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 JOURNAL OF APPLIED ECONOMETRICS, VOL. 4, S5-S27 (1989)

 PLANNING, CRITICISM, AND REVISION

 EDWARD E. LEAMER

 Department of Economics, UCLA, Los Angeles, CA 90024, U.S.A.

 SUMMARY

 This paper presents a more complete theory of data analysis which allows for changes in the state of mind
 of the observer and also for approximations that limit planning costs. Discussion is included on the form
 that criticism should take, and the extent to which planned responses to the data can legitimately be
 revised after the data are reviewed. The proper role of diagnostics is discussed. Some diagnostic statistics
 are genuinely criticisms, but many are pre-test diagnostics that play a role in a complex multi-step method
 of estimation. A third category is elicitation diagnostics, which ask data-dependent questions about the
 prior distribution.

 1. INTRODUCTION

 One of the major changes that is taking place in practical econometric analysis is the increasing
 use of 'diagnostic' statistics which apparently serve as 'criticisms' of the model and which can
 stimulate model 'revisions'. The Durbin-Watson statistic and the adjusted R2 have been used
 as 'diagnostic' statistics for several decades; but recently the list of diagnostics has expanded
 dramatically.

 Diagnostics play a particularly great role in the LSE-Hendry style of applied econometrics
 that has been reviewed by Pagan (1987a, 1987b), and Gilbert (1988). In an application, Baba,
 Hendry, and Starr (1987) surround an estimated money demand function with three tests for
 residual autocorrelation, several Chow tests for parameter constancy, White's test of functional
 form misspecification-heteroscedasticity, an F-test against a more general model, the
 Jarque-Bera test for normality, and a test for autoregressive conditional heteroscedasticity of
 order r (unspecified).

 The most extensive use of diagnostics is still confined to Hendry and his adherents, but the
 approach seems sure to spread as computer packages routinely compute these diagnostics. For
 example, Microfit (previously called Data-fit), a recent computer package designed by M.
 Hashem Pesaran and Bahram Pesaran, includes: Godfrey's test of residual serial correlation,
 Ramsey's RESET test of functional form, Jarque-Bera's test of the normality of regression
 residuals, tests for heteroscedasticity, the Chow test of the stability of the regression
 coefficients, Sargan's misspecification test, Sargan's test of serial correlation of instrumental
 variable residuals, and leverage plots.

 The LSE-Hendry style of applied econometrics is distinct not just in the number of
 diagnostic tests that are employed but also in the method of choosing variables, beginning with
 a highly over-parameterized general model, shrinking it by eliminating a large number of
 variables, and then expanding it to include variables that were not in the initial 'general model'.
 Both this and the use of diagnostics seem to raise issues of statistical methodology but Baba,
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 Hendry, and Starr (1987) claim that 'precisely how one should construct empirical models is
 primarily a matter of research efficiency; in principle, no method of construction need be
 invalid since nothing precludes an investigator from thinking of or chancing upon useful and
 robust relationships prior to or during data analysis'. Leamer (1985, p. 112) quips that this
 seems like 'a combination of backward and forward stepwise (better known as unwise)
 regression'.

 Bruce Hill's (1980, 1988) position seems not far from Hendry's. Hill (1988), echoing Keynes
 (1921, Ch. 25), observes that from the Bayesian perspective 'once a model has been formulated,
 whether pre- or post-data, the likelihood function for the parameters of that model, conditional
 upon the truth of that model, does not in any way depend upon the circumstances under which
 that model was discovered' (Hill, 1988, p. 11). The Bayesian problem with data-instigated
 models, which was recognized by Keynes (1921, Ch. 25), is only how to form a prior
 distribution that is not 'contaminated' by the data. Hill (1988, p. 13) acknowledges that 'the
 difficulties are primarily psychological', but apologizes that 'the force of a Bayesian analysis
 of data must depend upon an agreement among scientists that specific prior distributions and
 likelihood functions are pertinent to the problem, and can be considered on their own merits,
 even after the data has [sic] been observed'.

 In apparent contrast to Hill and Hendry, I believe that the use of diagnostic statistics does
 present a challenge to statistical theory, classical or Bayesian. Traditional statistical theory
 deals with the evaluation of planned responses to hypothetical data sets. Indeed it is impossible
 to compute sampling properties without a set of plans indicating the response to the data for
 every conceivable data set. The use of a diagnostic statistic to criticize a model is an advance
 announcement that the planned responses are not fully committed and may be revised when
 the actual data are observed.

 However, very few if any of the diagnostics that are traditionally employed in the
 econometrics literature are criticisms in my sense of precipitating an unplanned, unpredictable
 response to the data. Many are 'pre-test' diagnostics that play a part in a complex multi-stage
 method of estimation of a very general model. A statistic is a pre-test diagnostic if both the
 general model and the response to the data can be fully defined and programmed before the
 data are observed. The proper evaluation of pre-test diagnostics involves either the study of
 the sampling properties of these complex procedures or the search for a prior distribution
 that could partially justify them.

 But not all responses can or should be planned. The actual response to real data can differ
 from the planned response to hypothetical data for at least two reasons. The first reason is that
 the desired response to the data depends on the state of mind of the observer, which can change
 with changes in mood and expertise. Second, even if there were no variability in the state of
 mind, a complete set of plans applicable to every conceivable data set is very costly to
 formulate. Plans accordingly will be formulated only for data sets that are regarded to be
 probable, and responses to improbable data sets will be formulated only if and when they are
 observed. Contrast for example the scatter of observations in Figures 1 and 2. Though the t-
 statistics and the R2 values are the same, the messages seem very different, and the plan of
 regressing y on x seems not very wise for the scatter in Figure 2. One would not sensibly have
 planned for this possiblity since it seems so remote, but once these data are observed the
 original plan to run a regression seems highly inappropriate, and cries out for revision.

 This paper presents a more complete theory of data analysis which allows for changes in the
 state of mind of the observer, and also for approximations that limit the planning costs.
 Discussion is included on the form that criticism should take, and the extent to which planned
 responses can legitimately be revised. The proper role of diagnostics is discussed. I argue that

 S6
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 Figure 1. A probable scatter
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 Figure 2. An improbable scatter

 there are three different categories of diagnostics:

 1. Pre-test diagnostics which select between a pair of alternative estimates.
 2. Elicitation diagnostics which indicate if the inferences are sensitive to the he choice of prior

 distribution, and which call for a more accurate measurement of the state of mind.
 3. Criticisms which suggest a 'fundamental' change in the model and/or prior distributions.

 It is possible to have a theory of pre-set diagnostics and a theory of elicitation diagnostics, but
 I know of no approach that allows a theory of criticism. Selecting the form that genuine
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 criticism should take is by its very nature an unsolvable problem, since the solution must be
 based on the corrective action that a successful criticism should precipitate, yet knowledge of
 that action means that criticism in my sense has not taken place. Furthermore, in the absence
 of a completely appropriate theory of criticism, the adjustments to the inferences that are
 required to correct for both successful and unsuccessful criticisms must remain to some extent

 ad hoc, though I will argue that there are adjustments that are sensible.

 2. CRITICISM AND REVISION

 Essentially all of statistical theory is concerned with the evaluation of planned responses to
 hypothetical data sets. A Bayesian approach allows these idealized plans to depend on the state
 of mind of the observer, but even the Bayesian theory ignores the possibility that this state of
 mind responds to influences other than previous data sets. Actual responses, Bayesian or not,
 may be quite different from these idealized plans, because the state of mind of the observer may
 change substantially for reasons not adequately captured in the Bayesian model.

 The model of data analysis that is presented here allows for changes in the state of mind of
 the observer. This model of data analysis is broad enough to include 'exploratory' data analysis
 as well as 'confirmatory' data analysis. Confirmatory data analysis is characterized by a
 substantial commitment to the original planned responses. Exploratory data analysis has weak
 plans, if any, and may use displays and diagnostics to suggest the 'model' on which a response
 might be formulated. The problem with exploratory data analysis is that there is a substantial
 tendency to overfit, to see patterns in the data set that are not really there. A theory of
 exploratory data analysis indicates how the overfitting problem can be avoided.

 Incidentally, the word 'response' is here used in a general sense. A response to a data set is
 sometimes a decision (for example: Act as if a hypothesis were true) but more often is a
 judgement (for example: The data suggests that the value of 3 is close to zero). The response
 to the data depends on the state of mind of the observer. You and I may see the same
 observations but draw very different conclusions from them. For that matter, you may analyse
 a data set today and draw very different conclusions than you did last week.

 The three determinants of the state of mind are former observations, 'mood' and 'expertise'.
 Bayesians have a well-developed theory of how past observations affect the prior distribution,
 which can be important for interpreting the current data set. The classical problem of pooling
 different data sets yields essentially the same results. But neither the traditional Bayesian theory
 nor the classical pooling theory admits the influence of variable factors other than data.

 The two non-data components of the state of mind that are considered here are the 'mood',
 which is defined as those random effects that are impermanent and stationary, and the
 'expertise', which is defined to be those random effects that are permanent and nonstationary.
 Emotions, among other things, can cause changes in mood. Reasoning and flashes of insight
 can cause changes in expertise. Social interactions are a very important source of changes in
 mood and expertise. Fads influence mood; fashions may be either permanent or impermanent.

 Reference to the problem of estimating/discovery of the functional form of a relationship
 has helped to organize my thoughts about these difficult issues. It seems useful to distinguish
 six different ways in which a functional form is selected:

 Planned responses:
 1. Stepwise estimation in which a quadratic term is included if its t-value exceeds some critical

 level.
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 2. Visual inspection of the scatter of points to decide whether to include a quadratic term or
 not.

 3. Visual inspection of the scatter of points to decide which functional form to estimate (linear,
 quadratic, log-linear, etc.).

 Unplanned Responses:
 4. Visual inspection of the scatter of points without the expressed intent of considering other

 than a linear form, but the discovery of evidence of curvature that leads to the estimation
 of a nonlinear function.

 5. Discovery of curvature in the scatter of points that stimulates a theoretical insight and alters
 the level of 'expertise' to such an extent that plans in the future allow for this kind of
 curvature.

 6. Use of the t-statistic on the quadratic term as a diagnostic statistic to suggest an unspecified
 alteration of the model such as the inclusion of some new variable.

 The line separating (3) from (4) separates settings in which a planned response to the data is
 carried out from settings in which the original plans are weak and major revisions occur. The
 former methods will be said to be 'above the line'; the latter are 'below the line'. The former
 are 'confirmatory'; the latter 'exploratory'.1 The former methods ought to be subjected to the
 critical scrutiny of traditional statistical theory; the latter may (or may not) be free from that
 form of scrutiny.

 'Diagnostic' statistics could be said to be used in all six cases. In the first three cases the
 diagnostics statistics are part of a multi-step method of estimation, and the overall method of
 estimation should be evaluated in the traditional manner. But when a diagnostic statistic is used
 to stimulate an unpredictable response, the estimation method falls 'below the line' and resists
 evaluation of any kind.

 More generally, the analysis of data is summarized in the following data:

 PLANNING RESPONSES

 Precise responses Imprecise responses
 Judgements Confusion
 Actions Indecision

 CRITICISM

 REVISION

 Below the line in the middle of this diagram are the activities of criticism and revision.2 The

 'Hendry uses the word 'evaluation' and 'design' which might be interpreted as corresponding to my use of 'above the
 line' and 'below the line'. But much of that Hendry calls evaluation is or should be 'above the line' in the sense that
 the response to the data set can be fully planned. His words might correspond better with 'estimation' and 'hypothesis
 testing'.
 2The phenomena of planning, criticism, and revision have analogies in computer programming, contracting, and
 human learning. A computer program is designed to work well for normal inputs, and will signal the user with a
 diagnostic message when inputs are unusual and difficult to process. Then the user may want to revise the plans by
 finding or building a more suitable program. Contracts are usually written contingent on expected events. When
 unexpected events occur, either party can appeal to the court to have the contract rewritten. The economic pathology
 of unemployment may be linked to conditions that are unusual, but not so unusual that the contract is rewritten. When
 humans learn new tasks, the discretionary activities of criticism and revision are frequent but, with time, responses
 become 'programmed' and automatic. Instincts are genetic programs that can be overridden as circumstances require.

 S9

This content downloaded from 108.185.108.226 on Fri, 17 Feb 2023 23:53:51 UTC
All use subject to https://about.jstor.org/terms



 S10  E. E. LEAMER

 planning of responses occurs 'above the line'. A response may be either a judgement or an
 action; a response may be either precise or imprecise. 'Confusion' is the state of mind that is
 present when a judgement is imprecise; 'indecision' is the outcome of an imprecise action.
 'Confusion' and 'indecision' are important subjects that have received inadequate attention in
 the theory of inference, exceptions including Leamer (1987). My concern here, however, is with
 the separation between the activity of planning from the activities of criticism and revision.

 It should be clearly understood that both classical and Bayesian inference require complete
 commitment to the initial plans, and disallow criticism and revision. Classical inference, which
 refers to sampling properties, requires a complete commitment to the initial plans since
 sampling properties can be computed only if the response to every conceivable data set is
 known. A Bayesian treatment also implicitly requires a complete commitment to the initial
 plans in the sense that the plans are a consequence of the choices of prior and sampling
 distributions, which choices are made after the data are observed only with discomfort to the
 data analyst and suspicion by the reader of results.

 By its very nature we cannot know the form that criticism should take, but it is clear that
 both successful and unsuccessful criticisms have implications for drawing conclusions from the
 data. The phenomenon of criticism, even when it does not lead to a revision, reveals that there
 is a lack of complete commitment to the assumptions that underlay the original plans. This lack
 of complete commitment requires some alteration of the plans; for example, the standard errors
 of the coefficients should be enlarged to reflect the fact that there surely are omitted variables
 that cause bias in the estimates. When the criticism is successful there is a double-counting
 problem, because the data are used once to alter the assumptions, and then again to estimate
 the parameters, as if these were the assumptions that were used from the beginning.

 However, the distinction between planned and unplanned responses is not obvious.
 Responses that are predictable but not explicitly and consciously planned can be said to be
 implicit plans. Genuine revisions are unpredictable and quite rare. For example, I don't know
 in advance exactly how a multidimensional stepwise regression program will work in particular
 settings, but I know it will always do the same thin and in that sense is predictable. This
 computer program will be regarded to embody a complete plan, even though many aspects of
 the plan do not have my conscious review.

 Human intervention is necessary, but not sufficient to establish that a revision has occurred.
 It depends on whether the intervention is predictable. For example, my detection of curvature
 in a scatter of points is predictable, and simulates the predictable response of including a
 parameter that allows curvature. In this case the human and the computer combine to carry
 out the implicit plan. This is essentially the same as a stepwise program that adds a nonlinear
 term when it is 'significant'.

 3. ELEMENTS OF A THEORY OF DATA ANALYSIS

 The model of data analysis that is presented here will use the following notation:

 Yt= a sequence of data matrices;
 St= current state of mind;

 Mt = the mood, a stationary random process;
 Et= expertise, a nonstationary random process.

 The elements of the model follow:
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 Data Distribution

 The data are assumed to have been drawn from a distribution that depends on ft, the parameter
 of interest, and )t, a vector of 'nuisance' parameters:

 Fy(Yt I, t)

 This notation allows for time-series dependence in the sampling process if the vector /t includes
 other data sets such as Yt- 1. This assumption of the existence of a data distribution is essentially
 vacuous if there is sufficient freedom to select the nuisance parameter.

 Prior Distribution

 The nuisance parameter dt is assumed to be infinite dimensional to allow for essentially any
 assumption about the way the data are generated. In order to make inferences about ft, the
 values that dt can take on must somehow be limited. Often this is done in practice by restricting
 all but a few of the components of jt to take on preselected values. This can be regarded as
 a special kind of prior distribution which is dogmatic about some of the components of .t and
 diffuse about the others. For purposes of discussion it will be assumed more generally that there
 exists an implicit or explicit prior distribution that indicates the probable regions for (ft, <t):

 G(ft,Mt I S) (ft, kt) (Et

 This prior distribution depends importantly on the state of mind, S. I will not assume that this
 distribution can be elicited without error, and it may be impossible to base a data analysis on
 the 'true' prior distribution.

 The State of Mind

 The state of mind depends on past observations, on the mood M and on the expertise E of the
 observer:

 St = f(Yt- 1, Tt 2), ..., Y1, Mt, Et).

 The Mood

 The mood is a stationary stochastic process which for purposes of discussion is assumed to
 depend only on the current observations and a white noise random variable Ct:

 Mt = g(Yt, et)

 The mood may vary with the personal emotional state of the observer and may also be
 influenced by social interactions (fads and fashions). The mood may be very different for
 analysis of hypothetical data sets than for analysis of real data sets, since the latter are treated
 with greater thought and care. The formal elicitation of a prior distribution can alter
 substantially the mood of the observer. This can increase the amount of care but also cause
 a high level of commitment to the current model; more on this below.

 The Expertise

 The level of expertise is a nonstationary stochastic process which for purposes of discussion will

 Sll
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 be written as:

 Et= Et- 1 + h(Yt, et)

 where et is a white noise random process. Expertise changes with contemplation, study,
 enlightenment, and training, among other things. The process is nonstationary, since once a
 level of expertise is obtained there is no tendency to return to the former level; indeed the
 process may be irreversible.

 The Idealized Response

 Given the state of mind of an observer, there is an idealized response to the data. This idealized
 response can be found using either a Bayesian or a classical approach, although the solutions
 may differ:

 P(Yt I S)

 The traditional theory of data analysis is almost completely a theory of ideal, planned, fully
 committed responses, not a theory of actual responses. Plans by definition are formulated
 before the real data are observed. A planned response to hypothetical data will differ from the
 actual response to real data for at least two reasons. The first is that, at the time the plan is
 formulated, the future state of mind is uncertain and can be forecast only with error. Secondly,
 even if there were no variability in the state of mind, a complete set of plans applicable to every
 conceivable data set is very costly to formulate. For example, it may be infinitely costly to elicit
 the prior distribution fully and without error. Plans accordingly will be formulated only for
 data sets that are regarded to be probable. Responses to improbable data sets will be formulted
 only if and when these improbable data are observed. If a plan is applicable for a range of
 possible data sets, then it will be said to be a 'wide' plan. A plan will be wide in a setting in
 which there is a great deal of knowledge about the process that generates the data; that is to
 say when there is little variability in the state of mind.

 The planned and actual responses that are made can only approximate the ideal response
 function. The sense in which the response approximates the ideal is most easily discussed from
 the Bayesian perspective which can base a data analysis on an approximate prior distribution.
 This Bayesian perspective will now be used, and a sampling theory treatment will be presented
 subsequently.

 Approximate Prior Distribution

 Using the Bayesian approach, the formulation of the idealized response function would require
 the elicitation of the prior distribution over the infinite dimensional parameter space cLt, a task
 that would require an unlimited amount of time. Instead, an approximate prior distribution
 is formulated. First the parameter space 4Žt is abbreviated, and then a mathematically
 convenient approximate prior distribution is formed over the abbreviated parameter space:

 G(,Bt,\t I S) ( 3t, t) E(t (S)

 An equivalent characterization of this approximate prior distribution uses the device of an
 approximate state of mind:

 G(t3t, \t S) = G(t3t, \t S) (St, t) E 4t

 where S is a state of mind similar to S but one that implies an abbreviated parameter space and
 a simple data analysis.
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 Planned Response

 The planned response is selected before the current data are observed. A Bayesian plan is
 formulated based on a prediction of the state of mind:

 P(Yt) = p(Yt I St)

 where St is a prediction of St given the information available in period t - 1. This prediction
 is selected to imply a relatively simple data analysis. Note that if mood and expertise are
 stochastic and affect the state of mind, then the plan is also stochastic in the sense that the same
 response is not always made to the same data set.

 The Actual Response Function

 The planned response is carried out if there is little change in the state of mind, but otherwise
 a revision occurs:

 RyYt) =P(Yy St) if | St-5 | < w(St)
 (Yt) p(Yt St) otherwise

 where I St - St I is a measure of the difference between the predicted state of mind St and the
 approximate state of mind St measured after the data are observed.

 The function w(St) is the 'width of the plan'. If the approximate state of mind St is a known
 function of the data Yt, then the width of the plan can be characterized in terms of 'the'
 probability that the plan will be carried out. If this probability is evaluated with respect to the
 approximate prior distribution, it is likely to underestimate the true probability of a revision.
 More of this below in the discussion of the choice of significance level for diagnostic statistics.

 4. SPECIAL CASES

 The following are special cases:

 Textbook Classical Theory

 Most programs for electronic data analysis cannot alter themselves, and when confronted with
 the same inputs always produce the same outputs. The absence of memory and randomness
 means that a computer program cannot have a variable state of mind. In that event the width
 of the plan is infinite in the sense that the actual response and the planned response are
 necessarily the same and equal to the idealized response for one special state of mind So:

 R(Yt)= P(Yt)= p(Yt I So)

 W( )= oo

 A simple example is least squares regression which uses inputs Yt= [yt, Xt] to form an
 estimate:

 R(Yt) = (XtXt) -lXyt

 Another example is stepwise regression which can be written as

 R(Yt) = (xltXlt) 1 Xltyt

 S13
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 where the included variables X1t are columns of Xt selected depending on the data:

 Xlt = q(Xt, yt)

 Classical Model with Inputs Selected Non-stochastically Without Reviewing the Current
 Data

 The textbook classical model of data analysis ignores altogether the fact that a human has to
 write the computer program and select the inputs. A real data analysis must therefore be viewed
 as the Output of a dual effort by human and electronic computer. No sharp distinction should
 be made between responses that are carried out completely by electronic computers, and
 responses that are partly selected by a human computer. For example, I might use stepwise
 regression to decide if a function is quadratic or not: if the t-value on the quadratic term
 exceeds some critical value, then the electronic computer will include the quadratic; otherwise,
 it will be excluded. This is not fundamentally different from deciding to include a quadratic
 term if something looks 'suspicious' in the scatter of observations (or plot of the residuals).

 Given that a human being must be involved in a data analysis, the closest one could come
 to the ideal classical model is to have the human write the computer program and select the
 inputs into the electronic computer without reviewing the current data and without influence
 of the stochastic elements in mood and expertise. An equivalent would be a computer program
 with memory. In terms of the model, this amounts to selecting a predicted state of mind that
 does not depend on the mood or the expertise and a plan with an infinite width:

 R(Yt) = P(Yt) = p(Yt St)

 St= f(Yt-1, Yt-2,..., Y1i).

 W( )= oo

 Here again, the planned response and the actual response are identical.

 Classical Model with Stochastically Selected Inputs

 In practice it is unlikely that a human could approximate an electronic computer and make
 choices that do not depend at all on mood and expertise. For example, stepwise estimation of
 a quadratic equation will always produce the same estimated model, linear or quadratic, when
 excited by the same data set. But a human observer of a scatter of observations will sometimes
 include the quadratic term, but sometimes will not. This makes the response have a random
 component. It is as if the stepwise computer program were to use a stochastic critical value to
 determine if the quadratic term should be included or excluded.

 In terms of the elements of the model, this requires only that we allow the past levels of mood
 and expertise to affect the response function:

 R(Yt) = P(Yt) = p(Yt I St)
 St = f(Yt-1, Yt-2,..., Yl, Mt- 1, Et_-).

 w( ) = oo

 Multi-step, Infinite Width Plans

 One aspect of exploratory data analysis is that the width of the plan is zero. Many methods
 of estimation masquerade as exploratory by pretending to have plans with narrow or zero
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 widths, when in fact the widths are infinite. For example, stepwise regression is an example of
 confirmatory data analysis that can be written in a form which makes it appear to have an
 exploratory component:

 R(Yt) = (Xt'Xt)-'Xtyt if F(yt, Xt) < w
 (X[tX1t)- 1Xtyt otherwise

 where F is the F-statistic for testing if the variables X2t belong in the equation. One might be
 tempted to say that the planned response to the data is to include all the variables in the
 regression, but if the data are 'unusual' in the sense that the F statistic is small, then the plan
 is revised and only a subset of variables is included.

 In this case of stepwise regression, however, the planned response to the data set is complete
 and fully carried out. Stepwise regression should be viewed as a form of confirmatory data
 analysis, and subjected to the same kind of critical scrutiny as other confirmatory analyses.
 Either sampling properties should be determined, or the implicit prior distribution should be
 unearthed. If the Bayesian approach is taken, it is natural to assume that the implicit prior
 distribution summarizes the notion that the subset of variables X2t might be neglected because
 they have coefficients close to zero.

 Apparently Exploratory Data Analysis with Implicit ex-post Plans

 The cost of planning can be completely avoided if the width of the plan is genuinely set to zero.
 In that event a respons e formulated only for the actual data set once it is observed,
 not for all hypothetical data sets. The distinction between exploratory and confirmatory data
 analysis might be based on the width of the plan. A fully confirmatory data analysis occurs
 when the width is infinite. An exploratory data analysis might be said to occur when the width
 of the plan is zero.3 But the proper distinction between exploratory and confirmatory data
 analysis cannot be made on the basis of the apparent width of the plan only, since plans may
 be implicit yet still e said to exist and subject, in principle, to the same kind of scrutiny as
 explicit plans.

 Consider again the example in which one looks a a scatter of points to decide what
 functional form should be estimated, not necessarily committed to choosing between the linear
 or quadratic forms. Is this genuine exploratory data analysis? Not if the subject is merely
 carrying out an implicit plan. In principle we could find out what the plan is by confronting
 the subject with a sequence of hypothetical scatters of observations, and asking if the quadratic
 term should be included. This is analogous in inputting a sequence of data sets into a stepwise
 regression program to see if the program selects or omits the quadratic term. One difference
 is that there is variability in response of the human that is not normally present in the computer.
 This makes the plan stochastic. Another big difference is that the response of a human to
 hypothetical data sets may be very unlike the response to real data sets.

 The formal model of apparently exploratory data analysis is:

 R (Yt) = p(Yt I St)

 St= m(Yt- 1, Yt-2, ..., Y1, t, et).

 w( )=O

 3These words, 'exploratory' and 'confirmatory', are traditional. The word 'exploratory' evokes the image of an
 explorer entering uncharted territory with little or no preconceived idea about what is to be found there. The word
 'confirmatory' evokes no similarly strong image. What is one called who uses a map for navigation? A traveller? How
 about 'navigatory' data analysis?
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 where m( ) is a measurement function that depends on the random components of mood and
 expertise. The difference between this and the classical model with a stochastic plan is only the
 existence of a complete set of explicit plans in the former case, and the complete absence of
 same in the latter case. But the plan does exist implicitly, even though it is not articulated or
 programmed. And it can in principle be uncovered by an experiment in which the observer is
 confronted with a sequence of observations Y. Once uncovered, it can be subjected to the
 traditional kinds of scrutiny.

 Exploratory Data Analysis

 What makes a data analysis genuinely exploratory? It cannot be merely the width of the plan.
 As I see it, we should reserve the word 'exploratory' to those response functions which are not
 'idealized' responses for some state of mind. Responses that are unplanned, but are nonetheless
 idealized response functions for some state of mind, are apparently exploratory, not genuinely
 exploratory. Apparently exploratory analyses could and probably should be scrutinized in the
 traditional way; genuine exploratory analyses, however, may require some major amendments
 to our theories of inference.

 Genuinely exploratory data analysis occurs when the approximate state of mind on which
 the data analysis depends is a function of the current data. This would occur either because
 the mood and expertise depend on the current data, or because the approximation to the current
 state of mind depends on the current data.

 The model for genuinely exploratory data analysis is:

 R(Yt) = p(Yt l St)

 St = f(Yt, Yt- , Yt-2, .,Yl,, t, et).

 w( )=O

 In this case the response function R(Yt) is not equal to an idealized response p (Yt I S) for any
 state of mind S because the data Y affect the state of mind S on which the response is based.
 The basic problem with exploratory data analysis is that the data play two roles in the analysis,
 one to determine the state of mind (instigate a hypothesis) and the other to select a response
 given this state of mind. The solution to this problem of double counting is proper policing
 of the inferences to make the response function conform as closely as possible to an idealized
 response for some state of mind. More on this below.

 From the standpoint of an outside observer, who can see the response but not the logic for
 it, it is impossible to distinguish exploratory from confirmatory data analysis with implicit
 plans. A clear distinction could be made if the plan were required to be fully articulated before
 the data were observed. It is also possible to test if the response to hypothetical data sets is the
 same as the response to real data sets. Complications would arise, however, when there are
 changes in expertise.

 Ideal Bayesian Model

 Bayesian programs have prior information as inputs. These define the state of mind, which is
 a function of past observations, and time, in the sense that the prior for analysing Yt depends
 on past observations and on the process that is observed at time t. Thus:

 R(Yt) = P(Yt)= pYt S t)

 St = St = f(Yt, Yt-2, ..., Y1, t)

 w( )= oo
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 PLANNING, CRITICISM, AND REVISION

 meaning that the true state of mind depends on the sequence of past observations and on the
 process that is currently being analysed, and this state of mind can be perfectly measured. This
 Bayesian model is like the nonstochastic classical model but with a well-developed theory of
 the state of mind.

 Here is an example: suppose that a sequence of vectors is observed that are generated by
 regression functions:

 Yi = Xi3i + ui

 Yi - N(O, a21)

 [i - N(O, Vit)

 where the last assumption indicates the relationship between the coefficients of interest and past
 coefficients. Then we can substitute to obtain

 Yi = Xit + ei

 ei - N(O, a21 + Xi Vit Xi)

 The posterior mean of fi can then be written in the notation of the state of mind as

 R(Yt) = (XtXt + Slt) -(Xt Yt + S2t)

 where S-l s2t is the prior mean vector and Sit is the prior precision matrix. These components
 of the state of mind are dependent on past observations according to:

 slt= E x! [Oi + xi vitxi ] -'xi
 i=1

 t

 s2t= Xi [o I + Xi it Xi ]-lyi
 i= 1

 Practical Bayesian Model: Precommitted Prior Distribution

 In practice, however, there is a substantial amount of whimsy in defining the prior distribution,
 which anyway is only an approximation to the state of mind. A model of practical Bayesian
 analysis in which the prior distribution is selected before reviewing the data is thus:

 R(Yt)= P(Yt)=p(Yt St)

 St = f(Yt-2, Yt- 1, ..., Y1, Mt, Et, t)

 St = m (E(St), Mt- , Et-, )
 W= 00

 where m is a measurement function. Here the response depends on a measurement of the
 expected state of mind. The accuracy of the measurement of this expected state of mind
 depends on the mood and expertise of the observer.

 Bayesian Analysis with an Implicit, ex post Plan

 The initial prior distribution that was formed before the data were observed may seem
 undesirable once the data are observed. The selection of a prior distribution after observation
 of the data could be based on any of three assumptions regarding the effect of the current data
 on the state of mind and its measurement. These three cases are:

 1. Neither the state of mind not its measurement depends on the current data.
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 2. The state of mind does not depend, but its measurement does depend, on the current data.
 3. The state of mind, and consequently its measurement, depend on the current data.

 The second two cases lead to what I would call 'exploratory data analysis'; the first is not
 exploratory. An example of the first case is offered in the subsequent section on Bayesian
 diagnostics, in which I suggest eliciting the prior distribution carefully only if an affirmative
 answer is given to the question: 'Is the prior variance greater than c?' where the number c is
 selected after the data are observed in such a way that an affirmative answer justifies the
 approximation that the prior variance is infinite. I argue that the answer to this question is not
 likely to be (greatly) affected by the fact that c depends on the data, and consequently this does
 not give rise to the double-counting problem of exploratory data analysis.
 This case in which the prior distribution is elicited after the data are observed but not

 (substantially) dependent on the data takes the same form as apparently exploratory data
 analysis from the classical perspective:

 R(Yt) = p(Yt I St)

 St = S(Yt- 1, Yt- 2, ..., Y1, t, et).

 w( )=O

 Note that here the response function is an ideal response for a state of mind that is measured
 after the data are observed. This is not what I call exploratory analysis, even though the width
 of the plan is zero.

 Exploratory Bayesian Analysis

 The other two possibilities in which the measurement of the state of mind depends on the
 current data fall under the heading of exploratory data analysis because the response function
 is not an idealized response for any state of mind. The first model of exploratory data analysis
 has the true state of mind independent of the current observations, but has the measurement
 of some influence of the current observations:

 R(Yt) = p(Yt I )
 St = m (St, Mt,Et, Yt)

 St = f(Yt- 1, Yt-2,..,, Y, t, et).

 w( )=o

 The other model has the state of mind as well as its measurement dependent on the current data
 set

 R(Yt) = p(Yt St)

 St =m(St, Mt, Et, Yt)

 St = f(Yt, Yt-1, Yt-2,..., Y, et, et).

 w( )=0

 These two cases allow the data to play two roles in the analysis; once to affect the measured
 prior distribution and again to affect the inferences given the measured prior distribution. Some
 kind of adjustment to the inferences is required to correct for the possibility of double
 counting, and to limit the chance of overfitting (seeing patterns in a random data set).
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 5. SAMPLING PROPERTIES OF RESPONSE FUNCTIONS: CLASSICAL DESIGN

 Mood and expertise cause great problems for classical inference which attempts to base the
 choice of response function on its sampling properties. If the response function is simple, like
 ordinary regression, then its sampling properties such as bias and variance can be determined
 mathematically. If the response function is more complex, like stepwise regression, but
 programmable on an electronic computer, the function can be plotted and its sampling
 properties can be established by Monte Carlo methods. If a human, subject to mood swings
 and accumulation of expertise, shares the choice of response with an electronic computer, it
 may also be possible to determine the joint response function and to estimate its sampling
 properties using Monte Carlo experiments in which the human-cum-electronic computer is
 excited by a sequence of randomly chosen inputs and the corresponding responses are
 tabulated. Randomness in the human response is clearly allowable with this experimental
 approach if there is no intersample dependence in the response. If there is intertemporal
 dependence, the experimental approach may uncover it, but sampling properties will not be
 clearly defined.

 Consider, for example, the problem of estimating the mean /mi of a sequence of normal
 populations each with variance one. The following are three estimators suggested by the
 Bayesian tradition. Each is a weighted average of the sample means mi and some other value
 which can be thought to be the location of the prior distribution.

 pl = wmi 0 < w < 1

 2 = wmi + (1 - w)ei 0 < w < 1 i - N(O, 1)

 3 = wmi + (1 - w) E ej O < w < 1 ei - N(O, 1)
 jAi

 The location of the prior for the first estimator is always zero. The location of the prior for
 the second estimator is a stationary random variable, suggestive of changes in mood. The
 location of the prior for the third estimation is a nonstationary random variable, suggestive of
 changes in expertise. What are the sampling properties of these estimators? We can all agree
 that the first estimator has mean w/i and variance w2/n where n is the sample size. The second
 estimator might be said to have mean w,/i and variance w2/n + (1 - w)2. Or it could be said
 that, conditional on ei, the mean is w/,i + (1 - w)ei and the variance is w2/n. The question that
 must be confronted is whether changes in mood should be embedded in the sampling error or
 not. This question is made more pointed by reference to the third estimator which might be
 said to have mean w,ui and variance w2/n + (1 - w)2ni where ni is the number of means that
 have been observed, or alternatively could be said to have mean wmi + (1 - w) Ey < i ej and
 variance w2/n. Yet a third alternative is to condition on everything that is given up to the ith
 mean. Then this third estimator could be said to have mean wmi + (1 - w) <, i- 1 ej and
 variance w2 In + (1 - w)2.

 The point that this example makes is that the conceptual experiment of repeated sampling
 that underlies classical inference can be ambiguous. Then the ranking of alternative estimators
 can also be ambiguous. My own instinct here would be to embed changes in mood in the
 sampling distribution, but not changes in expertise. If the state of mind on which a data analysis
 rests does not depend on mood or expertise, then a fully nonrandom response function can be
 selected before the latest data are observed, and sampling properties of this response function
 can be straightforwardly established. These sampling properties remain relevant after the data
 are observed because the data do not affect the sampling properties that the observer considers
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 relevant. When the state of mind is variable, so too are the relevant sampling properties. Which
 sampling properties should dictate the choice of procedures?.

 In addition, there is a substantial problem in determining what the response function really
 is when it includes a random component chosen by a human. If the response were fully selected
 by an electronic computer with a random component it would be possible to input repeatedly
 the same data set to see how the computer would respond. For example, a stepwise regression
 program could have a random critical value for the t-statistic that selects the variables to include
 in the equation. The sampling properties of this response function can be established by Monte
 Carlo methods.

 But a computer does not distinguish real from hypothetical situations. Humans do. What
 would you do if an attractive stranger proposed a rendezvous? Your answer to the hypothetical
 question may be very different from your response to a real proposal. Or I might ask you, if
 you observed a particular scatter, would you think the model to be linear or quadratic. Your
 answer to this hypothetical can be very different from your response to real data for a variety
 of reasons, one of which is that you treat the real situation with greater care and thought. To
 use my language, the mood that you approach a hypothetical data analysis may be very
 different from the mood that you approach a real data analysis.

 Anyway, is it really sensible to try to find the sampling properties of an estimator that is
 partly selected by a human? Who is going to sit still for this?

 My conclusion: sampling theory is not very useful for selecting responses to real data sets
 except in those cases in which the state of mind is perfectly predictable and a fully committed
 set of plans can be formulated before the data are observed. These cases may be more prevalent
 than you might imagine. Many diagnostic statistics precipitate a predictable response, and
 cannot be said to affect the state of mind of the observer in the sense that I have defined. These

 diagnostics form part of a complex multi-step method of estimation which ought to be
 scrutinized in the traditional way: either sampling properties should be determined, or the
 implicit Bayesian prior distribution should be unearthed.

 6. DIAGNOSTIC STATISTICS

 The theory outlined in Section 3 allows diagnostic statistics to play three different roles:

 1. A 'pre-test diagnostic' may be used to select between a pair of alternative estimates.
 2. An 'elicitation diagnostic' indicates if the inferences are sensitive to the choice of prior

 distribution, and may call for a more accurate measurement of the state of mind.
 3. A 'criticism' may suggest a change in the original model/state of mind.

 Each of these is now discussed.

 Diagnostics as Part of a Multi-step Planned Response

 Suppose that the response to a 'bad' Durbin-Watson statistic is only to correct for first-order
 serial correlation. Technically, this is the same as stepwise regression in which a variable is
 added to the model if it is sufficiently correlated with the estimated residuals. A t-statistic on
 this potential variable could serve as the 'diagnostic', indicating the need to add this other
 variable. This type of diagnostic is just part of a complex method of estimation. It really should
 not be called a diagnostic at all. The complex method of estimation should be subjected to the
 traditional scrutiny: either sampling properties should be established, or the prior distribution
 that underlies the estimate should be disclosed.
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 These pretest diagnostics are, I believe, the most prevalent in practice. Usually peculiarity
 in a diagnostic precipitates a predictable response. A test for non-normality selects a correction
 for non-normality; a test for serial correlation can lead to a correction for serial correlation;
 a test for heteroscedasticity selects a heteroscedasticity correction. The particular form of the
 correction may vary with the mood of the observer, but in principle this variability can be
 determined by an outside observer. In that sense the response is predictable, though possibly
 random. If so, this is a complex planned response, but the problems are entirely 'above the line'
 and do not raise the difficult double-counting issues associated with criticism and revision.

 Diagnostics that Suggest More Accurate Measurement of the Prior

 A Bayesian approach requires the elicitation of a prior distribution which can be done most
 efficiently after the data are observed, since there are many prior distributions that are
 practically equivalent to the diffuse prior, and there are many others that are practically
 equivalent to the dogmatic prior. A companion paper (Leamer, 1989) presents some elicitation
 diagnostics for the normal linear regression model. These diagnostics indicate when it is a good
 approximation to use either a diffuse prior distribution or to use the sharp prior that calls for
 a subset of variables to be altogether omitted. If the sample size is small, one might as well omit
 the variables; for large samples one might as well include them and estimate with maximum-
 likelihood. For intermediate sample sizes the prior distribution matters, and needs to be more
 accurately elicited.

 These elicitation diagnostics do depend on the chi-squared statistic that tests the traditional
 hypothesis that the coefficients of the doubtful variables are collectively zero, and also on the
 t-statistic that tests if the omission of the doubtful variables causes bias in the estimates of the

 issue of interest, but other aspects of the data are also relevant.
 These elicitation diagnostics do raise a double-counting problem because they reveal features

 of the data which may affect the prior distribution that is elicited. My guess is that the measured
 prior distribution would not be greatly affected by knowledge of these diagnostics, but this is
 an hypothesis that could be experimentally tested.

 Diagnostics as Criticisms

 Diagnostics may also serve as criticisms of either the model or the prior distribution. The form
 that criticism should take is not clear-cut whether one takes a Bayesian or a classical
 perspective. What feature of the data might suggest that the search for a new model would be
 successful? If one knew the answer to this question in advance, then the response could be
 planned and criticism would be unnecessary.

 I am inclined to think that wrong signs, maybe low R2 values, and data displays might
 stimulate me to think of a better model. But I share with Hill (1988) the opinion that 'No theory
 that I know of attempts to answer [this question], which is a formal way to facilitate scientific
 creativity.' Thus, when you see claims of automated methods of criticism and hypothesis
 discovery: caveat emptor!

 Bayesian Criticisms

 There clearly cannot be a fully acceptable formal Bayesian solution to the choice of criticisms
 because the Bayesian statistical theory is limited to comparing alternative explicit models. A
 Bayesian, by selecting a prior distribution, say f(O), and a sampling distribution, say f(y I 0),
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 claims to know the distribution from which a statistic t(y) is drawn: f(t) = I f(t(y) I G)f(O) d0.
 When the data come from the 'extreme tail' of this distribution, it seems unlikely that the
 assumptions (f(y I 0) and f(O)) are correct. But which statistic t should be used and when is
 f(t) small? I am reminded of the old joke: When asked 'How's your wife?' he replied,
 'Compared to what?' The point is that a Bayesian can only say one model is better than
 another. Formally, the odds in favour of an alternative hypothesis, say Ha, compared with this
 initial hypothesis, say Ho, are

 P(Ha y) f(y Ha)P(Ha)
 P(Ho I y) f(y | Ho)P(Ho)

 This posterior odds ratio depends on both the prior odds ratio P(Ha)IP(Ho) and also the Bayes
 factor defined as the ratio of the density under the alternative to the hdensity under the null.
 The null density is large or small only in comparison with the density value for alternatives with
 adequate prior probability. A data set may come from the tail of the null distribution, but it
 may come even more remotely from the distributions corresponding to sensible alternative
 hypotheses with reasonably large prior probability!

 The problem of the alternative is not satisfactorily resolved by attempting to define the
 distribution of the data given the vague alternative that 'something else' is happening Barnard
 (in Savage, 1962, pp. 75-86; quoted in Hill, 1988) argues: "Professor Savage says in effect,
 'add at the bottom of the list H1, H2,..., "something else"'. But what is the probability that
 a penny comes up heads given the hypothesis 'something else'? We do not know."
 Furthermore, I ask rhetorically, what is the prior probability of 'something else'? I am inclined
 to think that a sensitivity analysis could be helpful here. More on this below.

 Bayesian Encompassing Diagnostics

 One of the popular statistics in the LSE-Hendry tradition tests for 'encompassing' by
 embedding a pair of non-nested models into a general composite model and testing to see which
 if either outperforms the composite model. When a model does not perform well compared
 with the composite model it is said not to 'encompass' the other model. I will make two
 comments about these encompassing tests from the Bayesian perspective for the special case
 of the linear model. First, the failure or ability of model 1 to 'encompass' model 2 in the sense
 of Hendry and Mizon is irrelevant for the choice between models 1 and 2. Second, the
 encompassing statistics can be used as criticisms of the pair of models, though there is a
 substantial problem in choosing an appropriate significance level.

 Consider the simple setting in which there are three competing regression hypotheses; y
 depends on Xi, y depends on X2, and y depends on X3:

 Hi: y- N(Xiki,ai2I) i=s1,2,3

 where y is an n x 1 observable vector, Xi is an n x ki observable matrix, fi is a ki x 1
 unobservable vector, and ai is an unobservable scalar.

 The Bayesian problem of discriminating among these three hypotheses rests on a
 straightforward application of Bayes rule, beginning with the prior probabilities of the three
 hypotheses and a prior distribution over the parameter space. It is then a straightforward
 application of Bayes rule to compute the posterior probability of each of the hypotheses:

 P(Hi I y) = fi(y I X)P(Hi)fYZ fj(y I X)P(Hj)

 where fi is the marginal likelihood of hypothesis i
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 fi(y X) = I fi(y | X, di, ai)gi(i, oi) dfi dai

 where gi(fi, ai) is the prior distribution for the parameters under hypothesis i.
 The posterior odds ratio of hypothesis 1 relative to hypothesis 2 is then the ratio of weighted

 likelihoods times the prior odds ratio:

 P(H, I y) f, (y I X) P(H1)
 P(H2 Iy) f2(Y X) P(H2)

 This odds ratio that compares model 1 with model 2 has a very important feature: it does not
 depend at all on the existence or quality of the third hypothesis. The performance of the third
 hypothesis can add or subtract to the total posterior probability of hypotheses I and 2, but
 cannot affect the division of the posterior probability between them. Thus the ability to
 'encompass' is irrelevant to the choice between a pair of models.

 Next, suppose that there are only two fully specified competing hypotheses. Though no
 specific alternatives to these two hypotheses may be identified, it is unlikely that we could have
 enough confidence in a pair (or finite set) of hypotheses that we would not want to reserve at
 least a little probability for 'something else'. In order to select between H1, H2, and 'something
 else' we need to specify the distribution of the data if they are generated by 'something else'.
 One way to think about this, suggested in Leamer (1974), is to suppose that there is a third
 hypothesis

 H3: y- N(X333,o3I)

 for which the relevant explanatory variables X3 are not observed. These unobserved variables
 must be marginalized from the likelihood function. If, for example, all the explanatory
 variables come from a multivariate normal distribution, then this marginalization produces the
 alternative hypothesis4

 Ha: y - N(X10l + X202, a21)

 This composite model that includes both X1 and X2 may be theoretically meaningless. This
 model is formed only as a surrogate for the unspecified alternative that y depends on X3.

 We now have two well-defined hypotheses and a vague alternative. The performance of the
 vague alternative can cast doubt on the pair of well-defined hypotheses in the sense of lowering
 the posterior probability assigned to them. A Bayesian diagnostic is therefore a measure of the
 performance of the composite hypothesis with all the explanatory variables compared with the
 maintained hypotheses. But, of course, in order to form this measure, one requires a prior
 distribution for 01 and 02. How one might do this is something of a mystery, which is Barnard's
 point in the quotation above. When I feel fatherly, I am inclined to insist that one make a
 commitment to the choice of prior for these parameters, even though one cannot know what
 they represent. This commitment allows one later to correct for successful criticisms. See
 Section 6.

 One feature of the distribution for 01 and 02 that might be selected by convention is the mean.
 The implicit prior for the unstated model with unobserved variables X3 is that it does not
 explain the data. This must mean that f3 is implicitly revealed to be small, and consequently

 4 By the way, this approach leaves a lot of freedom in forming the alternative hypothesis, even if we commit to the
 normal regression model if X3 is observed:

 fa(Y | Xi, X2) = | a2 exp[- (y - X33)'(Y- X3f3)/a2]o2f(X Xi, X2) dX3
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 so are 01 and 62. Measuring the performance of the alternative model requires not just a prior
 mean but also a prior variance matrix. For reasons discussed below, this prior variance matrix
 is required to adjust the inferences for successful and unsuccessful criticisms. In practice,
 however, it is awfully difficult to submit to this kind of discipline and to commit to a particular
 choice of this prior covariance matrix. A possible compromise is a sensitivity analysis which
 allows the prior variance V to be free. A Bayesian diagnostic with known V is the Bayes factor
 in favour of the alternative hypothesis relative to hypothesis i:

 B(Ha: HiI V)=S Ifa(YI X, )f( I V) dO B(HasHNi ¥ X)=) i=1,2

 A Bayesian diagnostic when V is difficult to select is the maximum Bayes factor in favour of
 the vague alternative:

 Max B(Ha: Hi I V)
 v

 I do not pretend to be able to tell you what should be the critical value of these statistics, since
 the posterior odds ratio depends both on the Bayes factor and also the prior odds ratio. The
 question that must be answered is: When is this Bayes factor so high that the search for a new
 model is likely to be successful? Is it 10: 1 in favour of the alternative. Or 100: 1? I don't know.
 For that matter, I don't even know if this Bayes factor is useful information. It would take
 a lot of experience before that could be established. This is clearly not a matter of theory, since
 to get to this point we have made a number of assumptions that are questionable at best.
 Furthermore, this form of criticism applies only if there are competing non-nested hypotheses
 with non-zero prior probability, a setting which in my opinion is rare in economics.

 Classical Criticisms

 Classical criticisms are usually 'goodness-of-fit' tests which also indicate whether the data come
 from the tail of the assumed distribution. These 'goodness-of-fit' tests have a shaky logical
 foundation. One problem, pointed out by Berkson (1938), is that unless the model is perfectly
 correct, the model will surely be rejected as sample size grows. Diagnostics that are tests of the
 model against unspecified alternatives thus amount only to elaborate schemes for measuring
 sample size.

 It thus seems unlikely that the finding that the data come from the tail of the distribution
 is properly regarded to be a criticism of the assumed model. But here is a counter-example:
 suppose that you point out to your class of ten students that two of them have the same
 birthday. Many of these students would be surprised and might start wondering if there was
 some nonrandom sorting that has occurred. Then you point to Feller (1957, p. 32) that the
 probability of no matches is only 0-883, so that an event with rather high probability has
 occurred. This will probably dissuade the students from looking for another explanation. Note
 that this sequence of events refers repeatedly to the probability of the data under the assumed
 model of randomness and never to any alternative. First the probability of a match was thought
 to be very small, and the data seemed sufficiently anomalous to justify the search for an
 alternative. Then the miscalculation was pointed out and the higher probability did not seem
 to justify any further search. Perhaps in this setting one has an intuitive sense of the probability
 of this kind of data under the alternative that might be constructed, and also the prior
 probability of this alternative. It is possible, but it does seem doubtful.
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 7. CORRECTIONS FOR SUCCESSFUL AND UNSUCCESSFUL CRITICISM

 Both successful and unsuccessful criticisms have implications for the inferences that are
 properly drawn from a data set. The attempt to criticize, even when it does not lead to a
 revision, reveals that there is a lack of complete commitment to the assumptions that underlay
 the original plans. This lack of complete commitment requires some alteration of the plans-
 for example, enlargement of the standard errors of the coefficients to reflect the fact that there
 surely are omitted variables that cause bias in the estimates. When the criticism is successful,
 there is a double-counting problem because the data are used once to alter the assumptions,
 and then again to make inferences as if these were the assumptions that were used from the
 beginning. Something needs to be done to limit the double-counting and to minimize the chance
 of overfitting.

 The corrections for both successful and unsuccessful criticism that I proposed in Leamer
 (1974) treat the phenomenon of hypothesis discovery as if it were a traditional problem of
 sequential observation with an initial decision not to observe some of the variables. Suppose
 that the full model has two explanatory variables:

 Yi = a + fxi + 'zi + ui

 where y, x and z are observables and ui is a normally distributed serially uncorrelated error
 term with mean zero and variance a2. Suppose further that z given x is generated also by a
 regression:

 Zi = s + rxi + ei

 where ei is a normally distributed serially uncorrelated error term with mean zero and variance
 a,2. Then, if interest focuses on ,f, it is possible to make the decision to observe only y and x
 and to estimate the function:

 yi = a + lxi + y(s + rxi + ei) + ui

 = (a + 'ys) + ( + r'y)xi + (ui + yei)

 = + e * + ( + - *)Xi + ( + Ui U)

 where: a*= ys

 f*= *a
 Ui =yei

 I assume that the prior distribution for f8* is located at the origin, meaning that the expected
 bias of the least-squares estimate of 0 is zero. The presence of the 'experimental bias' 8 * reduces
 the effective sample information about f from x'x/a2(x'x/a2)(vx'x/a2 + 1) where v is the prior
 variance of fi*. Thus the possibility of misspecification requires a discount of the data evidence
 that depends on the quality of the experiment measured by v.

 When a criticism is successful, and it is decided to observe z, the sample information is
 properly summarized by the regression of y on x and z; no adjustment is necessary for the fact
 that the data were observed in stages. However, there is a restriction that must be made on the
 processing of the data. The prior distribution that is used for y must be consistent with the prior
 that was used for 8* since /8*= r-y. With r and y independent this implies the moments:

 E(r)E(y) = 0

 E(r2)E('2) = v.

 These equations place restrictions on the prior distributions for r and 7y. Usually they will be
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 interpreted to mean that the original decision to omit z reveals a prior for y that is located at
 zero with a variance that is limited depending on the size of the prior variance for 8 *. The effect
 of this prior is to shrink the estimate of 7y to zero and thus to discount the inferences implied
 by the regression of y on x and z. The amount of discounting that is required is a decreasing
 function of the prior variance v.
 To summarize, there are a sequence of discount rates that apply at different stages of a data

 analysis if there is criticism and potential revision. An initial discount applies if the criticism
 is unsuccessful. If this discount is great, meaning that there is a substantial chance of successful
 criticism because the model is probably poorly specified, then the discount applying to
 subsequent models will be less. If, on the other hand, the initial discount is small because the
 initial model is thought to be pretty good, then the results from data-instigated models are more
 heavily discounted.5
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