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Abstract

Study of large electroweak logarithms at high energy in collider experiments

by

Nicolas Ferland

Doctor of Philosophy in Physics

University of California, Berkeley

Doctor Christian Bauer, Co-chair

Professor Lawrence Hall, Co-chair

Using the known resummation of virtual corrections together with knowledge of the
leading-log structure of real radiation in a parton shower, we derive analytic expressions
for the resummed real radiation after they have been integrated over all of phase space.
Performing a numerical analysis for both the 13 TeV LHC and a 100 TeV pp collider, we
show that resummation of the real corrections is at least as important as resummation of
the virtual corrections, and that this resummation has a sizable effect for partonic center of
mass energies exceeding

√
s = O(few TeV). For partonic center of mass energies

√
s & 10

TeV, which can be reached at a 100 TeV collider, resummation becomes an O(1) effect and
needs to be included even for rough estimates of the cross-sections.

We compute the leading-order evolution of parton distribution functions for all Standard
Model fermions and bosons up to energy scales far above the electroweak scale, where elec-
troweak symmetry is restored. Our results include the 52 PDFs of the unpolarized proton,
evolving according to the SU(3), SU(2), U(1), mixed SU(2)×U(1) and Yukawa interactions.
We illustrate the numerical effects on parton distributions at large energies, and show that
this can lead to important corrections to parton luminosities at a future 100 TeV collider.

We present a resummation of those double-logarithmically enhanced electroweak correc-
tion that arise in pp colliders because protons are not SU(2) singlets, by solving DGLAP
equations in the full Standard Model. We then show how to match these results with those
of fixed-order electroweak calculations. At a 100 TeV pp collider, contributions beyond order
α are ∼ 10% at partonic center-of-mass energies of a few TeV. These are mainly due to
initial states with massive vector bosons.
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Chapter 1

Introduction

The Standard Model of particle physics describe all known non-gravitational interactions
between particles. It includes 3 gauge groups U(1), SU(2) and SU(3). U(1) and SU(2) are
spontaneously broken to U(1)em, the electromagnetic symmetry, by the Higgs vacuum ex-
pectation value. Due to this symmetry, the electromagnetic interaction do not change the
internal properties of a particle, while the weak interaction, the broken part of U(1) and
SU(2), changes particles into other particles, such as charged leptons into neutrinos, up-type
quarks into down-type quarks, and protons into neutrons and vice versa. Spontaneous sym-
metry breaking arises when the ground state of a theory is not invariant under a symmetry
of its Lagrangian. In this case, low energy systems are not symmetric, but as the energy
increases over the energy scale that breaks the symmetry the symmetry of the Lagragian
appears since the system stops being dominated by its ground state. This energy scale is
the electroweak boson mass because below this scale, the universe is free of real electroweak
boson while above, electroweak bosons are radiated. This increase in symmetry happens
only double logarithmically such that the energy must be many times larger than the elec-
troweak scale for physical processes to have the electroweak symmetry. On the other hand,
the Higgs vacuum expectation value create the parity symmetry by pairing left and right
chiral fermions in massive fermions, and this symmetry is broken as the energy gets higher
than the electroweak scale.

The electroweak, U(1) and SU(2), Lagrangian can be equivalently written with bosons
(B, W µ) respecting explicitly the symmetry but being unphysical, that is having a non-
diagonal mass matrix caused by the Higgs vacuum expectation value, or with bosons being
physical (A, W±, Z) but not respecting explicitly the symmetry. The massive bosons (W±,
Z) have also longitudinal modes which comes from the complex Higgs field which is H0, H±

when the symmetry is explicit and W±
L , ZL and h when physical bosons are used, where

h is the Higgs boson. Both sets of bosons are valid at all energies. The difference is that
the physical bosons are mixed by the interaction and preserved by propagation, while the
symmetric bosons are preserved by the interaction but mixed by propagation. The mixing
due to propagation is due to the mass matrix, so when the electroweak bosons masses is
negligible compare to the energy, the symmetric bosons are simpler to use. However, in any
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experiment the initial and final states are observed at low energy and thus are expressed in
the physical bosons.

There are many proposed future colliders including the Compact Linear Collider, the
International Linear Collider and the Future Circular Collider. The Future Circular Collider
would start as a electron-electron collider at the Higgs pole mass, but would then be upgraded
to a 100 TeV proton-proton collider. If it is built, this collider will offer new prospects
to study the Standard Model at high energy and potentially observe physics beyond the
Standard Model. It will also be at an energy largely beyond the electroweak scale, and
would thus show the effects of the electroweak symmetry. Those effects have been studied
in [1].

Also, important measurements that are planned for the Future Circular Collider include
the trilinear and quadrilinear Higgs self-interactions, which will be measured by the multiple
Higgs production rates. Therefore, it is important to know how the electroweak interaction
will modify the Higgs production and its background. In addition, electroweak bosons will
be an important background to many Beyond the Standard Model signals. Also, in many
Beyond the Standard Model models, there are new electroweakly charged particles which
are more massive than the Standard Model particles. Those particles will likely be produced
by Standard Model electroweak boson fusion and detected by decays into Standard Model
electroweak bosons, so their rate of production and their mode of detection will be greatly
affected by changes in the production and detection of the Standard Model electroweak
bosons.

Experiments at the Large Hadron Collider are now probing the structure of matter at
scales comparable with, and even beyond, the characteristic scale of electroweak symmetry
breaking. So far, no evidence has been found for a breakdown of the Standard Model (SM) in
particle collisions. Indeed, there is a logical possibility that the SM remains a good descrip-
tion of hard scattering processes up to scales far beyond those of any conceivable particle
colliders. It is therefore of interest to examine the features predicted by the SM for collider
events well above the electroweak scale. For this purpose, Monte Carlo event generators in-
cluding all the SM interactions on an equal footing are necessary. Such generators would be
useful for investigating the limits of LHC searches, the potential of possible future colliders
and cosmic processes at ultrahigh energies.

It is well known that perturbative corrections in scattering processes have infrared (IR)
sensitivity to soft and collinear emissions. For electroweak corrections involving massive Z
and W bosons, the mass of the vector bosons regulates the IR divergences, such that the
IR sensitivity yields logarithmic dependence on the ratio of the vector boson mass over the
partonic center of mass energy

Ls ≡ ln
s

m2
V

, (1.1)

where s denotes the square of the partonic energy scale of the process, while mV is a scale
of order the masses of the Z and W bosons. Both virtual and real corrections give rise to
such logarithmic corrections, and as usual, their effect cancels in fully inclusive observables.
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This situation is very similar to the more common situation of gauge theories with mass-
less gauge bosons, such as QCD, for which both virtual and real corrections are IR divergent,
and the divergence cancels in the sum that enters in any physical observable. In exclusive
processes, there are double logarithmic corrections that can be resummed to all orders,
leading to Sudakov form factors. However, in electroweak processes, there are two main dif-
ferences: First, for massive gauge bosons, both virtual and real contribution are separately
finite (albeit with logarithmic dependence on the ratio of the mass of the vector boson to the
center of mass energy), such that there is no need to combine them for physical observables.
Second, even if the measurement is completely inclusive over the final state, the initial beams
of colliders are typically not SU(2) singlets, such that there are additional double logarithms
that appear even in observables and final states that are fully inclusive with respect to extra
boson emission [3–18]. Thus, essentially any measurement has logarithmic sensitivity to the
ratio m2

V /s, such that for high enough center of mass energies electroweak corrections become
very large. And since the beams of any current or proposed future collider are not SU(2)
symmetric, no observable measured at such colliders can be symmetric, irrespective of how
inclusively one defines the observable and the final state. For processes with non-symmetric
final states, such as charged lepton pair production, even if fully inclusive with respect to
electroweak boson emission, there will be additional double logarithms.1

Thus, in general every order of electroweak perturbation theory comes with two extra
powers of logarithms of the form ln s/m2

V . This means that electroweak perturbation theory
is an expansion of the form

〈O〉 = 〈O〉(0) + α2L2
s〈O〉(1) +

[
α2L2

s

]2 〈O〉(2) +O(αn2 L2n−m
s ) , (1.2)

where α2 is the SU(2) coupling. Electroweak (EW) perturbation theory, therefore, becomes
badly convergent at large partonic energies. However, the convergence can be improved by
identifying the double-logarithmic terms and resumming them to all orders.

Much effort has been put into understanding the electroweak logarithms arising from
virtual corrections [5, 6, 19–32, 34, 40, 41]. A general result for the logarithmic dependence
at one-loop has been derived in [21, 22], and a general method for the resummation of
these logarithms has been developed in [32, 34]. This method uses SCET which has been
developed in [42–45]. While real radiation of electroweak gauge bosons typically leads to
different experimental signatures, in many cases some amount of real radiation is included
in the event samples. For example, in many analyses missing energy is not vetoed, such that
radiation of Z bosons which decay to neutrinos is included, and any analysis that is inclusive
over the number of jets includes real radiation of hadronically decaying vector bosons.

Logarithmic dependence from real emission, however, has, before we start working on
it, been studied much less. The O(α) correction from real emission can of course easily be
included using phase space integrations over tree-level matrix elements, and a study of the
effect of such real radiation on many experimental observables was performed in [46]. It was

1The other extreme case where the observable is completely exclusive over the extra electroweak radiation
has been studied many times before [4, 5, 19–39].
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found that the real corrections can have a sizable effect, albeit typically not quite as large
as the virtual corrections. The effects of real radiation have recently been studied in [47,48].

In Chap. 2 [49], we present the impact of electroweak correction resummation on the Drell-
Yan cross-section. This motivate the inclusion of the resummation in fully differentiable
calculations for an arbitrary number of radiated electroweak bosons. In Chap. 3 [18], we
implement the differentiable electroweak correction resummation of initial state by including
the electroweak interaction in the parton distribution functions evolution. This procedure
approximates the electroweak bosons mass to be zero which misses important terms included
in fixed order electroweak corrections, this is why in Chap. 4 [50] we developped a procedure
to combine those calculations.

1.1 Running couplings

The one-loop running of the gauge couplings αI (I = 1, 2, 3) is given by

2π

αI(q2)
=

2π

αI(q1)
+ βI ln

q2

q1

, (1.3)

where, for ng generations and nH Higgs doublets,

β1 = −1

3
ρ1 = −20

9
ng −

1

6
nH = −41

6
, (1.4)

β2 =
2

3
(11− ρV 2) =

22

3
− 4

3
ng −

1

6
nH =

19

6
, (1.5)

β3 = 11− ρ3 = 11− 4

3
ng = 7 . (1.6)

At scale MZ = 91.2 GeV we take

sin2 θW =
α1

α1 + α2

= 0.23 , α = α2 sin2 θW =
1

128
, α3 = 0.118 , (1.7)

which gives
α1(MZ) = 0.0101 α2(MZ) = 0.0340 α3(MZ) = 0.118 . (1.8)

We set all Yukawa couplings to zero, except for the top Yukawa coupling αY = y2
t /4π.

Its running receives significant Yukawa and QCD contributions:

q
∂αY
∂q

=
αY
2π

(βY αY − βSα3) , (1.9)

where βY = 9/2 and βS = 8. The solution is

1

αY (q2)
=

δ

α3(q2)
−
[

δ

α3(q1)
− 1

αY (q1)

] [
α3(q1)

α3(q2)

]γ
, (1.10)
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where

γ =
βS
β3

=
24

33− 4ng
=

8

7
, (1.11)

δ =
βY

βS − β3

=
27

8ng − 18
=

9

2
. (1.12)

We take mt(mt) = 163 GeV, which implies αY (mt) = 0.0349, and α3(mt) = 0.109.
We also define

sW (q) =

√
α1(q)

α1(q) + α2(q)

cW (q) =

√
α2(q)

α1(q) + α2(q)
, (1.13)

and

αW (q) = α2(q) , αZ(q) =
α2(q)

cW (q)
, αem =

α2(q)

sW (q)
. (1.14)
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Chapter 2

Resummation of electroweak Sudakov
logarithms for real radiation

We consider the Drell-Yan cross sections σpp→`1`2 and σpp→`1`2V . Here ` denotes either an
electron, positron or a neutrino, and V denotes either a Z, a photon or a W boson. For
Drell-Yan production at NLO accuracy, the first cross section includes the tree-level and the
one-loop virtual correction, while the second cross section denotes the real radiation of a
gauge boson. Collectively, we will represent these two cross sections as σpp→`1`2X .

To calculate this hadronic scattering cross-sections one starts as always by factorizing the
short distance partonic scattering from the non-perturbative physics describing the binding
of partons into hadrons

σpp→final =
∑
ab

∫
dxadxb fa(xa,

√
s)fb(xb,

√
s) σ̂ab→final(xa, xb, s) , (2.1)

where fi(xi) are the parton distribution functions to find parton i in the proton p with
momentum fraction xi, and σ̂ab→final(xa, xb) denotes the partonic scattering cross-section.
By Lorentz invariance, the dependence of the partonic cross-sections on the momentum
fractions xi is only through the product s = xaxbS, where S is the square of the hadronic
energy scale, and not through the rapidity Y = ln(xa/xb)/2. Thus, one can write

dσpp→final

ds
=
∑
ab

Lab(s) σ̂ab→final(s) , (2.2)

where the parton luminosity is defined as

Lab(s) =

∫
dxadxb fa(xa,

√
s)fb(xb,

√
s) δ(s− xaxbS) . (2.3)

It is the purpose of this chapter to derive simple analytical expressions for the resum-
mation of electroweak Sudakov logaritms at leading logarithmic (LL) accuracy. To achieve
this, we combine knowledge of the resummation of the virtual corrections, together with the
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known IR structure of real radiation from parton showers. This allows us to obtain simple
analytical results which we present here. This approach is similar to the one used in [19],
where these effects were discussed focussing on e+e− collider. We then use these results to
give expressions for the individual contributions to the hadronic cross-sections σpp→`1`2X as
a function of the center of mass energy

√
s. We reproduce the well known fact that resum-

mation has a large effect on the virtual contribution for
√
s & 2 TeV. The resummation of

the real corrections changes the fixed order results by more than 40% for
√
s & 2 TeV, and

this effect grows to about 200% for
√
s ∼ 25 TeV.

2.1 The structure of logarithmic terms in the

perturbative expansion

To first order in electroweak perturbation theory the partonic scattering cross-section can
be written as

σ̂ij→`1`2X = σ̂
(0)
ij→`1`2 + σ̂

(1)
ij→`1`2X , (2.4)

where σ̂
(0)
ij→`1`2 denotes the Born cross-section, and σ̂

(1)
ij→`1`2X the O(α) correction. This first

order perturbative correction can be decomposed into a virtual and real contribution, and
each of these two terms can be further separated by the flavor of the vector boson in the
loop or real final state. This gives

σ̂
(1)
ij→`1`2X =

∑
V

[
σ̂Vij→`1`2 + σ̂ij→`1`2V

]
. (2.5)

Here the first term describes the contribution from one-loop diagrams with V = {Z,W±, γ}
in the loop, while the second term is given by the real radiation of an electroweak gauge
boson V .

Each of the terms on the right hand side of Eq. (2.5), contains double and single loga-
rithmic terms of the form αLV and αL2

V . By the KLN theorem [51], these logarithmically
enhanced terms cancel when we sum over complete gauge multiplets. Thus, the completely
inclusive cross-section has no logarithmically enhanced terms (called “finite” below)∑

a,b,`1,`2

σ̂
(1)
ab→`1`2X = finite . (2.6)

The sum of the initial state is over a, b ∈ {u, d}, that of the final state is over `1, `2 ∈
{e+, e−, ν}, and we sum over the virtual contributions, and well as the real contributions
with either a Z, a photon or W in the final state. Since the logarithmic enhancement depends
on the mass of the vector boson, the logarithmic corrections from Z bosons, photons, and
W bosons cancel separately between real and virtual corrections. Furthermore, since the
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emission of a Z boson or a photon does not change the flavor of a fermion, the cancellation
of the terms enhanced by LZ happens for each flavor assignment separately. This gives

σ̂Zab→`1`2 + σ̂ab→`1`2Z = finite , σ̂γab→`1`2 + σ̂ab→`1`2γ = finite . (2.7)

The emission of W bosons, on the other hand, changes the flavor of the fermion. This
implies that the cancellation of the terms enhance by LW only happens after summing over
all flavors ∑

a,b,`1,`2

[
σ̂Wab→`1`2 + σ̂ab→`1`2W

]
= finite . (2.8)

An important consequence of Eq. (2.8) is that a finite answer is only obtained if one sums
over all initial state flavors. Thus, the hadronic cross-section given in Eq. (2.2) still contains
contributions enhanced logarithmically by factors of LW . This is because each initial state
flavor is multiplied by a different parton luminosity, such that the sum over initial state
flavors cannot be observed.

2.2 Fixed order calculations of the virtual and real

contributions

In this section we consider the fixed order expansion of the virtual corrections σ̂Vab→`1`2 and the
real contributions σ̂ab→`1`2V . For both terms, we quote here only the dominant contributions
that are enhanced by two powers of LV .

For completeness, we start with the Born cross-sections, including the contributions from
both photon and Z exchange for the neutral initial and final states, and from W exchange
in the charged cases. They are given by

σ̂Buū→e−e+ = N
85α2

1 + 6α1α2 + 9α2
2

54

σ̂Buū→νν̄ = N
17α2

1 − 6α1α2 + 9α2
2

54

σ̂Bdd̄→e−e+ = N
25α2

1 − 6α1α2 + 9α2
2

54

σ̂Bdd̄→νν̄ = N
5α2

1 + 6α1α2 + 9α2
2

54

σ̂Bud̄→νe+ = N
2α2

2

3

σ̂Bdū→e−ν = N
2α2

2

3
, (2.9)

where we have defined the constant

N =
π

8NCs
, (2.10)
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with NC = 3 denoting the number of colors. All coupling constant are evaluated at the scale√
s, the center of mass energy, αi = αi(

√
s).

The virtual corrections from W exchange that are enhanced by two powers of the loga-
rithm are easily obtained for example using [21] and are given by

σ̂W
±

uū→e−e+ = −N αW L2
W

4π

11α2
1 + 6α1α2 + 9α2

2

27

σ̂W
±

uū→νν̄ = −N αW L2
W

4π

3α2
1 − 2α1α2 + 3α2

2

9

σ̂W
±

dd̄→e−e+ = −N αW L2
W

4π

5α2
1 − 6α1α2 + 9α2

2

27

σ̂W
±

dd̄→νν̄ = −N αW L2
W

4π

α2
1 + 2α1α2 + 3α2

2

9

σ̂W
±

ud̄→νe+ = −N αW L2
W

4π

4α2
2

3

σ̂W
±

dū→e−ν = −N αW L2
W

4π

4α2
2

3
. (2.11)

Those from Z exchange are given by

σ̂Zuū→e−e+ = −N αZ L
2
Z

4π

(99− 366s2
W + 2210s4

W )α2
1 + (9− 30s2

W + 26s4
W ) (6α1α2 + 9α2

2)

486

σ̂Zuū→νν̄ = −N αZ L
2
Z

4π

(81− 12s2
W + 136s4

W )α2
1 + (9− 12s2

W + 8s4
W ) (−6α1α2 + 9α2

2)

486

σ̂Zdd̄→e−e+ = −N αZ L
2
Z

4π

5(9− 24s2
W + 100s4

W )α2
1 + (9− 24s2

W + 20s4
W ) (−6α1α2 + 9α2

2)

486

σ̂Zdd̄→νν̄ = −N αZ L
2
Z

4π

(27− 6s2
W + 10s4

W )α2
1 + (9− 6s2

W + 2s4
W ) (6α1α2 + 9α2

2)

486

σ̂Zud̄→νe+ = −N αZ L
2
Z

4π

2(9− 18s2
W + 14s4

W )α2
2

27

σ̂Zdū→e−ν = −N αZ L
2
Z

4π

2(9− 18s2
W + 14s4

W )α2
2

27
. (2.12)

The virtual corrections from photon exchange that are enhanced by two powers of the loga-
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rithm are easily obtained and are given by

σ̂γuū→e−e+ = −N
αem L

2
γ

4π

85α2
1 + 6α1α2 + 9α2

2

54

26

9

σ̂γuū→νν̄ = −N
αem L

2
γ

4π

17α2
1 − 6α1α2 + 9α2

2

54

8

9

σ̂γ
dd̄→e−e+ = −N

αem L
2
γ

4π

25α2
1 − 6α1α2 + 9α2

2

54

20

9

σ̂γ
dd̄→νν̄ = −N

αem L
2
γ

4π

5α2
1 − 6α1α2 + 9α2

2

54

2

9

σ̂γ
ud̄→νe+ = −N

αem L
2
γ

4π

2α2
2

3

14

9

σ̂γdū→e−ν = −N
αem L

2
γ

4π

2α2
2

3

14

9
, (2.13)

where the logarithms depend on a scale Λ, below which a photon is no longer resolved,

Lγ ≡ ln

(
Λ2

s

)
. (2.14)

The double-logarithmically enhanced real corrections with a Z boson or a photon in the
final state are related to the corresponding virtual corrections via

σ̂q1q̄2→`1`2Z = −σ̂Zq1q̄2→`1`2 , (2.15)

σ̂q1q̄2→`1`2γ = −σ̂γq1q̄2→`1`2 , (2.16)

which directly follow from Eq. (2.7), for those with a W+ boson in the final state we find

σ̂ud̄→e−e+W+ = N
αW L2

W

4π

5α2
1 + 27α2

2

54

σ̂ud̄→νν̄W+ = N
αW L2

W

4π

α2
1 + 27α2

2

54

σ̂uū→e−ν̄W+ = N
αW L2

W

4π

17α2
1 + 27α2

2

54

σ̂dd̄→e−ν̄W+ = N
αW L2

W

4π

5α2
1 + 27α2

2

54
, (2.17)
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while those with a W− are given by

σ̂dū→e−e+W− = N
αW L2

W

4π

5α2
1 + 27α2

2

54

σ̂dū→νν̄W− = N
αW L2

W

4π

α2
1 + 27α2

2

54

σ̂uū→νe+W− = N
αW L2

W

4π

17α2
1 + 27α2

2

54

σ̂dd̄→νe+W− = N
αW L2

W

4π

5α2
1 + 27α2

2

54
. (2.18)

From these results one can obtain the inclusive cross-sections, which have been summed
over all final state flavors

σ̂uū = −N αW L2
W

4π

α2
1 − 3α2

2

9

σ̂dd̄ = −N αW L2
W

4π

α2
1 − 3α2

2

9

σ̂ud̄ = N
αW L2

W

4π

α2
1 − 3α2

2

9

σ̂dū = N
αW L2

W

4π

α2
1 − 3α2

2

9
. (2.19)

From these expressions one can very easily validate that in
∑

ab σ̂ab all double logarithms
cancel.

2.3 LL resummation of the leading logarithms

Virtual corrections

To resum the electroweak Sudakov logarithms for for the virtual contributions we follow
the work of [34, 37], which uses renormalization group equations in SCET. The calculation
proceeds in three steps. At the scale µ2

Q ∼ s, one matches the full theory onto 4-fermion
operators in SCET, where each of the fermion is represented by a different collinear sector in
SCET. One then runs the theory from the scale µQ to the scale µV ∼ mV , at which point the
massive gauge bosons are integrated out of the theory and electroweak symmetry is broken.
As long as s � m2

V , the mass of the vector boson can be set to zero in the matching onto
SCET at the scale µQ, and in the calculation of the anomalous dimension which governs the
running from µQ to µV . This implies that one can use an unbroken SU(2), simplifying these
calculations substantially.

In [34, 37], this resummation was carried out in full generality to NLL′ accuracy. For
the purposes of this work, we only work to LL accuracy, which simplifies the structure
significantly. The first simplification is that only tree level matching is required both at the
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high and low scale. Furthermore, no operator mixing arises in the running from the high to
the low scale. This will allow us to write relatively simple analytical formulae.

As already mentioned, in the effective theory between µQ and µV one can use unbroken
electroweak symmetry, such that there are a total of 7 operator that contribute

L =CQLT Q
TLT + CQLS Q

SLS + CULS U
SLS + CDLS D

SLS

+ CQESQ
SES + CUES U

SES + CDES D
SES , (2.20)

where we have defined the fermion bilinears in either triplet or singlet representation

F S = F̄ γµF , F T = F̄ τaγµF . (2.21)

Here Q and L denote left-handed quark and lepton fields, respectively, while U , D and E
denote the right handed up-type quarks, down-type quarks and electron fields. The tree
level matching is given by

sC
(0)
QLT = 4πα2

sC
(0)
IFS = 4πα1 YIYF , (2.22)

where I and F denote the initial and final fermions of each singlet operator, and Yi is the
hypercharge of particle i. The hypercharge normalization used is

Yi = Qi − T 3
i , (2.23)

where Qi is the electromagnetic charge of the fermion f = q/` and T 3
i is the weak isospin.

In general, the renormalization group can mix these operators, however this mixing only
arises starting at NLL. Since we are only interested in LL accuracy we can write

µ
d

dµ
Oi(µ) = Γi(µ) ln

µ2

s
Oi(µ) , (2.24)

where the cusp anomalous dimension is

Γi(µ) =
∑
j

[
α1(µ)

2π
Y 2
j +

α2(µ)

2π
T 2
j

]
i

. (2.25)

Here [Tj]
2
i is the SU(2) Casimir of the j’th fermion (3/4 for left-handed fermions and 0 for

right-handed fermions) in Oi.
The solution to this RGE can easily be written down analytically, and one finds for the

Wilson coefficients at the low scale

Ci(µV ) = ULL
i (µV , µQ)Ci(µQ) . (2.26)
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Working in the limit αi lnm
2
V /s ∼ 1, one obtains the simple result

ULL
i (µV , µQ; s) =

exp
[
−Γi(

√
s) ln2 µV√

s

]
exp

[
−Γi(

√
s) ln2 µQ√

s

] . (2.27)

For µQ =
√
s and µV = mV this result simplifies to

Ui ≡ ULL
i (mV ,

√
s; s) = exp

[
−Γi(

√
s) ln2 mV√

s

]
. (2.28)

Note that the anomalous dimension and therefore the evolution Kernel only depends on the
type of initial and final state particles. Thus, we have

UIFS = UIFT ≡ UIF . (2.29)

The SU(2) ⊗ U(1) gauge structure is broken at µV = mV to the U(1)em, and below that
scale only the photon remains as gauge degree of freedom. Thus, below the scale mV one
continues to run to a scale µΛ, at which point the photon becomes unresolved. This running
is determined by the cusp anomalous dimension

Γem(µ) =
αem(µ)

2π
Q2

tot , (2.30)

where

Q2
tot ≡

∑
i

Q2
i (2.31)

is the sum of the square of the electromagnetic charges of all particles in the operator. The
evolution Kernel between µV and µΛ is

U em
Q2

tot
(µΛ, µV ; s) =

exp
[
−αem

2π
Q2

tot ln2 µΛ√
s

]
exp

[
−αem

2π
Q2

tot ln2 µV√
s

] . (2.32)
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We obtain the simple results for the resummed virtual corrections,

σ̂LL
uū→e−e+ = N

4
(
4U2

UL + U2
QE + 16U2

UE

)
α2

1 + U2
QL (α1 + 3α2)2

54

[
U em

26/9 (Λ,mV ; s)
]2

σ̂LL
uū→νν̄ = N

16U2
ULα

2
1 + U2

QL (α1 − 3α2)2

54

[
U em

8/9 (Λ,mV ; s)
]2

σ̂LL
dd̄→e−e+ = N

4
(
U2
DL + U2

QE + 4U2
DE

)
α2

1 + U2
QL (α1 − 3α2)2

54

[
U em

20/9 (Λ,mV ; s)
]2

σ̂LL
dd̄→νν̄ = N

4U2
DLα

2
1 + U2

QL (α1 + 3α2)2

54

[
U em

2/9 (Λ,mV ; s)
]2

σ̂LL
ud̄→νe+ = N

2U2
QLα

2
2

3

[
U em

14/9 (Λ,mV ; s)
]2

σ̂LL
dū→e−ν = N

2U2
QLα

2
2

3

[
U em

14/9 (Λ,mV ; s)
]2
. (2.33)

Note that since α1/α2 = tan2(θW ) ∼ 0.32, the term proportional to α2
1 (which depends on

various different evolution Kernels) is numerically suppressed compared to the term propor-
tional to (α1±3α2)2. Thus, to a good approximation, each leptonic final state gets the same
suppression factor UQL from the resummation.

A simple check of our results is that they reproduce the Born results given in Eq. (2.9)
if we set all resummation Kernels to unity, and that they reproduce the fixed order results
in Eqs.(2.11), (2.12), and (2.13) if we use the expansion U2

i = 1 − 2Γi ln
2 mV√

s
+ . . . and[

U em
Q2

tot
(Λ,mV ; s)

]2

= 1 + αem(µ)
π

Q2
tot

(
ln2 mV√

s
− ln2 Λ√

s

)
+ . . ..

Real corrections

In this section we will calculate the resummation of the real emissions. We first give the
results for the case of a single SU(2) gauge symmetry, and then extend the results to the
case of the broken SU(2) ⊗ U(1) of the standard model.

Simple SU(2)

For a single SU(2) symmetry, the virtual results can be obtained from Eq. (2.33) by setting
α1 = αem = 0. It will be useful to rewrite them in a slightly different form, separating the
contributions from the different helicities

σ̂LL
qH1 q

H
2 →`H1 `H2

= σ̂BqH1 qH2 →`H1 `H2
∆

SU(2)

qH1 q
H
2 `

H
1 `

H
2

(m2
V , s; s) . (2.34)

The resummed logarithms are now contained in the factor ∆
SU(2)

qH1 q
H
2 `

H
1 `

H
2

(m2
V , s; s). The super-

script H denotes that each fermion has a fixed helicity. The Born cross-sections are given
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by

σ̂BqHqH→`H`H = N
8α2

2

(
T 3
qHT

3
`H

)2

3

σ̂BqL1 qL2→`L1 `L2
= N

2α2
2

3
, (2.35)

where T 3
qH denotes the weak isospin of the fermion q/` with helicityH. The factor ∆SU(2)resums

the leading logarithms and is given by

∆
SU(2)

qH1 q
H
2 `

H
1 `

H
2

(m2
V , s; s) = exp

−ASU(2)

qH1 q
H
1 `

H
1 `

H
2

2
ln2 m

2
V

s

 , (2.36)

where

A
SU(2)

qH1 q
H
1 `

H
1 `

H
2

=
α2

2π

∑
i

T 2
i , (2.37)

and the sum over i runs over all particles i ∈ {qH1 , qH1 , `H1 , `H2 }. Summing Eq. (2.34) over all
possible helicity structures, we reproduce Eq. (2.33) in the limit α1 = αem = 0.

By rewriting our result as in Eq. (2.34), one notices that it can be interpreted as the

exclusive cross-section for the scattering process qH1 q
H
2 → `H1 `

H
2 , where ∆

SU(2)

qH1 q
H
2 `

H
1 `

H
2

(m2, s; s) is

a Sudakov factor describing the probability of not having an emission of electroweak gauge
bosons between the scales s and m2

V for a process with center of mass energy s. Since of
course the emission of a massive gauge boson always gives rise to a scale above m2

V , this
exclusive cross-section is by definition equal to the virtual result.

Eq. (2.34) is precisely the result that a parton shower would predict for the exclusive cross-
section1, and one can use insight from parton shower evolution to derive the expressions for
real gauge boson radiation. The real emission of a gauge boson is given in a parton shower by
the product of Altarelli-Parisi splitting functions, which describe the emission with a given
transverse momentum k2

T , multiplied by a Sudakov factor, which gives the no-branching
probability above the value of k2

T as explained in [52]. Thus, the total inclusive real radiation
cross-section (the cross section with one or more extra gauge bosons in the final state) is
given by

σ̂LL
qH1 q

H
2 →`H1 `H2 +nV = σ̂BqH1 qH2 →`H1 `H2

∫ s

m2
V

dk2
T

d

dk2
T

∆
SU(2)

qH1 q
H
2 `

H
1 `

H
2

(k2
T , s; s)

= σ̂BqH1 qH2 →`H1 `H2

[
1−∆

SU(2)

qH1 q
H
2 `

H
1 `

H
2

(m2
V , s; s)

]
. (2.38)

1Note that our Sudakov factor for the initial state particles does not include the ratios of PDFs that
usually arise in backward evolution. This ratio of PDFs only contributes to NLL.
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Such an inclusive cross-section makes sense only if the measurement is not breaking the
SU(2) symmetry. This is because the inclusive cross section is defined at a scale µ ∼ kT ,
while the SU(2) symmetry is only broken at the scale µ ∼ mV . This implies that the flavor
structure one would obtain at the scale kT can be changed by the further emissions of extra
gauge bosons, making an inclusive measurement with definite flavor structure (which is what
breaks the symmetry) ill defined.

Continuing to work in an unbroken SU(2) theory, one can also define the exclusive real
radiation cross section (the cross section with exactly one extra gauge boson in the final
state). This requires adding an extra no-branching probability from the scale k2

T to the scale
m2
V , which accounts for the fact that no extra gauge bosons are emitted from the fermions

and the extra gauge boson with lower k2
T . This extra factor is given by

∆
SU(2)

qH1 q
H
2 `

H
1 `

H
2 V

(m2
V , k

2
T ; s) ≡ ∆V (m2

V , k
2
T ; k̂2

T )∆
SU(2)

qH1 q
H
2 `

H
1 `

H
2

(m2
V , k

2
T ; s) , (2.39)

where the term ∆V gives the probability of not emitting extra gauge bosons off the emitted
vector boson

∆V (m2
V , k

2
T ; k2

T ) = exp

[
−α2CA

4π
ln2 m

2
V

k2
T

]
, (2.40)

while the second term describes the no-emissions probability below kT off the fermions

∆
SU(2)

qH1 q
H
2 `

H
1 `

H
2

(m2
V , k

2
T ; s) ≡

∆
SU(2)

qH1 q
H
2 `

H
1 `

H
2

(m2
V , s; s)

∆
SU(2)

qH1 q
H
2 `

H
1 `

H
2

(k2
T , s; s)

. (2.41)

Combining everything together, one therefore finds

σ̂LL
qH1 q

H
2 →`H1 `H2 +V

= σ̂BqH1 qH2 →`H1 `H2

∫ s

m2
V

dk2
T

d

dk2
T

[
∆

SU(2)

qH1 q
H
2 `

H
1 `

H
2

(k2
T , s; s)

]
∆

SU(2)

qH1 q
H
2 `

H
1 `

H
2 V

(m2
V , k

2
T ; s)

= σ̂BqH1 qH2 →`H1 `H2
A

SU(2)

qH1 q
H
1 `

H
1 `

H
2

∆
SU(2)

qH1 q
H
2 `

H
1 `

H
2

(m2
V , s; s)

∫ s

m2
V

dk2
T

k2
T

ln
s

k2
T

∆V (m2
V , k

2
T ; k2

T ) . (2.42)

The integral can be performed easily, and we write a general result

Iβ(m2
V , s) ≡

∫ s

m2
V

dk2
T

k2
T

ln
s

k2
T

[
∆V (m2

V , k
2
T ; k2

T )
]β

(2.43)

=
2π

α2 β CA

[√
α2 β CA

2
ln
m2
V

s
Erf

(√
α2 β CA

4π
ln
m2
V

s

)
+
[
∆V (m2

V , s; s)
]β − 1

]
.

With this result, the exclusive cross section for a single emission is given by

σ̂LL
qH1 q

H
2 →`H1 `H2 +V = σ̂BqH1 qH2 →`H1 `H2

A
SU(2)

qH1 q
H
1 `

H
1 `

H
2

∆
SU(2)

qH1 q
H
2 `

H
1 `

H
2

(m2
V , s; s) I1(m2

V , s) . (2.44)
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Full SU(2) ⊗ U(1)

We now extend the results obtained with a single SU(2) gauge symmetry to include the full
SU(2) ⊗ U(1) gauge structure. The Born cross-section is now given by

σ̂BqHqH→`H`H = N
8
(
α2T

3
qHT

3
`H + α1YqHY`H

)2

3

σ̂BqL1 qL2→`L1 `L2
= N

2α2
2

3
, (2.45)

where as before T 3
fH denotes the weak isospin of the fermion f = q/` with helicity H and

YfH denotes the hypercharge of the fermion f = q/` with helicity H. The hypercharge
normalization used is given by Eq. (2.23).

We can write the LL cross section as the Born cross section times a Sudakov factor. How-
ever, contrary to the case of a single SU(2) symmetry, in the broken SU(2)⊗U(1) symmetry
of the standard model, below the scale µ = mV one needs to continue to evolve the operators
with the electromagnetic running. This gives

σ̂LL
qH1 q

H
2 →`H1 `H2

= σ̂BqH1 qH2 →`H1 `H2
∆qH1 q

H
2 `

H
1 `

H
2

(m2
V , s; s) ∆em

qH1 q
H
2 `

H
1 `

H
2

(Λ2,m2
V ; s) . (2.46)

The Sudakov factor from s to m2
V factors into two pieces, one for the SU(2) symmetry and

one for the U(1)

∆qH1 q
H
2 `

H
1 `

H
2

(m2
V , s; s) = ∆

SU(2)

qH1 q
H
2 `

H
1 `

H
2

(m2
V , s; s) ∆

U(1)

qH1 q
H
2 `

H
1 `

H
2

(m2
V , s; s) . (2.47)

The SU(2) contribution was given in Eq. (2.36), while the term coming from the U(1)
symmetry is given by

∆
U(1)

qH1 q
H
2 `

H
1 `

H
2

(m2
V , s; s)) = exp

−AU(1)

qH1 q
H
2 `

H
1 `

H
2

2
ln2 m

2
V

s

 , (2.48)

with

A
U(1)

qH1 q
H
1 `

H
1 `

H
2

=
α1

2π

∑
i

Y 2
i . (2.49)

The running below mV is determined only by the total charge of the operator, and one finds

∆em
qH1 q

H
2 `

H
1 `

H
2

(Λ2,m2
V ; s) = exp

[
−αemQ

2
tot

4π

(
ln2 Λ2

s
− ln2 m

2
V

s

)]
. (2.50)

Summing over all possible helicity structures, we reproduce the resummed results of Sec. 2.3.
To obtain the resummation of the real radiation, we follow the steps of Sec. 2.3, taking

into account the full SU(2)⊗U(1) structure above m2
V and the running due to the photon
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below m2
V . For the W± bosons, the U(1) symmetry does not contribute, but one needs to

be careful about the flavor structure when breaking the electroweak symmetry. One finds

σ̂LL
qH1 q

H
2 →`H1 `H2 +W±

=

[
∆qH1 q

H
2 `

H
1 `

H
2

(m2
V , s; s) ∆em

qH1 q
H
2 `

H
1 `

H
2 W

±(Λ2,m2
V ; s)

∫ s

m2
V

dk2
T

k2
T

ln
s

k2
T

∆V (m2
V , k

2
T ; k2

T )

]
×
(
σ̂B
q′H1 q

H
2 →`H1 `H2

AW
±

qH1
+ σ̂B

qH1 q
′H
2 →`H1 `H2

AW
±

qH2
+ σ̂B

qH1 q
H
2 →`′

H
1 `

H
2
AW

±

`H1
+ σ̂B

qH1 q
H
2 →`H1 `′

H
2
AW

±

`H2

)
=
[
∆qH1 q

H
2 `

H
1 `

H
2

(m2
V , s; s) ∆em

qH1 q
H
2 `

H
1 `

H
2 W

±(Λ2,m2
V ; s) I1(m2

V , s)
]

×
(
σ̂B
q′H1 q

H
2 →`H1 `H2
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±

qH1
+ σ̂B

qH1 q
′H
2 →`H1 `H2

AW
±

qH2
+ σ̂B

qH1 q
H
2 →`′

H
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H
2
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`H1
+ σ̂B

qH1 q
H
2 →`H1 `′

H
2
AW

±

`H2

)
,

(2.51)

where f ′ is the fermion f becomes after having radiated a W± that is u′ = d, d′ = u, l′ = ν
and ν ′ = l and for any flavor set which allows a W± emission there is one of the Born cross
section which is zero because its electromagnetic charge is not conserved. Also, we broke
A

SU(2)

qH1 q
H
1 `

H
1 `

H
2

in its component related to the emission of a W±, that is

A
SU(2)

qH1 q
H
1 `

H
1 `

H
2

= AW
3

qH1 q
H
1 `

H
1 `

H
2

+
∑
i

AW
±

i , (2.52)

with

AW
±

fL =
α2

4π
, AW

±

fR = 0 , AW
3

qH1 q
H
1 `

H
1 `

H
2

=
α2

2π

∑
i

(T 3
i )2 . (2.53)

For the emissions of Z bosons and photons, one needs to take into account the mixing
between the third component of the SU(2) gauge symmetry and the U(1) gauge symmetry.
The emission of a W 3 boson is given by

σ̂LL
qH1 q

H
2 →`H1 `H2 +W 3 = σ̂BqH1 qH2 →`H1 `H2

AW3

qH1 q
H
1 `

H
1 `

H
2

∆qH1 q
H
2 `

H
1 `

H
2

(m2
V , s; s)

×∆em
qH1 q

H
2 `

H
1 `

H
2

(Λ2,m2
V ; s)

∫
dk2

T

k2
T

ln
s

k2
T

∆V (m2
V , k

2
T ; k2

T ) , (2.54)

while for the emission of a U(1) boson B

σ̂LL
qH1 q

H
2 →`H1 `H2 +B = σ̂BqH1 qH2 →`H1 `H2

A
U(1)

qH1 q
H
1 `

H
1 `

H
2

∆qH1 q
H
2 `

H
1 `

H
2

(m2
V , s; s)

×∆em
qH1 q

H
2 `

H
1 `

H
2

(Λ2,m2
V ; s)

∫
dk2

T

k2
T

ln
s

k2
T

. (2.55)

To combine these two expressions into the emission of a Z boson, we have to mix the
amplitude of the emission of a W 3 with the amplitude of the emission of a B. Each individual
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emission is given by breaking the coefficient AW
3

qH1 q
H
1 `

H
1 `

H
2

and A
U(1)

qH1 q
H
1 `

H
1 `

H
2

in their components

for an emission from one fermion, and the amplitude is given by the square root of this
emission. We mix the amplitudes using that

Z = sWB − cWW 3 , (2.56)

where cW = cos(θW ) and sW = sin(θW ). This gives

σ̂LL
qH1 q

H
2 →`H1 `H2 +Z = σ̂BqH1 qH2 →`H1 `H2

∆qH1 q
H
2 `

H
1 `
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2
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qH1 q
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H
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×
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T

RqH1 q
H
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H
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H
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(m2
V , k

2
T ) , (2.57)

where we have defined

RqH1 q
H
2 `

H
1 `

H
2

(m2
V , k

2
T ) = αW

∑
i

sW
√
A
U(1)
i

αW
− cW

√
AW

3

i

αW
∆V (m2

V , k
2
T ; k2

T )

2

, (2.58)

with

A
U(1)

fH
=
α1

2π
Y 2
fH , AW

3

fH =
α1

2π
(T 3

fH )2 . (2.59)

By using the simple relations√
A

U(1)

fH

αW
=

√
1

2π

sW
cW

YfH ,

√
AW

3

fH

αW
=

√
1

2π
T 3
fH , (2.60)

we obtain the final result for the Z boson emission cross section

σ̂LL
qH1 q

H
2 →`H1 `H2 +Z = σ̂BqH1 qH2 →`H1 `H2
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, (2.62)



CHAPTER 2. RESUMMATION OF ELECTROWEAK SUDAKOV LOGARITHMS
FOR REAL RADIATION 20

where

Amixing

qH1 q
H
2 `

H
1 `

H
2

=
αem

π

∑
i

T 3
i Yi . (2.63)

For the emission of a photon, we use that, for a scale higher than the electroweak bosons
masses, the photon is a mixing of the B and W 3 bosons.

γ = cWB + sWW
3 , (2.64)

while, for a scale lower than the electroweak bosons masses, the photon can still be produced
proportionally to the derivative of its no-branching probability ∆em
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H
2 `

H
1 `
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2
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2
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. (2.65)

2.4 Results

In this section we analyze both the cross section with virtual corrections and those with real
corrections for both the the 13 TeV LHC and a 100 TeV proton-proton collider. The main
reason to present the results for a 100 TeV collider is that it is the main candidate to succeed
to the LHC and the importance of our results increase with the energy. Our results show
that resumming both the real and virtual logarithms is essential for a 100 TeV collider.

We begin by explaining the format used in all of our plots: solid lines represent the re-
summed LL corrections, while dashed lines are the fixed order double logarithmic correction.
Black lines correspond to the virtual corrections while the real corrections with Z, photon,
W+ and W− are shown in red, orange, blue and green, respectively. For each plot, we show
on the top the perturbative corrections relative to the Born, in the middle the relative size of
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Figure 2.1: The cross-section summed over all lepton flavors for the 13 TeV LHC. On the top
we show the individual corrections relative to the Born cross-section as defined in Eq. (2.66),
in the middle the relative size of the resummation as defined in Eq. (2.67), while on the bot-
tom we show the total perturbartive correction relative to the Born as defined in Eq. (2.68).
Virtual corrections are shown in black, while real corrections with a Z, photon, W+, W−

are shown in green, orange, red and blue. Resummed corrections are shown in solid lines,
while fixed order results are dashed. The x-axis denotes the fraction of the partonic center
of mass energy relative to the collider center of mass energy.



CHAPTER 2. RESUMMATION OF ELECTROWEAK SUDAKOV LOGARITHMS
FOR REAL RADIATION 22

0.00 0.05 0.10 0.15 0.20 0.25
-40

-30

-20

-10

0

sqrt{s / S}

(V
+
R
)/
B
n%

-200

-150

-100

-50

0

(R
es
-
F
O
)/
R
es

%

p p -> X
100 TeV Collider

Resummed

FO Order

Virt

Real (Z)

Real (γ)

Real (W^+)

Real (W^-)

-100

-80

-60

-40

-20

0

20

40

C
or
re
ct
io
n
re
la
ti
ve
to
B
or
n
%

Figure 2.2: The cross-section summed over all lepton flavors for a 100 TeV pp collider on the
right. All colors are the same as in Fig. 2.1.

the resummation and on the bottom the total perturbative correction after summing virtual
and real relative to the Born. To be more precise, on the top we plot for virtual and real

Virt :
σpp→`1`2 − σB

pp→`1`2
σB
pp→`1`2

, Real (V) :
σpp→`1`2V
σB
pp→`1`2

, (2.66)

using either the resummed or fixed order expression. In the middle we show for the virtual
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(a) 13 TeV LHC
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(b) 100 TeV collider

Figure 2.3: The cross-section for e+e− for the 13 TeV LHC on the left, and 100 TeV pp
collider on the right. All colors are the same as in Fig. 2.1. Note that the scaling of the y
axis is different for the LHC and the 100 TeV collider.

contribution

Virt :
σFO
pp→`1`2 − σ

Res
pp→`1`2

σRes
pp→`1`2

, Real (V) :
σFO
pp→`1`2V − σ

Res
pp→`1`2V

σRes
pp→`1`2V

, (2.67)

while for the lower plot we show

σpp→`1`2 + σpp→`1`2V − σB
pp→`1`2

σB
pp→`1`2

, (2.68)

for both fixed order and resummed. All effects are shown as a percentage.
We start with the result for the fully inclusive cross-section, where we sum over the flavors

of all final state particles. In other words, we are summing over the virtual corrections for
any lepton flavor, and the real corrections for any lepton flavor and gauge boson type. In
terms of equations, for the fixed order result, the virtual are obtained by summing over all
terms in Eqs. (2.11), (2.12), and (2.13); while the real are given by Eqs. (2.15), (2.17),
(2.18), and (2.16). The resummed result are given by Eqs. (2.33), (2.62), (2.51), and (2.65).
All those results are for Λ = mZ , that is we are resolving the photon only down to the
mass of the Z. A lower Λ would reduce all the exclusive cross section but the real cross
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Figure 2.4: The cross-section for ν̄ν for the 13 TeV LHC on the left, and 100 TeV pp collider
on the right. All colors are the same as in Fig. 2.1.

section for photon as calculated in eq. (2.65) which will increase up to a value of Λ low

enough than
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V , s), and then decrease if Λ continues to be lowered.

The results for the virtual and real contributions both at fixed and resummed order are
shown in Fig. 2.1 for the LHC and in Fig. 2.2 for the 100 TeV collider. For the LHC,
the corrections from virtual contributions range from O(15%) at

√
s ∼ 1 TeV to O(30%) at√

s ∼ 3 TeV, while the real corrections for a given gauge boson are about a factor of 3 smaller
individually. However, as can be seen from the ratio plot in the middle, the relative effect of
the resummation is more than twice bigger for the real correction compared to the virtual
correction. This clearly shows that the size of the resummation effect cannot be inferred
from the size of the fixed order correction alone. The relative effect of the resummation for
the virtual reaches from O(10%) at

√
s ∼ 1 TeV to O(20%) at

√
s ∼ 3 TeV while the relative

effect of the resummation for the real reaches from O(20%) at
√
s ∼ 1 TeV to O(50%) at√

s ∼ 3 TeV.
In the lower part of the plot for the fixed order, one can see that after summing the

virtual and real, the perturbative corrections largely cancel, but a small effect at the O(1%)
level persists. For a fully inclusive cross section the logarithmically enhanced virtual and
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Figure 2.5: The cross-section summed for e+ν for the 13 TeV LHC on the left, and 100 TeV
pp collider on the right. All colors are the same as in Fig. 2.1.

real corrections cancel against each other, up to the fact that the pp initial state is not an
iso-singlet. The large cancellation can be understood from Eq. (2.19), which shows that
switching the flavor of initial state anti-quark changes the sign of the partonic cross-section.
Since pdf’s for sea quarks are similar in magnitude, one expects fū/p ∼ fd̄/p, explaining the
cancellation. For the resummed result on the other hand, there is no cancellation. That is
because even if the initial state is an SU(2) singlet, the cancellation would occur only for an
inclusive result, that is summing the virtual to the real for any number of gauge boson. The
remaining correction for the resummed result is thus mostly due to the production of more
than one gauge boson with also an order 1% correction due to the initial state not being an
SU(2) singlet. This remaining correction ranges from 2% at

√
s ∼ 5 TeV to 7% at

√
s ∼ 25

TeV.
For the 100 TeV collider, the results are qualitatively the same, but given the much larger

reach in energy, the overall size of the effects are much larger. The virtual contributions range
from O(30%) at

√
s ∼ 5 TeV to O(60%) at

√
s ∼ 25 TeV, with the real corrections again

roughly a factor of 3 smaller. The relative size of the resummation, is also much larger, and
at
√
s ∼ 25 TeV changes the result by O(50%) for the virtual and by O(200%) for the real

corrections. Thus, at such large energies, resummation has to be included to get a reliable
estimate of the effects, not only for virtual corrections but also for the real emissions. Once
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Figure 2.6: The cross-section for ν̄e− for the 13 TeV LHC on the left, and 100 TeV pp collider
on the right. All colors are the same as in Fig. 2.1.

the virtual and real corrections are added at fixed order, the total corrections again are very
small, at the percent level; while for the resummed result, the total correction ranges from
O(10%) at

√
s ∼ 5 TeV to O(30%) at

√
s ∼ 25 TeV.

Next, we consider the results for final states with specific leptons flavors. From the
Figures 2.3 to 2.6, one can see that at the LHC, the virtual corrections range from O(15%)
at
√
s ∼ 1 TeV to O(30%) at

√
s ∼ 3 TeV, with the exact numbers depending on the

leptonic final state chosen, while at a 100 TeV collider they can exceed 50% at
√
s ∼ 25

TeV. Resummation at the LHC changes the virtual corrections by O(10%) at
√
s ∼ 1 TeV to

O(20%) at
√
s ∼ 3 TeV, while at a 100 TeV collider the effect can become as large as 50%.

Resummation at the LHC changes the real corrections by O(20%) at
√
s ∼ 1 TeV to O(60%)

at
√
s ∼ 3 TeV, while at a 100 TeV collider the effect can become as large as 200%. After

summing over virtual and real corrections, the remaining perturbative corrections grow with
energy are much larger than in the fully inclusive case. This is of course expected, since by
specifying the leptonic final state, we are not considering an inclusive final state any longer.
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Chapter 3

Standard Model Parton Distributions
at Very High Energies

To construct a general-purpose SM event generator,1 the three phases of a hard collision,
namely initial-state parton showering, parton-parton collision and final-state showering, need
to be simulated including all SM particles and interactions. For the initial-state showering,
parton distribution functions (PDFs) for all the SM fermions and bosons need to be computed
and tabulated beforehand, so that showering can be generated backwards from the hard
process, guided by the scale dependence of the PDFs [54,55].

Recently, a final-state parton shower including emissions from all interactions in the Stan-
dard Model was developed [56], which illustrated the importance of electroweak splittings at
high energies. For initial-state radiation the generalization of the DGLAP [57–59] evolution
equations using all the Standard Model interactions has been worked out in [12], but so far
no numerical implementation of these results has been published.

As already mentioned, understanding the DGLAP evolution of PDFs using all interac-
tions of the SM is a required first step in developing a complete initial state parton shower.
Moreover, it already allows us to study many new qualitative features of very high-energy
processes, such as lepton-initiated processes in hadron collisions and the polarization induced
by electroweak PDF evolution.

The inclusion of QED corrections into parton distributions is a well established proce-
dure [60–67]. However, above the electroweak scale around 100 GeV, the contributions of
other electroweak bosons become non-negligible and new effects appear [3–17]. PDFs of lep-
tons, vector and scalar bosons are generated dynamically, and left- and right-handed fermions
evolve differently. There are also comparable effects in the third generation of quarks due to
their Yukawa interactions. Some effects of the SU(2) interaction are double-logarithmically
enhanced, due to the non-singlet nature of the incoming states.

The PDF evolution equations for the full Standard Model have been presented in Ref. [12].
In the present chapter we recast those equations in a form suitable for event generation and

1For a review of existing generators, see ref. [53].
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solve them numerically for a given set of input distributions at the electroweak scale. The
resulting PDF set extends through the region of interest for future colliders and well beyond,
so that we can study the onset of the regime where all the SM interactions start to become
comparable.

Our solutions to the SM evolution equations are obtained in the approximation of exact
SU(3)×SU(2)×U(1) symmetry. That is, we neglect fermion and Higgs masses and the Higgs
vacuum expectation value, the effects of these being power-suppressed at high scales. We
impose an infra-red cutoff mV on interactions that involve the emission of an electroweak
vector boson, V = W i for SU(2) or B for U(1). Leading-order evolution kernels and one-loop
running couplings are used. All the electroweak PDFs are generated dynamically from the
QCD plus photon PDFs, starting from a matching scale qV ∼ mV . In practice we take
qV = mV = 100 GeV. In Sec. 3.3 we show some effects of varying these parameters, to
provide an indication of uncertainties due to subleading logarithms and power-suppressed
terms.

For the evolution of the photon, we decompose its PDF into W 3, B and mixed B/W 3

components at the input scale, evolve these components, and reconstruct the photon PDF
from them at higher scales using the running SU(2) and U(1) couplings. For the top quark,
we set the PDF to zero below the top mass scale and then use the leading-order massless
evolution kernels, as for other fermions. This treatment of the transition region around
the electroweak scale is clearly over-simplified but it should give a reliable indication of the
magnitude of electroweak effects at higher energies.

The accuracy of our resulting PDFs is leading logarithmic, with subleading logarithmic
effects included where possible, but not in a complete way. Contributions to the evolution
from the U(1), SU(3) and Yukawa interactions are therefore correct at the single logarithmic
level. However, as mentioned above, the SU(2) interactions give rise to double logarith-
mic effects in the PDF evolution, such that single logarithmic effects in SU(2) non-singlet
quantities are not fully under control.

The organization of the chapter is as follows. In Sec. 3.1 we define the relevant parton
distribution functions for unpolarized proton beams and the general form of their evolution
equations, paying particular attention to the conservation of momentum in the presence of
the cutoff mV for vector boson emission. After specifying all the necessary splitting functions
and running couplings, we write the explicit evolution equations associated with the five
interactions: SU(3), U(1), SU(2), Yukawa and mixed U(1)×SU(2), for all the SM partons in
a flavor basis. As usual for DGLAP evolution, we do not include 4 point interactions which
are suppressed at high energies.

For a numerical implementation, as described in Sec. 3.2, the flavor basis is not convenient,
as too many coupled equations are involved. Instead we use the basis of conserved quantum
numbers introduced in Ref. [12]. As shown there, the double-logarithmic evolution of SU(2)
non-singlet PDFs can then be factored out, which stabilizes and accelerates the solution
of the equations. In this way we are able to evolve all the SM PDFs to arbitrarily high
scales with satisfactory speed and precision. In practice we evolve up to 108 GeV, where the
approach to asymptotic behavior is well established.
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3.1 The evolution of parton distributions in the full

Standard Model

Definition of the parton distribution functions

The standard definition of an x-weighted parton distribution is given by the matrix element
of a bi-local operator, separated along the lightcone. For fermions, one finds the standard
definition, but without spin averaging as we are separating the fermions into left- and right-
handed. Thus, each fermion has only one possible spin determined by its helicity and the
sign of its momentum

fi(x, µ) = x

∫
dy

2π
e−i 2xn̄·p y

〈
p
∣∣ ψ̄(i)(y) n̄/ ψ(i)(−y)

∣∣p〉 , (3.1)

fī(x, µ) = x

∫
dy

2π
e−i 2xn̄·p y

〈
p
∣∣ψ(i)(y) n̄/ ψ̄(i)(−y)

∣∣p〉 , (3.2)

where µ is the renormalization scale. Since we have separate left- and right-handed PDFs,
for each generation there are a total of 8 quark PDFs and 6 lepton PDFs to consider, giving
a total of 42 fermion PDFs.

Parton distributions functions of the vector bosons are given by

fV (x, µ) =
2

n̄·p

∫
dy

2π
e−i 2xn̄·p y n̄µn̄

ν
〈
p
∣∣V µλ(y)Vλν(−y)

∣∣p〉∣∣∣
spin avg.

. (3.3)

Since SU(3) is unbroken, we consider a single PDF to describe the gluon field. For the
SU(2) ⊗ U(1) symmetry, on the other hand, one needs to take the symmetry breaking into
account. For the W+ and W− boson we simply include separate PDFs for each of the two
gauge bosons. For the B and W3, however, one needs to be more careful to take the mixed
contributions of these two bosons into account. Such contributions arise from the fact that
the left-handed fermions and Higgs carry both isospin and hypercharge. This implies that
besides B and W3 PDFs one needs to include a mixed PDF, which is given by2

fBW (x) =
2

n̄·p

∫
dy

2π
e−i 2xn̄·p y n̄µn̄ν

〈
p
∣∣Bµλ(y)W λν

3 (−y)
∣∣p〉∣∣∣

spin avg.
+ h.c. . (3.4)

From these PDFs one can then construct the PDF for the photon, the transversely-polarized
Z0 and their mixed state as a transformation of the PDF for the B, the W3 and their mixed
state. Using A = cWB + sWW3 and Z0 = −sWB + cWW3 one finds fγ

fZ
fγZ

 =

 c2
W s2

W cW sW
s2
W c2

W −cW sW
−2cW sW 2cW sW c2

W − s2
W

 fB
fW3

fBW

 , (3.5)

2Note that our definition of the mixed PDF fBW is the sum of BW3 and W3B contributions, and similarly
for the mixed PDF fγZ .
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and thus  fB
fW3

fBW

 =

 c2
W s2

W −cW sW
s2
W c2

W cW sW
2cW sW −2cW sW c2

W − s2
W

 fγ
fZ
fγZ

 . (3.6)

For the electroweak input at scale µ = qV we have fγ(x, qV ) 6= 0 and fZ(x, qV ) = fγZ(x, qV ) =
0, so the input conditions at that scale are

fB = c2
W fγ , fW3 = s2

W fγ , fBW = 2cW sW fγ . (3.7)

Thus, when relating the PDFs at the input scale µ = qV in Eq. (3.7), one chooses sW ≡
sW (qV ) and cW ≡ cW (qV ). After evolving these three unbroken PDFs to a higher scale q,
the physical photon and Z0 PDFs are reconstructed using the corresponding running values
of cW (q) and sW (q).

Finally, one needs to include PDFs for the scalar bosons. One writes

fH(x) = x

∫
dy

2π
e−i 2xn̄·p y

〈
p
∣∣Φ(y)Φ(−y)

∣∣p〉 ,
(3.8)

and PDFs for each of the 4 Higgs fields H0, H̄0, H+ and H− are included. The relationship
to the 4 Higgs fields in the unbroken basis to the physical Higgs and the longitudinal gauge
bosons is as follows: The H± PDFs correspond to those of the longitudinally polarized W±.
In the notation of Ref. [12], the neutral Higgs fields are

H0 =
(h− iZL)√

2
, H̄0 =

(h+ iZL)√
2

, (3.9)

where h and ZL represent the Higgs and the longitudinal Z0 fields, respectively. The corre-
sponding PDFs are

fH0 =
1

2
[fh + fZL

+ i (fhZL
− fZLh)] , (3.10)

fH̄0 =
1

2
[fh + fZL

− i (fhZL
− fZLh)] , (3.11)

and one can also define the mixed PDFs

fH0H̄0 =
1

2
[fh − fZL

− i (fhZL
+ fZLh)] , (3.12)

fH̄0H0 =
1

2
[fh − fZL

+ i (fhZL
+ fZLh)] . (3.13)

Both of these mixed PDF carry non-zero hypercharge, such that they are not produced by
the DGLAP evolution in the unbroken gauge theory as considered in this chapter3. Thus,
one immediately finds

fh − fZL
= fhZL

+ fZLh = 0 , (3.14)
3They are only produced through insertions of the Higgs vacuum.
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and

fh = fZL
=

1

2
(fH0 + fH̄0) , fhZL

= −fZLh = − i
2

(fH0 − fH̄0) . (3.15)

In summary, there are a total of 52 parton distribution functions that need to be con-
sidered. Apart from the QCD quark and gluon distributions, the charged leptons, and the
neutral electroweak boson PDFs (3.7), all the other SM PDFs are set to zero at scale qV and
evolve according to the generalized DGLAP equations presented below.

For the input used here, and because fermion masses and Yukawa couplings are neglected
except for the top quark, several fermion PDFs are identical. The lepton PDFs are indepen-
dent of generation. Also the right-handed fermion and antifermion PFDs are identical, apart
from the top quark, unless they are different at the matching scale qV . This is the case only
for the up and down quarks. The right-handed top and anti-top are slightly different, since
they interact through the Yukawa coupling with H+ H−, respectively. Thus the number of
distinct right-handed quark PDFs is reduced from 12 to 9, the left-handed leptons from 12
to 4, and the right-handed leptons from 6 to 1, making a total of 36 non-identical PDFs.

General evolution equations

We consider the x-weighted PDFs of parton species i at momentum fraction x and scale q,
fi(x, q). In general they satisfy evolution equations of the following forms:

q
∂

∂q
fi(x, q) =

∑
I

αI(q)

π

[
P V
i,I(q) fi(x, q) +

∑
j

Cij,I

∫ zij,Imax(q)

x

dz PR
ij,I(z)fj(x/z, q)

]

≡
∑
I

[
q
∂

∂q
fi(x, q)

]
I

. (3.16)

Here, the sum over I goes over the different interactions in the Standard Model and the
notation [q ∂/∂qfi(x, q)]I implies that we only keep the terms proportional to the coupling
αI when taking the derivative4. For the rest of the section, we will show the evolution of
each fi(x, q). We choose I = 1, 2, 3 for the pure U(1), SU(2) and SU(3) gauge interactions,
I = Y for Yukawa interactions, and I = M for the mixed interaction proportional to

αM(q) =
√
α1(q)α2(q) . (3.17)

The first contribution, proportional to P V
i,I , denotes the virtual contribution to the PDF evo-

lution (the disappearance of a flavor i), while the second contribution is the real contribution
(the appearance of flavor i due to the splitting of a flavor j). The maximum value of z in

4Note that [. . .]I is only introduced for notational convenience and should not be interpreted as setting
all other couplings to zero. In particular, the PDFs appearing on the right-hand side of Eq. (3.16) still
depend on the value of all coupling constants.
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the integration of the real contribution depends on the type of splitting and interaction, and
we choose

zij,Imax(q) =
{ 1− mV

q
for I = 1, 2, and i, j /∈ V or i, j ∈ V

1 otherwise
, (3.18)

that is, we apply an infrared cutoff mV , of the order of the electroweak scale, when a B or W
boson is emitted. This regulates the divergence of the splitting function for those emissions
as z → 1. Such a cutoff is mandatory for I = 2 because there are PDF contributions that
are SU(2) non-singlets. The evolution equations for SU(3) are regular in the absence of a
cutoff, as hadron PDFs are color singlets. Similarly for U(1), the unpolarized PDFs have
zero hypercharge,5 but we include the same cutoff for I = 1, since the B and W3 are mixed
in the physical Z and γ states.

Note that the precise choice of the cutoff is somewhat arbitrary, and as already mentioned,
we choose mV = 100 GeV in this chapter. Changing this value changes our results by
subleading logarithmic effect, at the same level as other effects not included. However, given
that the SU(2) evolution is double logarithmic, this implies that the ambiguity is single
logarithmic for the SU(2) coupling. By matching our results to fixed order, one would
account for these term at first order in α2. This is beyond the scope of this chapter.

While the flavor basis chosen above is the most intuitive basis, the fact that all 52 PDFs
are coupled to one another makes it quite difficult to solve the evolution equations. To
decouple some of the equations, it helps to change the basis such that the ingredients have
quantum numbers that are conserved in the Standard Model. Choosing the total isospin T
and CP as the quantum numbers, the PDFs for each set of quantum numbers required are
shown in Table 3.1.

{T,CP} fields
{0,+} 2ng × qR , ng × `R , ng × qL , ng × `L , g ,W ,B ,H
{0,−} 2ng × qR , ng × `R , ng × qL , ng × `L , H
{1,+} ng × qL , ng × `L , BW,H
{1,−} ng × qL , ng × `L ,W,H
{2,+} W

Table 3.1: The 52 PDFs required for the SM evolution can written in a basis with definite
conserved quantum numbers. (5ng + 4) PDFs contribute to the {0,+} state, (5ng + 1) to
the {0,−}, (2ng + 2) to each to the {1,+} and {1,−} and 1 to the {2,+}, where ng = 3
stands for number of generations.

Note that in general there can be additional mixed PDFs, which however are zero in our
initial conditions and which are not generated in the evolution. In particular, there can be
states mixing left-and right-handed fermions, but they are not present in the initial condition

5Although there can be contributions with non-zero hypercharge for transversely polarized beams [12].
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when only considering unpolarized beams because those states are not Lorentz scalar. Thus,
we can drop these states from our evolution.

The sum of momenta of all non-mixed PDFs in the particle basis is conserved, since it
is the momentum of the proton. Momentum conservation applies independently for each
interaction since physics would still be coherent if we removed one interaction from the
Standard Model. ∑

i 6=BW

∫ 1

0

dx

[
q
∂

∂q
fi(x, q)

]
I

= 0 for I = 1, 2, 3, Y,M . (3.19)

This is equivalent to the sum over all T = 0, CP = + PDFs in the isospin and CP basis
because only these states contribute to a sum over the PDFs in the particle basis. For the
other values of T and CP, the PDFs correspond to differences of PDFs in the particle basis.
For example an isospin 1 PDF is added in PDF of an up-type fermion, but subtracted in the
down-type PDF, thus it has no effect on the sum.

Combining Eqs. (3.16) and (3.19) gives

0 =
∑
i 6=BW

P V
i,I

∫ 1

0

dx fi(x, q) +
∑
i,j

Cij,I

∫ 1

0

dx

∫ zij,Imax(q)

x

dz PR
ij,I(z) fj(x/z, q)

=
∑
i 6=BW

P V
i,I

∫ 1

0

dx fi(x, q) +
∑
i,j

Cij,I

∫ zij,Imax(q)

0

dz PR
ij,I(z)

∫ z

0

dxfj(x/z, q)

=
∑
i 6=BW

P V
i,I 〈fi(q)〉+

∑
i,j

Cij,I

∫ zij,Imax(q)

0

z dz PR
ij,I(z)〈fj(q)〉 , (3.20)

where we have defined the momentum averaged PDF

〈fi(q)〉 ≡
∫ 1

0

dx fi(x, q) . (3.21)

Solving the equation for each of the 〈fi(q)〉, since all the input particle PDFs can be set
independently, we get

P V
i,I(q) = −

∑
j

Cji,I

∫ zji,Imax(q)

0

z dz PR
ji,I(z) for i 6= BW . (3.22)

Thus, momentum conservation determines the factor P V
i,I for all non-mixed fields in the

particle basis.
Note that the result from momentum conservation agrees up to power corrections with

the more traditional definition of the virtual corrections as loop insertions on the fields of
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the PDF, which we denote by P̃ V
i,I . Summing over possible loops, one has

P̃ V
fi,I

(q) = −Cff,i,I
∫ zff,Imax (q)

0

dz PR
ff,I(z)

P̃ V
Vi,I

(q) = −CV V,i,I
2

∫ zV V,I
max (q)

0

dz PR
V V,I(z)−

∑
j∈f,h

CjVi,I

∫ 1

0

dz PR
jV,I(z)

P̃ V
Hi,I

(q) = −CHH,i,I
∫ zHH,I

max (q)

0

dz PR
HH,I(z)−

∑
j∈f

CjHi,I

∫ 1

0

dz PR
fH,I(z) , (3.23)

where
∑

j∈f,h is a sum over all fermions and Higgs bosons which are not antiparticles, and

Cff,i,I =
∑
j

Cfjfi,I (3.24)

and similarly for CV V,i,I and CHH,i,I . To see that Eqs. (3.22) and (3.23) agree with each
other, we will work it out explicitly for the virtual contribution to a fermion. One uses for
the fermions that PR

V f,I(z) = PR
ff,I(1− z) and Cff,I = CV f,I to obtain the correct relation:

P V
f,I(q) = −Cff,I

[∫ zmax

0

z dz PR
ff,I(z) +

∫ 1

0

z dz PR
V f,I(z)

]
= −Cff,I

[∫ zmax

0

z dz PR
ff,I(z) +

∫ 1

0

(1− z) dz PR
ff,I(z)

]
= P̃ V

f,I(q) + . . . , (3.25)

where . . . denotes power corrections in 1−zmax. The argument is exactly the same for P V
H,I(q),

while for P V
V,I(q) one simply uses that PR

V V,I(z) and PR
fV,I(z), and PR

hV,I(z) and PR
fH,I(z), are

symmetric in z ↔ 1 − z to write
∫
z dz =

∫
dz/2. In our implementation of the evolution

equations, we use Eq. (3.22), to ensure exact momentum conservation without explicit power
corrections.

Since the mixed PDF fBW is a pure T = 1 state, it does not contribute to the momentum
sum. This implies that one cannot derive its associated virtual contribution from momentum
conservation. However, using the traditional definition in terms of loops, one sees that in
this case the U(1) and SU(2) virtual corrections each apply to only one of the two fields
involved, and therefore

P̃ V
BW,1(q) =

1

2
P V
B,1(q) , P̃ V

BW,2(q) =
1

2
P V
W,2(q) , (3.26)

while the virtual contribution is zero for the other interactions.
One can simplify the general evolution equations in Eq. (3.16) by defining a full Sudakov

factor

∆i(q) = exp

[∑
I

∫ q

qV

dq′

q′
αI(q

′)

π
P V
i,I(q

′)

]
, (3.27)
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as well as a partial Sudakov factor for each interaction

∆i,I(q) = exp

[∫ q

qV

dq′

q′
αI(q

′)

π
P V
i,I(q

′)

]
, (3.28)

where qV is an arbitrary cutoff, which for convenience we set equal to mV . This allows us to
write [

∆i,I(q) q
∂

∂q

fi(x, q)

∆i,I(q)

]
I

=
αI(q)

π

∑
j

Cij,IP
R
ij,I ⊗ fj , (3.29)

where again the notation [. . .]I implies that only terms from the interaction I are kept. This
gives

∆i(q) q
∂

∂q

[
fi(x, q)

∆i(q)

]
=

∑
I

[
∆i,I(q) q

∂

∂q

fi(x, q)

∆i,I(q)

]
I

=
∑
I

αI(q)

π

∑
j

Cij,IP
R
ij,I ⊗ fj , (3.30)

where

PR
ij,I ⊗ fj ≡

∫ zij,Imax(q)

x

dz PR
ij,I(z)fj(x/z, q) . (3.31)

Splitting functions

The splitting functions depend only on the type of particles, which for the Standard Model
are the spin 1/2 fermions, denoted by f , spin 1 gauge bosons, denoted by V , as well as spin
0 Higgs bosons, denoted by H.

Denoting the three gauge interactions of the Standard Model collectively by I = G, the
splitting functions involving gauge bosons are given by

PR
ff,G(z) =

1 + z2

1− z
, (3.32)

PR
V f,G(z) = Pff,G(1− z) , (3.33)

PR
fV,G(z) =

1

2

[
z2 + (1− z)2

]
, (3.34)

PR
V V,G(z) = 2

[
z

1− z
+

1− z
z

+ z(1− z)

]
(3.35)

PR
HH,G(z) =

2z

1− z
, (3.36)

PR
VH,G(z) = PR

HH,G(1− z) , (3.37)

PR
HV,G(z) = z(1− z) . (3.38)
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The factor of 1/2 in PfV has to be included since we are considering fermions with definite
chirality. For the Yukawa interaction (Y ), one obtains

PR
ff,Y (z) =

1− z
2

, (3.39)

PR
Hf,Y (z) = PR

ff,Y (1− z) , (3.40)

PR
fH,Y (z) =

1

2
. (3.41)

I = 3: SU(3) interactions

We start by considering the well known case of SU(3) interactions. The relevant degrees of
freedom are the gluon, as well as left and right-handed quarks. The coupling constants are
(with CF = 4/3, CA = 3, TR = 1/2)

Cqq,3 = Cgq,3 = CF , Cqg,3 = TR , Cgg,3 = CA . (3.42)

This gives for the evolution of a quark or gluon6[
∆q,3 q

∂

∂q

fq
∆q,3

]
3

=
α3

π

[
CFP

R
ff,G ⊗ fq + TRP

R
fV,G ⊗ fg

]
, (3.43)[

∆g,3 q
∂

∂q

fg
∆g,3

]
3

=
α3

π

[
CAP

R
V V,G ⊗ fg +

∑
f

CFP
R
V f,G ⊗ fq

]
. (3.44)

The Sudakov factor can be obtained from Eq. (3.22) using the coupling constants in
Eq. (3.42). This gives

P V
q,3(q) = −CF

∫ 1

0

z dz
[
PR
ff,G(z) + PR

V f,G(z)
]
, (3.45)

P V
g,3(q) = −

∫ 1

0

z dz
[
CA P

R
V V,G(z) + 8ng TR P

R
fV,G(z)

]
, (3.46)

where we have used in the last line that there are 8 chiral quarks plus antiquarks per gener-
ation.

Since the gluon is massless, the upper limit in all the z integrations is equal to 1 [see
Eq. (3.18)]. This implies that the convolutions PR

ff,G ⊗ fq and PR
V V,G ⊗ fg in Eqs. (3.43) and

(3.44) are both divergent. However, at the same time the virtual splitting functions that
enter the Sudakov factors ∆q,3(q) and ∆g,3(q) defined in Eq. (3.28) are also divergent, such
that the divergences cancel in the evolution of the actual PDFs. Using +-distributions, as
explained in Sec. 3.2, one obtains evolution equations that are free of any divergences, and
which can be implemented numerically. Alternatively, for parton shower implementation,
one can impose a cutoff of the form Eq. (3.18) with mV replaced by a small parameter
mg > ΛQCD.

6From now on we omit the arguments of functions for brevity.
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I = 1: U(1) interactions

For U(1) the relevant degrees of freedom are left- and right-handed fermions (denoted by
the subscript f), as well as the U(1) gauge boson B. The couplings involving fermions and
gauge bosons are

Cff,1 = CBf,1 = Y 2
f , CfB,1 = Nf Y

2
f , CBB,1 = 0 (3.47)

where the hypercharges of the different fermions are given by

YqL =
1

6
, YuR =

2

3
, YdR = −1

3
, Y`L = −1

2
, YeR = −1 , (3.48)

and the color factor Nf is equal to 3 for quarks and 1 for leptons. The couplings involving
the Higgs bosons are

Chh,1 = CBh,1 = ChB,1 =
1

4
, (3.49)

where h here stands for any of the four Higgs boson PDFs.
Plugging this into the general evolution equation gives[

∆f,1 q
∂

∂q

ff
∆f,1

]
1

=
α1

π
Y 2
i

[
PR
ff,G ⊗ ff +NfP

R
fV,G ⊗ fB

]
, (3.50)[

∆B,1 q
∂

∂q

fB
∆B,1

]
1

=
α1

π

[∑
f

Y 2
f P

R
V f,G ⊗ ff +

1

4

∑
h

PR
VH,G ⊗ fh

]
, (3.51)[

∆H,1 q
∂

∂q

fh
∆H,1

]
1

=
α1

π

1

4

[
PR
HH,G ⊗ fh + PR

HV,G ⊗ fB
]
. (3.52)

The virtual splitting functions, required for the Sudakov factor are given by

P V
f,1(q) = −Y 2

f

[∫ 1−mV
q

0

z dz PR
ff,G(z) +

∫ 1

0

z dz PR
V f,G(z)

]
, (3.53)

P V
B,1(q) = −ng

(
11

9
NC + 3

)∫ 1

0

z dz PR
fV,G(z)−

∫ 1

0

z dz PR
HV,G(z) , (3.54)

P V
H,1(q) = −1

4

[∫ 1−mV
q

0

z dz PR
HH,G(z) +

∫ 1

0

z dz PR
VH,G(z)

]
, (3.55)

where we have used in the second line that for each generation there are 4 left-handed quarks
(one needs to count particles and antiparticles separately), 2 right-handed up-type quarks,
2 right-handed down-type quarks, 4 left-handed leptons and 2 right-handed electrons, and
that there are a total of 4 Higgs bosons.
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I = 2: SU(2) interactions

The SU(2) interactions are more complicated, since the emission of W± bosons changes the
flavor of the emitting particle. This, combined with the SU(2) breaking in the input hadron
PDFs, leads to double-logarithmic scale dependence in the DGLAP evolution, rather than
only single-logarithmic dependence as in the evolution based on U(1) and SU(3).

The relevant coupling constants are (where uL and dL denote any up- and down-type
left-handed fermion)

CuLdL,2 = CdLuL,2 = CW+uL,2 = CW−dL,2 =
1

2
, (3.56)

CuLuL,2 = CW3uL,2 = CdLdL,2 = CW3dL,2 =
1

4
, (3.57)

CuLW+,2 = CdLW−,2 = Nf
1

2
, (3.58)

CuLW3,2 = CdLW3,2 = Nf
1

4
, (3.59)

CW±W±,2 = CW±W3,2 = CW3W±,2 = 1 , (3.60)

where as before the color factor Nf = 3 for quarks, 1 for leptons. The couplings of the W3

state to the Higgs are given by

Chh,2 = CW3h,2 = ChW3,2 =
1

4
, (3.61)

where again h stands for any of the 4 Higgs bosons, while those of the charged W states are
given by

CH+H0,2 = CH0H+,2 = CH+W+,2 = CW+H+,2

= CH0W−,2 = CW−H0,2 =
1

2
. (3.62)

The couplings for the charge-conjugate states are the same.
This gives for the evolution of the fermions[

∆fL,2 q
∂

∂q

fuL
∆fL,2

]
2

=
α2

π

{
PR
ff,G ⊗

[
fdL
2

+
fuL
4

]
+NfPfV,G ⊗

[
fW+

2
+
fW3

4

]}
, (3.63)[

∆fL,2 q
∂

∂q

fdL
∆fL,2

]
2

=
α2

π

{
PR
ff,G ⊗

[
fuL
2

+
fdL
4

]
+NfPfV,G ⊗

[
fW−

2
+
fW3

4

]}
. (3.64)
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For the W+ and W3 bosons we have[
∆W,2 q

∂

∂q

fW+

∆W,2

]
2

=
α2

π

{
PR
V V,G ⊗ [fW+ + fW3 ] +

1

2
PR
VH,G ⊗ [fH+ + fH̄0 ]

+
∑
gen

1

2
PV f,G ⊗

[
fuL + fd̄L + fνL + f¯̀

L

]}
, (3.65)[

∆W,2 q
∂

∂q

fW3

∆W,2

]
2

=
α2

π

{
PR
V V,G ⊗ [fW+ + fW− ] +

1

4
PR
VH,G ⊗

∑
h

fh

+
1

4

∑
fL

PR
V f,G ⊗ ffL

}
, (3.66)

where the sum in the last line is over all left-handed fermions and anti-fermions. The equation
for the W− can be obtained from that of the W+ by charge conjugation.

Finally, for the Higgs bosons we have[
∆H,2 q

∂

∂q

fH+

∆H,2

]
2

=
α2

π

{
PR
HH,G ⊗

[
fH0

2
+
fH+

4

]
+PHV,G ⊗

[
fW+

2
+
fW3

4

]}
, (3.67)[

∆H,2 q
∂

∂q

fH0

∆H,2

]
2

=
α2

π

{
PR
HH,G ⊗

[
fH+

2
+
fH0

4

]
+PHV,G ⊗

[
fW−

2
+
fW3

4

]}
. (3.68)

The virtual splitting functions are

P V
f,2(q) = −3

4

[∫ 1−mV
q

0

z dz PR
ff,G(z) +

∫ 1

0

z dz PR
V f,G(z)

]
, (3.69)

P V
W,2(q) = −2

∫ 1−mV
q

0

z dz PR
V V,G(z)− ng(NC + 1)

∫ 1

0

z dz PR
fV,G(z)−

∫ 1

0

z dz PR
HV,G(z) ,

(3.70)

P V
H,2(q) = −3

4

[∫ 1−mV
q

0

z dz PR
HH,G(z) +

∫ 1

0

z dz PR
VH,G(z)

]
, (3.71)

from which the Sudakov factor can be constructed using Eq. (3.28).
An important aspect of the SU(2) evolution equations is that, contrary to the other

gauge groups, the dependence on the ratio mV /q does not cancel between the real and
virtual splitting functions. As an example, consider the evolution equation for an up-type
fermion, given on the first line of Eq. (3.63), with the virtual contribution given by the first
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line of Eq. (3.69). The sum of the contributions of real and virtual splitting functions is
given by

α2

π

∫ 1−mV
q

0

dz
1

4
PR
ff,G(z) [2 fdL(x/z) + fuL(x/z)− 3 fuL(x)] + . . . , (3.72)

where . . . represents less singular terms. Thus, the SU(2) breaking in the proton, which
renders fu(z) 6= fd(z), gives rise to a logarithmic dependence on mV /q, which leads to a
double-logarithmic dependence upon integration over q. As we will see later, the effect of
this dependence is to double-logarithmically suppress the SU(2) breaking effects at high
energies.

I = Y : Yukawa interactions

The interaction of Higgs particles with fermions is described by the Yukawa interactions. In
this work we only keep the top Yukawa coupling, setting all others to zero. This gives the
following couplings

Cq3
LtR,Y

= CH0tR,Y = CH+tR,Y = CtRq3
L,Y

= CH̄0tL,Y = CH−bL,Y = 1 , (3.73)

where q3
L denotes either the left-handed top or bottom quark. We furthermore need

CtRH0,Y = CtRH+,Y = CtLH̄0,Y = CbLH−,Y = NC . (3.74)

This gives contributions to the top quark PDFs, as well as the left-handed bottom PDF:[
∆q3

L,Y
q
∂

∂q

ftL
∆q3

L,Y

]
Y

=
αY
π

{
PR
ff,Y ⊗ ftR +NCPfH,Y ⊗ fH̄0

}
, (3.75)[

∆tR,Y q
∂

∂q

ftR
∆tR,Y

]
Y

=
αY
π

{
PR
ff,Y ⊗ [ftL + fbL ] +NCPfH,Y ⊗ [fH0 + fH+ ]

}
, (3.76)[

∆q3
L,Y

q
∂

∂q

fbL
∆q3

L,Y

]
Y

=
αY
π

{
PR
ff,Y ⊗ ftR +NCPfH,Y ⊗ fH−

}
. (3.77)

It also contributes to the evolution of the Higgs bosons:[
∆H,Y q

∂

∂q

fH+

∆H,Y

]
Y

=
αY
π
PR
Hf,Y ⊗

[
ftR + fb̄L

]
, (3.78)[

∆H,Y q
∂

∂q

fH0

∆H0,Y

]
Y

=
αY
π
PR
Hf,Y ⊗ [ftR + ft̄L ] . (3.79)

The Sudakov factors can be obtained using Eq. (3.28) with

P V
q3
L,Y

(q) =
1

2
P V
tR,Y

(q) = −
∫ 1

0

z dz PR
ff,Y (z)−

∫ 1

0

z dz PR
Hf,Y (z) , (3.80)

P V
H,Y (q) = −2NC

∫ 1

0

z dz PR
fH,Y (z) . (3.81)
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I = M : Mixed B −W3 interactions

Finally, we need to consider the evolution involving the mixed BW boson PDF. The non-
vanishing couplings are

CBWfu,M = −CBWfd,M = 2
Yf
2
, (3.82)

CfuBW,M = −CfdBW,M = Nf
Yf
2
, (3.83)

where fu and fd represent the up- and down-type left-handed fermions and anti-fermions
of all generations. Since Yf̄ = −Yf and T3f̄ = −T3f , the couplings for fermions and anti-
fermions are identical. The factor of 2 in the first line comes from our definition of fBW as
the sum of BW and WB contributions. The diagonal coefficients Cfufu,M and Cfdfd,M are
zero because there is no vector boson with both U(1) and SU(2) interactions. For the same
reason, there are no Sudakov factors associated with the mixed interaction. The couplings
involving the Higgs bosons are

CBWH+,M = −CBWH0,M =
1

2
, (3.84)

CH+BW,M = −CH0BW,M =
1

4
, (3.85)

where, as for the fermions, the same relations hold for the charge-conjugate states.
Plugging these into the general evolution equation gives[

q
∂

∂q
ffu

]
M

=
αM
π

Yf
2
NfP

R
fV,G ⊗ fBW , (3.86)[

q
∂

∂q
ffd

]
M

= −αM
π

Yf
2
NfP

R
fV,G ⊗ fBW , (3.87)[

q
∂

∂q
fBW

]
M

=
αM
π

[∑
fu

YfP
R
V f,G ⊗ ffu −

∑
fd

YfP
R
V f,G ⊗ ffd

+
1

2

∑
hu

PR
VH,G ⊗ fhu −

1

2

∑
hd

PR
VH,G ⊗ fhd

]
, (3.88)[

q
∂

∂q
fhu

]
M

=
αM
π

1

4
PR
HV,G ⊗ fBW , (3.89)[

q
∂

∂q
fhd

]
M

= −αM
π

1

4
PR
HV,G ⊗ fBW . (3.90)

As already discussed, the mixed gauge field PDF fBW has Sudakov factors associated with
the U(1) and SU(2) interactions, given by Eq. (3.28). Since there is no corresponding real
emission term in the evolution equation for fBW , it evolves double-logarithmically and is
suppressed at high scales relative to the unmixed PDFs.
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3.2 Implementation details

Our treatment assumes that the SM PDFs at very high energies can be obtained by smoothly
matching the broken and unbroken symmetry regimes at a matching scale qV ∼ mV , which in
practice we take to be 100 GeV. Our input PDFs at 100 GeV are obtained as follows. We take
the CT14qed PDF set [66] at 10 GeV and replace the photon PDF by that of the LUXqed
set [67]. We do not use the CT14qed photon because the LUXqed photon, while being
consistent with CT14qed, has much smaller uncertanties and a smoother x dependence. The
LUXqed PDF set combines the PDF4LHC15 nnlo 100 parton set [68] with a determination
of the photon PDF from structure function and elastic form factor fits in electron-proton
scattering. However, we do not use the LUXqed partons, because being NNLO they are not
positive-definite, which we require for our LO treatment and is satisfied by CT14qed.

We evolve this hybrid CT14-LUX PDF set from 10 to 100 GeV using leading-order
QCD plus QED evolution, which incidentally generates the charged leptons. The resulting
parton, photon and lepton PDFs form our input to the unbroken SM evolution upwards
from 100 GeV. The input left- and right-handed fermion PDFs are identical. The input W 3,
B and mixed B/W 3 PDFs are determined by the photon (and the absence of the Z0) at
the matching scale according to Eq. (3.7). The remaining vector boson, neutrino and Higgs
PDFs are all generated dynamically starting from zero at the matching scale.

The equations given in Sections 3.1 completely define the evolution of all parton distri-
bution functions in the unbroken symmetry regime. However, as already explained, one can
rewrite the equations slightly to make them more amenable to a numerical implementation.
First, switching to a basis of states with well-defined isospin decouples the set of 52 equations
to some degree. In this new basis another transformation eliminates the double logarithmic
sensitivity to the ratio mV /q. Second, by combining the virtual and real splitting functions
into +-distributions, one can reduce numerical sensitivity to the cutoff of the z integrations.
We will now discuss these simplifications in turn.

Switching to a basis of conserved quantum numbers

As we already explained in Section 3.1, the set of 52 evolution equations can be decoupled
to some degree by switching to a basis of well-defined isospin T and CP. Writing a fermion
PDF with T and CP as fTCP

i , we write the left-handed fermions as

f 0+
fL

=
1

4

(
fuL + fdL + fd̄L + fūL

)
, f 1+

fL
=

1

4

(
fuL − fdL − fd̄L + fūL

)
, (3.91)

f 0−
fL

=
1

4

(
fuL + fdL − fd̄L − fūL

)
, f 1−

fL
=

1

4

(
fuL − fdL + fd̄L − fūL

)
, (3.92)

where uL and dL refer to left-handed up- and down-type fermions. Right-handed fermions
are given by

f 0+
fR

=
1

2

(
ffR + ff̄R

)
, f 0−

fR
=

1

2

(
ffR − ff̄R

)
. (3.93)
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The SU(3) and U(1) boson PDFs have T = 0, CP = +

f 0+
g = fg , f 0+

B = fB , (3.94)

while the SU(2) boson PDFs can have T = 0, 1, 2 with respectively CP = +,−,+

f 0+
W =

1

3
(fW+ + fW− + fW 0) , f 1−

W =
1

2
(fW+ − fW−) , (3.95)

f 2+
W =

1

6
(fW+ + fW− − 2fW 0) . (3.96)

The mixed BW boson state is a combination of 0− and 1− and therefore its PDF has T = 1,
CP = +

f 1+
BW = fBW . (3.97)

For the Higgs boson, one writes similarly to the fermions

f 0+
H =

1

4
(fH+ + fH0 + fH̄0 + fH−) , f 1+

H =
1

4
(fH+ − fH0 − fH̄0 + fH−) , (3.98)

f 0−
H =

1

4
(fH+ + fH0 − fH̄0 − fH−) , f 1+

H =
1

4
(fH+ − fH0 + fH̄0 − fH−) . (3.99)

In terms of these states the longitudinal vector boson and Higgs PDFs are then, using
Eq. (3.15),

fW+
L

= f 0+
H + f 1+

H + f 0−
H + f 1−

H , (3.100)

fW−L
= f 0+

H + f 1+
H − f

0−
H − f

1−
H , (3.101)

fZL
= fh = f 0+

H − f
1+
H . (3.102)

Cancellation of double-logarithmic dependence in evolution
equations

In the {T,CP} basis the singular contributions to the evolution equations (those that are
proportional to the splitting functions PR

ff,G(z), PR
V V,G(z) and PR

HH,G(z), which diverge in the
limit z → 1) are diagonal,[

∆i,I q
∂

∂q

fTCP
i

∆i,I

]
I

=
αI
π
DTCP
i,I PR

ii,I ⊗ fTCP
i + . . . , (3.103)

such that the PDF multiplying the divergent splitting function is the same as that appearing
on the left-hand side. Here, as in fTCP

i , the label i now refers to a parton species f, V,H
rather than a particular parton. Recalling that the Sudakov factor takes the form

∆i,I(q) = exp

[∫ q

qV

dq′

q′
αI(q

′)

π
P V
i,I(q

′)

]
= exp

[
−Ci,I

∫ q

qV

dq′

q′
αI(q

′)

π

∫ zii,Imax(q)

0

z dz PR
ii,I(z) + . . .

]
, (3.104)
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where . . . represents less divergent terms, and

Ci,I =
∑
k∈i

Ckl,I for l ∈ i , (3.105)

where k and l are particular partons, we have[
q
∂

∂q
fTCP
i

]
I

=
αI
π

[
DTCP
i,I PR

ii,I ⊗ fTCP
i + P V

i,If
TCP
i

]
+ . . . ,

=
αI
π

[
DTCP
i,I P+

ii,I ⊗ f
TCP
i +

(
1−

DTCP
i,I

Ci,I

)
P V
i,If

TCP
i

]
+ . . . ,

(3.106)

where

P+
ii,I ⊗ fi ≡ PR

ii,I ⊗ fi +
P V
i,I

Ci,I
fi (3.107)

=

∫ zii,Imax(q)

0

dz
[
PR
ii,I(z)θ(z > x)f(x/z, q)− zPR

ii,I(z)f(x, q)
]

+ . . . .

The +-prescription defined by Eq. (3.107) regulates the divergence in the integrand as z → 1
and therefore if we define the modifying factor

FTCP
i,I (q) = exp

[(
1−

DTCP
i,I

Ci,I

)∫ q

qV

dq′

q′
αI(q

′)

π
P V
i,I(q

′)

]
= [∆i,I(q)]

1−DTCP
i,I /Ci,I , (3.108)

then the evolution equation (3.103) becomes[
FTCP
i,I q

∂

∂q

fTCP
i

FTCP
i,I

]
I

=
αI
π
DTCP
i,I P+

ii,I ⊗ f
TCP
i + . . . , (3.109)

with no logarithmic dependence on mV /q on the right-hand side.
For all interactions except SU(2), one can show that DTCP

i,I = Ci,I , so that the modifying
factor (3.108) is unity7. For SU(2) we have explicitly:8

Cf,2 = CH,2 =
3

4
, CV,2 = 2 , (3.110)

7For the U(1) interaction one has DTCP
i,1 = Ci,1 = 0, and we choose to set the modifying factor to 1 in

this case.
8Here we have used the numerical values for the Casimir operator eigenvalues for the corresponding

SU(2) representations, C
SU(2)
F = 3/4, C

SU(2)
A = 2.
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while

D0±
f,2 = D0±

H,2 =
3

4
, D1±

f,2 = D1±
H,2 = −1

4
, (3.111)

D0+
V,2 = 2 , D1−

V,2 = 1 , D2+
V,2 = −1 , (3.112)

so that

F 0±
f,2 = F 0±

H,2 = 1 , F 1±
f/H,2 = ∆

4/3
f/H,2 , (3.113)

F 0+
V,2 = 1 , F 1−

V,2 = ∆
1/2
V,2 , F 2+

V,2 = ∆
3/2
V,2 . (3.114)

For the mixed PDF fBW we have D1+
BW,2 = 0 and therefore

F 1+
BW,2 = ∆BW,2 = ∆

1/2
V,2 = F 1−

V,2 (3.115)

The equations finally used to evolve the PDFs in the conserved-quantum-number basis
are given in Appendix A.

3.3 Results

We begin by showing how the PDFs of strongly interacting particles are changed by including
the evolution of the full Standard Model. Figure 3.1 shows results on the evolution of left-
and right-handed quark PDFs, shown solid and dashed respectively, normalized to their
values assuming pure QCD evolution. In each plot we show the results at three different
scales, namely q = 104 GeV, q = 106 GeV and q = 108 GeV. The values of 106 and 108

GeV are of course far away from energy scales one can reach at any collider in the near or
distant future. However, showing the results at such unattainable values helps to illustrate
their approach to asymptotic behavior.

All the light quarks (and antiquarks, not shown) evolve to lower values compared to pure
QCD at small x, due to an overall loss of energy to the electroweak gauge bosons through the
additional splittings q → qW and q → qB. At higher x values, the up and down quarks (top
row) exhibit different behaviors, with the left-handed up PDF evolving more rapidly to lower
values compared to pure QCD, while the down quark eventually evolves to higher values.
This is because the left-handed up and down distributions evolve towards each other, their
difference being double-logarithmically suppressed at high scales. The right-handed quark
PDFs have no double-logarithmic component and evolve to slightly lower values than pure
QCD, due to energy loss through the additional splitting qR → qRB.

The asymmetry between left-handed charm and strange quarks also evolves double-
logarithmically towards zero, primarily through a more rapid decrease of the strange PDF.
At high x the behavior is more complicated because the input CT14qed charm PDF is larger
than the strange above x ∼ 0.7. The right-handed quarks behave qualitatively the same as
those of the first generation.
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The left-handed top and bottom quarks also must evolve towards equal values, which
in this case means that the top has higher values than in pure QCD, while the bottom
evolution looks similar to strange, relative to pure QCD. The right-handed b-quark behaves
qualitatively like the right-handed quarks of the first and second generation, while the right-
handed top quark, being generated purely dynamically, behaves differently at large x. Since
the right-handed top has vanishing initial condition, the splitting tR → tRB, which would
decrease the PDF, is sub-dominant compared to the process B → tRt̄R. This means that at
large x the right-handed top PDF is increased, rather than decreased.

The effect on the gluon PDF is shown in last row of Fig. 3.1. While the effects are quite
small up to q ∼ 104 GeV, at larger scales the back-reaction from the changing quark PDFs
is affecting the gluon PDF at an appreciable level.

It is interesting to study how rapidly electroweak symmetry is restored. To illustrate
this, we show the asymmetry

AqL =
fuL − fdL
fuL + fdL

, (3.116)

compared to the result if only QCD evolution were turned on. This asymmetry ratio is
shown in Figure 3.2 for the three generation of quarks as a function of q, for various values
of x. For all generations the asymmetry decreases as q gets larger, driving the PDFs of the
different isospin states towards each other. The onset of the deviation from pure QCD is in
the range 1− 10 TeV. The ratio between the full asymmetry and the result using only QCD
evolution is given by

AqL(x, q) ∼ [∆f,2(q)]4/3AqLQCD(x, q) (3.117)

where ∆f,2(q) is the fermion Sudakov factor, as given in Eq. (3.108), independent of the
generation.

Next, we study the size of the PDFs of particles not charged under the strong interac-
tion. Since these PDFs are only generated by emissions due to the U(1), SU(2) or Yukawa
interactions, they are vanishing at all scales if one is including only SU(3) evolution. The
only exception is the photon, which has a non-vanishing initial condition at q = 100 GeV.
Figure 3.3 shows results on the electroweak boson PDFs normalized to the gluon PDF, both
evolved using the full Standard Model. One can see that the electroweak gauge boson PDFs
become a significant fraction of the gluon PDF, especially at large values of x. The photon
PDF is the largest mainly because it has a non-zero input. The PDF for the W+ boson is ini-
tially larger than the W− boson PDF at large x because the W+ is mainly generated through
emissions from the up-quark, whose PDF is larger than the down-quark which mainly gen-
erates the W−. Since the difference between W+ and W− has isospin 1, the W+ evolves
more slowly and the W− more rapidly, so that they approach each other at high q. At low
x they are more similar as are the up-quark and down-quark PDFs. The Z0 PDF is similar
to the W+ but it is smaller at low x and larger at large x. The mixed γZ PDF is small and
positive at small x and negative at large x. There is no constraint to be positive definite for
a mixed PDF as it is the product of two amplitudes rather than the square modulus of one.
Its absolute value becomes very large at large x and q.
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We also show the PDFs for the longitudinally polarized gauge bosons, the Higgs boson,
the mixed PDF between the Higgs and the ZL and the leptons. The ZL PDF is the same
as the Higgs in our approximation, see Eq. (3.15), so we do not make a separate plot for
it. The boson PDFs are shown in Fig. 3.4, and the leptons in Fig. 3.5, both normalized to
the gluon. Both are expected to be much smaller than the transverse vector boson PDFs,
because they are generated via a second order effect of emission from the vector bosons and
via Yukawa emission from the top and bottom quarks, which are much smaller than the up
and down quarks. The mixed PDF is even smaller because it is generated by the asymmetry
between transverse W+ and W− PDFs and the top and anti-top PDFs. The W+

L and W−
L

PDFs are very similar, for the same reason.
As a final result, we study several parton luminosities, choosing a future 100 TeV pp

collider as a reference. While the energy scales that can be reached at such a collider are not
quite large enough to getO(1) effects, the effects of the full Standard Model evolution are still
numerically relevant. In Figure 3.6 we show the qLq̄L luminosities for the six different quark
flavors, normalized to their values if only QCD evolution is taken into account. One can
see that all except the tt̄ luminosity are reduced appreciably from their values if only QCD
evolution were taken into account. This will affect searches for Z ′-like particles at a future
100 TeV collider. The dd̄ luminosity is decreasing more slowly as the double-logarithmic
evolution drives it larger than QCD at high x (see Fig. 3.1).

We also show selected luminosities of vector bosons combined with quarks, normalized to
the average of the uū and dd̄ luminosities. One can see that luminosities involving one trans-
verse vector boson become of comparable magnitude to the qq̄ luminosities. Luminosities
involving the longitudinal gauge and Higgs bosons are much smaller.

Finally, to illustrate the uncertainties associated with subleading terms, we show in Ta-
bles 3.2 and 3.3 the dependence of some integrated PDFs (momentum fractions) on the in-
frared cutoff mV and matching scale qV . We see that there are variations in the electroweak
PDFs of the order of ±10% at 10 TeV and 5% at 100 TeV for the ranges of parameters
indicated. The relative variations in the light quark PDFs are smaller as they are dominated
by QCD evolution. There are of course in addition the usual uncertainties associated with
the input PDFs and higher-order QCD corrections.

mV /GeV qV /GeV uL tL W+
T W−

T e−L νe h
100 100 8.51 0.43 0.46 0.33 0.0019 0.0012 0.0026
50 100 8.42 0.43 0.46 0.34 0.0019 0.0012 0.0027
50 200 8.48 0.44 0.39 0.29 0.0017 0.0009 0.0025
100 200 8.56 0.43 0.39 0.29 0.0017 0.0009 0.0024
200 200 8.64 0.42 0.39 0.28 0.0017 0.0009 0.0024

Table 3.2: Momentum fractions (%) carried by various parton species at scale q = 10 TeV.
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mV /GeV qV /GeV uL tL W+
T W−

T e−L νe h
100 100 7.53 0.56 0.64 0.50 0.0031 0.0025 0.0061
50 100 7.43 0.61 0.63 0.51 0.0031 0.0026 0.0062
50 200 7.48 0.61 0.58 0.47 0.0028 0.0021 0.0059
100 200 7.58 0.60 0.58 0.46 0.0028 0.0021 0.0055
200 200 7.68 0.59 0.58 0.45 0.0028 0.0020 0.0054

Table 3.3: Momentum fractions (%) carried by various parton species at scale q = 100 TeV.
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Figure 3.1: Quark and gluon PDFs in the full unbroken SM, divided by their values assuming
pure QCD evolution only. Left- and right-handed quark chiralities are solid and dashed,
respectively. The thin gray lines show where the scales on the x- and/or y-axes switch
between linear and logarithmic.
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Figure 3.2: Asymmetry between up-isospin and down-isospin left-handed quark PDFs, de-
fined in Eq. (3.116), in the full unbroken SM, compared to the result when only QCD
evolution is included.
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Figure 3.3: Electroweak bosons PDF normalized by the gluon PDF. The thin gray lines show
where the scales on the x- and/or y-axes switch between linear and logarithmic.
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Figure 3.4: Longitudinal gauge and Higgs bosons PDFs normalized by the gluon PDF. The
ZL PDF is the same as the h PDF. The hZL PDF is purely imaginary and we show the
result divided by i. The thin gray line shows where the scales on the x- and/or y-axes switch
between linear and logarithmic.
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Figure 3.5: First generation lepton PDFs normalized by the gluon PDF. Since we treat
leptons as massless, and all leptons have the same initial condition, the results for the other
2 generations are identical. The thin gray line shows where the scales on the x- and/or y-axes
switch between linear and logarithmic.
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Figure 3.6: Quark anti-quark luminosity in the full unbroken SM, divided by their values
assuming pure QCD evolution only.
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Figure 3.7: V q and Hq luminosity in the full unbroken SM, divided by the average of uū
and dd̄ luminosity assuming pure QCD evolution only.
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Chapter 4

Combining initial-state resummation
with fixed-order calculations of
electroweak corrections

In the previous chapter, we developed a set of parton distribution function valid at very high
energy when we can neglect the electroweak symmetry breaking. It corresponds to resum
the initial-state electroweak corrections. It is interesting to combine those corrections with
fixed-order calculations in a way that is valid at all energies.

We present a way to resum double logarithms associated with the asymmetry of the initial
state, and to match the results with those of fixed-order EW calculations.1 For this purpose,
we will study completely inclusive observables, which are defined to sum over a completely
SU(2) symmetric final state. The example we use later in the chapter is inclusive di-lepton
production at a pp collider, which is defined to include a lepton-antilepton pair of a given
generation and any number of extra gauge bosons in the final state. So to next-to-leading
order (NLO) EW accuracy, this process sums over the final states `+`−(+V ), `+ν`(+V ),
ν̄``
−(+V ), ν̄`ν`(+V ), where ` denotes, for example, the electron and ν` the electron neutrino

and the (+V ) denotes the possible addition of a γ, Z or W± boson. Since the final state
is SU(2) symmetric, the only SU(2) breaking effect is coming from the fact that the initial
state protons are not SU(2) symmetric. The large logarithmic terms from the initial state
radiation can be resummed through a DGLAP evolution [57–59] using the interactions of
the full Standard Model [12], which was performed recently in [18]. By performing the
DGLAP evolution to first order in electroweak effects, one sums all double logarithms and
a large class of the single logarithms, namely those coming from the hard collinear parts of
the splitting functions. Not included are subleading logarithms such as those coming from
precise limits of integration and higher-order corrections to splitting functions and running
couplings. This resummation is called leading logarithmic (LL). 2

1For recent examples of NLO EW calculations see [69–73] and references therein.
2A similar resummation of final-state logarithms in non-symmetric final states could be performed though
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This DGLAP evolution uses SU(3) ⊗ U(1)em for scales q less than some matching scale
qV of order mV , and the full unbroken SU(3) ⊗ SU(2) ⊗ U(1) for q > qV . Performing this
evolution up to the scale

√
s of the process results in the PDFs

fSM
A (x,

√
s) (4.1)

for all SM parton species A. Given these PDFs, the logarithms are resummed at leading
logarithmic accuracy by writing

〈O〉LL =
∑
AB

∫
dΦnOn(Φn)LSM

AB(xA, xB;
√
s)BAB(Φ̂n) , (4.2)

where Φ̂n denotes the phase space of the partonic process, BAB(Φ̂n) is the cross section for
the process initiated by partons A and B and dΦn is the phase-space element including their
momentum fractions:

dΦn = dxA dxB dΦ̂n . (4.3)

O(Φn) denotes the value of the given observable calculated from the phase space point Φn,
and

LSM
AB(xA, xB;

√
s) = fSM

A (xA,
√
s) fSM

B (xB,
√
s) (4.4)

is the parton luminosity evaluated with the full SM PDFs. Note that since the parton
luminosity in the full SM has contributions from initial states not usually present, such as
electroweak gauge bosons, one requires knowledge of partonic cross sections that are not
usually considered.

Which initial-state partons A and B are required depends on the partonic process (inclu-
sive di-lepton production in our case) and how one counts powers of the coupling constants.
We summarize the scaling of the various PDFs with the electroweak coupling in Table 4.1.
Gluons obviously do not contribute at the order we are working. One can see that in the strict
LL limit, where one only requires to reproduce αnL2n

s terms, one only needs to keep quarks
in the initial state. However, transverse vector bosons (the photon as well as massive vector
bosons) are only suppressed by one power of the logarithm, and their relative contribution
grows with increasing partonic center-of-mass energy. This makes them phenomenologically
quite relevant and we will keep them in our analysis. Leptons, longitudinal gauge bosons3

and Higgs bosons are further suppressed, and their contributions will be neglected in the
following discussion, although their effects, together with the Yukawa couplings to the top
quark, have been kept in the solution to the evolution equations.

DGLAP evolution of electroweak fragmentation functions but will not be implemented here.
3Note that longitudinal gauge bosons can become very important in situations where the partonic process

is sensitive to non-gauge interactions, for example in Higgs and heavy quark production. In such cases one
should include their effects in fixed order. An alternative approach is proposed in [56].
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PDF leading α power log scaling
q 0 αnL2n

s

g 0 αnLns
γ 1 αnL2n−1

s

VT 1 αnL2n−1
s

VL 2 αnL2n−2
s

` 2 αnL2n−2
s

h 2 αnL2n−2
s

Table 4.1: The scaling of the PDFs with the EW coupling constant.

Since the DGLAP evolution assumes the unbroken Standard Model (SM) above the
matching scale qV ∼ mV , it drops all terms of order mV /

√
s, which clearly misses important

threshold effects around the electroweak scale.4 Furthermore, single logarithmic terms of
order αLs are not fully accounted for in the DGLAP evolution. While these effects do not
need to be resummed for any scale

√
s of interest, at first order they can still give a relatively

large effect and introduce an uncertainty in the SM PDFs even for
√
s � qV . One way to

estimate their importance is to vary the values of qV and mV chosen in the DGLAP evolution,
and it was shown in [18] that this can give an effect for certain PDFs at the 10% level, even
for
√
s ∼ 10 TeV.

The threshold effects, as well as the single logarithmic terms, are properly included in
any fixed-order EW calculation. This means that one way to obtain a result that includes
the resummation of the LL logarithms, threshold effects, as well as single logarithmic terms
is to combine a fixed-order EW calculation with the LL resummation. This is accomplished
by the simple equation

〈O〉NLO/LL = 〈O〉NLO + 〈O〉LL − [〈O〉LL]α . (4.5)

Here 〈O〉NLO denotes the fixed-order EW calculation at next-to-leading order, and [〈O〉LL]α
denotes the expansion of 〈O〉LL in α up to the same order as included in the fixed-order
expansion; in our case that requires an expansion to first order. This term is required to
subtract the O(1) and O(α) terms that are double counted between the NLO and the LL
result. It can be written as

[〈O〉LL]α =
∑
AB

∫
dΦnOn(Φn)

[
LSM
AB(xA, xB;

√
s)
]
α
BAB(Φ̂n) , (4.6)

where
[
LSM
AB(xA, xB;

√
s)
]
α

is the expansion of the SM parton luminosity.
In summary, to combine a fixed-order EW calculation with the LL resummation of the

logarithms one requires only knowledge of the partonic cross sections BAB(Φn) with A,B

4Some terms of this nature may be included by using modified splitting functions [56].
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including any SM particle (which are already required for the LL resummed result), as well
as the expansion of the SM parton luminosity. We perform the calculation of the latter in
Section 4.1, where we also study the convergence of the PDFs and parton luminosities in
detail. In Section 4.2 we show the numerical impact of adding the LL resummation to a
fixed order computation for the example of di-lepton production. We give the results of the
required partonic cross sections in Appendix B.

4.1 Standard Model parton luminosities and their

expansion

The parton luminosities in the SM, as defined in Eq. (4.4), require PDFs using the full SM
evolution. The corresponding DGLAP equations are, in the notation of Chap. 3,5 to leading
order in all coupling constants

q
∂

∂q
fSM
i (x, q) =

∑
I

αI(q)

π

[
P V
i,I(q) f

SM
i (x, q) +

∑
j

Cij,I

∫ zij,Imax(q)

x

dz

z
PR
ij,I(z)fSM

j (x/z, q)

]
,

(4.7)

where the sum over I goes over all possible different interactions6 in the Standard Model:
I = 1 for U(1), I = 2 for SU(2), I = 3 for SU(3) and I = M for mixed interactions
proportional to αM(q) =

√
α1(q)α2(q). The latter represent interference between processes

initiated by U(1) and SU(2) bosons. As in [18] we choose qV = mV = 100 GeV. Note that
one might want to go to higher orders in the QCD evolution, and for that one can use the
known higher-order splitting kernels.

Since the evolution in the unbroken Standard Model only applies for scales q > qV , one
requires a boundary condition at the scale qV , which we write as

fSM
i (x, qV ) = fnoEW

i (x, qV ) . (4.8)

The precise definition of fnoEW required depends on what level of accuracy is desired. One
clearly needs to include the QCD evolution from the hadronic scale q0 ∼ 1 GeV to the scale
qV , since αs ln qV /q0 ∼ 1. QED evolution gives rise to single logarithmic effects, and by
including this evolution one includes terms of order αn lnn qV /q0, which should be subdom-
inant to the double logarithmic terms generated by the EW evolution above qV . However,
by including this evolution also below qV one is using O(α) evolution both above and below
qV . For this reason, we choose as boundary condition

fnoEW
i (x, qV ) = fQCED

i (x, qV ) , (4.9)

5However, contrary to Chap. 3, the PDFs here represent the actual momentum fraction distributions
rather than the x-weighted distributions.

6In this chapter we neglect Yukawa interactions and the Higgs self-interaction, which make only very
small contributions.
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where the PDF set QCED is obtained by SU(3) ⊗ U(1)em evolution from scales below qV .
Specifically, as in [18], we use the CT14qed PDF set [66] at 10 GeV and replace the photon
PDF by that of the LUXqed set [67, 74]. The strongly interacting partons are rescaled to
obtain exact momentum conservation. The resulting PDF set is then evolved up to the
matching scale qV = 100 GeV using leading-order (LO) DGLAP equations that include
QCD and QED effects. In this way we obtain a LO PDF set at the matching scale which is
consistent with our LO evolution above that scale.

The first contribution in Eq. (4.7), proportional to P V
i,I , denotes the virtual contribution

to the PDF evolution (the disappearance of a flavor i), while the second contribution is the
real contribution (the appearance of flavor i due to the splitting of a flavor j). The maximum
value of z in the integration of the real contribution is given by Eq. (3.18) depends on the
type of splitting and interaction

This implies that an infrared cutoff mV is applied when a U(1) boson B or SU(2) boson
W is emitted. The physical origin of this cutoff is that the energy of a massive vector boson
is bounded by its mass7. It is also required, since contrary to the standard SU(3) and U(1)
evolution equations, which are regular as z → 1 due to a cancellation between real and
virtual contributions, the SU(2) evolution equations are not regular as z → 1 due to the
non-singlet nature of the initial state.

Before we expand the resulting PDFs, it is worth recalling where the double-logarithmic
sensitivity is coming from, since this is not present in the usual DGLAP evolution. One can
understand this by looking for example at the evolution of an up-type left-handed fermion
due to the SU(2) interaction:

q
∂

∂q
fSM
uL

=
α2

π

∫ 1−mV
q

0

dz

z
PR
ff,G(z)

[
fSM
dL

(x/z, q)

2
+
fSM
uL

(x/z, q)

4
−

3zfSM
uL

(x, q)

4

]
+ . . . (4.10)

where the terms . . . do not contribute to double logarithms. The splitting function PR
ff,G(z)

is singular as z → 1. If the initial state were SU(2) symmetric, one would have fuL(x, q) =
fdL(x, q) ≡ fQL

(x, q) and the combination in the square bracket would be of the form
3/4 [fQL

(x/z, q)− z fQL
(x, q)], such that the divergence in z → 1 would cancel in the differ-

ence. Since fuL(x, q) 6= fdL(x, q), this cancellation does not happen, generating logarithmic
sensitivity to the ratio mV /q from the integral over z. This soft dependence gives rise to
the double logarithmic sensitivity in the solution of the DGLAP equation. As was shown
in [12, 18], in a basis of definite weak isospin, this double logarithmic sensitivity drives any
terms with non-zero isospin to zero as q →∞, thereby restoring EW symmetry asymptoti-
cally. For the PDFs included, we will retain all DGLAP effects, even those that do not give
rise to double-logarithmic terms.

As explained earlier, our aim is to obtain not only the luminosities resulting from the
resummed SM PDFs but also their expansion to first order in αI . This will permit matching

7Note that the precise value of the mass mV does not matter at LL accuracy. In [18] the effect of varying
mV by a factor of 2 was used to obtain an estimate of the uncertainties from higher logarithmic effects.
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to exact fixed-order calculations and assessment of the contribution of terms beyond fixed
order. To expand the PDFs to first order in αI 6=3 we define[

fSM
i (x, q)

]
α

= fnoEW
i (x, q) + gi(x, q) (4.11)

such that
[
fSM
i (x, q)

]
α

only includes the linear terms in αI 6=3. This implies

fSM
i (x, q) =

[
fSM
i (x, q)

]
α

+O(α2
I 6=3) . (4.12)

The boundary condition for gi is

gi(x, q < qV ) = 0 . (4.13)

The definition of the function gi(x, q) obviously depends on the definition of fnoEW
i (x, q).

The function gi vanishes for q < qV , so fnoEW
i coincides with fSM

i for those values. Since the
SM evolution for q > qV is adding the full SU(2) ⊗ U(1) evolution, it makes sense to choose
fnoEW
i (x, q) to only include the SU(3) evolution above that scale. In other words, we choose

fnoEW
i (x, q) =

{
QCED evolution q < qV ,
QCD evolution q > qV .

(4.14)

One could also choose a definition that includes the QED evolution for q > qV . This
would introduce spurious single logarithmic [αLs]

n terms in the difference between fSM
i and

[fSM
i (x, q)]α, which are in principle beyond the claimed accuracy. However, the definition

Eq. (4.14) trivially avoids these spurious terms, which is why it is our choice for the remainder
of this chapter.

The DGLAP equation for [fSM
i (x, q)]α can easily be obtained by expanding Eq. (4.7) to

obtain

q
∂

∂q

[
fSM
i (x, q)

]
α

=
α3(q)

π

[
P V
i,3(q)

[
fSM
i (x, q)

]
α

+
∑
j

Cij,I

∫ 1

x

dz

z
PR
ij,3(z)

[
fSM
i (x/z, q)

]
α

]
(4.15)

+
∑

I∈1,2,M

αI(q)

π

[
P V
i,I(q) f

noEW
i (x, q) +

∑
j

Cij,I

∫ zij,Imax(q)

x

dz

z
PR
ij,I(z)fnoEW

j (x/z, q)

]
.

In other words, we have simply set [fSM
i (x, q)]α = fnoEW

i in the second line, since the dropped
terms give rise to second order effects. This gives

q
∂

∂q
gi(x, q)

=
α3(q)

π

[
P V
i,3(q) gi(x, q) +

∑
j

Cij,I

∫ 1

x

dz

z
PR
ij,3(z)gj(x/z, q)

]
(4.16)

+
∑

I∈1,2,M

αI(q)

π

[
P V
i,I(q) f

noEW
i (x, q) +

∑
j

Cij,I

∫ zij,Imax(q)

x

dz

z
PR
ij,I(z)fnoEW

j (x/z, q)

]
.
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Figure 4.1: Scaling of the expanded PDFs with the parameter r, which multiplies αI=1,2,M .
On the left, we show the left-handed quarks of the first generation, in the middle the right-
handed quarks of the first generation, and on the right the vector bosons. One can clearly
see that the expanded PDFs are linear in αI .

We have implemented the DGLAP equation Eq. (4.16) with boundary condition Eq. (4.13)
and solved for gi(x, q). As a cross check on the resulting expanded PDFs one can validate
that the result is indeed linear in the coupling constants αI=1,2,M . For this, we perform the
rescaling αI → rαI , and then plot [fSM

i (x, q)]α for various values of r (normalized to the
result with r = 1). Figure 4.1 clearly verifies the expected linear behavior.

Given the resummed result for the SM PDFs, together with this first-order expansion,
one can obtain a first estimate of the higher-order effects, and the convergence of electroweak
perturbation theory. For this, we define the two ratios

rnoEW
i (x, q) ≡ fnoEW

i (x, q)

fSM
i (x, q)

, rSM,α
i (x, q) ≡

[
fSM
i (x, q)

]
α

fSM
i (x, q)

. (4.17)

Defining the function hi(x, q) to be the difference between [fSM
i ]α and fSM

i we can write

fSM
i (x, q) = fnoEW

i (x, q) + gi(x, q) + hi(x, q) , (4.18)

where gi(x, q) is the same function used in Eq. (4.11). As already discussed, the function
gi(x, q) is of order αI , while the function hi(x, q) contains the resummed terms of α2

I and
higher. With these definitions, one can write

rnoEW
i (x, q) = 1− gi(x, q) + hi(x, q)

fSM
i (x, q)

∼ 1 +O(αI) ,

rSM,α
i (x, q) = 1− hi(x, q)

fSM
i (x, q)

∼ 1 +O(α2
I) . (4.19)

Thus, the deviation from unity of the first ratio shows the size of the first-order correction,
while the deviation of the second ratio shows the size of the higher-order corrections. Note
that for PDFs for which fnoEW

i (x, q) vanishes (in our case the massive vector bosons) the
first ratio vanishes, and the second ratio gives

rSM,α
i (x, q) = 1− hi(x, q)

gi(x, q)
∼ 1 +O(αI) (4.20)
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Figure 4.2: The ratio of the “noEW” and expanded SM PDFs relative to the PDF evaluated
in the full SM for left-handed quarks.
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Figure 4.3: The ratio of the “noEW” and expanded SM PDFs relative to the PDF evaluated
in the full SM for the massless vector bosons.

and is therefore an estimate of the size of the second-order term relative to the first-order
term.

The results are shown in Fig. 4.2 for left-handed up and down (anti)quarks. One can
clearly see that at low values of q the second-order correction is much smaller than the
first-order correction, which is indicative of an absence of large logarithmic corrections. For
q & 104 GeV, however, the logarithmic contributions become noticeable, and the second-
order correction grows relative to the first order, becoming comparable to the latter, at least
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Figure 4.4: The ratio of the “noEW” and expanded SM PDFs relative to the PDF evaluated
in the full SM for the transversely-polarized massive vector bosons.

for some of the PDFs, by q ∼ 106 GeV. Notice that at high q the left-handed up and down
quarks move in opposite directions, to restore isospin symmetry asymptotically.

For the gluon and photon, the results are shown in Fig. 4.3. The gluon does not couple to
the massive vector bosons directly, so the electroweak effect is strongly suppressed. Since the
“noEW” PDFs include only QCD evolution, the photon does not evolve at all in that case,
and receives a large first-order EW correction. In higher orders it can couple directly to the
massive bosons, so its PDF is double-logarithmically sensitive to the ratio mV /q. Therefore,
although the higher-order corrections are much smaller than the first order for q ∼ qV , they
grow much more rapidly at high values of q.

For massive vector bosons rnoEW(x, q) is zero, since their PDFs vanish when only QCD
effects are included for q > qV . Therefore, given our results, the validity of the perturbative
expansion can only be studied through the ratio rSM,α(x, q), whose deviation from unity starts
at first order in αI as given in Eq. (4.20). In Fig. 4.4 one sees clearly the poor convergence
of the perturbative expansion of massive boson PDFs: the deviation from unity is much
larger than one power of αI , which of course is due to the double-logarithmic dependence on
mV /q. The ratio between the expanded PDF and the full PDF can deviate from unity by
an amount in excess of 10%.

Given these PDFs and their expansions, one can find the first-order expansion of the SM
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luminosity[
LSM
AB(xA, xB;

√
s)
]
α

= fnoEW
A (xA,

√
s) fnoEW

B (xB,
√
s) + fnoEW

A (xA,
√
s) gB(xB,

√
s)

+ gA(xA,
√
s) fnoEW

B (xB,
√
s) . (4.21)

From the definition Eq. (4.11) this obviously satisfies

LSM
AB(xA, xB;

√
s)−

[
LSM
AB(xA, xB;

√
s)
]
α

= O(α2
I) . (4.22)

Thus the difference in Eq. (4.22) can be used to add resummation terms to a NLO calculation,
since it excludes all terms in the luminosity LSM

AB at O(1) and O(αI) while including all LL
terms of higher order.

Parton luminosities involving two massive gauge bosons (such as LZZ , LW+W−) only start
to contribute at order α2

I , since the PDF of each such boson is suppressed by one power of
αI . This means that their effect is not included in the first-order expansion of the luminosity
discussed above. However, vector-boson fusion (VBF) processes (those involving two massive
gauge bosons in the initial state) can be significant numerically. For this reason, one might
want to include their effects exactly at lowest order, and only rely on the LL approximation
to predict their higher-order terms. This requires subtraction of the O(α2

I) terms from LV V
when computing the expanded luminosity. The resulting modified expanded luminosity[
LSM
AB(xA, xB;

√
s)
]mod

α
= fnoEW

A (xA,
√
s) fnoEW

B (xB,
√
s) + fnoEW

A (xA,
√
s) gB(xB,

√
s)

+ gA(xA,
√
s) fnoEW

B (xB,
√
s) + gA(xA,

√
s) gB(xB,

√
s)δAB,V V ,

(4.23)

coinciding with Eq. (4.21) for all channels except VTVT , allows the inclusion of the exact
lowest-order VTVT contribution together with all resummed higher-order terms in that and
the other channels. Thus to combine a fixed-order calculation including all EW effects at
NLO, as well as the VBF process VTVT at LO, which we denote by

〈O〉NLO+VV ≡ 〈O〉NLO + 〈O〉VV
LO , (4.24)

one would compute

〈O〉NLO+VV+LL = 〈O〉NLO+VV + 〈O〉LL − [〈O〉LL]mod
α . (4.25)

where

[〈O〉LL]mod
α =

∑
AB

∫
dΦnOn(Φn)

[
LSM
AB(xA, xB;

√
s)
]mod

α
BAB(Φn) . (4.26)

In Fig. 4.5 we show the results for a few selected parton luminosities

LAB(m``) =

∫
dxA dxB LSM

AB (xA, xB;m``) δ
(
m`` −

√
x1x2S

)
, (4.27)
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Figure 4.5: Plots showing luminosities for various choices of initial states. We show in black

LSM, in red LnoEW, in blue
[
LSM

]
α

and for VTVT initial states in orange
[
LSM

]mod

α
.

for pp collisions at
√
S = 100 TeV, rescaled by the square of the invariant mass m`` to

overcome the steeply falling nature of the functions. We show in black LSM, in red LnoEW, in

blue
[
LSM

]
α

and for VV initial states in orange
[
LSM

]mod

α
. One can see that for left-handed

quarks the difference between LnoEW and LSM is larger than the difference between
[
LSM

]
α

and LSM for all values of m`` considered, indicating that the double logarithms are not yet
large enough to have α ln2(m2

``/m
2
V ) & 1. However, for m`` & a few TeV the higher-order

terms become significant. For right-handed quarks, there are no double logarithms and
the coupling is smaller, so the convergence of the perturbation series is much faster. For
the γγ initial state, recall that the “noEW” photon PDF is frozen at the matching scale
qV = 100 GeV so the order α correction is large and dominates the expansion. For the
γZ luminosity the higher-order terms are more significant. Finally, the W+W− luminosity
vanishes for

[
LSM

]
α
. Using the modified expansion reproduces the dominant features of the

full luminosity, but higher order terms are still very important for m`` & few TeV.
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4.2 Resummation of logarithms in inclusive di-lepton

production

In this section, we study the effects of higher-order leading logarithms in the process of fully
inclusive di-lepton production. This will allow us to assess the correction from logarithmic
resummation that needs to be applied to fixed-order calculations in order to achieve NLO+LL
accuracy. Note, however, that we do not include the fixed-order calculation here.

The definition of fully inclusive di-lepton production was given in the introduction, but
we will repeat it here for completeness. The inclusive process is defined to include a lepton-
antilepton pair of any charge of a given generation and any number of extra gauge bosons in
the final state. So to NLO EW accuracy, this process sums over the final states `+`−(+V ),
`+ν`(+V ), ν̄``

−(+V ), ν̄`ν`(+V ). Here ` denotes, for example, the electron and ν` the electron
neutrino and the (+V ) denotes the possible addition of a γ, Z or W± boson. Since we are
summing over both electrons and neutrinos, and we are including the radiation of extra
electroweak gauge bosons, the final state of this process is SU(2) symmetric, as required.
In order to regulate the strong enhancement of forward lepton production in vector boson
fusion, we impose a cut on the transverse momentum of each lepton pT > 100 GeV. This
implies that the accessible di-lepton invariant masses are m`` > 200 GeV.

To compute the partonic Born cross section BAB(Φ̂n) in Eq. (4.2), one relates it to the
square of the relevant matrix element via

BAB(Φn) ≡ 1

4pA ·pB
|M(AB → ``)|2 , (4.28)

where ` denotes either a charged lepton or a neutrino. As discussed in Section 4, for the initial
states A and B one needs qq̄ of all possible quark flavors and helicities, as well as V V , where V
can be any one of the electroweak gauge bosons, γ, Z0,W±, or the mixed γ/Z0 representing
interference contributions. The contributions of initial-state leptons, longitudinal gauge
bosons and Higgs bosons are much smaller and will be neglected. Details of the cross-section
calculations are given in the Appendix.

The leading-logarithmic differential cross section dσ/dm`` is shown for a 100 TeV pp
collider in Fig 4.6. In order to make the plot easier to read, we have multiplied the differential
cross section by m4

`` to overcome its steeply falling nature. We have stacked the contributions
of the various initial states qq̄, γγ, γVT and VTVT (where VT now denotes a sum over massive
transversely polarized electroweak gauge bosons) on top of each other. In the lower part of
the plot, we show the ratio to the total contribution, giving a better estimate of the relative
size of each contribution. One can see that the dominant contribution is from the qq̄ initial
states, but the relative size of the initial states with two vector bosons grows with increasing
m``. For a 100 TeV collider, the contributions with vector bosons in the initial state are
around 25% for m`` = 104.5 GeV ∼ 30 TeV.

Next, we take each of the four contributions and investigate their convergence under
EW perturbation theory. For this, we compare the result of the LL-resummed cross section
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Figure 4.6: The differential cross section m4
``dσ/dm``(pT` > 100 GeV) for a 100 TeV collider,

showing the makeup of the total cross section in terms of the individual initial states.

m4
``dσLL/dm`` with its first-order expansion [m4

``dσLL/dm``]α for the various initial states.
The results are shown for a 100 TeV pp collider in Fig. 4.7, where in black we show the
resummed result, and in blue its first-order expansion. The difference between these two
is the correction that should be added to a fixed-order calculation to achieve NLO+LL
accuracy. For comparison, we also show in red the “noEW” result. The difference between
the blue and red curves shows the logarithmically enhanced order-α contribution. As one
can see, for the qq̄ channel, the expansion of the LL result is quite close to the full LL result,
indicating that the higher-order corrections are quite small. This is due to two facts: First,
the right-handed quarks do not receive any double-logarithmic contributions (and their single
logarithmic terms come with coupling constant α1 rather than α2). Second, since sea quarks
are mostly iso-singlet, the double logarithms only arise from iso-vector contributions of the
valence quarks. Each of these facts reduces the double logarithmic effect by roughly a factor
of 2, such that overall the effect is smaller by a factor of 4 compared to an individual qLq̄L
parton luminosity. Note that one of these factors of two would be absent for a pp̄ collider,
so one would expect the effect to be larger there by a factor of 2.

For γγ initial states, one needs to keep in mind that our definition of fnoEW does not
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Figure 4.7: The expansion of the various contributions to m4
``dσ/dm``(pT` > 100 GeV) for a

100 TeV collider. We show in black the result obtained using LSM, in red that using LnoEW,

in blue that using
[
LSM

]
α

and for VTVT initial states in orange that using
[
LSM

]mod

α
.

include any QED evolution for q > qV . This means that the photon PDF freezes out at the
scale qV for this PDF. Since the effect of the evolution is of the same size as the value of
the PDF at q = qV , the first order (difference of red and black) gives an O(1) effect. The
second order (difference of blue and black) is considerably smaller than the first order for all
values of m``, but from the absolute value of the correction it is also clear that the expansion
parameter is much larger than αem/π as one might naively expect. For example, for m`` ∼ 1
TeV, the second-order correction is almost 5%.

Any process with massive bosons in the initial states is suppressed by one power of
α for each. Therefore the “noEW” luminosity vanishes for γVT and VTVT , and for VTVT
the [SM]α luminosity also vanishes, as indicated by the red and blue lines in the last two
plots. However, for γVT the second-order correction (the difference between the blue and the
black line) reaches tens of percent at high m``, indicating that the higher order perturbative
corrections are significant. For VTVT initial states, we also show in orange the result of
the modified expansion Eq. (4.23), which includes the leading O(α2) term. The difference
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between the orange and black curve denotes O(α3) terms, which are tens of percent of the
leading O(α2) terms, indicating again a poorly convergent perturbation series.
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Figure 4.8: The expansion of the complete result m4
``dσ/dm``(pT` > 100 GeV) for a 100 TeV

collider. The colors are the same as in Fig. 4.7.

Putting these results together, we show in Fig. 4.8 the combination of the various chan-
nels. One can see that perturbation theory is not very well behaved and for m`` & 5 TeV,
the second order correction is essentially of the same size as the first order correction (there
is an accidental cancellation for very large m`` which makes the first order correction become
small). The overall effect of the corrections of order α2

I and higher for m`` & a few TeV is
of the order of 5%. Most of this comes from the VBF processes, so the correction to the
modified expansion Eq. (4.23) is much smaller.

To understand how these results depend on the center-of-mass energy of the collider, we
also show results at 27 TeV, which is the energy that might be achieved by a high-energy
upgrade of the LHC using novel magnet technology [75], and a fictitious 1 PeV collider. In
Fig. 4.9 the relative importance of the various channels is shown. One obvious effect is that
at high energies one has access to larger values of the di-lepton invariant mass, for which
the logarithmic enhancement is stronger. However, even at fixed invariant mass the relative
importance of the initial states with vector bosons is diminished (enhanced) for a 27 TeV
(1 PeV) collider. This is because at higher energies one is probing smaller values of x, and
the vector boson PDFs, like that of the gluon, rise rapidly with decreasing x. For a 1 PeV
collider at the highest accessible di-lepton invariant mass, the contribution of vector boson
initial states is almost 50% of the total cross section.
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Finally, we study the convergence of perturbation theory for individual channels for a
27 TeV and 1 PeV collider in Figs. 4.10 and 4.11, respectively, and the complete result in
Fig. 4.12. Qualitatively the effects are the same as for a 100 TeV collider, but the overall
size of the effects are decreased (increased) for the 27 TeV (1 PeV) collider.
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Figure 4.9: The differential cross section m4
``dσ/dm``(pT` > 100 GeV) for a 27 TeV and 1

PeV collider, showing the makeup of the total cross section in terms of the individual initial
states.
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Figure 4.10: The expansion of the various contributions to m4
``dσ/dm``(pT` > 100 GeV) for

a 27 TeV collider. The colors are the same as in Fig. 4.7.
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Figure 4.11: The expansion of the various contributions to m4
``dσ/dm``(pT` > 100 GeV) for

a 1 PeV collider. The colors are the same as in Fig. 4.7.
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Figure 4.12: The expansion of the complete result m4
``dσ/dm``(pT` > 100 GeV) for a 27 TeV

and 1 PeV collider. The colors are the same as in Fig. 4.7
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Chapter 5

Conclusions

The LHC experiments explore the energy scale around and beyond the electroweak scale. As
of now, there has been no discovery of physics beyond the Standard Model. For this reason,
it is interesting to examine the assumption that the Standard Model is valid up to very high
energies. At energy significantly higher than the electroweak scale, one can assume that the
electroweak symmetry is unbroken.

We have shown that at high energy, the resummation of the electroweak Sudakov loga-
rithms has a large impact of the result of cross-sections with radiation of electroweak bosons.
We considered Drell-Yan production of leptons at a hadron collider, and presented result for
the logarithmic resummation at LL accuracy for electroweak corrections to the total cross-
section in simple analytic form.

Using these analytical results, we have analyzed the size of the corrections numerically
for the 13 TeV LHC and a possible future 100 TeV pp collider. Our results show than the
real resummation is as important as the virtual resummation and its importance increases
fast with the partonic center of mass energy: at the LHC, the resummation effect over the
fixed order goes from around 10% at 1 TeV to around 20% at 3 TeV for the virtual with
any leptonic final state and goes from around 20% at 1 TeV to around 50% at 3 TeV for
all kinds of real emissions with any leptonic final state. The resummed virtual over the
Born cross-section goes from around 10% at 1 TeV to 30% at 3 TeV, while each resummed
reals are around the third of the resummed virtual. At a future 100 TeV pp collider, the
resummation effects over the fixed order can be much larger, and are around 50% for the
virtual and 200% for the real at 25 TeV in most cases. The resummed virtual over the Born
cross-section is around 80% at 25 TeV.

For final states with fixed lepton flavors, summing the virtual and real corrections does
not reduce the magnitude of the double logarithmic terms, as expected for a result that is
not inclusive. After summing over all lepton flavors, a large cancellation is observed at fixed
order, but a small logarithmic sensitivity remains, due to the fact that protons are not SU(2)
singlets. On the other hand, for the resummed results, a large effect remains because we
are including only the first emission for the real. The cancellation will happen only for an
inclusive result, that is summing the virtual and the real for any number of emitted bosons.
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We have implemented numerically the full set of generalized DGLAP evolution equations
for all the parton species and interactions of the unbroken SM in leading order. The input
PDFs of 5 quark flavors, the gluon, photon and charged leptons at a starting scale qV = 100
GeV for the full SM evolution are obtained from parton and photon PDFs at 10 GeV by
QCD plus QED evolution. The input left- and right-handed fermion PDFs are thus identical
at scale qV but they evolve differently above that scale. The top quark PDFs (not present
in the input) start to evolve from the top mass scale. The input photon is resolved into
its U(1), SU(2) and mixed components, which are evolved independently from scale qV and
reassembled into the photon and transversely polarized Z0 at higher scales. The charged and
longitudinal vector boson, Higgs and neutrino PDFs are generated dynamically starting from
zero at scale qV . This simplified treatment misses some symmetry-breaking effects around
the electroweak scale, but these are power-suppressed at higher scales and our results should
provide a guide to the ways in which the PDFs deviate from pure QCD evolution.

Amongst the most interesting features of the SM is the distinction between left- and right-
handed fermions. The evolution of the right-handed PDFs deviates little from pure QCD,
owing to the weakness of the U(1) interaction. The left-handed PDFs generally deviate from
pure QCD at the 5-10% level by 10 TeV.

Another important SM characteristic is the restoration of isospin symmetry at high scales.
This is manifest in the decreasing asymmetry between the up- and down-type quark PDFs,
which sets in at 1 − 10 TeV, the up-type being pulled down in the first generation and
conversely in the third. The suppression of the asymmetry is a double-logarithmic effect
that can be treated in fixed order at present energies but is resummed to all orders in the
evolution.

The electroweak bosons are generated quite copiously, the W+ in particular at high x due
to splitting u → dW+. The photon and Z0 PDFs also grow rapidly, eventually exceeding
the gluon at high x. The PDFs of the longitudinal vector bosons, the Higgs boson and the
leptons are generally much smaller as they arise from second-order splittings.

Finally, we have used the generated PDFs to present some parton-parton luminosities at
a 100 TeV pp collider. These results are just an illustration of the size of the effects that can
be expected at such a future collider, and a more detailed phenomenological analysis will be
presented in a forthcoming publication.

We found a rich structure in the proton when probed beyond the electroweak scale. The
associated PDFs are interesting and useful in their own right. They also represent a key
component of event generators that aim to embody the full Standard Model in initial-state
parton showering, a topic we plan to explore further.

We have proposed a method for combining resummation with fixed-order electroweak
calculations, without double counting of terms already included. This is done by expanding
the evolution equations to fixed order in the electroweak couplings and computing the terms
that need to be subtracted to avoid double counting. The remaining terms then provide a
resummed estimate of the higher-order effects beyond those that have been computed exactly
in fixed order. The relative size of the first- and higher-order terms provides an indication
of the convergence of electroweak perturbation theory.
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In order to combine resummed and fixed-order calculations without double counting, one
needs to specify carefully the terms included in each case. In particular, the PDF sets used
for the latter should not include terms present in the electroweak evolution equations used
for the former. We therefore propose a “noEW” scheme for fixed-order calculations, in which
there is no U(1)em evolution above the electroweak scale. In particular, the photon PDF used
in the fixed-order calculation is frozen at a matching scale qV ∼ mV ∼ 100 GeV, and the
resummation takes care of all the photon evolution above that scale.

Using this scheme, we have presented comparisons between “noEW” results, the full
leading-logarithmic resummation (SM) and the resummed results expanded to fixed order
([SM]α), at the level of PDFs, parton-parton luminosities and fully-inclusive di-lepton cross
sections. The difference between [SM]α and “noEW” represents the part that should be
replaced by an exact order-α calculation for improved precision. The difference between SM
and [SM]α then indicates the extra contribution from the resummation of enhanced terms
of yet higher orders. Our results are shown mainly in the context of a future pp collider of
center-of-mass energy 100 TeV, but we also show some effects at a possible 27 TeV high-
energy upgrade of the LHC and at much higher energy.

A notable feature of our findings is that there are relatively large contributions to the
PDFs of the electroweak vector bosons beyond order α, reaching tens of percent beyond
scales of ∼ 10 TeV. This is reflected in their contributions to luminosities and the di-lepton
cross section. Even at fixed invariant mass, the relative importance of the initial states with
vector bosons increases with collider energy. This is because at higher energies one is probing
smaller values of x. Since the contributions of vector boson fusion processes begin at order
α2, one may wish to make an extra subtraction of this piece from the resummation, resulting
in a scheme we call [SM]mod

α . In this scheme one can include the exact lowest-order VBF
contribution, the difference between SM and [SM]mod

α then indicating the effect of remaining
resummed terms. We find that the latter are still quite significant, again reaching tens of
percent beyond scales of ∼ 10 TeV.

Our approach naturally to compute resummed PDFs that can be combined with fixed-
order calculations invites a number of future developments. Foremost of these would be the
inclusion of exact order-α calculations in the way we have proposed, together with order-
α2 VBF contributions. The fully-inclusive di-lepton process that we have considered is not
experimentally relevant, owing to the presence of unobservable neutrinos. This could be
rectified either by including Sudakov factors for a fully exclusive e+e− or µ+µ− final state,
or by computing fragmentation functions for the inclusive production of charged leptons.
Ultimately, fully exclusive final states containing all combinations of jets, leptons, photons
and massive bosons could be simulated by an event generator based on complete Standard
Model evolution equations for initial- and final-state parton showers.

In conclusion, we calculated that the logarithmic resummation of real electroweak correc-
tions will have an significant impact on the cross-section predictions for the next generation
of colliders. We implemented the PDFs using the full SM evolution and implemented PDFs
that can be combined with fixed order calculations to get both NLO and LL accuracy.



76

Bibliography

[1] R. Contino et al., Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking
studies, CERN Yellow Report (2017) 255–440, [1606.09408].

[2] N. Arkani-Hamed, T. Han, M. Mangano and L.-T. Wang, Physics opportunities of a
100 TeV proton-proton collider, Phys. Rept. 652 (2016) 1–49, [1511.06495].

[3] M. L. Mangano et al., Physics at a 100 TeV pp collider: Standard Model processes,
1607.01831.

[4] P. Ciafaloni and D. Comelli, Sudakov enhancement of electroweak corrections, Phys.
Lett. B446 (1999) 278–284, [hep-ph/9809321].

[5] P. Ciafaloni and D. Comelli, Electroweak Sudakov form-factors and nonfactorizable
soft QED effects at NLC energies, Phys. Lett. B476 (2000) 49–57, [hep-ph/9910278].

[6] M. Ciafaloni, P. Ciafaloni and D. Comelli, Bloch-Nordsieck violating electroweak
corrections to inclusive TeV scale hard processes, Phys. Rev. Lett. 84 (2000)
4810–4813, [hep-ph/0001142].

[7] M. Ciafaloni, P. Ciafaloni and D. Comelli, Electroweak double logarithms in inclusive
observables for a generic initial state, Phys. Lett. B501 (2001) 216–222,
[hep-ph/0007096].

[8] M. Ciafaloni, P. Ciafaloni and D. Comelli, Electroweak Bloch-Nordsieck violation at the
TeV scale: ’Strong’ weak interactions?, Nucl. Phys. B589 (2000) 359–380,
[hep-ph/0004071].

[9] M. Ciafaloni, P. Ciafaloni and D. Comelli, Enhanced electroweak corrections to
inclusive boson fusion processes at the TeV scale, Nucl. Phys. B613 (2001) 382–406,
[hep-ph/0103316].

[10] M. Ciafaloni, P. Ciafaloni and D. Comelli, Towards collinear evolution equations in
electroweak theory, Phys. Rev. Lett. 88 (2002) 102001, [hep-ph/0111109].

[11] P. Ciafaloni, D. Comelli and A. Vergine, Sudakov electroweak effects in transversely
polarized beams, JHEP 07 (2004) 039, [hep-ph/0311260].



BIBLIOGRAPHY 77

[12] P. Ciafaloni and D. Comelli, Electroweak evolution equations, JHEP 11 (2005) 022,
[hep-ph/0505047].

[13] P. Ciafaloni and D. Comelli, The Importance of weak bosons emission at LHC, JHEP
09 (2006) 055, [hep-ph/0604070].

[14] M. Ciafaloni, P. Ciafaloni and D. Comelli, Electroweak double-logs at small x, JHEP
05 (2008) 039, [0802.0168].

[15] P. Ciafaloni and A. Urbano, Infrared weak corrections to strongly interacting gauge
bosons scattering, Phys. Rev. D81 (2010) 085033, [0902.1855].

[16] P. Ciafaloni, D. Comelli, A. Riotto, F. Sala, A. Strumia and A. Urbano, Weak
Corrections are Relevant for Dark Matter Indirect Detection, JCAP 1103 (2011) 019,
[1009.0224].

[17] S. Forte et al., The Standard Model from LHC to future colliders, Eur. Phys. J. C75
(2015) 554, [1505.01279].

[18] C. W. Bauer, N. Ferland and B. R. Webber, Standard Model Parton Distributions at
Very High Energies, JHEP 08 (2017) 036, [1703.08562].

[19] V. S. Fadin, L. N. Lipatov, A. D. Martin and M. Melles, Resummation of double
logarithms in electroweak high-energy processes, Phys. Rev. D61 (2000) 094002,
[hep-ph/9910338].
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Appendix A

Equations used in the forward
evolution

A.1 SU(3) interaction

• T = 0 and CP = +:[
q
∂

∂q
f 0+
q

]
3

=
α3

π

[
CFP

+
ff,G ⊗ f

0+
q + TRP

R
fV,G ⊗ fg

]
, (A.1)[

q
∂

∂q
fg

]
3

=
α3

π

[
CAP

+
V V,G ⊗ fg + CFP

R
V f,G ⊗ f 0+∑

g

]
. (A.2)

Here
f 0+∑

g
= 4

∑
qL

f 0+
qL

+ 2
∑
qR

f 0+
qR
, (A.3)

where the sums run over all left-handed quark doublets and all right-handed quarks.
The factors of 4 and 2 are due to the different normalizations in Eqs. (3.91) and (3.93).

• All other states: [
q
∂

∂q
fq

]
3

=
α3

π
CFP

+
ff,G ⊗ fq . (A.4)
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A.2 U(1) interaction

• T = 0 and CP = +:[
q
∂

∂q
f 0+
f

]
1

=
α1

π
Y 2
i

[
P+
ff,G ⊗ f

0+
f +NfP

R
fV,G ⊗ fB

]
, (A.5)[

q
∂

∂q
fB

]
1

=
α1

π

[
P V
B,1fB + PR

V f,G ⊗ f 0+∑
B f + PR

VH,G ⊗ f 0+
H

]
, (A.6)[

q
∂

∂q
f 0+
H

]
1

=
α1

π

1

4

[
P+
HH,G ⊗ f

0+
H + PR

HV,G ⊗ fB
]
, (A.7)

where
f 0+∑

B f = 4
∑
fL

Y 2
fL
f 0+
fL

+ 2
∑
fR

Y 2
fR
f 0+
fR
. (A.8)

• T = 1 and CP = +: [
q
∂

∂q
f 1+
BW

]
1

=
α1

π

1

2
P V
B,1f

1+
BW . (A.9)

• All other states: [
q
∂

∂q
ff

]
1

=
α1

π
Y 2
f P

+
ff,G ⊗ ff , (A.10)[

q
∂

∂q
fH

]
1

=
α1

π

1

4
P+
HH,G ⊗ fH . (A.11)

A.3 SU(2) interaction

• T = 0 and CP = +:[
q
∂

∂q
f 0+
fL

]
2

=
α2

π

3

4

[
P+
ff,G ⊗ f

0+
fL

+NfP
R
fV,G ⊗ f 0+

W

]
, (A.12)[

q
∂

∂q
f 0+
W

]
2

=
α2

π

[
2P+

V V,G ⊗ f
0+
W +

∑
fL

PR
V f,G ⊗ f 0+

fL
+ PR

VH,G ⊗ f 0+
H

]
, (A.13)[

q
∂

∂q
f 0+
H

]
2

=
α2

π

3

4

[
P+
HH,G ⊗ f

0+
H + PR

HV,G ⊗ f 0+
W

]
. (A.14)

• T = 0 and CP = −: [
q
∂

∂q
f 0−
fL

]
2

=
α2

π

3

4
P+
ff,G ⊗ f

0−
fL
, (A.15)[

q
∂

∂q
f 0−
H

]
2

=
α2

π

3

4
P+
HH,G ⊗ f

0−
H . (A.16)
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• T = 1 and CP = +: [
∆

4/3
f,2 q

∂

∂q

f 1+
fL

∆
4/3
f,2

]
2

= −α2

π

1

4
P+
ff,G ⊗ f

1+
fL

(A.17)[
∆

4/3
H,2q

∂

∂q

f 1+
H

∆
4/3
H,2

]
2

= −α2

π

1

4
P+
HH,G ⊗ f

1+
H (A.18)[

∆
1/2
V,2q

∂

∂q

f 1+
BW

∆
1/2
V,2

]
2

= 0 . (A.19)

• T = 1 and CP = −:[
∆

4/3
f,2 q

∂

∂q

f 1−
fL

∆
4/3
f,2

]
2

=
α2

π

[
−1

4
P+
ff,G ⊗ f

1−
fL

+
1

2
NfP

R
fV,G ⊗ f 1−

W

]
(A.20)[

∆
1/2
V,2q

∂

∂q

f 1−
W

∆
1/2
V,2

]
2

=
α2

π

[
P+
V V,G ⊗ f

1−
W +

∑
fL

PV f ⊗ f 1−
fL

+ PV H ⊗ f 1−
H

]
(A.21)

[
∆

4/3
H,2q

∂

∂q

f 1−
H

∆
4/3
H,2

]
2

=
α2

π

[
−1

4
P+
HH,G ⊗ f

1−
H +

1

2
PHV,G ⊗ f 1−

W

]
. (A.22)

• T = 2 and CP = +: [
∆

3/2
V,2q

∂

∂q

f 2+
W

∆
3/2
V,2

]
2

= −α2

π
P+
V V ⊗ f

2+
W . (A.23)

A.4 Yukawa interaction

• T = 0 and CP = +:[
q
∂

∂q
f 0+
q3
L

]
Y

=
αY
π

[
P V
q3
L,Y
f 0+
q3
L

+ PR
ff,Y ⊗ f 0+

tR
+NcPfH,Y ⊗ f 0+

H

]
(A.24)[

q
∂

∂q
f 0+
tR

]
Y

=
αY
π

2

[
P V
tR,Y

f 0+
tR

+ PR
ff,Y ⊗ f 0+

q3
L

+NCPfH,Y ⊗ f 0+
H

]
(A.25)[

q
∂

∂q
f 0+
H

]
Y

=
αY
π

[
P V
H,Y f

0+
H + PR

Hf,Y ⊗ f 0+∑
H f

]
, (A.26)

where
f 0+∑

H f = f 0+
tR

+ f 0+
q3
L
. (A.27)
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• T = 0 and CP = −:[
q
∂

∂q
f 0−
q3

]
Y

=
αY
π

[
P V
q3
L,Y
f 0−
q3
L

+ PR
ff,Y ⊗ f 0−

tR
−NcPfH,Y ⊗ f 0−

H

]
(A.28)[

q
∂

∂q
f 0−
tR

]
Y

=
αY
π

2

[
P V
tR,Y

f 0−
tR

+ PR
ff,Y ⊗ f 0−

q3 +NCPfH,Y ⊗ f 0−
H

]
(A.29)[

q
∂

∂q
f 0−
H

]
Y

=
αY
π

[
P V
H,Y f

0−
H + PR

Hf,Y ⊗ f 0−∑
H f

]
, (A.30)

where
f 0−∑

H f = f 0−
tR
− f 0−

q3
L
. (A.31)

• T = 1 and CP = +:[
q
∂

∂q
f 1+
q3
L

]
Y

=
αY
π

[
P V
q3
L,Y
f 1+
q3
L
−NcPfH,Y ⊗ f 1+

H

]
(A.32)[

q
∂

∂q
f 1+
H

]
Y

=
αY
π

[
P V
H,Y f

1+
H − P

R
Hf ⊗ f 1+

q3
L

]
(A.33)

• T = 1 and CP = −:[
q
∂

∂q
f 1−
tL

]
Y

=
αY
π

[
P V
tL,Y

f 1−
tL

+NcPfH,Y ⊗ f 1−
H

]
(A.34)[

q
∂

∂q
f 1−
H

]
Y

=
αY
π

[
P V
H,Y f

1−
H + PR

Hf,Y ⊗ f 1−
q3
L

]
(A.35)

A.5 Mixed interaction

• T = 1 and CP = +:[
q
∂

∂q
f 1+
f

]
M

=
αM
π

Yf
2
NfP

R
fV,G ⊗ f 1+

BW , (A.36)[
q
∂

∂q
f 1+
BW

]
M

=
αM
π

[
4
∑
fL

YfP
R
V f,G ⊗ f 1+

f + 2PR
VH,G ⊗ f 1+

H

]
, (A.37)[

q
∂

∂q
f 1+
H

]
M

=
αM
π

1

4
PR
HV,G ⊗ f 1+

BW , (A.38)

Equation (A.37) differs slightly from Ref. [12] where, taking into account the definition there
of fB3 = fBW/2, an 8 would appear in place of 4 in the first term on the right-hand side.
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Appendix B

The partonic Born cross sections for
di-lepton production

The expressions for the Born cross sections with AB = qq̄ and AB = W+W− are given in
Table B.1, with the various functional dependences on the Mandelstam variables s, t, u,

s = (pA + pB)2 , t = (pA − p`)2 , u = (pB − p`)2 , (B.1)

AB → `¯̀′ BAB

qL/R q̄L/R → `L/R ¯̀
L/R

8π2

s
fL/R,L/R(s, t, u) (α1YqY` + α2IqI`)

2

qL/R q̄L/R → `R/L ¯̀
R/L

8π2

s
fL/R,R/L(s, t, u)α2

1Y
2
q Y

2
`

qL q̄
′
L → `L ¯̀′

L
8π2

s
fC,L(s, t, u)α2

2

W+ W− → eLēL
8π2

s
f

(1)
(+,−)(s, t, u)α2

2

W+W− → νLν̄L
8π2

s
f

(2)
(+,−)(s, t, u)α2

2

Table B.1: Born cross sections for qq̄ and W+W− going to lepton pairs. Here e stands for
the charged lepton. The cross sections for BA→ `¯̀′ are the same as AB → `¯̀′ with t↔ u.
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given by1

fL/R,L/R(s, t, u) =
4

3

u2

s2
(B.2)

fL/R,R/L(s, t, u) =
4

3

t2

s2

fC,L(s, t, u) =
1

3

u2

s2

f
(1)
(+,−)(s, t, u) =

t

4u

t2 + u2

s2

f
(2)
(+,−)(s, t, u) =

u

4t

t2 + u2

s2
.

For the scattering involving neutral gauge bosons in the initial state one can either work
in the unbroken basis (where the neutral bosons required are B, W3 or mixed M = B/W3)
or in the broken basis (where the neutral bosons required are γ, Z or mixed M̃ = γ/Z). For
the unbroken basis the results are given in Table B.2 with

fN(s, t, u) =
t2 + u2

ut
(B.3)

f(±,3)(s, t, u) =
1

8

u2 + t2

ut

(t− u)2

s2

f(±,B)(s, t, u) =
1

8

u2 + t2

ut

f(±,M)(s, t, u) = ±1

8

u2 + t2

ut

t− u
s

,

while for the broken basis the results are in Table B.3 with

f+,γ(s, t, u) =
1

2

u2 + t2

s2

u

t
(B.4)

f−,γ(s, t, u) =
1

2

u2 + t2

s2

t

u
,

f+,Z(s, t, u) =
1

8

u2 + t2

ut

(
s+ 2c2

Wu

cW sW s

)2

f−,Z(s, t, u) =
1

8

u2 + t2

ut

(
s+ 2c2

W t

cW sW s

)2

f+,M̃(s, t, u) =
1

4

u2 + t2

st

s+ 2c2
Wu

cW sW s

f−,M̃(s, t, u) =
1

4

u2 + t2

su

s+ 2c2
W t

cW sW s
,

where sW and cW represent the sine and cosine of the weak mixing angle, respectively.

1In keeping with our neglect of power-suppressed terms above the electroweak scale, all fermion and
boson masses are set to zero.
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AB → `¯̀′ BAB

W 3W 3 → `¯̀ 8π2

s
fN(s, t, u)α2

2 I
4
`

W 3B → `¯̀ 8π2

s
fN(s, t, u)α1 α2 Y

2
` I

2
`

W 3M → `¯̀ 8π2

s
fN(s, t, u)

√
α1α2 α2 Y` I

3
`

BB → `¯̀ 8π2

s
fN(s, t, u)α2

1 Y
4
`

BM → `¯̀ 8π2

s
fN(s, t, u)

√
α1α2 α1 Y

3
` I`

MM → `¯̀ 8π2

s
fN(s, t, u)α1 α2 Y

2
` I

2
`

W±W 3 → `L ¯̀′
L

8π2

s
f(±,3)(s, t, u)α2

2

W±B → `L ¯̀′
L

8π2

s
f(±,B)(s, t, u)α1 α2

W±M → `L ¯̀′
L

8π2

s
f(±,M)(s, t, u)

√
α1α2 α2

Table B.2: Born cross sections for V V in the unbroken basis going to lepton pairs. Here M
stands for the mixed B/W3 PDF. The cross sections for BA→ `¯̀′ are the same as AB → `¯̀′

with t↔ u.

AB → `¯̀′ BAB

γ γ → `¯̀ 8π2

s
fN(s, t, u)α2Q4

`

γ Z → `¯̀ 8π2

s
fN(s, t, u)α2Q2

` R
2
`

γ M̃ → `¯̀ 8π2

s
fN(s, t, u)α2Q3

` R`

Z Z → `¯̀ 8π2

s
fN(s, t, u)α2R4

`

Z M̃ → `¯̀ 8π2

s
fN(s, t, u)α2 Q`R

3
`

M̃ M̃ → `¯̀ 8π2

s
fN(s, t, u)α2Q2

` R
2
`

W± γ → `L ¯̀′
L

8π2

s
f(±,γ)(s, t, u)αα2

W± Z → `L ¯̀′
L

8π2

s
f(±,Z)(s, t, u)αα2

W± M̃ → `L ¯̀′
L

8π2

s
f(±,M̃)(s, t, u)αα2

Table B.3: Born cross sections for V V in the broken basis going to lepton pairs. Here M̃
stands for the mixed γ/Z PDF. The cross sections for BA→ `¯̀′ are the same as AB → `¯̀′

with t↔ u.




