it will generally be more difficult to build accurate conditional
generative models for specific functions, rather than structures. Functions that are largely
determined by macroscopic structure, such as binding, are more in reach, while those re-
quiring very precise active sites, such as enzyme activity, remain much less predictable. The
discrepancy in our success predicting function versus structure is due in part to the relative
dearth of data for protein function, while protein structures are now quite numerous. Efforts
are underway to generate proteins by conditioning on functional annotations, building upon
natural language as a “unified” interface for describing protein function. However, annota-
tions can be unreliable, and may be less amenable to data sharing across similar annotations
than more fundamental physical descriptors. For many important protein functions of inter-
est, experimental screening technologies will remain a critical part of the protein engineering
workflow.
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Figure A.1: Performance on individual data sets by NDCG when trained on limited labeled
data. Similar to Figure 2.8 but with NDCG instead of Spearman correlations. Error bands
are centered at mean and indicate bootstrapped 95% confidence interval from 20 random
data splits.
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Figure A.2: Performance on individual data sets by NDCG on 80%-20% data splits. Similar
to Figure 2.9 but with NDCG instead of Spearman correlations. Error bars indicate boot-
strapped 95% confidence interval from 20 random data splits. Box-and-whisker plots show
the first and third quartiles as well as median values. The upper and lower whiskers extend
from the hinge to the largest or smallest value no further than 1.5× interquartile range from
the hinge.
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Figure A.3: Comparison of TLmutation and the augmented Potts model. While both TL-
mutation and augmented Potts models seek to update Potts model parameters with assay-
labeled data, augmented Potts models learn additional site-specific parameters to correct
the Potts model, whereas TLmutation learns a binary 0/1 mask on the Potts model param-
eters. When comparing the two methods with random 80-20 train-test splits on the data
sets used in TLmutation, the augmented Potts model achieves higher Spearman correlation
on most data sets. The TLmutation performance shown is based on Supplementary Figure
S1 from Shamsi et al. [114], with error bars indicating 75% confidence interval from five-fold
cross-validation. The β-lactamase entry from Supplementary Figure S1 [114] is omitted here
as it is unclear which β-lactamase feature column from the data set is referred to.
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Figure A.4: Effects of MSA size on augmented Potts model performance. With the RRM
domain of the poly(A)-binding protein as a case study, we start with the MSA obtained
by jackhmmer with bit score 0.5 bits/residue, and then subsequently subsample the MSA
randomly. We chose this data set for case study because it is associated with the largest
MSA. The performance of the augmented Potts model degrades gradually when subsampling
the MSA, but the augmented Potts model still outperforms naive linear regression even with
only 32 evolutionary sequences. Error bars are centered at mean and indicate bootstrapped
95% confidence interval from 20 random data splits.
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Figure A.5: Extrapolation performance from single mutants to higher-order mutants by
NDCG. (NDCG version of Figure 2.5) Here we train on single mutants and test on higher-
order mutants on three case studies: the green fluorescent protein (GFP), the RRM domain
of Poly(A)-binding protein (PABP), and the U-box domain of ubiquitination factor E4B
(UBE4B). Each column measures the ranking quality among mutants that are 1, 2, 3, or 4
mutations away from the wild-type. The “TS” value indicates the total number of mutants
of a particular order in all of the data. For example, “TS=613” for single mutants means
there were 613 total single mutants in the data set that we sampled from. Error bands are
centered at mean and indicate bootstrapped 95% confidence interval from 20 random data
splits.
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Figure A.6: Extrapolation performance from single and double mutants to higher-order
mutants by NDCG. NDCG version of Figure 2.13. Instead of training on single mutants as
done in Figure 2.5, here we train on a random sample from both single and double mutants.
The “TS” value indicates the total number of mutants of a particular order in all of the data.
For example, “TS=613” for single mutants means there were 613 total single mutants in the
data set that we sampled from. Error bands are centered at mean and indicate bootstrapped
95% confidence interval from 20 random data splits.
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Figure A.7: FoldX predictions as additional features in augmented models, compared by
NDCG. NDCG version of Figure 2.15. We evaluate augmented models with FoldX-derived
stability features on the three data sets with higher-order mutants. Similar to the Spearman
correlation comparison, stability predictions from FoldX as additional features further im-
proves the performance of augmented models as measured by NDCG on the GFP, but not on
the poly(A)-binding protein RRM domain and the ubiquitination factor E4B U-box domain.
Error bands are centered at mean and indicate bootstrapped 95% confidence interval from
20 random data splits.
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Figure A.8: Comparison of Georgiev encoding and one-hot encoding. We compare models
with one-hot encoding to the same models with the 19-dimensional physicochemical repre-
sentation of the amino acid space developed by Georgiev [44]. Each dot and error bar here
represents mean and 95% confidence interval from sampling train and test data with 20
random seeds. On most single-mutant data sets, the Georgiev encoding and the amino acid
one-hot encoding result in similar performance. However, on data sets with higher-order
mutants when presented with sufficient training data (bottom right), the Georgiev encoding
does achieve better performance than the one-hot amino acid encoding, agreeing with previ-
ous findings [141]. For the augmented Potts model, the choice of encoding does not influence
performance.
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Figure A.9: Performance of linear model with only position features by Spearman correlation.
In addition to the linear model with one-hot encoded amino acid features, we also evaluate
a simpler linear model with position-only features that encode which sites are mutated. On
most data sets, this simpler linear model has comparable performance as the linear model
with one-hot encoded amino acid features, despite having much fewer features. On the three
data sets with higher-order mutants, however, amino acid features do contribute to higher
Spearman correlations. Error bands are centered at mean and indicate bootstrapped 95%
confidence interval from 20 random data splits. See Figure 2.16 for detailed extrapolative
performance on the three data sets with higher-order mutants.
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Figure A.10: Performance of linear model with only position features by NDCG. NDCG
version of Figure A.9. Similarly to the Spearman correlation result, the simpler linear model
with position-only features has comparable performance as the linear model with one-hot
encoded amino acid features on most data sets by NDCG, with the exception of the three data
sets with higher-order mutants. The gap between the two linear models is more substantial
by NDCG than by Spearman on those three datasets. Error bands are centered at mean and
indicate bootstrapped 95% confidence interval from 20 random data splits. See Figure A.11
for detailed extrapolative performance on the three data sets with higher-order mutants.
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Figure A.11: Extrapolative performance of linear model with only position features by
NDCG. NDCG version of Figure 2.16. Error bands are centered at mean and indicate
bootstrapped 95% confidence interval from 20 random data splits. Similar to the Spear-
man correlation result, we also see that the linear model with only position-specific features
matches the performance of the linear model with one-hot encoded amino acid features on
single mutants, but have worse NDCG than the linear model with one-hot encoded amino
acid features on double, triple, and quadruple mutants. The performance gap is more sub-
stantial by NDCG than by Spearman correlation.
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Figure A.12: Comparison of the augmented Potts model and simpler augmented models.
With the same setup as Figure 2.3, we compare simpler density models. Error bars are
centered at mean and indicate bootstrapped 95% confidence interval from 20 random data
splits. The ”independent-site” model refers to the EVmutation [53] independent model
implementation, while the ”profile HMM” model refers to the HMMER [42] implementation.
The difference in optimization algorithms lead to minor performance differences between the
two versions. For reference, we also include the augmented Potts model here as comparison.
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Figure A.13: Comparison of eUniRep evo-tuning procedures. We made two modifications
in the evo-tuning procedures for eUniRep models: 1) we used the EVmutation jackhmmer
parameters for consistent evolutionary data with other methods, and 2) we focused on aligned
portions of sequences rather than unaligned full sequences to lower the computational burden.
Here we show these two modifications do not negatively affect performance on GFP and
β-lactamase—the two proteins studied by Biswas et al. [17]. The orange and green lines
compare the effects of jackhmmer parameters, while the green and red lines compare the
effects of using aligned portions instead of full sequences. For GFP, we used the open-
sourced eUniRep model [4] as the orange line, while for β-lactamase we used Pfam PF00144
as jackhmmer seed sequences along with default jackhmmer parameters from the webserver
and evo-tuned UniRep on the resulting sequences. Error bands are centered at mean and
indicate bootstrapped 95% confidence interval from 20 random data splits.
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Figure A.14: Reproducing fine-tuned Transformer results on Envision data. When fine-
tuning ESM-1b Transformer on the same Envision [46] data as used by Rives et al. [106],
we reproduced the Spearman correlation performance for most of the Envision data sets on
80-20 splits. Orange is based on numbers from Supplementary Table S5 by Rives et al. [106],
while blue is from our reproduced runs. For each data set, we samples 80% training data
with 5 random seeds (20% of the 80% is used for validation to determine early stopping),
and report the Spearman correlation on the 20% held-out data.
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Figure A.15: Comparison of integrated Potts models with wild-type gauge and zero-sum
gauge. Top: Spearman correlation comparisons on models trained with 48, 144, 240 train-
ing examples. Middle: NDCG comparisons on models trained with 48, 144, 240 training
examples. Bottom left: Spearman correlation comparisons on 80-20 splits. Bottom right:
NDCG comparisons on 80-20 splits. Overall, zero-sum gauge has achieves higher Spearman
correlation than wild-type gauge. Error bands and error bars are centered at mean and
indicate bootstrapped 95% confidence interval from 5 random data splits.
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Figure A.16: Comparison of tied-energy models and the augmented Potts model. We evalu-
ated three versions of tied-energy (integrated) models: 1) integrated Potts models [12] with
rank-based monotonic mapping [41] between energies and fitness values; 2) integrated Potts
models with a differentiable proxy of Spearman correlation as loss; 3) integrated energy-
based models with neural network energy function and the same differentiable loss. As
integrated models are very expensive to train, we chose to evaluate integrated models on the
same β-lactamase and PSD95 data sets as Barrat-Charlaix et al. [12] and also additionally
on the three data sets with higher-order mutants. In contrast to tied-energy models where
evolutionary data and labeled data are fitted together, the augmented Potts model takes a
two step procedure first fitting to evolutionary data and then to labeled data. While the
augmented Potts model is orders of magnitude faster to compute, it still results in compa-
rable performance with the best tied-energy model.
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Appendix B

Supplementary Information for
Chapter 3

B.1 Dataset of Predicted Structures

We used training data from two sources: 1) experimental protein structures from the CATH
40% non-redundant chain set, and 2) AlphaFold2-predicted structures from UniRef50 se-
quences. To evaluate the generalization performance across different protein folds, we split
the train, validation, and test data based on the CATH hierarchical classification of protein
structures [94] for both data sources. To achieve that a rigorous structural hold-out, we
additionally use foldseek [74] for pairwise TMalign between the test set the train set.

CATH topology split. Following the structural split methodology in previous work [61,
67, 126], we randomly split the CATH v4.3 (latest version) topology classification codes into
train, validation, and test sets at a 80/10/10 ratio. The CATH [94] structural hierarchy,
classifies domains in four levels: Class (C), Architecture (A), Topology/fold (T), and Ho-
mologous superfamily (H). The topology/fold (T) level roughly corresponds to the SCOP
fold classification.

Experimental structures. We collected full chains up to length 500 for all domains
in the CATH v4.3 40% sequence identity non-redundant set. The experimental structure
data contained only stand-alone chains and no multichain complexes. As each chain may
be classified with more than one topology codes, we further removed chains with topology
codes spanning different splits, so that there is no overlap in topology codes between train,
validation, and test. This results in 16,153 chains in the train split, 1457 chains in the
validation split, and 1797 chains in the test split.

Predicted structures. We curated a new data set of AlphaFold2 [71]-predicted structures
for a selective subset of UniRef50 (202001) sequences. To prevent information leakage about
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the test set from the predicted structures, we proceeded in the following steps.
First, we annotated UniRef50 sequences with CATH classification by the Gene3D [79]

database, also used by Strokach [126] for data curation. Gene3D represents each CATH
classification code as a library of representative profile HMMs. We searched all HMMs
associated with the validation and test splits against the UniRef50 sequences using default
parameters in hmmsearch [98] and excluded all hits.

Additionally, as AlphaFold2 predictions use multiple sequence alignments (MSAs) as
inputs, we also took precaution to avoid information leakage from sequences in the MSAs.
We created a filtered version of UniRef100 by searching all the validation-split and test-split
Gene3D HMMs against UniRef100 (202001) and excluding all hits. Then, we constructed our
MSAs using hhblits [124] on this filtered version of UniRef100. While this filtering step was
out of precaution, in retrospect it was perhaps unlikely for the MSA inputs to AlphaFold2 to
leak information as the MSAs themselves were not seen during training. The filtering step
may have negatively impacted the quality of the resulting predicted structures, although
empirically only a very small percentage of MSA sequences were filtered out.

As AlphaFold2 predictions are computationally costly, our budget only allowed for pre-
dicting structures for a subset of the UniRef50 sequences. We ranked UniRef50 sequences
based on the distogram lDDT score, based on distogram predictions from the MSATrans-
former model [102], as a proxy for the quality of predicted structures. While the original
distogram lDDT score (Supplementary Equation 6 in [112]) is based on pairwise distances
from native protein structures, in the absence of native structures we use the argmax of pair-
wise distances instead, effectively measuring the “sharpness“ of distograms and prioritizing
sharper predictions. In this order, using AlphaFold2 Model 1 on the filtered UniRef100
MSAs described above, we obtained predicted structures for the top 12 million UniRef50
sequences under length 500, roughly 750 times the CATH train set size.

We used the publicly released model weights from AlphaFold2 Model 1 for CASP14 as
a single model, as opposed the 5-model ensemble in [71], to cover more sequences with the
same amount of computing resources. We curated the input MSAs from UniRef100 with
hhblits, with an additional filtering step as described above. To reduce computational costs,
compared to the standard AlphaFold2 protocol, we did not include the UniRef90 jackhmmer
MSAs, or the MGnify and BFD metagenomics MSAs, nor the pdb70 templates. Other than
a reduced inputs, we followed the default settings in AlphaFold2 open source code, using 3
recycling iterations and the default Amber relaxation protocol. Despite the reduced inputs,
the resulting 12 million predicted structures still have high pLDDT scores from AlphaFold,
with 75% of residues having pLDDT above 90 (highly confident).

We found that increasing the predicted data size to up to 1 million structures (75 times
the CATH experimental data size) substantially improves model performance. Beyond 1
million structures, models still benefit from more data but with diminished marginal returns
(Figure 3.6a).
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GVP-GNN GVP-GNN-large GVP-Transformer
GVP-GNN embedding dim (node) (100, 16) (256, 64) (1024, 256)
GVP-GNN embedding dim (edge) (32, 1) (32, 1) (32, 1)
Top K neighbors in GVP-GNN 30 30 30
GVP-GNN encoder layers 3 8 4
GVP-GNN decoder layers 3 8
Transformer embedding dim 512
Feedforward embedding dim 2048
Attention heads 8
Transformer encoder layers 8
Transformer decoder layers 8
Total number of parameters 1M 21M 142M

Batch size (tokens per GPU) 3072 4096 4096
GPUs 1 32 32
CATH:AF2 mixing ratio 1:0 40:1 80:1
Epochs until convergence 84 368 178
Train time per epoch (GPU hours) 0.07 24 88
Total train time (GPU days) 0.2 368 653

Optimizer Adam Adam Adam
Learning rate schedule Constant Inverse square root Inverse square root
Peak learning rate 1.0E-03 1.0E-03 1.0E-03
Initial learning rate 1.0E-07 1.0E-07
Warm-up updates 5000 5000
Gradient clipping 4.0 1

Table B.1: Details on model hyperparameters and training.

Noise on AlphaFold2-predicted backbone coordinates. Even after Amber relax-
ation, the backbone coordinates predicted by AlphaFold2 contain artifacts in the sub-
Angstrom scale that may give away amino acid identities. Without adding noise on predicted
structures, there is a substantial gap between held-out set performance on predicted struc-
tures and on experimental structures. To prevent the model from learning non-generalizable
AlphaFold2-specific rules, we added Gaussian noise at the 0.1A scale on predicted backbone
coordinates. The Gaussian noise improves the invariant Transformer performance but not
the GVP-GNN performance (Supplementary Figure B.3).
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B.2 Span Masking

We add a binary feature indicating whether each coordinate is masked or not. In GVP-
Transformer, we exclude the masked nodes in the GVP-GNN encoder layers, and then impute
zeros when passing the GVP-GNN outputs into the main Transformer. Imputing zeros for
missing vector features ensure the rotation- and translation- invariance of the model. In
GVP-GNN, we impute zeros for the input vector features, and in the input graph connect
the masked nodes to the k sequence nearest-neighbors (k = 30) in lieu of the k nearest nodes
by spatial distance.

For span masking, we randomly select continuous spans of up to 30 amino acids until
15% of input backbone coordinates are masked. Such a span masking scheme has shown to
improve performance on natural language processing benchmarks [70]. The span lengths are
sampled from a geometric distribution Geo(p) where p = 0.05 (corresponding to an average
span length of 1/p = 20). The starting points for the spans are uniformly randomly sampled.
Compared to independent random masking, span masking is better for GVP-Transformer
but not for GVP-GNN (Table B.3).

For the amino acids with masked coordinates, we exclude the corresponding nodes from
the input graph to the pre-processing GVP message passing layers, and then impute zeros for
the geometric features when passing the GVP outputs into the main Transformer. Imputing
zeros for missing vector features ensure the rotation- and translation- invariance of the model.

B.3 Model Architectures

Autoregressive modeling. GVP-GNN and GVP-Transformer both have encoder-decoder
architectures. The encoder only receives the structural features. The decoder receives the
encoder output along with the one-hot encoding of the amino acids. In the autoregresive
decoder, sequence information only propagate from amino acid i to j for i < j. The last
decoder layer produces a 20-way scalar output per position and softmax activation to predict
the probabilities for the amino acid identity at the next position in the sequence.

Invariance to rotation and translation. The input features for both GVP-GNN
and GVP-Transformer are translation-invariant, making the overall models also invariant to
translations.

Each GVP-GNN layer is rotation-equivariant, that is, for a vector feature x and any
arbitrary rotation T , Tf(x) = f(Tx). With equivariant intermediate layers and an invariant
output projection layer, GVP-GNN is overall invariant to rotations, since the composition
of an equivariant function f with an invariant function g produces an invariant function
g(f(x)).

The GVP-Transformer architecture is also invariant to rotations and translations. The
initial GVP-GNN layers in GVP-Transformer output rotation-invariant scalar features and
rotation-equivariant vector features for each amino acid. To make the overall GVP-Transformer
invariant, we perform a change of basis on GVP-GNN vector outputs to produce rotation-
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Perplexity Recovery %
Model Data Short Single-chain All Short Single-chain All
Structured GNN CATH 10.08 7.04 7.06 27.8% 35.1% 35.4%

GVP-GNN
CATH 8.13 5.76 5.86 31.5% 41.1% 40.4%
+ AlphaFold2 9.87 6.61 6.50 26.3% 36.3%. 36.8%

GVP-GNN-large
CATH 8.87 6.62 6.68 31.0% 37.2% 37.4%
+ AlphaFold2 7.08 4.46 4.39 34.1% 48.2% 48.7%

GVP-Transformer
CATH 8.80 6.78 6.97 28.5% 36.7% 36.3%
+ AlphaFold2 6.99 4.36 4.34 33.0% 48.9% 49.5%

Table B.2: Fixed backbone sequence design performance on the more stringent structurally
held-out test set from CATH v4.3 chains (and its short and single-chain subsets) in terms of
per-residue perplexity (lower is better) and recovery (higher is better).

invariant features for the Transformer. More specifically, for each amino acid, we define a
local reference frame based on the N, CA, and C atom positions in the amino acid, fol-
lowing Algorithm 21 in AlphaFold2 [71]. We then perform a change of basis according to
this local reference frame, rotating the vector features in GVP-GNN outputs into the local
reference frames of each amino acid. (If GVP-GNN outputs are used directly as Transformer
inputs without this change of basis, the GVP-Transformer model would not be rotation-
invariant.) We concatenate this rotated “local version” of vector features together with the
scalar features as inputs to the Transformer. The concatenated features are invariant to both
translations and rotations on the input backbone coordinates, forming a L×E matrix where
L is the number of amino acids in the protein backbone and E is the feature dimension. For
amino acids with masked or missing coordinates, the features are imputed as zeros.

Transformer. We closely followed the original autoregressive encoder-decoder Transformer
architecture [134] except for using learned positional embeddings instead of sinusoidal po-
sitional embeddings, attention dropout, and layer normalization inside the residual blocks
(“pre-layernorm”). For model scaling experiments, we followed the model sizes in [132],
and chose the 142-million-parameter model with 8 encoder layers, 8 decoder layers, 8 at-
tention heads, and embedding dimension 512 based on the best validation set performance
(Figure 3.6c shows test set ablation).

The GVP-GNN, GVP-GNN-large, and GVP-Transformer models used in the evaluations
in this manuscript are all trained to convergence, with detailed hyperparameters listed in
Table B.1.

B.4 TM-score-based Test Set

In addition to the CATH topology-based test set following previous work [61, 67], we also
create an even more stringent test set based on pairwise TM-score comparison between train
and test examples. The CATH topology split does not completely prevent high TM-score
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Figure B.1: An illustrative example of structural overlap between CATH topology splits.
The jack bean canavalin (PDB code 1DGW; chain Y; red) and the soybean β-Conglycinin
(PDB code 1UIJ; chain B; blue) are assigned different topology codes in CATH (1.10.10 and
2.60.120), but they align with TM-score 0.94 and CA RMSD 0.7A on a segment of 90 residues.
The difference in topology classifications likely resulted from CATH annotating only a 37-
residue mainly helical segment of the jack bean canavalin as a domain while annotating a
longer 176-residue mainly beta sheet segment of the soybean β-Conglycinin as a domain.
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Figure B.2: Distribution of the highest TM-score from each test example to the train set.
For example, 54% of the CATH topology split test set has at least one match in the train
set with TM-score above 0.5, and 27% of the topology split test set has at least one match
in the train set with TM-score above 0.6.
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matches between train and test structures. We illustrate such an example in Figure B.1, and
show overall TM-score statistics in Figure B.2.

We constructed a TM-score-based test set of 223 proteins with no TMalign matches (TM-
score ≥ 0.5) from the train set, using the foldseek [74] TMalign tool with default parameters
for the pairwise search.

We found that the conclusions about model performance overall remains the same on
this TM-score-based test set as on the CATH topology split test set. For consistency with
prior work, we report metrics on the CATH topology test set in the main manuscript, while
showing metrics on the smaller TM-score-based test set in Table B.2.

B.5 Additional Results and Details

Ablation on noise and masking during training. We found that GVP-Transformer
models trained with Gaussian noise during training perform slightly better at test time
than those trained without (Table B.3). When given full backbone coordinates at test time,
training with span masking only very slightly improves model performance compared to
no masking or to random masking, even though there is a much larger performance gap
between random masking and span masking on regions with masked backbone coordinates
(Figure 3.4).

Dual-state design test set from PDBFlex. We test design performance on multiple
conformations by finding test split proteins with distinct conformations in the PDBFlex
database. From PDBFlex, we looks for experimental structures of protein sequences in
the CATH topology split test set (95% sequence identity or above), and take all paired
instances that are at least 5 angstroms apart in overall RMSD between conformations. We
report perplexity on locally flexible residues (defined as local RMSD above 1 angstrom).
To be more conservative in our evaluation, we show the better of the two conformations to
represent single-state perplexity in Figure 3.7.

Ablation on the number of GVP-GNN encoder layers in GVP-Transformer. In-
creasing the number of GVP-GNN encoder layers improves the overall model performance
(Figure B.3), indicating that the geometric reasoning capability in GVP-GNN is comple-
mentary to the Transformer layers.

Model performance when trained only on predicted structures. When trained on
the 12 million predicted structures without including any of the experimental structures from
CATH in training data, the model performance of GVP-GNN, GVP-GNN-large, and GVP-
Transformer is across the board substantially worse than when trained only on the CATH
structures (Table B.4). This gap is especially pronounced for the larger GVP-GNN-large
and GVP-Transformer models.
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Perplexity

GVP-Transformer

Span masking Gaussian noise 4.10
Span masking No noise 4.32
Independent random masking Gaussian noise 4.30
No masking Gaussian noise 4.20

Table B.3: Effects of adding Gaussian noise to predicted structures and effects of span
masking during training, as measured by perplexity on CATH topology split test set. The
GVP-Transformer has 142M parameters and is trained with a mixing ratio of 1:40.

Perplexity
GVP-GNN 6.52
GVP-GNN-large 11.51
GVP-Transformer 10.95

Table B.4: Model performance when trained only using the 12 million predicted structures
without CATH training data, as measured by perplexity on CATH topology split test set.

Pearson correlation
Fold Structured GNN GVP-GNN GVP-GNN-large+AF2 GVP-Transformer+AF2

[61] [66]
ββαββ37 0.47 0.53 0.62 0.70
ββαββ1498 0.45 0.39 0.37 0.33
ββαββ1702 0.12 0.26 0.24 0.22
ββαββ1716 0.47 0.57 0.60 0.58
αββα779 0.57 0.48 0.62 0.64
αββα223 0.36 0.47 0.57 0.55
αββα726 0.21 0.19 0.24 0.26
αββα872 0.23 0.39 0.38 0.42
ααα134 0.36 0.44 0.46 0.50
ααα138 0.41 0.44 0.55 0.58
Average 0.37 0.42 0.47 0.48

Table B.5: Mutation stability prediction performance for small de novo proteins [107], with
highest correlation bolded.
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Figure B.3: Effects of varying the number of GVP-GNN pre-processing layers in the GVP-
Transformer model, as measured by perplexity on CATH topology split test set.

Stability prediction on de novo small proteins. We predict protein stability on an
experimentally measured stability dataset for de novo small proteins [107]. We use the rela-
tive difference in sequence conditional log-likelihoods as a predictor for stability and compute
Pearson correlation with the mutation effect following [61], assuming that more stable se-
quences should score higher in log-likelihoods. For each fold, Rocklin et al. [107] starts with
a reference protein and generates sequence variants with single amino acid substitutions.
We calculate the Pearson correlation between sequence conditional log-likelihood scores and
experimental stability measurements for all designed sequences in each fold. With predicted
structures as additional training data, the GVP-Transformer model improves the pearson
correlation on 8 out of the 10 folds.

Perplexity and sequence recovery of SARS-CoV-2 RBD. We show perplexity and
sequence recovery on the SARS-CoV-2 protein receptor binding domain (RBD) as an example
for inverse folding. The RBD can exist in a closed-state with the RBD down or in an open-
state with the RBD up [136], as illustrated in Figure B.5. The SARS-Cov-2 spike protein
structure has no match with the training data with TM-score above 0.5. The SARS-Cov-2
spike protein has both an open and closed state (open state: PDB 6XRA; closed state: PDB
6VXX). We evaluate perplexity and sequence recovery conditioning on each of the two states
independently and jointly. Conditioning on the open state results in better perplexity and
sequence recovery than conditioning on the closed state. Conditioning on both states gives
improvement in both perplexity and sequence recovery compared to conditioning only on
the open state.
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Perplexity Recovery %
Open state Closed state Dual-state Open-state Closed state Dual-state

GVP-GNN 4.64 5.13 4.20 45.3% 44.2% 49.7%
GVP-Transformer 4.50 4.96 4.06 49.2% 48.1% 53.6%

Table B.6: Perplexity and sequence recovery on the SARS-Cov-2 spike protein receptor
binding domain (RBD), conditioned on either the closed state, the open state, or both states
(illustrated in Figure B.5). The inputs to inverse folding models consist of the backbone
coordinates for the entire spike protein, while the perplexity evaluation is only on the RBD.

AUROC

Supervised

3DCNN 0.57
GNN 0.62
ENN 0.57
GVP-GNN 0.68

Transfer GVP-GNN 0.71

Zero-shot

GVP-GNN (chain) 0.58
GVP-GNN (complex) 0.71

GVP-GNN-large+AF2 (chain) 0.61
GVP-GNN-large+AF2 (complex) 0.71

GVP-Transformer+AF2 (chain) 0.60
GVP-Transformer+AF2 (complex) 0.68

Table B.7: Protein complex stability on SKEMPI test set (binary classification of increase
in stability on single-point mutations). Although only trained on single chains, the inverse-
folding models generalize to protein complexes. Giving the full complex as input, complex,
improves performance compared to giving only the chain as input, chain. Zero-shot predic-
tion compared to fully supervised and supervised transfer learning methods from [129] and
[66] trained on the SKEMPI train set.



APPENDIX B. SUPPLEMENTARY INFORMATION FOR CHAPTER 3 107

0 2 4 6 8 10 12 14 16
Perplexity - conditioned on chain

0

2

4

6

8

10

12

14

16

Pe
rp

le
xi

ty
 - 

co
nd

iti
on

ed
 o

n 
co

m
pl

ex

Equal perplexity

Figure B.4: Fixed backbone sequence design perplexity for protein complexes. The model
is evaluated on 796 structurally held-out protein complexes. Comparison of conditioning
on the backbone coordinates of individual chains (x-axis) with conditioning on backbone
coordinates of the entire complex (y-axis). Note that for both values perplexity is evaluated
on the same chain in the complex. The shift to the lower right indicates improved perplexity
when the model is given the complete structure of the complex.

Receptor-binding SB domain (RBD)

Closed Partially open

Figure B.5: Illustration of the closed and open states of the SARS-CoV-2 spike protein
receptor-binding domain. Cryo-EM structures from [136] (open state: PDB 6XRA; closed
state: PDB 6VXX).
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Predicting RBD-ACE2 binding affinity. We used the binding affinity dataset provided
by Starr et al. [122] (https://github.com/jbloomlab/SARS-CoV-2-RBD DMS), restricting
to sites within the RBM subsequence. We used the RBD-ACE2 structure determined by
Lan et al. [76] (PDB: 6M0J). For mutational effect predictions with ESM-1v, ESM-1b, and
ESM-MSA-1b, we scored mutations using the masked-marginal likelihood ratio between the
mutant and wildtype amino acids. To generate the MSA used as input to ESM-MSA-1b, we
searched uniclust30 2017 07 [90] with hhblits [124] (using two iterations and an E-value
cutoff of 0.001) based on the RBD wildtype sequence as the query.

Predicting complex stability changes upon mutations. SKEMPI [63] is a database
of binding free energy changes upon single point mutations within protein complex inter-
faces. This database is used as a task in the Atom3D benchmark suite [129] for comparing
supervised stability prediction methods. The task is to classify whether the stability of
the complex increases as a result of the mutation. We compare zero-shot predictions us-
ing inverse folding models to supervised and transfer learning methods [129, 66] on the
Atom3D test set. We find that sequence log-likelihoods from GVP-GNN, GVP-GNN-large,
and GVP-Transformer models are all effective zero-shot predictors of stability changes of
protein complexes (Table B.7), performing comparably to the best supervised method which
uses transfer learning.

Predicting insertion effects on AAV. Using masked coordinate tokens at insertion
regions, inverse folding models can also predict the effects of sequence insertions. Adeno-
associated virus (AAV) capsids are a promising gene delivery vehicle, approved by the US
Food and Drug Administration for use as gene delivery vectors in humans. Focusing on
mutating a 28-amino acid segment, Bryant et al. [21] generated more than 200,000 variants
of AAV sequences with 12–29 mutations across this region, and measured their ability to
package of a DNA payload. This dataset is unique compared to many other mutagenesis
datasets in that most sequences feature random insertions in the 28-amino acid segment, as
opposed to only random substitutions.

We use inverse folding models to predict insertion and substitution effects as follows: For
each sequence, we input the full backbone coordinates of the wild-type (PDB: 1LP3), and
insert one masked token into the input backbone coordinates for each insertion. Then we
compare the conditional sequence log-likelihood on this input with masks to the conditional
sequence log-likelihood of the wild-type sequence on the wild-type backbone. The difference
in these two conditional log-likelihoods are used as the score for predicting packaging ability.

We report the zero-shot performance on each of the 7 data subsets evaluated in the
FLIP [27] benchmark suite. For amino acid insertions (marked as lowercase letters in the
FLIP data), the corresponding backbone coordinates for those amino acids are marked as
unknown in the input structure. As shown in Table B.8, GVP-Transformer trained with
predicted structures outperforms the sequence-only zero-shot prediction baseline ESM-1v on
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6 out of the 7 data subsets. The reported standard deviations are calculated by sampling
different subsets of 10,000 variants from the evaluation data.

For ESM-1v, we scored variant sequences based on the independent marginals formula
as described in Equation 1 from Meier et al. [88], scoring mutations using the log odds ratio
at the mutated position, assuming an additive model when a set of multiple mutations T
exist in the same sequence:∑

t∈T

log p(xt = xmt
t |xins

\T )− log p(xt = xwt
t |x\T ) (B.1)

where xins
\T in the first term is the wild-type sequence with mask tokens at insertion

positions and x\T in the second term is the wild-type sequence without insertions.

Confusion matrix. We calculated the substitution scores between native sequences and
sampled sequences (sampled with temperature T = 1) by using the same log odds ratio for-
mula as in the BLOSUM62 substition matrix. For two amino acids x and y, the substitution
score s(x, y) is

s(x, y) = log

(
p(x, y)

q(x)q(y)

)
, (B.2)

where p(x, y) is the jointly likelihood that native amino acid x is substituted by sampled
amino acid y, q(x) is the marginal likelihood in the native distribution, and q(y) is the
marginal likelihood in the sampled distribution.

Calibration. Calibration curves examines how well the probabilistic predictions of a clas-
sifier are calibrated, plotting the true frequency of the label against its predicted probability.
When computing the calibration curve, for each amino acid, we bin the predicted probabil-
ities into 10 bins and then compare with the true probability.

Placement of hydrophobic residues. We define the amino acids IVLFCMA as hy-
drophobic residues, and inspect the distribution of solvent accessible surface area for both
hydrophobic residues and polar (non-hydrophobic) residues. Solvent accessible surface area
calculated with the Shrake-Rupley (“rolling probe”) algorithm from the biotite package [75]
and summed over all atoms in each amino acid. All models have similar distributions of
accessible surface area for hydrophobic residues, also similar to the distribution in native
sequences (Figure B.8).

Sampling speed. We profile the sampling speed with PyTorch Profiler, averaging over
the sampling time for 30 sequences in each sequence length bucket on a Quadro RTX 8000
GPU with 48GB memory. For the generic Transformer decoder, we use the incremental
causal decoding implementation in fairseq [95]. For GVP-GNN, we use the implementation
from the gvp-pytorch GitHub repository.
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Figure B.6: Confusion matrix between native sequence and sampled sequences from the
model, compared to BLOSUM62 as reference.
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Figure B.7: Calibration.

Average sampling time per sequence
Sequence length ≤ 100 100− 200 200− 300 300− 400 400− 500
GVP-GNN (3 layers) 3.7s 9.3s 20.8s 76.9s 150.3s
GVP-GNN-large (8 layers) 6.7s 11.8s 47.5s 90.3s 168.8s
GVP-Transformer (8 layers) 1.5s 2.6s 9.0s 16.2s 26.0s

Table B.9: Average time required for sampling one sequence, using open source implemen-
tation of GVP-GNN and open source implementation of Transformer from fairseq [95].
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Figure B.8: The majority of hydrophobic residues are buried, following a long tail accessible
surface area distribution as in native sequences.




