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HYPOTHESIS Open Access

Immune oncology, immune responsiveness
and the theory of everything
Tolga Turan1, Deepti Kannan1, Maulik Patel2, J. Matthew Barnes1, Sonia G. Tanlimco1, Rongze Lu1, Kyle Halliwill1,
Sarah Kongpachith1, Douglas E. Kline3, Wouter Hendrickx4, Alessandra Cesano5, Lisa H. Butterfield6,
Howard L. Kaufman7, Thomas J. Hudson1, Davide Bedognetti4, Francesco Marincola1 and Josue Samayoa1*

Abstract

Anti-cancer immunotherapy is encountering its own checkpoint. Responses are dramatic and long lasting but occur
in a subset of tumors and are largely dependent upon the pre-existing immune contexture of individual cancers.
Available data suggest that three landscapes best define the cancer microenvironment: immune-active, immune-
deserted and immune-excluded. This trichotomy is observable across most solid tumors (although the frequency of
each landscape varies depending on tumor tissue of origin) and is associated with cancer prognosis and response
to checkpoint inhibitor therapy (CIT). Various gene signatures (e.g. Immunological Constant of Rejection - ICR and
Tumor Inflammation Signature - TIS) that delineate these landscapes have been described by different groups. In an effort
to explain the mechanisms of cancer immune responsiveness or resistance to CIT, several models have been proposed
that are loosely associated with the three landscapes. Here, we propose a strategy to integrate compelling data from
various paradigms into a “Theory of Everything”. Founded upon this unified theory, we also propose the creation of a task
force led by the Society for Immunotherapy of Cancer (SITC) aimed at systematically addressing salient questions relevant
to cancer immune responsiveness and immune evasion. This multidisciplinary effort will encompass aspects of genetics,
tumor cell biology, and immunology that are pertinent to the understanding of this multifaceted problem.

Keywords: Cancer immunotherapy, Checkpoint inhibitors, Immune resistance

Premise and background
Anti-cancer immunotherapy is encountering its own
checkpoint. Responses are dramatic and long lasting but
occur in a subset of tumors and are largely dependent
upon the pre-existing immune contexture of individual
cancers [1]. Current research is trying to determine why
some cancers respond to CIT more than others and the
reasons for individuals’ variability within each indication
[2, 3].
Several morphological observations based on immune

histochemical analyses suggest that three immune
landscapes best define distinct varieties of the cancer
microenvironment: an immune-active, an opposite
immune-deserted and an intermediate immune-ex-
cluded [4]. Across cancers, and among subtypes, the

prevalence of each landscape may differ. Nevertheless,
this trichotomy is observable across most solid tumors
suggesting that convergent evolutionary adaptations de-
termine the survival and growth of cancer in the im-
mune competent host leading to predictable patterns
determined by uniform immunological principles inde-
pendent of the biology pertinent to distinct tumor tissue
of origin. It is therefore reasonable to postulate that the
mechanisms leading to cancer resistance to checkpoint
blockade are similar across cancers deriving from differ-
ent tissues. Functional characterization based on tran-
scriptional analyses cannot distinguish structural
differences. Thus a reductionist argument could be made
that at the functional level cancers can simply be aggre-
gated into immune-active or immune-silent clusters.
Current work from our group suggests that most immune
excluded cancer resemble functionally immune active
tumors suggesting that the periphery immune cells inter-
act with cancer cells (unpublished observation).
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We will refer to the mechanisms allowing persistence
of cancer in the immune-active cluster as Compensa-
tory Immune Resistance (CIRes) based on the assump-
tion that lack of CIRes would prevent tumor survival
against the host’s immune response. Conversely, we refer
to survival of cancer in the immune-deserted environ-
ment as Primary Immune Resistance (PIRes). In 2002,
we proposed that human cancer immune responsiveness
to antigen-specific vaccination administered in combin-
ation with systemic interleukin-2 is predetermined by a
tumor microenvironment conducive to immune recogni-
tion [5] Likewise, recent observations suggest that CIT is
most effective for the treatment of immune active
tumors, where a tenuous balance between immune-
effector and immune-suppressive mechanisms deter-
mines outcomes [6–8].
To explain CIRes and PIRes, several phenomenologies

have been described and models proposed that largely
outnumber the fewer immune landscapes (Table 1).
Such discrepancy can be explained in three ways: a)
some models do not translate broadly across the major-
ity of human cancers, b) there are subtler immune land-
scapes than those discernable by current approaches, or
c) some models are redundant and describe different
facets of the same pathophysiology. To solve this

discrepancy, we surveyed human cancers through
readily-available open-access information.
Marincola et al. [9] have previously described a tran-

scriptional signature comprising the concordant activa-
tion of innate and adaptive immune effector
mechanisms that is required for the occurrence of im-
mune-mediated tissue-specific destruction. This repre-
sents a conserved mechanism determining destructive
autoimmunity, clearance of pathogen-bearing cells dur-
ing acute infection, acute allograft rejection, graft-
versus-host disease and rejection of cancer. Thus, the
signature was termed: the Immunologic Constant of
Rejection (ICR) [9]. The ICR signature was derived from
bulk tumor transcriptome data sets, as they offer the
most readily-available sample/data type and the easiest
to apply in the clinic due to the ease of collection. The
ICR signature was further trained to be representative of
the broader signature as previously described [10] and is
currently represented by twenty transcripts and four
functional categories: CXCR3/CCR5 chemokines (in-
cluding CXCL9, CXCL10, CCL5), Th1 signaling (includ-
ing IFNG, IL12B, TBX21, CD8A, STAT1, IRF1, CD8B),
effector (including GNLY, PRF1, GZMA, GZMB,
GZMH) and immune regulatory (including CD274,
CTLA4, FOXP3, IDO1, PDCD1) functions. The expres-
sion of these twenty representative genes is highly corre-
lated with the extended ICR signature that includes
approximately five-hundred transcripts and is represen-
tative of its main functional orientation as previously de-
scribed [11, 12]. Importantly, the specific cell types in
the tumor microenvironment expressing these genes will
ultimately be relevant in elucidating the mechanistic link
between the ICR and the immune responsiveness of can-
cer. It was subsequently observed that the ICR serves
both as a positive predictor of responsiveness to im-
munotherapy and as a favorable prognostic marker for
various tumor types [6, 10, 13, 14]. This observation sug-
gests that these related phenomena represent facets of a
spectrum within the continuum of anti-cancer immune
surveillance. Such continuity leads to the fair, though
unproven, assumption that signatures predictive of pro-
longed survival may mark an immune-favorable cancer
phenotype and serve as surrogate predictors of respon-
siveness to anti-cancer immunotherapies [10, 15]. This
assumption is also corroborated by recent reports sug-
gesting that similar gene expression patterns predict re-
sponse to CIT [6–8]. Specifically, Ayers et al. [6] using
RNA from pre-treatment tumor samples of
pembrolizumab-treated patients and the nCounter plat-
form identified and validated a pan-tumor T-cell–in-
flamed gene signature correlating with clinical benefit.
This tumor inflammation signature (TIS) contains
IFN-γ–responsive genes (CD27, STAT1, IDO1, HLA-E,
NKG7) related to antigen presentation (HLA-DQA1,

Table 1 Principal models related to immune responsiveness

Immune Landscapea References

WNT/βCatenin Silent (0.03) [38, 39]

MAPK Hypothesis Silent (0.001) [10]

Immunogenic Cell Death Active (< 0.001) [19], [20, 21]

Regulatory T cells Active (< 0.001) [24, 25]

IL23-Th17 Axis Active (< 0.001) [26, 41–44]

Myeloid Suppressor Cells Active (< 0.001) [50]

PI3K-γ Signature Active (< 0.01) [52–55, 63]

IDO/NOS Signature Active (< 0.01) [51, 81, 82]

SGK1 Signature Ubiquitous [56, 57]

Shc1 signature Ubiquitous [62]

Barrier Molecules Ubiquitous [27, 28]

Mesenchymal Transition Ubiquitous [29, 30, 83]

Cancer-Associated Fibroblasts Ubiquitous [31–35, 84]

TAM receptor tyrosine kinases Ubiquitous [47, 58–60, 85]

Hypoxia/Adenosine suppression Ubiquitous [48, 49]

TREX1clearence of Cytosolic DNA NA [86, 87]

Checkpoint Cluster Active (< 0.001) [22, 23]

oncogene addicted tumors Silent [11, 68]

Epigenetic Regulation Ubiquitous [12, 88–90]
aDistinct models have been assigned to either the Silent or the Active Landscape
according to the results of the survey shown in Fig. 1. Ubiquitous refers
to models that are not significantly associated with either immune landscape
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HLA-DRB1, PSMB10, CMKLR1) chemokine expression
(CCL5, CXCL9, CXCR6), cytotoxic activity (CD8A), and
adaptive immune resistance (TIGIT, LAG3, CD274,
CD276, PDCD1LG2) and as such, is highly correlated to
the ICR signature: composite scores for each signature
calculated with ssGSEA software and compared accord-
ing the expression values in the 999 breast cancer sam-
ples from TCGA were highly correlated (r = 0.98). The
TIS has been developed into a clinical grade assay run-
ning on the nCounter platform currently being evaluated
in ongoing pembrolizumab trials (3). We, therefore, de-
veloped a strategy to build a navigational map of can-
cer immunity with the primary purpose of assigning
distinct immune responsive and resistant models to their
respective immune-landscapes using the expression of
twenty transcripts that are representative of the ex-
tended ICR signature.
Using the ICR signature [10], we queried the prognos-

tic accuracy of a transcriptional data set of breast
cancers from The Cancer Genome Atlas (TCGA) as a
discovery platform and validated the findings on a
second transcriptional set of breast cancers from the
Gene Expression Omnibus (GEO) repository at the
National Center for Biotechnology Information. The
TCGA set encompasses RNA-seq-based transcriptional
characterization of 999 breast cancer cases while the

compilation of 10 GEO studies included 1728 cases of
breast cancer (compiled in [16]) that were transcription-
ally characterized utilizing a uniform Affymetrix plat-
form. Both datasets were classified according to the
coordinated expression of ICR transcripts [10].
ICR groups were ranked 1–4, according to the level of

expression of the 20 representative ICR genes (Fig. 1).
At the transcriptional level a dichotomy between
Immune-active (ICR3–4) and immune-silent (ICR1–2)
clusters was apparent [10]. Kaplan-Meier applied to the
four ICR classes confirmed that ICR gene expression
correlates with survival in breast cancer [10].
Subsequently, we collected transcriptional Signatures

of Responsiveness (or Resistance) (sRes) as reported by
other investigators (Table 1) and assessed them for their
distribution within the four ICR groups (Fig. 1). The
signatures tested and respective publication from which
the transcript biomarkers were derived are available in
Table 1. We recognize that the current collection of sRes
is far from being comprehensive nor reflective of all pro-
posed models of immune resistance and/or responsive-
ness. While further work is being entertained to refine
and update the collection according to novel under-
standing of cancer immune biology, for the purpose of
this commentary the current version sufficiently high-
lights the process that we are proposing.

Fig. 1 Distribution of sRes gene expression according to distinct models (Table 1) within immune landscapes as defined by ICR gene expression.
Four immune landscapes were identified ranked according to the level of expression of ICR genes with purple, green, blue and red representing
respectively ICR 1, 2, 3 and 4. Because of similarities in patterns of gene expression, for the purpose of discussion the landscapes will be referred
to as immune-silent (ICR1–2) or Immune-active (ICR3–4). Genes were assigned to distinct landscapes according to significant difference in
expression between ICR4 and ICR1 (p-value < 0.05 and false discovery rate < 0.1). Genes signatures associated with a particular immune responsiveness
model as per Table 1 were assigned to distinct landscapes according to gene enrichment analysis and ubiquitous were considered signatures that did
not reach significance (one-tailed Fisher Test p-value < 0.01). *Cluster of ubiquitous genes that segregate with the immune active signatures but did
not reach significance and, therefore, were considered ubiquitous
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Self-organizing clustering of sRes signatures demon-
strated a preferential distribution of immune suppressor
activities such as those related to Th17-IL23 axis, T regu-
latory cells, checkpoint cluster, myeloid suppressor cells,
IDO within the ICR4 and, to a lesser degree, the ICR3 im-
mune landscapes (Fig. 1). This finding defines an immune
phenotype of breast cancer enriched in concert with im-
mune effector and immune suppressive mechanisms. Not
surprisingly, the transcriptional signature representative of
immunogenic cell death was included in the immune ac-
tive landscape. This information presents a strong argu-
ment for the existence of CIRes mechanisms balancing
immune pressure in these cancers’ evolutionary processes.
Conversely, the immune depleted landscapes (ICR1

and ICR2) belonging to the immune silent cluster were
best explained by PIRes, lacking evidence for the prim-
ing of a genuine immune response. The sRes of this
cluster is enriched with transcripts in the PI3Kγ/SFK/
pGSK3/β-catenin axis, and activation of the signal trans-
ducer and activator of transcription (STAT3). Coinci-
dentally, these sRes are also associated with suppressive
myeloid cell differentiation and activation of the IL-23/
Th17 axis. However, activation of the PI3Kγ/SFK/
pGSK3/β-catenin axis does not correspond to activation
of immunologic transcripts within the same cluster.
In conclusion, this survey suggested that:

1. In immune active tumors, signatures of immune
suppression and activation are both present and
this balance is responsible for CIRes in the ICR4,
and to a lesser degree the ICR3, subclasses of breast
cancer.

2. Immune active tumors (ICR3–4) are enriched in
sRes and immunogenic signatures enriched for:
a. Immunogenic Cell Death activation
b. IL23/Th17,
c. Checkpoints cluster
d. Myeloid suppressor cells
e. Regulatory T cells
f. IDO

3. Immune-silent tumors are enriched with signatures
reflecting activation of STAT3 and the PI3Kγ/SFK/
pGSK3/β-catenin axis and their depletion of
immune regulatory mechanisms argues for PIRes:
a. β-catenin
b. MAPK activation

Thus, the various models of immune resistance
(Table 1) converge either into PIRes or CIRes. Inter-
estingly, the CIRes signatures are co-expressed with
those reflecting STING activation [17, 18] and im-
munogenic cell death [19–21]. This observation sug-
gests that immunogenicity must be balanced by
immune suppression in immune active tumors.

In an effort to move these in silico observations
toward clinical validation and novel biology-based strat-
egies of immune-modulation, new molecular tools which
can be reproducibly applied in the clinic are needed. A
possible candidate is the PanCancer IO 360 Gene
Expression Panel (Nanostring), which allows for multi-
plexed targeted exploration of genes involved in the
tumor-immune microenvironment, allowing for a multi-
faceted characterization of disease biology and interroga-
tion of mechanisms of immune evasion. This panel was
developed specifically for translational research and
incorporates many of the PIRs and CIRes signatures in-
cluding the ICR and the TIS.

Discussion
Several models have been proposed to explain proclivity
or resistance of cancer in response to immunotherapy
(Table 1). Effector T cell exhaustion is broadly observed
in the tumor microenvironment manifesting through the
expression of a cluster of immune checkpoints often
concomitantly expressed in response to chronic inter-
feron stimulation [22, 23]. In addition, it is well estab-
lished that regulatory T cells balance immune effector
mechanisms [24–26]. Other models propose blockade of
immune cell homing to cancer tissue by barrier mole-
cules, chemo-inhibitory mechanisms, and by epigenetic
silencing of chemokines (CCL5, CXCL9, and CXCL10),
Th1 signaling molecules and antigen processing machin-
ery components [12, 27–37].
Other immune resistance models point to alterations of

cancer cell signaling that result in secondary dysregulation
of myeloid cell function. Cancer-intrinsic β-catenin signal-
ing defects disrupt chemo-attraction of dendritic cells
(DCs) and, consequently, antigen presentation in the con-
text of immunogenic cell death [21, 38–40]. In addition,
polarization of DCs toward a tolerogenic, IL23 producing
phenotype leading to Th17 polarization was described
in experimental animal models and in human samples
[26, 41–46]. Suppression of anti-cancer immunity has
also been attributed to the TAM receptor tyrosine
kinase family members that mediate efferocytosis and
negative regulation of DC activity [47]. Similarly, hyp-
oxia can drive immune suppression by inducing tol-
erogenic myeloid DC polarization [48, 49]. Finally,
myeloid cell biology is responsible for the immune
regulation of the cancer microenvironment through
the upregulation of metabolizing enzymes such as ar-
ginase and indoleamine 2,3-dioxygenase, which can
negatively impact T cell function [50, 51].
The phenotype of suppressive myeloid cells in the micro-

environment is often attributed to activation of the PI3Kγ/
SFK/pGSK3/β-catenin axis (Fig. 2). Phosphoinositide3-
kinase-gamma (PI3Kγ) can act as a molecular switch that
triggers immune suppressive mechanisms in myeloid DCs
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[52, 53]. At the same time, alteration of PI3K functional
components plays a widespread role in tumorigenesis [54].
Downstream phosphorylation of serum and glucocorticoid
kinase 1 (SGK1) by the PI3K/PDK1 cascade leads to activa-
tion of glycogen synthase kinase 3 beta (GSK3β) and subse-
quently β-catenin [55–57]. Interestingly, most studies
describing dysregulation of the PI3Kγ/SFK/pGSK3/β-ca-
tenin axis refer to abnormalities intrinsic to tumor cells,
although the same pathway can play an important role in
myeloid suppressor DC induction and immune suppression
downstream of the TAM receptor tyrosine kinases [58–60].
Converging on the same pathway, hypoxia inducible
factors (HIF1α) signal through the SGK3β/β-catenin
axis promoting cancer cell stemness and immune
suppression [48, 49, 61] (Fig. 2).
An upstream inducer of PI3Kγ stimulation is the scaffold

protein SHC1 that shifts the balance between STAT1 and
STAT3 activation in favor of the latter, promoting immune
suppression [62]. The context in which activation of SHC1
preferentially regulates myeloid DC polarization versus can-
cer cell signaling remains unclear. Similarly, loss of protein
tyrosine phosphatase non-receptor type 2 (PTPN2) func-
tion that inhibits PI3Kγ signaling is associated with activa-
tion of the tumorigenic pathway, while at the same time can
modulate T cell function through mDC activation [63, 64]
and induction of Th17 polarization [65, 66]. Finally activa-
tion of the mitogen-activated protein kinases (MAPKs) pro-
grams is consistently observed in immune silent tumors and
is associated with a respective mutational signature [10].

Therefore, it may be that most models of immune
resistance are based on a diverse interpretation of the
disruption of the PI3Kγ/SFK/pGSK3/β-catenin pathway:
one centered on tumorigenesis and the other on myeloid
cell biology however it is currently unclear whether the
two mechanisms are mutually exclusive or can be ob-
served in association in the immune active tumors. This
question can only be solved by morphological documen-
tation of cell-specific activation of the pathway either by
immunohistochemistry or by single cell transcriptional
analysis. However, according to our results and the pub-
lished literature [10, 38, 67], it appears that the former
interpretation pertains most prominently to the immune
silent cluster (PIRes) while the latter appears to be most
likely pertaining to the immune active (CIRes, Fig. 2).
These results may bear remarkable impact for the design

of combination therapies. It appears that, at least in breast
cancer, therapeutic combinations directed against immune
regulatory mechanism (i.e. checkpoint blockade, IL-23/
Th17, TAM receptor kinases, hypoxia factors or IDO in-
hibitors) will modulate and possibly enhance responsive-
ness of cancers with CIRes (immune active cluster) but
will be unlikely to work in the context of immune silent
cancers of the PIRes phenotype unless complimentary ef-
forts are made to disrupt the non-immunogenic landscape
to convert it into an immunogenic one.
We hypothesize that immune silent tumors evolve by

employing a strictly essential interface of interactions
with the host’s stroma that limits immune cell recognition.

Fig. 2 Dichotomy in the Myeloid-Centric Hypothesis of immune resistance: the same pathway is relevant to myeloid cell differentiation as well as
intrinsic oncogenic activation (in red boxes are included models included in Table 1). It is currently unclear how the two interpretations diverge
vs relate to each other and further characterization of the single cell level will need to be entertained to clarify this point
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This may be due to the selection of a growth process
devoid of immunogenic cell death (Fig. 1). Thus, these
“clean” tumors evolve through the selection of cancer cells
that adopt refined growth mechanisms reduced to the
bare necessities of life. Indeed, preclinical and clinical data
focused on molecular subtypes of clinically-validated
oncogene-addicted tumors (e.g., ALK+, EGFR+,
BRAFV600E+, NTRK-rearranged tumors) indicate that
these tumors often portray minimal CD8+ T cell infiltra-
tion along with reduced expression of immunosuppressive
factors [11, 68]. These molecular subtypes of EGFR-
mutated or ALK+ non-small cell lung cancer (NSCLC)
serve as a perfect clinically validated example of “clean tu-
mors” as these tumors usually do not have high muta-
tional burden, occur in younger patients, and in non-
smokers. This is supported by recent evidence which
demonstrates that presence of oncogenic driver mutations
in NSCLC, such as EGFR, ALK, ROS1, RET fusions and
C-MET exon 14 skipping is associated with lower muta-
tional burden (Mohamed E. Salem, ASCO presenta-
tion 2017, http://abstracts.asco.org/199/AbstView_199_
184601.html). This hypothesis is further corroborated
by the observation that these tumors bear a low
prevalence of mutations in oncogenes suggesting a
more orderly growth process [10]. It is, therefore, rea-
sonable to suppose that the growth of clean (“onco-
gene addicted”) tumors is dependent on activation of
specific pathways (e.g. the PI3Kγ/SFK/pGSK3/β-ca-
tenin axis) that avoid immune recognition. Thus, we
propose that the natural history of cancer is shaped

at the crossroad of two biologies by a “Two-Option
Choice”: 1) immunogenic tumors evolve through a
disorderly trial-and-error accumulation of oncogenic
processes generated by their intrinsic genetic instabil-
ity that leads to a broader number of host-immune
interactions. These tumors can, therefore, only survive
in the immune competent host when immune sup-
pressive mechanisms balance the immune reaction, 2)
silent tumors follow a more orderly process with a
sequential accumulation of essential genetic traits and
can grow undisturbed by the immune system (Fig. 3).
Since the latter appear to depend on a leaner carcino-
genesis, it may be reasonable to postulate that disrup-
tion of this delicate survival skill may induce messier
cancer biology prone to immunogenic cell death.
Whether this is true remains to be tested. Turning an
immune silent into immune active tumor microenvir-
onment, even temporarily, may serve a critical thera-
peutic role opening the door for immunotherapy
strategies. This in turn may be critical because suc-
cessful anti-cancer immunotherapy induces durable
tumor regression and immune memory more
frequently.
In conclusion, we propose a systematic, hypothesis-

driven task force led by SITC to prioritize and address
the salient questions related to cancer immune
responsiveness based on a deeper understanding of the
cancer cell biology that orchestrates distinct immune
landscapes. The task force should address outstanding
questions to identify conserved versus peculiar patterns

Fig. 3 The two-option choice or Hobson’s predicament in cancer survival
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of immune interaction between the host and cancers of
different ontology. The role that the genetic background
of the host or micro environmental modifiers play in regu-
lating cancer-immune biology should be addressed follow-
ing appropriate stepwise approaches [69]. In addition, a
deeper understanding of the evolutionary processes shap-
ing the development of cancer in the immune competent
host may offer a simplified understanding of conserved
mechanisms of cancer survival and consequently help the
identification of a broad range of therapeutics that can tar-
get dominant pathways leading to immunogenic cancer
cell death. A clearer qualification of the role played by
adaptive versus innate mechanisms in initiating immune
activation should be considered. Two non-exclusive yet
divergent lines of thought are raised to explain immuno-
genic cancer biology: on one side the high prevalence of
neo-epitopes predicted by the higher mutational burden
observed in immunogenic tumors positions adaptive im-
mune recognition at the forefront of immune activation
[70–74]. Conversely, immunogenic cell death may primar-
ily drive inflammation with secondary recruitment of im-
mune cells [20, 21, 75, 76]. The role that each mechanism
plays in human cancer biology, and its implication for
therapeutic intervention, remains to be clarified, and bet-
ter integrated tools may improve our holistic understand-
ing of the underlying cancer-immune biology thus
facilitating novel biology-based combinational therapeutic
strategies.
Finally, better in vivo (genetically engineered and/or

syngeneic) rodent models for the screening of thera-
peutic strategies should be better characterized [77–79].
Some animal models may be reflective of immune-
activated landscapes and be most relevant for the defin-
ition of therapies combining immune modulatory agents.
Other animal models may more closely resemble the
biology of immune-silent cancers and would be best uti-
lized to identify therapies that can initiate an immune
response before immunomodulatory agents are intro-
duced sequentially and/or combinatorically. The avail-
ability of complimentary mouse/human paired panels
would largely facilitate such efforts. To our knowledge,
little has been done so far to match mouse models to
corresponding human immuno-oncology phenotypes
following the perspective proposed by this unified theory
of everything.
The Taskforce will define its goals and future activities

in the occasion of a foundational workshop to be held in
San Francisco on May 14–15 2018 (SITC Cancer Im-
mune Responsiveness Workshop).
The topics to be discussed will include:

� Interactions between tumor evolution in the
immune competent host and the resulting immune
landscape

� Identification of common pathways that could be
interrogated and targeted to better understand and
increase immunogenicity among silent or ‘cold’
cancers

� Mechanistic understanding of parameters that could
predict immune response to different cancer
immunotherapies

� Development of animal models that accurately
reflect the immune landscape in ‘hot’ versus ‘cold’
human tumors

This workshop will be held in tandem with the SITC
Biomarkers Workshop to be held subsequently on May
16–17 in the same premise as part of a strong interest
by SITC and other organizations [80] to deepen the un-
derstanding of cancer immune biology particularly in as-
sociation with clinical trial development: (SITC
Biomarkers Workshop).

Methods
All data download, processing and analyses were done in
R programming environment and as described in Hen-
drickx et al. [11]. For the unsupervised clustering of the
TOE genes (Additional file 1), modified distance and
hierarchical clustering functions were used. Specifically the
distance between 2 genes was defined as 1-“Correlation
Coefficient (Spearman)” and for the hierarchical clustering
function “Ward.D2” method was used.
Composite correlation between the ICR and the TIS

signature was assessed by calculating a cumulative score
for each gene included in the respective signature using
ssGSEA method form GSVA package and correlating
the scores in the breast cancer TCGA data set according
to Spearman Correlation.
The metrics used when assigning genes to silent, active

and ubiquitous groups are derived from differential
expression statistics between ICR1 and ICR4 samples. The
genes are assigned to the active cluster if they have signifi-
cantly higher expression levels in ICR4 samples (p-value
< 0.05 and FDR < 0.1). Similarly the genes are assigned to
the silent cluster if they have significantly higher expres-
sion levels in ICR1 samples (p-value < 0.05 and FDR < 0.
1). If the genes do not pass these cutoffs they are grouped
as “Ubiquitous”. Geneset enrichment for each signature
belonging to individual models of immune resistance
(Table 1) against ICR1 and ICR4 clusters was assessed
using one-tailed Fisher’s exact test.
In the analyses and corresponding heatmaps, the genes

that were identified in multiple signatures were plotted
as one, so each gene in the heatmap is unique. When
the ICR direction is inferred for each signature, the
repeated genes contributed to each signature with the
same statistics.
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Additional file

Additional file 1: List of individual genes and corresponding models related
to immune suppression used for the Theory of Everything (TOE). (TXT 11 kb)
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