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Objective. To investigate if histogram analysis and visually assessed heterogeneity of diffusion-weighted imaging (DWI) with
apparent diffusion coefficient (ADC) mapping can predict molecular subtypes of invasive breast cancers.Materials and Methods.
In this retrospective study, 91 patients with invasive breast carcinoma who underwent preoperative magnetic resonance imaging
(MRI) with DWI at our institution were included. Two radiologists delineated a 2-D region of interest (ROI) on ADC maps in
consensus. Tumors were also independently classified into low and high heterogeneity based on visual assessment of DWI. First-
order statistics extracted through histogram analysis within the ROI of the ADC maps (mean, 10th percentile, 50th percentile,
90th percentile, standard deviation, kurtosis, and skewness) and visually assessed heterogeneity were evaluated for associations
with tumor receptor status (ER, PR, and HER2 status) as well as molecular subtype. Results. HER2-positive lesions demonstrated
significantly higher mean (p � 0.034), Perc50 (p � 0.046), and Perc90 (p � 0.040), with AUCs of 0.605, 0.592, and 0.652, re-
spectively, than HER2-negative lesions. No significant differences were found in the histogram values for ER and PR statuses.
Neither quantitative histogram analysis based on ADC maps nor qualitative visual heterogeneity assessment of DWI images was
able to significantly differentiate between molecular subtypes, i.e., luminal A versus all other subtypes (luminal B, HER2-enriched,
and triple negative) combined, luminal A and B combined versus HER2-enriched and triple negative combined, and triple
negative versus all other types combined. Conclusion. Histogram analysis and visual heterogeneity assessment cannot be used to
differentiate molecular subtypes of invasive breast cancer.

mailto:thakurs@mskcc.org
https://orcid.org/0000-0002-2722-7331
https://orcid.org/0000-0001-8090-3696
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


1. Introduction

Breast cancer classification according to tumor molecular
subtype is nowadays routinely performed and is used to
predict cancer aggressiveness and to guide recommenda-
tions for systemic treatments. Breast cancer can be classified
into four molecular subtypes (luminal A, luminal B, human
epidermal growth factor receptor 2- (HER2-) enriched, and
triple negative) that present with distinctly different prog-
noses and treatment responses [1, 2]. Less aggressive mo-
lecular subtypes such as luminal A cancers (which are the
most common type of breast cancer) are often low grade,
susceptible to antihormonal therapy and have a better
prognosis [3]. More aggressive molecular subtypes such as
triple negative and HER2-enriched cancers have a pro-
pensity for metastatic disease and thus require treatment
with either cytotoxic chemotherapy or the combination of
cytotoxic chemotherapy and targeted anti-HER2 treatment
[4–6]. In addition to molecular subtypes, intratumoral
heterogeneity, i.e., the presence of cell clones of different
levels of aggressiveness within one lesion, has been linked to
tumor aggressiveness and poor prognosis [7].

To date, breast cancer classification according to mo-
lecular subtypes and initial treatment decisions are made
based on breast biopsy. However, biopsy provides only a
snapshot of the tumor biology and is subject to selection
bias. In addition, as more and more tumors are being treated
with either neoadjuvant cytotoxic or endocrine treatment, it
is increasingly important to have the ability to achieve an
accurate assessment of tumor biology in the preoperative
setting [8].

Advances in imaging technology have allowed for the use
of multiparametric features of magnetic resonance imaging
(MRI) to improve breast cancer detection and character-
ization [9–11]. Amongst the investigated functional pa-
rameters, diffusion-weighted imaging (DWI) has emerged as
one of the most important and easily obtainable multi-
parametric imaging features [12]. �e quantification of DWI
with apparent diffusion coefficient (ADC) mapping may
demonstrate tumor characteristics that enable the non-
invasive assessment of prognosis and tumor behavior pre-
operatively [13, 14].

Tumor molecular subtypes present with different vas-
cularity and cellularity which are related to their underlying
receptor status, especially in relation to estrogen receptor
(ER) and HER2 status. �e differences in vascularity and
cellularity can affect the signal intensity of the tumor on
DWI and may also affect tumor heterogeneity on DWI
[15, 16]. Histogram analysis has been proposed as a quan-
titative method to evaluate the distribution of DWI and
ADC values within a designated region of interest (ROI),
with the potential of characterizing the amount of hetero-
geneity in a tumor [17, 18]. Patterns of value distribution on
histogram analysis might be different amongst tumors with
distinct biology [19]. In addition, tumor heterogeneity de-
tected on histogram analysis may be visible on DWI, and yet
to date, the visual assessment of heterogeneity on DWI has
not been investigated for its usefulness to predict tumor
characteristics.

In this context, the objective of our study was to evaluate
if histogram analysis of DWI with ADC mapping can be
used to predict molecular subtypes of invasive breast cancers
and if visual assessment of tumor heterogeneity on DWI can
outperform histogram analysis in the prediction of molec-
ular subtypes.

2. Materials and Methods

2.1. Patients. In this health insurance portability and ac-
countability act-compliant and institutional review board-
approved retrospective study, we queried our institutional
database for consecutive patients with invasive ductal or
lobular carcinoma of the breast who underwent preoperative
3.0TMRI with dynamic contrast-enhanced (DCE) and DWI
at our institution from January 2011 to January 2013. �ere
were 188 patients who matched our search criteria. �e
exclusion criteria were as follows: (1) lesion smaller than
1 cm (n� 15); (2) previous treatment for breast cancer
(n� 37); (3) unavailable receptor status on the pathology
report (n� 10); and (4) poor image quality of DWI (n� 35).
�e final study population consisted of 91 patients. �e need
for informed consent was waived by the institutional review
board.

2.2. MRI Studies. �e MRI studies were performed using a
3.0T Discovery MR750 equipment (GE Healthcare, Mil-
waukee, WI, USA) with a dedicated 16-channel phased-
array breast coil (Sentinelle Vanguard, Toronto, Canada).
�e standard multiparametric breast protocol was per-
formed: axial T2-weighted imaging with and without fat
saturation, DWI with ADCmapping, and DCE before and at
3 timepoints at 60 s intervals after administration of contrast
media (gadopentetate dimeglumine given at 0.1mmol/kg).
�e DWI sequence parameters were as follows: 2D single-
shot, dual spin echo-planar imaging sequences (TR 6000ms;
minimum TE; flip angle 90°); acquisition matrix: 98× 98 or
128×128; reconstructed matrix 256× 256; FOV 28–38 cm;
slice thickness: 4 or 5mm; NEX 3; slice gap: 0-1mm; fat
suppression: enhanced; parallel imaging: ASSET; acquisition
time approximately 2min for 2 b-values: 0 and 1000 s/mm2.

All DWI data were transferred to a computer, and an in-
house program prepared using MATLAB version 7.14
(MathWorks, Natick, MA) was used to generate ADC
parametric maps.

2.3. Image Evaluation. Two breast radiologists (xx) with 8
and 13 years of experience in breast MRI reviewed the MRI
studies. �e largest invasive tumor in each patient was
identified on DCE images and correlated with DWI, and
subsequently the slice with the largest tumor diameter on
high b-value images (1000 s/mm2) was selected. A two-di-
mensional ROI was drawn on the ADC map in consensus
using the mouse cursor in a free hand fashion to mark the
lesion boarders. �e ROI included as much of the tumor as
possible while the cystic areas, areas of normal breast pa-
renchyma, and biopsy markers were avoided whenever
possible. In a second step, the radiologists independently
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classified all tumors into two categories (low vs. high het-
erogeneity) based on the visual assessment of tumor het-
erogeneity on DWI high b-value (1000 s/mm2) images. �e
visual classification between low and high heterogeneity was
done subjectively and based solely on the radiologists’ ex-
perience and judgement.

2.4. Histopathology. Tumor histopathology was reviewed by
a dedicated pathologist (xx) with 30 years of experience. �e
tumors were classified according to molecular subtype based
on hormone receptor and HER2 status. �e immunohis-
tochemistry results as obtained from surgical specimens
were considered the reference standard. In patients who
underwent neoadjuvant chemotherapy after the MRI study,
the results obtained from the biopsy specimen were used.
Tumors were classified as luminal A if the specimen was
estrogen receptor (ER) or progesterone receptor (PR)
positive and HER2 negative; luminal B if the specimen was
ER or PR positive and HER2 positive; HER2-enriched if the
specimen was ER and PR negative and HER2 positive; and
triple negative if the specimen was ER, PR, and HER2 were
negative, as described in the previous studies [1, 2]. �e
HER2 status was considered negative if the staining was 0 or
1+, equivocal if it was 2+, and positive if it was 3+. Tumors
with equivocal HER2 status were evaluated using fluores-
cence in situ hybridization and considered positive if HER2
gene amplification was observed and negative if no gene
amplification was observed.

2.5. Statistical Analysis. All statistical analyses were per-
formed with SAS version 9.4 (the SAS Institute Inc., Cary,
NC, USA). Metric data values were expressed as mean or
percentage values, as appropriate. Differences in first order
statistics of histogram values between molecular subtypes
were assessed for significance using the Wilcoxon rank sum
and Mann–Whitney U tests, as appropriate. Comparison
was performed between luminal A versus all other subtypes
(luminal B, HER2-enriched, and triple negative combined),
between luminal A and B combined versus HER2-enriched
and triple negative combined, and between triple negative
versus all other subtypes (luminal A, luminal B, and HER2-
enriched combined). �e first-order statistics assessed were
as follows: the mean; 10th (Perc10), 50th (Perc50), and 90th
(Perc90) percentiles; standard deviation; kurtosis; and
skewness. p values <0.05 were considered statistically sig-
nificant. �e receiver operating characteristic curve was
generated using MATLAB version 7.14 (MathWorks, Natick,
MA). Associations between visual heterogeneity (low vs.
high heterogeneity) and molecular subtype were also ana-
lyzed. �e agreement between the two readers on visual
assessment was quantified, and coefficient values closer to 1
were indicative of better agreement.

3. Results

3.1. Population. �e mean patient age was 48 years (range,
27–68). �e mean tumor size was 3.5 cm (range, 1–16.6 cm).
�ere were 70 (76.9%) masses and 21 (23.1%) nonmass

enhancements. �ere were 49 (53.8%) luminal A, 8 (8.8%)
luminal B, 11 (12.1%) HER2-enriched, and 23 (25.3%) triple
negative tumors.

3.2. Histogram Values and Receptor Status. Significant dif-
ferences were found in the histogram values between HER2
positive and HER2 negative tumors: mean (p � 0.034),
Perc50 (p � 0.046), and Perc90 (p � 0.040), with areas
under the curve (AUCs) of 0.605, 0.592, and 0.652, re-
spectively. HER2 positive tumors had higher ADC values
than HER2 negative: mean 1.25×10− 3 vs 1.12×10− 3mm2/s,
Perc50 1.23×10− 3 vs 1.10×10− 3mm2/s, and Perc90 1.62
× 10− 3 vs 1.43×10− 3mm2/s, respectively. �ere were no
significant differences in the histogram values between HER2
positive and HER2 negative tumors in terms of Perc10 (p �

0.101), standard deviation (p � 0.165), kurtosis (p � 0.815),
and skewness (p � 0.944). Case examples of HER2 positive
and HER2 negative tumors are demonstrated in Figures 1
and 2.

�ere were no significant differences in the histogram
values between positive and negative ER or between positive
and negative PR: mean (p � 0.096 and 0.232), Perc10
(p � 0.113 and 0.137), Perc50 (p � 0.095 and 0.223), Perc90
(p � 0.142 and 0.424), standard deviation (p � 0.603 and
0.866), kurtosis (p � 0.888 and 0.828), and skewness
(p � 0.505 and 0.871). �e results of histogram analysis in
regard to receptor status are demonstrated in Table 1.

3.3. Histogram Values and Molecular Subtypes. No signifi-
cant differences were found in the histogram values between
luminal A cancers and all the other types combined: mean
(p � 0.204), Perc10 (p � 0.216), Perc50 (p � 0.237), Perc90
(p � 0.149), standard deviation (p � 0.222), kurtosis
(p � 0.494), and skewness (p � 0.896). No significant dif-
ferences were found in the histogram values for luminal A
and B combined versus HER2-enriched and triple negative
combined: mean (p � 0.204), Perc10 (p � 0.130), Perc50
(p � 0.115), Perc90 (p � 0.167), standard deviation
(p � 0.081), kurtosis (p � 0.941), and skewness (p � 0.574).
Similarly, no significant differences were found between
triple negative tumors and all other subtypes combined:
mean (p � 0.604), Perc10 (p � 0.915), Perc50 (p � 0.636),
Perc90 (p � 0.485), standard deviation (p � 0.479), kurtosis
(p � 0.574), and skewness (p � 0.931). �e results of the
histogram analysis in regard to breast cancer molecular
subtype are demonstrated in Table 2.

3.4. Visual Heterogeneity and Molecular Subtypes. No sig-
nificant associations were found between visual heteroge-
neity and molecular subtype (Table 3). When comparing
luminal A cancers versus all other types combined, p values
of 0.300 for reader 1 and 0.538 for reader 2 were obtained.
When comparing luminal A and B combined versus HER2-
enriched and triple negative combined, p values of 0.603 for
reader 1 and 0.682 for reader 2 were observed. Similarly, no
significant difference was observed when comparing triple
negative tumors with all other molecular subtypes
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Figure 1: 43-year-old woman with human epidermal growth factor receptor 2- (HER2-) positive invasive ductal carcinoma of the right
breast on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) (a), diffusion-weighted imaging (DWI) (b), apparent
diffusion coefficient (ADC) map (c), histopathology (d), and HER2 staining (e). �e histogram obtained (f) displayed a peak around
1.2×10− 3mm2/s and non-Gaussian distribution, in spite of being classified as low heterogeneity on visual assessment.
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Figure 2: 55-year-old woman with human epidermal growth factor receptor 2- (HER2-) negative invasive ductal carcinoma of the left breast
on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) (a), diffusion-weighted imaging (DWI) (b), apparent diffusion
coefficient (ADC) map (c), histopathology (d), and HER2 staining (e).�e histogram obtained (f) displayed a peak around 1.0×10− 3mm2/s
and Gaussian distribution, in spite of being classified as high heterogeneity on visual assessment.
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combined, with p values of 0.133 for reader 1 and of 0.960 for
reader 2.�ere was an almost perfect agreement between the
two readers while classifying lesions into low or high het-
erogeneity (κ� 0.82).

4. Discussion

In this study, we investigated if histogram analysis and vi-
sually assessed heterogeneity of DWI with ADC mapping
can be used to predict the molecular subtype of invasive
breast cancers. First-order histogram analysis of ADC values
showed that there were significant associations in histogram
values of the mean, Perc50, and Perc90 values with HER2
status whereas no significant associations were found in
histogram values with tumor ER and PR status. First-order
histogram analysis was not able to accurately predict mo-
lecular subtype in the comparison of luminal A versus all
other subtypes combined, luminal A and B combined versus
HER2-enriched and triple negative combined, and triple
negative versus all other subtypes combined. Likewise, vi-
sually assessed heterogeneity on DWI could not predict
molecular subtypes of breast cancer.

�e use of ADC as a tool for the differentiation between
benign and malignant lesions has been widely explored in
several studies. Malignant tumors usually have lower ADC
values than benign lesions due to high cellularity [20, 21].
Likewise, invasive ductal carcinomas have lower ADC values
than ductal carcinomas in situ [22]. ADC has been also
investigated for the prediction of prognostic factors, such as
positive axilla and lymphovascular invasion, with promising
results [20, 21, 23–25].

�e assessment of receptor status using different ADC
metrics has led to conflicting results in the literature
[16, 24, 26–29]. While some studies demonstrated lower
ADC values for ER and PR positive tumors and higher for
HER2 positive lesions, others did not find any significant
associations between ADC measurements and receptor
status. In our study, no significant differences were found in
first-order histogram values regarding ER and PR status.
Mean, Perc10, Perc50, and Perc90 values were lower for ER
positive tumors, in line with the previous studies, but this
difference was not statistically significant. On the other
hand, mean, Perc50, and Perc90 values were significantly
higher for HER2 positive tumors. �is can be explained by

Table 1: Comparison of the average values of apparent diffusion coefficient (ADC) (mm2/s) on histogram analysis according to receptor
status.

ER+ ER− p PR+ PR− p HER2+ HER2− p

Mean 1.11 1.20 0.096 1.12 1.18 0.232 1.25 1.12 0.034
Perc10 0.82 0.90 0.113 0.82 0.89 0.137 0.92 0.60 0.101
Perc50 1.09 1.19 0.095 1.10 1.17 0.223 1.23 1.10 0.046
Perc90 1.43 1.54 0.142 1.45 1.51 0.424 1.62 1.43 0.040
SD 0.24 0.25 0.603 0.24 0.24 0.866 0.27 0.23 0.165
Kurtosis 3.26 3.22 0.888 3.22 3.28 0.828 3.30 3.23 0.815
Skewness 0.33 0.24 0.505 0.31 0.29 0.871 0.29 0.30 0.944
ER: estrogen receptor; HER2: human epidermal growth factor receptor 2; Perc: percentile; PR: progesterone receptor; SD: standard deviation.

Table 2: Comparison of the average values of ADC (mm2/s) on histogram analysis according to molecular subtype.

Luminal A Others p Luminal A/B Others p Triple negative Others p

Mean 1.12 1.18 0.204 1.12 1.19 0.204 1.12 1.15 0.604
Perc10 0.82 0.88 0.216 0.82 0.89 0.130 0.84 0.85 0.915
Perc50 1.10 1.16 0.237 1.10 1.17 0.115 1.11 1.14 0.636
Perc90 1.44 1.51 0.149 1.44 1.52 0.167 1.43 1.49 0.485
SD 0.24 0.25 0.222 0.24 0.24 0.081 0.23 0.25 0.479
Kurtosis 3.16 3.34 0.494 3.25 3.23 0.941 3.37 3.20 0.574
Skewness 0.31 0.29 0.896 0.33 0.24 0.574 0.29 0.30 0.931
Perc: percentile; SD: standard deviation.

Table 3: Visual classification of molecular subtypes of breast cancer into low and high heterogeneity on diffusion-weighted imaging (DWI)
by the two readers.

Molecular subtypes
Reader 1 Reader 2

Low heterogeneity High heterogeneity Low heterogeneity High heterogeneity
Luminal A 24 (49.0%) 25 (51.0%) 23 (46.9%) 26 (53.1%)
Luminal B 4 (50%) 4 (50%) 3 (37.5%) 5 (62.5%)
HER2-enriched 5 (45.5%) 6 (54.5%) 4 (36.4%) 7 (63.6%)
Triple negative 7 (30.4%) 16 (69.6%) 10 (43.5%) 13 (56.5%)
HER2: human epidermal growth factor receptor 2.
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the fact that HER2 positive tumors may present higher
neovascularity than HER2 negative tumors; the higher ADC
values in tumors with high neovascularity is caused by an
increased plasma permeability that is observed in these
blood vessels [16, 30–34]. Although our results demonstrate
that HER2 status may be assessed using ADC histogram
values, the AUCs reflected moderate accuracy. It has been
noted in a previous study that the accuracy of predicting
HER2 status using ADC is much lower than that of dif-
ferentiating benign from malignant lesions [35].

Molecular subtype classification of breast cancer based
on immunohistochemistry receptor status has significant
importance in clinical practice [1, 36]. Receptor status guides
the administration of hormone, HER2 targeted, and neo-
adjuvant therapies. Molecular subtypes are also used as
prognostic factors for survival and recurrence. Although
HER2 positive lesions may present higher ADC values,
significant overlap occurs when separating lesions into the 4-
category molecular subtype classification. In our study, the
results obtained from histogram analysis of ADC were not
able to differentiate molecular subtypes. A previous study
demonstrated that maximum values of ADC could be used
to differentiate molecular subtypes of breast cancer [26].
Although the software used in our study did not specifically
evaluate maximum ADC values, the mean, Perc10, Perc50,
and Perc90 results obtained were lower for luminal cancers
in comparison with other subtypes, but this difference was
not statistically significant.

Tumor heterogeneity is frequently associated with ma-
lignancy, aggressiveness, and response to treatment [19].
Different measurements obtained from histogram analysis
may assess heterogeneity, such as kurtosis (flatness of a
histogram) and skewness (asymmetry of a histogram)
[17, 37]. Since intratumoral heterogeneity is often already
present on visual assessment of DWI, we investigated if the
classification of tumors into low and high heterogeneity on
DWI can be used to predict molecular subtypes of breast
cancer, with disappointing results. Similar to histogram
analysis results, the visual assessment of tumor heterogeneity
on DWI cannot predict the molecular subtype.

In a recent study, Suo et al. [38] demonstrated that
entropy, which is also associated with heterogeneity, may be
used to differentiate between luminal A tumors and other
molecular subtypes on ADC map with moderate sensitivity
and specificity. Although we did not use this feature in our
data analysis, we believe that these promising results may be
the basis of future studies that may reduce the significant
overlap on the values obtained on ADCmaps of tumors with
different biological behavior.

Our study has a few limitations. First, lesions smaller
than 1 cm were not included in the study. Second, only first-
order statistics were considered and whole tumor seg-
mentation was not performed as it is time-consuming and
less likely to be used in clinical practice. �ird, there was no
standardization on the classification by visual assessment of
tumor heterogeneity, which was based solely on the radi-
ologist’s subjective judgement. Lastly, molecular subtype
classification was based on immunohistochemistry surro-
gates as genetic analysis was not performed.

5. Conclusions

In conclusion, neither histogram analysis of ADC values nor
visually assessed heterogeneity on DWI can be used to
predict molecular subtypes of breast cancer. Although the
mean, Perc50, and Perc90 ADC values were significantly
higher for HER2-positive than HER2-negative tumors, the
accuracy for this differentiation is suboptimal and not ready
for clinical use. Further large-scale studies are necessary to
investigate if histogram analysis can play a role within
radiomics analysis for the classification of invasive breast
tumors.
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