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We present the latest release of PANNA 2.0 (Properties from Artificial Neural Network Architectures), a code for
the generation of neural network interatomic potentials based on local atomic descriptors and multilayer perceptrons.
Built on a new back end, this new release of PANNA features improved tools for customizing and monitoring network
training, better GPU support including a fast descriptor calculator, new plugins for external codes and a new architecture
for the inclusion of long-range electrostatic interactions through a variational charge equilibration scheme. We present
an overview of the main features of the new code, and several benchmarks comparing the accuracy of PANNA models
to the state of the art, on commonly used benchmarks as well as richer datasets.

I. INTRODUCTION

In recent years, machine learning (ML) based approaches
have been successfully applied to numerous problems, span-
ning from image and natural language processing to many ar-
eas of physics. Within the field of atomistic simulations, sev-
eral approaches have been presented to leverage ML for the
accurate prediction of molecular and material properties. In
particular, one of the main goals has been the fast computa-
tion of energies and forces, leading to the creation of ML-
based interatomic potentials (MLIPs), able to achieve the ac-
curacy of ab initio methods on selected systems, for a frac-
tion of the cost. While we refer the reader to the many avail-
able reviews and seminal works 1–5 for an exhaustive presen-
tation of ML approaches in material science in general, we
will briefly present here the main flavors of popular MLIPs
present in literature, to provide a context for implementations
within PANNA.

Most MLIPs are based on two approximations: i) the possi-
bility to write the total energy of a system as a sum of atomic
contributions, ii) spatial locality. This allows to roughly break
down the problem into two parts: defining—or learning—
a description of a local atomic environment, and learning a
function to map the descriptor to the local energy. The re-
quirement for invariance with respect to translations, rota-
tions, and permutations of the atoms is enforced exactly by
either invariant descriptors or equivariant network architec-
tures.

The earlier methods in the field to describe the local envi-
ronment relied on fixed descriptors, e.g. Behler-Parrinello6,7

(BP) type descriptors sample the two- and three-body dis-
tribution function with local sampling functions; while the
Smooth Overlap of Atomic Positions8 (SOAP) relies on spher-
ical harmonics to obtain a rotationally invariant description

of a power of the smoothed atomic density. In these cases,
ML was limited to the mapping of descriptors to atomic
quantities, which relied, for example, on multilayer percep-
trons6,7 (MLPs), or kernel methods, as in the case of the Gaus-
sian approximation potential9,10 (GAP). These and similar ap-
proaches have been shown to achieve chemical accuracy in a
host of different systems11–14, typically given a ground truth
of a few thousands configurations to train on. A limit to the
generalization capacity for a given number of training points,
however, is related to the architectural bias of the approach,
depending both on the ML model and the descriptors. In-
deed, more advanced descriptors like the Atomic Cluster Ex-
pansion15 (ACE) were shown to obtain lower generalization
errors with the same amount of data, even when the fitting
was done through a simple linear model16.

In search for a better architectural bias, more advanced
message passing17 (MP), interaction layers18, continuous fil-
ter convolution19, or graph neural networks (GNN) were in-
troduced: some using vectors, angles and other geometric
information to define the node functions20–22 and some pro-
moting the states of the networks themselves to equivariant
entities based on vectors23 or a basis of spherical irreducible
representations24–26. While the distinction between (learned)
descriptor and ML model becomes blurred in these cases27,
it has been clearly shown that the bias imposed by these ar-
chitectures can lead to better generalization accuracy with the
same amount of data. However, several layers of message
passing can lead to very large effective receptive fields for
each atom, and even when this can be avoided, each layer typ-
ically involves the use of several MLPs, leading to a larger
overall computational cost. While the scaling with respect to
ab initio is still favorable, this increased cost renders the ear-
lier MLP approaches still valuable, especially for applications
where sufficient data can be generated.

mailto:ekucukbenli@nvidia.com
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In this work, we present a new implementation of
PANNA28 (Properties from Artificial Neural Network Archi-
tectures), version 2.0, a package for the creation and deploy-
ment of MLIPs based on local descriptors and Multilayer per-
ceptrons. Several packages have been proposed to train this
type of networks, e.g. DeepMD29,30, AENet31, AMP32, Tor-
chANI33, and SIMPLE-NN34. These packages are written in
different languages (FORTRAN, C/C++, Python), over differ-
ent back ends (TensorFlow, PyTorch), and while some of them
are based on input files, others provide an API to be called
from user-written code. They are all based on atomic MLPs,
but they support different descriptors, from the original BP6

to ones with modifications7,35; supporting different training
features, network customization, learning schedules, ensem-
ble approaches and so on. With this latest version of PANNA
we hope to enrich this landscape, where variety allows more
options to be explored and more needs to be met.

With respect to the previous version, the PANNA suite has
been entirely rewritten to be compatible with the newest ver-
sions (2.x) of the TensorFlow36 framework. It supports all the
features of the earlier versions, and can produce models of
the same accuracy with similar training performances. In ad-
dition, PANNA 2.0 supports new features, such as the com-
putation of descriptors during training, and a new architec-
ture to handle long range electrostatic interactions. PANNA is
written in Python, and it can be simply run by supplying ap-
propriate input configuration files. It includes several tools to
customize and monitor the training, both through a graphical
interface and from command line, as well as tools to import
and export data from and to different external codes. Finally,
PANNA models can be exported to run molecular dynam-
ics (MD) directly in popular packages such as LAMMPS37

and ASE38, or to even more codes through an interface with
OpenKIM39. The PANNA code is released under an MIT li-
cense, and it can be downloaded at Ref. 40. A thorough docu-
mentation, including a list of all input file keywords and sev-
eral tutorials on how to run different example cases, is avail-
able at Ref. 41. In the following, we will present the main
features of the code and the underlying theory in Sec. II, and
we will report benchmarks on accuracy on different systems,
speed and data scaling in Sec. III.

II. THE IMPLEMENTATION

The core of PANNA 2.0 is based on the creation of fixed-
size atomic descriptors as inputs to MLPs for the computation
of atomic energies, summing to the total energy of a system.
Distinct architectures can be defined for each atomic species,
and weights are shared between all atoms of the same species.
The training procedure consists in optimizing the MLP pa-
rameters to match the energy, and forces as its derivatives,
on known configurations. This optimization is performed by
minimizing a loss function of the error, through stochastic
gradient descent on small sets of examples known as mini-
batches. In the next sections, we will highlight the options
available in PANNA 2.0 for each step of this training proce-
dure, and we will discuss specifically a new architecture that

models long-range electrostatic interactions.

A. General structure

A typical MLIP training pipeline starts with the reference
energies and forces being computed with density functional
theory (DFT) or some other reference approach. In PANNA,
we offer tools to convert the output of codes such as Quantum
ESPRESSO42, VASP43, USPEX44 and LAMMPS37 to a sim-
ple human readable format. This format is completely docu-
mented, so that a user can easily create a new converter from
a different code.

In the next step of the pipeline, features or descriptors
need to be computed for each atom. In the previous version
of PANNA, descriptors had to be precomputed and stored.
This is computationally advantageous as examples are typi-
cally reused multiple times throughout the training, and since
the descriptor is fixed it is possible to create it once and for
all. However, this can lead to the problem of storing a large
amount of data (especially when the derivatives of the descrip-
tor are needed to compute the forces), and reading the data
multiple times from storage (if they do not fit in the working
memory). Depending on the hardware and hyperparameters,
this can become a limiting factor for the training. For this
reason, in this new version of PANNA we have introduced
the option of computing the descriptors on-the-fly during the
training itself. While more computationally expensive, this al-
lows training on large datasets, as we show e.g. in Sec. III B,
where the largest dataset would require about 500Gb of disk
space to store the descriptors and their derivatives, and would
bring a significant I/O cost to the training. This option is also
convenient for performing quick training cycles with various
descriptor types and shapes for testing purposes without hav-
ing to precompute and then read/write large files. Lastly, com-
puting the descriptors in the training loop allows to optimize
their parameters during training, an option that is planned for
future release. With on-th-fly computation, the descriptor be-
comes the most expensive part of the training, hence we have
optimized this part of the code to run efficiently on GPU, lead-
ing to affordable training on a single node.

PANNA natively includes routines to compute the standard
BP descriptor6 and a modified version (mBP) as detailed in the
previous version of PANNA28. For precomputed descriptors,
the binary format used for storage is carefully documented
so that descriptors computed with external routines can be
adapted to the PANNA pipeline. The data loading process is
handled through asynchronous parallelization over cores. In
the case of on-the-fly descriptor computation, the CPU han-
dles the example loading and nearest neighbor computation,
preparing the batches in a format easily handled by the GPU,
if available.

PANNA currently implements MLP type networks. The
general equation for the architecture is as follows:

al
i = σ

(
nl−1

∑
j=1

wl
i ja

l−1
j +bl

i

)
, (1)
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where ai is a node of layer l, w and b are weights and biases—
the parameters of the network—σ is a nonlinear function, and
nl is the number of nodes in layer l (input is considered as
layer 0). In PANNA, users can easily define the desired ar-
chitecture, on a per-species basis, by specifying the size of the
layers. The last layer is typically of size one for a single output
for energy, but see Sec. II B for a different case. The activation
function σ can be chosen for each layer as Gaussian, rectified
linear unit (ReLU), or hyperbolic tangent, besides the linear
function which is typically used for the output. Since PANNA
is built on TensorFlow, the supported activation functions can
be easily extended if desired, to the vast list supported by this
framework.

The remaining elements of a training pipeline are the loss
and learning schedule. The loss function in PANNA is made
up of contributions coming from the energy and the forces er-
rors, with an adjustable relative factor. For both, users can
choose between a quadratic and exponential function of the
difference between the computed and expected values, and
whether to consider per configuration or per atom quantities.
A further regularization term can be added to the loss func-
tion as the sum of the absolute value (L1) or square (L2) of all
weights, with a chosen prefactor.

The optimization of weights and biases, i.e. training, is fi-
nally performed on mini-batches of chosen size, modifying w
and b according to the gradient of the loss through the Adam45

algorithm, with a learning rate that can be chosen as constant
or exponentially decaying. As in the case of activation func-
tions, TensorFlow backend provides PANNA with multiple
options for optimizers. Additionally, freezing weights of se-
lected layers for selected species is allowed to facilitate fine
tuning or transfer learning studies. The main training loop
takes advantage of native TensorFlow operations and can han-
dle very large batches or networks with efficient linear alge-
bra both on GPU and multiple CPUs. Although it is available
in the TensorFlow back-end, distributed training on multiple
nodes is not supported in PANNA at the moment.

During training, several tools within PANNA can be used to
monitor the progress of the optimization. As in the previous
version of the code, we support visualization of several quan-
tities during training through TensorBoard, a browser based
visualization tool. Besides loss, its components, and other
figures of merit, we provide the evolution of the distribution
of weights and biases for each species and layer. Based on
user feedback, we have also improved the tools to monitor the
training directly from the command line: a progress bar shows
the current step of the training along with the loss compo-
nents and figures of merit such as the root mean square error
(RMSE) or mean absolute error (MAE). More importantly,
we have introduced the possibility to automatically evaluate
the model on a validation set on-the-fly once per epoch or at
a chosen frequency, to keep track of its generalization capac-
ity. Quickly understanding whether a model is overfitting the
training set is important to stop training with bad hyperparam-
eters, or early-stop a model that is no more improving.

After the model is trained, it can be stored as a checkpoint,
and PANNA’s inference tool can be used to assess its per-
formance on a testset. The model can also be exported to

a format usable in external MD codes, like LAMMPS37 or
the many other MD packages supported via OpenKIM39. The
LAMMPS plugin included in PANNA now supports OpenMP
parallelization over the cell atoms. Alternatively, the internal
checkpoint format, can be imported in ASE38 through a new
calculator included in PANNA 2.0. The performance of this
new plugin is tested in Sec. III B. Extension of PANNA po-
tentials for modern MD packages such as the differentiable
JAX-MD46 will be supported in the next version.

B. Long range interactions

PANNA 2.0 supports a new method to address long-range
electrostatic interactions. Most MLIP schemes rely an a lo-
cality approximation. While this is often safe to do in neutral
systems, and might work for shielded charges, it is bound to
fail when electrostatics plays a role in a range larger than the
effective cutoff radius or in charged systems.

In recent years, to address this challenge, methods that cou-
ple a local network predicting atomic electronegativity with
a system-wide charge equilibration scheme have been pro-
posed47–49. Ref. 47 (implemented in 50) only deals in the
electrostatic part, and Ref. 48 proposes to employ two differ-
ent networks (one dependent on the other). The implementa-
tion within PANNA is based on Ref. 51 and relies on a sin-
gle network to predict the coefficients for a Taylor expansion
of the energy in local charges, up to the second order. This
allows PANNA to compute the total energy, including elec-
trostatics, by evaluating a single network and solving a linear
charge equilibration system.

While an in-depth theoretical description and extensive
benchmarks of this approach is out of the scope of this work
and is presented elsewhere51, we summarize here the funda-
mentals. The total energy can be approximated as the sum
of a short-range contribution ESR, and a long range Coulomb
term ECoul =∑i< j Vi jqiq j, where qi is the charge of atom i, and
Vi j depends on the atomic environment. In the charge equili-
bration scheme, one minimizes the charge-dependent energy
contribution:

EQeq = ∑
i

(
χiqi +

1
2

Jiq2
i

)
+ECoul, (2)

where χi and Ji represent the atomic electronegativities and
hardnesses, respectively. This minimization is performed un-
der the constraint ∑i qi = Q imposing a total charge Q through
a Lagrange multiplier. The novel approach implemented in
PANNA rewrites the short-range energy as:

ESR = ∑
i

[
E(0)

i (Gi)+
(

E(1)
i (Gi)+χ0

i

)
qi+

1
2

(
E(2)

i (Gi)+ J0
i

)
q2

i

]
,

(3)

where χ0
i and J0

i are fixed reference values, and all terms E(α)
i

are the outputs of the network for atom i, depending on its
local descriptor Gi. This expression can be seen as a Taylor
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expansion of the energy in the charge variable, and is imple-
mented by tasking the neural network to produce the three
Taylor expansion coefficients for each atom.

Finally, the charge equilibration can be written as the sys-
tem of equations

∑
j

[(
E(2)

i (Gi)+ J0
i

)
δi j +Vi j

]
q j+

+E(1)
i (Gi)+χ

0
i +λ = 0,

(4)

where δi j is the Kronecker delta and λ is the Lagrange mul-
tiplier for the total charge. We introduce a new network layer
to solve this system of equations, leading to the predicted lo-
cal charges and the total energy. While the ground-truth lo-
cal charge information can be used during training, it is not
strictly necessary. This allows the use of many publicly avail-
able datasets where no local charge decomposition informa-
tion has been stored. Interestingly, we find that the absence
of reference local atomic charges (an approximate partition in
many cases) can even improve the ability of the network to
predict total energies and forces (see Sec. III C).

III. BENCHMARKS

A. rMD17

The rMD17 benchmark set consists of configurations of 10
small organic molecules, with energies and forces computed
in DFT with a tight convergence threshold52. In recent years
it has been commonly used to benchmark the data efficiency
of MLIPs, specifically restricting the training set to a bud-
get of 1000 randomly selected configurations per molecule.
While this has shown the high data efficiency of equivariant
GNN, the only typically reported MLP with BP type descrip-
tors (ANI7) seemed to fall considerably behind. We demon-
strate here the performance of PANNA with an equivalent BP
type network for comparison.

The computational details are as follows: An mBP type de-
scriptor28 with a maximum cutoff of 5Åwas used with 24 ra-
dial bins. For the angular part, 8 bins for the average radius,
and 8 for the angles, i.e. a total of 64 angular bins were used.
Considering 2, 3 or 4 species, this resulted in descriptors of
size 240, 456, and 736, respectively. We then trained net-
works with 2 hidden layers of size 256 and 128, training for
106 steps with learning rate 10−4, and then reducing it to 10−6

over a further 106 steps. We employed quadratic loss with a
force cost of 1 and a small 10−5 L1 regularization.

The validation MAE in energy and force components is re-
ported in Table I, alongside the results of ANI and the state-
of-the-art selected from literature considering all architectures
including kernel methods. While the supremacy of equiv-
ariant GNN remains unreachable for this kind of networks
(all SOTA values are found to be from various equivariant
GNNs), errors from PANNA are considerably lower than ANI,
for almost all molecules. This is particularly interesting as
the most performant ANI network reported thus far in these
benchmarks were obtained by retraining a pretrained network

TABLE I. Mean absolute error in energy (meV on the whole
molecule) and forces (meV/Å per component) of different models
trained on 1000 configurations from each molecule in the rMD17
dataset52. The ANI results are taken from Ref. 16, where ANI was
either trained from scratch, column “ANI (rand)” or starting from a
pretrained model, column “ANI (pre)”. In the last column we report
the state of the art (SOTA), i.e. the best result found for any model,
giving priority to the force error, and the respective reference.

PANNA ANI53 (pre) ANI53 (rand) SOTA

Aspirin E 10.6 16.6 25.4 2.225

F 32.9 40.6 75.0 6.6

Azobenzene E 5.8 15.9 19.0 1.226

F 18.4 35.4 52.1 2.6

Benzene E 1.0 3.3 3.4 0.326

F 5.4 10.0 17.4 0.2

Ethanol E 2.9 2.5 7.7 0.425,26

F 16.5 13.4 45.6 2.1

Malonaldehyde E 4.0 4.6 9.4 0.626

F 24.3 24.5 52.4 3.6

Naphthalene E 3.0 11.3 16.0 0.226

F 13.2 29.2 52.2 0.9

Paracetamol E 6.3 11.5 18.2 1.325

F 22.0 30.4 63.3 4.8

Salicylic acid E 4.1 9.2 13.5 0.926

F 19.4 29.7 53.0 2.9

Toluene E 3.9 7.7 12.6 0.525

F 15.9 24.3 52.9 1.5

Uracil E 2.4 5.1 8.4 0.626

F 13.7 21.4 44.1 1.8

(“ANI (pre)” in Table I) for increased accuracy 16. Our results
show that even for the same method and data, the differences
in training and implementation can have a major impact on
the final model quality, strenghtening the argument that well-
written and well-documented MLIP generation packages are
needed to reach a consistent quality of applications in the lit-
erature.

B. Dataset scaling: Carbon

To further assess the generalization capacity of our model,
as a function of the size of the dataset, we consider a more
challenging problem: a dataset with more than 60000 config-
urations of various allotropes of Carbon, created in a recent
study using an evolutionary algorithm and the previous ver-
sion of PANNA12. The datasets consists mostly of configu-
rations with 16 or 24 Carbon atoms, and a few larger (200
atoms) configurations; it includes configurations under high
pressure, snapshots of high temperature MD and highly de-
fected configurations (see Ref. 12 for a complete description
and construction procedure).

We split the dataset in 50000 randomly chosen configura-
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FIG. 1. Scaling of the mean absolute error in energy per atom (top)
and forces per component (bottom) on the validation set, for different
models, as a function of the size of the training dataset. See the main
text for further details on the training, including the definition of the
three architectures PANNA small, mid and big.

tions for training and we save the rest for validation. In order
to generate well sampled training datasets of different sizes,
we employ a farthest point clustering algorithm: we consider
the cosine fingerprint distance as defined in Ref. 12, we then
start from a set of a single configuration (the lowest in energy)
and progressively add the configuration that is farthest. In
this way we generate datasets ranging from 100 to the whole

50000 configurations. In order to have a balanced and effi-
cient validation set, we sample 1000 configurations from the
ones set aside with the same approach. We have verified that
a larger sampling of 5000 configurations does not affect the
results.

For PANNA, we employ a mBP descriptor with 5 Å cutoff,
24 radial bins for the two body and 8 radial and 16 angular
bins for the three body terms, for a total size of 152. We train
3 different networks, a small one with two layers of sizes 64
and 32, a middle one with two layers of 256 and 128 nodes
and a large one with three layers of sizes 1024, 512 and 256.
Networks are trained on batches of 10 examples with a start-
ing learning rate of 10−4 for a number of steps ranging from
100000 for the smallest dataset, to 6 millions for the largest
one, after which a further quench to a learning rate 10−6 for
1 million steps is performed for all datasets larger than 1000
points.

As reference state-of-the-art models we consider NequIP24

and MACE25. We train both on all datasets relying on default
parameters as needed: for NequIP we consider two models,
with ℓ = 1 and ℓ = 2, both with 4 interaction blocks, 32 fea-
tures and a radial network with 8 basis functions, and 2 hidden
layers of size 64. For MACE we use the standard setup with
128 even scalars and 128 odd ℓ = 1 irreps. We use the same
cutoff of 5 Å for all models as this is a commonly used cutoff
and well converged for our network (see the Supplementary
Material for a test), but it has to be noted that the effective re-
ceptive field for GNNs will be larger depending on the number
of layers.

For all networks we train until loss convergence. An im-
portant remark needs to be made about the training dynamics:
There is an apparent trade-off between energy and force com-
ponents in the loss especially close to convergence and for the
case of very large datasets. To tackle this, MACE training
schedule implements stochastic weight averaging (SWA)54

and increases the energy weight for the loss in the lass 20% of
the training. We find that in the case of NequIP and PANNA
where a standard non-averaged optimizers such as Adam45

with fixed energy and loss weighing is used, the energy loss
decreases very minimally even when increasing the relative
weight of it in the loss component, even in long training sce-
narios, suggesting the SWA and energy re-weighing during
training can be valuable. Overall we observe the force error to
be more stable for all networks (given also the larger number
of force data), and because the trade-off is hard to quantify for
each model, we focus more on the force error during analysis.

Without significant hyperparameter tuning we do not ex-
pect these to be the best possible networks (including the one
of PANNA), yet informative for a typical user experience.
Fig. 1 shows the MAE of the error in energy per atom and
in forces per component on the validation set. Overall, equiv-
ariant models, especially with high ℓ orders, perform better.
As mentioned, the failure to improve the energy error for
the larger datasets is visible for PANNA and NequIP. Among
the PANNA models, we can see all models obtain similar re-
sults for small datasets, and as the dataset becomes larger the
smaller model seems to reach its capacity and its performance
drops.
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TABLE II. Time per step per atom to run a Langevin MD on a small
Carbon cell with different codes, invoked through ASE on GPU.

PANNA PANNA PANNA NequIP NequIP MACE
small middle big ℓ= 1 ℓ= 2

Time [ms] 0.78 0.79 0.79 3.32 4.88 3.09

Considering that MLP architectures such as BP networks
are much more computationally affordable due to simple un-
derlying tensor algebra compared to irrep algebra of equiv-
ariant GNNs, it would be desirable to find a strategy to over-
come for their data-inefficiency. Here we show a potential
workaround with a data augmentation experiment. Starting
with the largest training dataset, for each example we create
10 copies by perturbing the atomic positions randomly with a
small Gaussian noise of standard deviation 0.075Å. We then
take the best MACE network and use it to compute energy
and forces, obtaining a new dataset of half a million config-
urations, at a fraction of the DFT cost. Retraining PANNA
models on this new larger dataset shows that a further im-
provement in accuracy can be obtained for large enough mod-
els. This “knowledge distillation” procedure is well known in
the ML literature55 and here too it proves to be a potential ap-
proach to keep less data-efficient models viable at a reduced
cost.

Lastly, we consider the computational performances of
these potentials when used for inference: we take one of the
configurations from the dataset with 16 atoms and perform
1000 steps of Langevin dynamics at a temperature of 300 K
with ASE38 on a A100 GPU, discarding the first few steps
which typically require extra setup time, not representative
of the speed of the codes. To judge the natural scalability
of different algorithms we refrain from using any specialized
optimization techniques such as CUDA based featurization li-
brary implemented in TorchANI33 for BP networks, as similar
ones for tensor product in the equivariant GNNs are not yet
widely available. Table II reports the time per step per atom
of each code, as an average of 5 repetitions. We note that due
to small system size, these values should be taken as upper-
bound, since GPU utilization is far from optimal for these sys-
tem sizes. Hardware specific strategies such as multi-instance
or multi-process (MIG or MPS) GPU features can potentially
bring significant improvements to GPU use. These and further
optimization opportunities of BP networks will be employed
in future versions of PANNA. Nevertheless, without specific
strategies, a raw comparison of algorithms on similar grounds
show that PANNA is consistently faster, as expected from
a simpler architecture. It is noteworthy that larger PANNA
models are not slower, as the computational bottleneck is in
the calculation of the descriptor, hence, acceleration CUDA
libraries as mentioned earlier, or descriptors with lesser com-
putational load such as ACE15 can bring further speedup.

TABLE III. Training and validation RMSE of different quantities for
the sodium chloride cluster with a total charge of +1 for long range
(LR) and short range (SR) models, and models from Ref 48 (2G,
4G).

Model Charge Energy Force
[me] [meV/atom] [meV/Å]

SR
train - 1.6 49
test 1.6 50

LR
γq > 0 train 11.5 0.4 17

test 11.8 0.4 18
γq = 0 train 237.3 0.3 17

test 238.9 0.3 18

2G train - 1.7 58
test - 1.7 57

4G train 15.9 0.5 32
test 15.8 0.5 33

C. Long range: NaCl clusters

In this section, we demonstrate the long range electrostatic
approach implemented in PANNA on charged sodium chlo-
ride clusters. The training set is obtained from Ref. 48 and
comprises of configurations of Na9Cl+8 —shown in Fig.2a—
and Na8Cl+8 , obtained by removing the Na atom in the right-
most corner of Fig. 2a. Each cluster has a total charge of +1.
Here we compare the accuracy of long range model within
PANNA with that reported in Ref. 48.

The MLIP is constructed with mBP atomic environment de-
scriptors of size 45, two hidden layers each with 15 nodes and
an output layer with 3 nodes. As explained in Sec. II B, in
PANNA reference charges can be either used as an extra tar-
get in the loss function or omitted: we present here one model
with (γq > 0) and one without (γq = 0) this extra loss. We also
compare with the PANNA model in the absence of long range
electrostatics (SR for short range), with the same architecture
but only predicting energy and forces.

In Table III, RMSE in charges, energy and forces for
PANNA models are compared with the results obtained in
Ref. 48 with and without long range interactions, denoted as
2G- and 4G-HDNNP, respectively. The PANNA model with
long range electrostatics reaches the lowest RMSE in energy
and forces irrespective of the use of atomic charges as target.
It is reassuring for verification reasons that, as a baseline, The
PANNA model without electrostatics attains similar RMSE in
energy and forces to 2G-HDNNP48 that also omits this contri-
bution.

We examine in further detail the performance on the poten-
tial energy surface of these systems by computing the energy
and force acting on a Na atom, indicated by 2 in Fig 2a, when
moved along the arrow depicted in the same figure. Fig. 2(b)
shows the force on the Na atom projected along the direc-
tion shown by the arrow. The DFT results are obtained from
Ref. 48. As expected, for the PANNA model without electro-
statics, we obtain similar trends to those reported in Ref. 48 for
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(a)

1

2

Na Cl

(b)

FIG. 2. Comparison of energy and forces between MLIPs and DFT.
(a) Atomic structure of Na9Cl+8 . (b) Projected force on Na atom 1
in the direction of the arrow shown, as a function of the distance
between Na atom 1 and 2.

the 2G-HDNNP, where the equilibrium distances for Na8Cl+8
and Na9Cl+8 are the same. Instead, model with long range
electrostatics accurately reproduces the DFT forces for both
Na9Cl+8 and Na8Cl+8 , with and without regressing against ref-
erence charges. We note that the forces as a function of dis-
tance is smooth, suggesting stable dynamics and possibility of
obtaining energy differences through integrating the forces if
needed.

IV. CONCLUSION

We have given a brief overview of PANNA 2.0, the lat-
est version. Besides the support for the new version of the
Tensorflow back end—a needed upgrade to run on newer
hardware where previous versions are becoming increasingly
harder to obtain—this new version features several improve-
ments aimed at simplifying the training procedure for the end
user. Removing the need to precompute descriptors simpli-
fies the exploration of new parameters, or training on very
large datasets; new figures of merit and validation on-the-fly
make it easier to monitor the optimization in real time. Impor-
tantly, PANNA 2.0 introduces support for long-range electro-
statics, which opens the possibility to tackle charged systems
that were not accessible before.

Moreover, we have shown in a series of benchmarks that
while the PANNA models are not as data efficient as the

newest equivariant GNN architectures, they can be more ac-
curate than what previously reported for similar models, and
they do show an accuracy-scaling power law dependence on
the size of the dataset that is comparable to some equivariant
models. We have also proposed the “knowledge distillation”
scheme to employ the more data efficient networks to extend
the training set for the less data efficient ones. Paired with fast
MD plugins, these results point towards a possibility where
simple architectures like PANNA can become the workhorse
of large scale simulations, trading minimal accuracy for a
faster computation. We will keep improving PANNA with
state of the art optimization techniques such as CUDA based
featurization libraries, and support for new descriptors and im-
proved architectures to move towards making this possibility
a reality in materials modeling.

V. DATA AVAILABILITY

The dataset used in Sec. III B can be downloaded at 56,
while the other dataset are available in their respective publi-
cations. The best network for each architecture of those pre-
sented in Sec. III B can be downloaded at 57.

VI. SUPPLEMENTARY MATERIAL

A supplementary document presents tests on the network
accuracy as a function of the cutoff radius of the descriptor,
for the data presented in Sec. III B.
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