
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Scheduling in Heterogeneous Grid Environments: The Effects of Data Migration

Permalink
https://escholarship.org/uc/item/1f44x9nn

Authors
Oliker, Leonid
Biswas, Rupak
Shan, Hongzhang
et al.

Publication Date
2004

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1f44x9nn
https://escholarship.org/uc/item/1f44x9nn#author
https://escholarship.org
http://www.cdlib.org/


Scheduling in Heterogeneous Grid
Environments: The Effects of Data Migration

Hongzhang Shan, Leonid Oliker
Computational Research Division

Lawrence Berkeley National Laboratory
Berkeley, CA 94720

{hshan,loliker}@lbl.gov

Warren Smith, Rupak Biswas
NASA Advanced Supercomputing Division

NASA Ames Research Center
Moffett Field, CA 94035

{wwsmith,rbiswas}@mail.arc.nasa.gov

Abstract— Computational grids have the potential for
solving large-scale scientific problems using heterogeneous
and geographically distributed resources. However, a num-
ber of major technical hurdles must be overcome before
this goal can be fully realized. One problem critical to
the effective utilization of computational grids is efficient
job scheduling. Our prior work addressed this challenge
by defining a grid scheduling architecture and several job
migration strategies. The focus of this study is to explore
the impact of data migration under a variety of demanding
grid conditions. We evaluate our grid scheduling algorithms
by simulating compute servers, various groupings of servers
into sites, and inter-server networks, using real workloads
obtained from leading supercomputing centers. Several key
performance metrics are used to compare the behavior
of our algorithms against reference local and centralized
scheduling schemes. Results show the tremendous benefits
of grid scheduling, even in the presence of input/output data
migration — while highlighting the importance of utilizing
communication-aware scheduling schemes.

I. I NTRODUCTION

One of the primary goals of grid computing [5], [6]
is to provide shared access to geographically distributed
heterogeneous resources in a transparent manner. There
will be many benefits when this goal is fully realized,
including the ability to execute applications whose com-
putational requirements exceed local resources, and the
reduction of job turnaround time through load balancing
across multiple computing facilities. The development
of computational grids and associated middleware has
therefore been actively pursued in recent years. However,
many technical hurdles stand in the way of achieving
these objectives. Among the myriad research issues to
be addressed is the problem of distributed resource
management and job scheduling for computational grids.
Although numerous researchers have studied this prob-
lem [1], [2], [4], [7], [12], [13], the effect of transferring
input/output data files for the migrated jobs on overall
grid performance has not been comprehensively ana-
lyzed, particularly the conditions under which the net-
work communication cost begins to dramatically affect
the job turnaround time. This is the focus of this paper.

In our previous work [12], we developed a grid
scheduling architecture that consisted of autonomous
local schedulers and distributed grid schedulers. The
local schedulers schedule access to individual computer
systems, while the grid schedulers (paired with local
schedulers) send jobs to the corresponding local sched-
ulers and/or migrate jobs between grid schedulers. We
also proposed several algorithms for transferring jobs
between grid schedulers. These algorithms strive to move
jobs when wait times at the compute servers rise above
or fall below specific thresholds. The migration strategies
determine whether to send and/or receive jobs using the
resource requirements of each job, the availability of
computational resources, and the actual performance of
the computer systems. For completeness, the scheduling
architecture and migration algorithms are described in
Sections II and III, respectively. However, the volume of
input/output data across the limited network bandwidth
between systems had not been taken into consideration
in our prior work. Here, we extend our algorithms to
include these important factors. The goal is to examine
how the performance advantages of a computational grid
are impacted as these parameters are varied.

Scheduling algorithms that consider data transfer over-
head have been proposed; however, they are primarily
suited for data-intensive applications where the data is
shared among multiple jobs or used repeatedly. Ran-
ganathan and Foster [10] developed an algorithm in
which job scheduling and data movement are decoupled.
It includes two components: an external scheduler that
selects the destination for the job, and a dataset scheduler
responsible for data replication. However, our simulation
results show that serious performance degradation will
occur for slower networks if data migration is not consid-
ered when scheduling jobs. Another strategy, called the
Storage Affinity algorithm proposed by Santos-Neto et
al. [11], tracks the location of data and replicates portions
to produce schedules that avoid, as much as possible,
large data transfers. This is suitable in environments
where the data is frequently reused by different tasks.



XSufferage [3], by Casanova et al., also considers data
location when scheduling tasks to exploit reuse. Com-
pared with these techniques, our focus is quite different.
Instead of investigating intelligent ways to reuse data,
our objective is to understand the conditions under which
the data transfer overhead must be considered in dis-
tributed job scheduling, and how the advantages of a grid
environment are affected by variations in this parameter.
We therefore assume no data reuse. All input files are
resident on the host where the job is submitted, and all
output files must be redirected to the same machine. This
is true for most scientific applications.

We evaluate our grid scheduling algorithms by sim-
ulating compute servers, various groupings of servers
into sites, and inter-server networks, and drive these
simulations using real workloads derived from trace data
gathered from leading supercomputing centers over the
same time period. The experimental methodology is
described in Section IV. We gather several key perfor-
mance metrics, and use them to compare the behavior
of our algorithms against reference local and centralized
scheduling schemes. Our specific objective in this paper
is to understand the effects of data migration.

Our results, presented in Section V, show that our
best scheduling strategy delivers turnaround times that
are 60% smaller than those without grid scheduling,
even in the presence of input/output data migration.
Alternatively, our algorithm can execute 40% more jobs
in the grid environment and deliver the same turnaround
times as in a non-grid scenario. Finally, for large data
files (or slow networks), we find that it is imperative to
consider data transfer times when making job migration
decisions as results show an increase of up to 43x in job
turnaround times if data migration overhead is ignored.

II. GRID SCHEDULING ARCHITECTURE

We use a simple grid scheduling architecture, shown
in Fig. 1, for evaluating our proposed job migration
algorithms. The architecture is composed of distributed
compute servers, local schedulers with local queues, and
grid schedulers with grid queues. A new job is always
submitted to thegrid scheduler(GS) of the compute
server with which it has an “affinity” and placed in the
associatedgrid queue(GQ). The GS then analyzes the
job’s resource requirements after gathering local infor-
mation from the correspondinglocal scheduler(LS) and
remote information from its peer GSs. The LS provides
data about thelocal queue(LQ) and the local compute
server, while other GSs supply data about remote sites.
Based on all this information, the GS determines whether
to send the job from the GQ to its own LQ or to the
LQ of another server through the grid middleware and
appropriate GS. Once a job is placed in a LQ, the LS
schedules it for execution on the compute server using

Local
Scheduler

Scheduler
Grid

Compute Server

PEPE

Local

PE

JobsJobs

Grid Middleware

Queue
Local
Queue

PE PEPE

Grid
Queue

Grid
Queue

Scheduler

Compute Server

Local

Grid
Scheduler

Fig. 1. Our grid scheduling architecture (solid arrows represent
movement of jobs, dashed arrows represent transfer of information).

the local scheduling policy. One issue not addressed in
this work is how, in practice, a GS locates other GSs. We
expect to utilize traditional peer-to-peer (P2P) strategies
that use centralized or distributed indices, and plan to
examine it in detail at a later time.

There are other grid scheduling architectures that we
could have adopted. A centralized scheme with a single
scheduler for multiple computer systems might be a good
choice for a relatively small set of servers at a single
site, but the approach does not scale and is not fault
tolerant. A hierarchy of grid schedulers organized into
a tree where jobs flow up and down is an interesting
approach [7], but we do not expect it to scale as
well as a P2P strategy. A variation of our architecture
combines pairs of local and grid schedulers into a single
scheduler. This is starting to occur as vendors adopt a
grid perspective to scheduling [8], [9], but these systems
do not interoperate and are not yet widely used.

Another approach to grid scheduling is where users
employ user-level schedulers to select the compute
servers for submitting their applications [2]. This strategy
is somewhat similar to our P2P method, the difference
being that user-level grid schedulers seek to optimize the
execution of jobs for a single user while our grid sched-
ulers strive to optimize the execution of all jobs. We
believe this distinction results in the P2P grid scheduling
approach having potentially greater overall performance.
In the end, we chose a P2P architecture with a grid
scheduler co-located with each local scheduler. This
strategy [12] gives us the best scalability, fault tolerance,
and scheduling performance without requiring that sites
replace their local schedulers.

III. G RID SCHEDULING ALGORITHMS

This section presents the three distributed scheduling
algorithms that are the subject of this work, and the two
reference algorithms against which they are compared.
The three distributed algorithms aresender-initiated,
receiver-initiated, andsymmetrically-initiated. All three
operate in a P2P manner but use different strategies



for migrating jobs between grid schedulers. The first
reference algorithm iscentralized that uses a single
grid scheduler interacting with all local schedulers. The
second reference algorithm islocal that has no grid
schedulers and executes all jobs on the compute server
where they are submitted. Details of all five methods are
given in the following subsections.

A. Distributed Algorithms

Our three distributed algorithms are based on these
common primary steps:

• A job j is submitted to a GS on compute serversi

and placed in the associated GQ.
• The GS queries the LS onsi for the approximate

wait time (AWT) of j. AWT is the amount of time
LS estimatesj, if submitted to it, will wait in
LQ before beginning to execute.AWT is computed
by simulating the local scheduling policy using
the local jobs that are either running or waiting
in LQ, and j. If LS cannot satisfy the resource
requirements ofj, an AWTof infinity is returned.

• The GS comparesAWT for j against a thresholdφ.
If the AWT is less thanφ, j is moved from GQ to
LQ for execution onsi. Otherwise,j is retained in
GQ and one of the following three distributed job
migration algorithms is invoked.

1) Sender-Initiated:In the sender-initiated (S-I) strat-
egy, the GS sends the resource requirements ofj to
its peers. In this study, we only consider the CPU and
run time requirements of each job; however, this can
be easily extended to an arbitrary number of resource
constraints. In response to the query, each peer GS
returns theapproximate turnaround time(ATT) for j and
the resource utilization(RU) of the associated compute
server. If a peer GS does not respond within a specified
time limit due to traffic congestion or machine failure,
it is simply ignored for that request.

ATT is an estimate of the amount of time it will take
to complete a job. TheATT for j on compute serversf

initially submitted tosi is derived as follows:

ATT(j, sf ) = max(AWT(j, sf ), ADT(jin, si, sf )) +

ERT(j, sf ) + ADT(jout, sf , si)).

Before j begins to execute, it must wait in a LQ and
transfer input data tosf . AWT(j, sf ) is the approximate
wait time of j on sf while ADT(jin, si, sf ) is the
approximate data transfer timeof j’s input datajin from
si to sf . We assume these activities can be performed
simultaneously, so the maximum of the two constraints
determines whenj can begin executing. The job then
runs on sf with an expected run timeof ERT(j, sf ),
and the output datajout is transferred back tosi in time
ADT(jout, sf , si). Note thatERTcan vary from one com-
pute server to another depending on their architectural

designs and program characterizations. We simplify the
calculation ofERT by assuming that run time is only
related to the clock frequency of the compute server.

RU is the fraction of the computer server that is
currently being utilized. We assume our compute servers
have multiple CPUs that are space shared so we calculate
RU as the fraction of CPUs assigned to jobs.

Based on all collected information, the GS at server
si wherej is initially submitted calculates its localATT
and compares it against the values from each peer that
responded. If the localATT is within a factor τ of
the minimumATT, j is scheduled for execution onsi;
otherwise,j is migrated (the migration thresholdτ acts
as a gate to discourage excessive job movement). In
case multiple machines respond withATTvalues that are
within a small toleranceǫ, the server with the lowestRU
is chosen to acceptj. This heuristic process attempts to
minimize the user’s time-to-solution, while using system
utilization as a tiebreaker. We found this approach to be
more effective than simply relying onATT. The job is
then sent to the LQ (by way of its partner GS and LS) on
the winning compute server. Note that once a job enters
a LQ, it is scheduled and run based exclusively on the
policy of the LS, and cannot migrate to another site.

2) Receiver-Initiated:The receiver-initiated (R-I) al-
gorithm takes a more passive approach to job migration.
Here, each compute server periodically checks its own
RU at time intervalσ. If the RU is below a threshold
δ, the system volunteers itself for receiving jobs by
informing other machines of its low utilization. Once a
peer GS at serverp receives this information, it checks its
GQ to see if any jobs are waiting to be scheduled. If so,
the resource requirements of the first job are sent to the
volunteer server. The underutilized system then responds
with the job’s ATT, as well as its ownRU. If the ATT
of the volunteer system is lower than that ofp (or if the
local and remoteATT’s are within the toleranceǫ but the
RU of the volunteer is smaller), the job is transferred to
the LQ of that system. Otherwise, the job continues to
wait in the GQ until either its localAWT falls belowφ

(examined at time intervalσ), or an available machine
again volunteers its services.

3) Symmetrically-Initiated:Unlike S-I and R-I, the
symmetrically-initiated (SY-I) algorithm works in both
active and passive modes. As with the R-I strategy, each
machine periodically checks its ownRU and broadcasts
a message if it is underutilized. The difference occurs
when the localAWT of a job exceedsφ but no un-
derutilized machine volunteers its services. In the R-I
approach, the job passively sits in the GQ while waiting
for a volunteer, periodically checking its localAWT
at eachσ time interval. However, the SY-I algorithm
immediately switches to active mode and sends out a
request using the S-I strategy. The main differences in the



three job migration algorithms therefore lie in the timing
of the job transfer request initiations and the destination
choice for those requests.

B. Reference Algorithms

We use two scheduling algorithms as baseline ref-
erences for comparison. The centralized strategy has a
single GS and represents a performance target for our
distributed scheduling approaches. The local algorithm,
on the other hand, performs no job migration and repre-
sents a traditional non-grid scheduling environment.

1) Centralized: In the centralized algorithm, all jobs
are submitted to a single GS which does not have
an affinity to a specific compute server. The GS is
responsible for making global decisions and assigning
each job to a specific machine. It tracks the status of each
job and maintains current information on all available re-
sources, allowing it to computeATTandRU without any
communication. When a job is submitted, the GS selects
the optimal server (based onATT andRU) and migrates
the job to that system. Although communication-free
resource awareness is unrealistic, this strategy allows us
to model the potential gain of a centralized architecture.
However, the model is impractical as it constitutes a
single point of failure and thus suffers from a lack of
reliability and fault tolerance. Additionally, this approach
has severe scalability problems that may result in a per-
formance bottleneck for large-scale grid environments.

2) Local: In the local scheduling algorithm, there are
no GSs. All jobs are submitted to LSs and executed
on the compute server associated with each LS. This
approach represents how scheduling is currently being
performed and we use it to demonstrate the benefits of
grid scheduling algorithms. The local scheduling policy
for all strategies is first-come-first-serve with backfilling.

IV. M ETHODOLOGY

We evaluate our grid scheduling algorithms by sim-
ulating resources and jobs. Our environment models
the submission of workloads to grid schedulers, the
operation of grid and local schedulers, the transfer of job
input/output data between compute servers, the network
bandwidth contention, and the execution of jobs on
compute servers. During these simulations, we gather
performance information so that we can compare the var-
ious grid scheduling algorithms. Our specific objective in
this paper is to understand the effects of data migration.

A. Resource Configurations

We simulate seven actual compute servers in our
simulations. These systems are located at Lawrence
Berkeley National Laboratory, NASA Ames Research
Center, Lawrence Livermore National Laboratory, and
San Diego Supercomputer Center. All seven machines

are either cache-coherent SMP clusters or NUMA shared
memory systems, interconnected by a fast proprietary
network. Both architectures partition CPUs into nodes
for management purposes, and the current practice is to
allocate each node to a single application so that applica-
tions do not interfere with each other. We therefore used
this allocation approach in our simulation environment.

We wanted to use 12 servers to give us more flexibility
for grouping them into sets; so we duplicated five of
the seven systems. The systems were then split into 3,
6, and 12 sets to simulate machines grouped at 3, 6,
and 12 different sites. Each site has an equal number of
machines with equivalent total computational power. The
characteristics of these systems and the sites to which
they are assigned are shown in Table I.

TABLE I

CONFIGURATIONS OF THE COMPUTE SERVERS AND THEIR

ASSIGNMENT TO SITES

Server # of CPUs/ Clock Site Locator
ID Nodes Node (MHz) 3 sites 6 sites 12 sites

S1 184 16 375 0 0 0
S2 305 4 332 1 1 1
S3 144 8 375 2 3 2
S4 256 4 600 1 0 3
S5 32 2 250 2 2 4
S6 128 4 400 2 5 5
S7 64 2 250 2 5 6

S8 144 8 375 1 2 7
S9 256 4 600 0 4 8
S10 32 2 250 0 1 9
S11 128 4 400 0 3 10
S12 64 2 250 1 4 11

We also simulate the networks connecting the servers.
We assume that all systems at a single site share a local
network and that each of these networks is connected
to every other local network (at remote sites) using a
point-to-point connection. When we model the transfer
of a job’s input/output data, we simulate the use of
a local network on the sending side, a point-to-point
inter-site network, and a local network on the receiving
side. Any of these three networks can constrain the end-
to-end data migration bandwidth. We assume that all
data transfers share the network bandwidth equally, and
network contention occurs when multiple data transfers
simultaneously utilize a given network path. In our
model, each site network has a peak bandwidth of
800 Mb/s, while 40 Mb/s is available from each point-to-
point network. This represents a gigabit Ethernet LAN
and a relatively high-performance WAN.

For the experiments reported here, we make two
simplifying assumptions. First, we assume that program
performance is linearly related to CPU speed. Second,
even though the systems we are simulating are not all
binary compatible, we assume that users have compiled



their codes for each of the heterogeneous platforms. We
plan to relax both these assumptions in future work.

B. Job Workloads

We base our job workloads on trace data obtained
from schedulers on the seven compute servers (see Ta-
ble I), each recorded from March through May of 2002.
Five other traces were gathered from a subset of the
systems but recorded from September through November
of 2002. Unfortunately, these 12 traces do not include
the input or output data volume for each job, because this
information is typically not available to local schedulers.
We therefore added synthetic input/output data sizes to
each job in the workloads.

We assume that the data volume is correlated to the
amount of work (number of CPUs multiplied by run
time) performed by each job. To somewhat randomize
this, we set the input data size for jobj using a Gaussian
distribution with meanµj = B×cpusj×runtime secsj

and standard deviationσj =
µj

3
, whereB is the number

of Kbytes for each unit of work. Using anecdotal obser-
vations, our best estimate forB is 1 Kb for each CPU
second the application executes. This set of workloads
is denoted asB (for baseline), and their characteristics
are shown in Table II. In all cases, we assume that the
output data volume is five times the input data size.

TABLE II

WORKLOAD CHARACTERISTICS FOR SETB (Wi IS SUBMITTED TO

SERVERSi)

Workload Time Period # of Avg. Input
ID (Start–End) Jobs Size (MB)

W1 03/01/02–05/31/02 59,623 312.7
W2 03/01/02–05/31/02 22,941 300.8
W3 03/01/02–05/31/02 16,295 305.0
W4 03/01/02–05/31/02 8,291 237.3
W5 03/01/02–05/31/02 10,543 28.9
W6 03/01/02–05/31/02 7,591 236.1
W7 03/01/02–05/31/02 7,251 86.5

W8 09/01/02–11/30/02 27,063 293.0
W9 09/01/02–11/30/02 12,666 328.3
W10 09/01/02–11/30/02 5,236 29.3
W11 09/01/02–11/30/02 11,804 226.5
W12 09/01/02–11/30/02 6,911 53.7

For comparison, we also create other workload sets
when B is 0, 0.1, 10, and 100 Kb (referred to as0B,
0.1B, 10B, and100B, respectively). Note that these sets
can also be interpreted in terms of network bandwidth
variability. For example, workload setB is equivalent to
0.1B, but with a network that is an order of magnitude
slower (80 Mb/s LAN and 4 Mb/s WAN). SetB is also
equivalent to10B, but with a network that is an order
of magnitude faster (8 GB/s LAN, 400 Mb/s WAN). A
similar relationship also exists forB, 10B, and 100B.
The set0B is a special case where the jobs have no
input/output files or the network has infinite bandwidth.

C. Performance Metrics

We use several key metrics to evaluate the effective-
ness of our grid scheduling and job migration algorithms,
and to capture the effects of data movement. These
metrics are also used to compare performance with the
local and centralized job scheduling schemes.

Since individual users and system administrators often
have different (and possibly conflicting) demands, no
single measure can comprehensively capture overall grid
performance. From the users’ perspective, key measures
of grid performance includeAverage Response Time
(ART) and Average Wait Time(AWT). These are com-
puted as follows (N is the total number of jobs):

ART=
1

N

∑

j∈Jobs

(ETj − QTj)

AWT=
1

N

∑

j∈Jobs

(STj − QTj)

whereQTj, STj , andETj are the times when jobj is
queued to the grid, when it starts execution, and when
it ends. The response (or turnaround) time is probably
the single most important measure for an individual
submitting a job; however, the wait time is also critical
to users even though it is usually beyond their control.
In our results, we actually present normalized values
of AWT and ART (NAWTand NART, respectively) with
respect to the local scheduling approach.

A system administrator, on the other hand, may be
more interested in maximizing the utilization of the
available computational resources at the site. Thus, we
presentWeighted Grid Utilization(UTIL), which mea-
sures the overall ratio between consumed and available
computational resources across a grid. It is computed as:

UTIL =

∑
j(ETj − STj) × CPUj × Clockj

(ETlast − QTfirst) ×
∑

m CPUm × Clockm

where (ETlast − QTfirst) is the duration of the entire
simulation;CPUj andClockj are the number of proces-
sors used by jobj and their clock speed; andCPUm and
Clockm are the number of processors in machinem and
their clock speed.

The Fraction of Jobs Migrated(FOJM) allows us to
determine if there is any relationship between the number
of jobs transferred and the performance of the scheduling
algorithms. This metric is defined as:

FOJM=
Number of Jobs Transferred

Total Number of Jobs

However,FOJM can be misleading as it captures only
the number of migrated tasks, but does not consider
their data requirements. We therefore also measure the



Fraction of Data Volume Migrated(FDVM) to help de-
termine if the amount of data transferred by a scheduling
algorithm affects its performance. It is defined as:

FDVM =

∑
k(InputSizek + OutputSizek)∑
j(InputSizej + OutputSizej)

where the numerator is a summation only over migrated
jobs but the denominator is a summation over all jobs.

The final performance metric is theData Migration
Overhead(DMOH), which is defined as:

DMOH =
Total Data Migration Time∑

j(ETj − QTj)

In other words,DMOH is the fraction of job response
time that is spent moving data, across all jobs. The metric
basically captures the overhead of grid scheduling.

Note that scheduler performance, measured by any
metric, is highly dependent on the workload. For ex-
ample, we would not expect an underloaded grid to
derive much benefit from a smart distributed scheduler
in terms of efficiency, as there may not be much room
for improvement. In our experiments, we use moderately
heavy workloads that were derived from real trace data
collected at leading supercomputer centers.

V. RESULTS

This section presents and analyzes the simulation
results of our job migration algorithms using the perfor-
mance metrics described in Section IV-C. We performed
an initial set of experiments and determined that the
optimal value for the migration thresholdτ is 1.4.
This means that a job is not migrated unless its local
approximate turnaround time (ATT) is 40% more than
the ATT on a remote system. The other parameters are
set as follows: threshold for waitingφ = 1 min, ATT
comparison toleranceǫ = 0.01, interval for checking
workloadσ = 5 mins, and utilization thresholdδ = 0.7.

A. Scheduling Policy

Figure 2 compares the performance of our three dis-
tributed job scheduling algorithms with the centralized
and local schemes for workload setB using 12 sites
(i.e. one server per site). Results show the S-I algorithm
minimizes both the normalized average response and
wait times (NARTandNAWT, respectively). Furthermore,
S-I has aNARTthat is only 1% greater than that for the
centralized approach but 60% less than the local scheme.
In terms ofNART, the other two distributed algorithms
(R-I, SY-I) are also comparable with centralized, and
50% better than local. Thus, our scheduling algorithms
perform much better than the local approach and are
almost as effective as the impractical centralized strategy.

While job turnaround time is the most important
metric to optimize, we can make other interesting obser-
vations from Fig. 2. First, our grid scheduling approaches

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

NAWT NART FOJM FDVM DMOH

S-I

R-I

SY-I

Cntl

Local

Fig. 2. Performance comparison of our job scheduling techniques for
workload setB using 12 sites.

reduceNAWTby as much as 25x, which also improves
NART. Second, an inverse relationship exists between
the migration (FOJM, FDVM) and the timing (NAWT,
NART) metrics. This indicates for the data volume asso-
ciated with these workloads, there is sufficient network
bandwidth so that more aggressive job migration is
rewarded by lower response and wait times. This is also
evident from the very small fraction of response time that
is spent moving data (DMOH) for workload setB. We
therefore examine the effects of varying the data volume
associated with each job in the next set of experiments.

B. Data Volume

Figure 3 compares the effects of our different assump-
tions of input/output data size per job (or equivalently,
network bandwidth characteristics), using 12 sites. Since
the S-I algorithm was established to be the best dis-
tributed scheduling strategy, we only present its results
for the remainder of the paper. Recall that workload
set B is our best estimate of data size per job. Results
show that sets0B, 0.1B, andB have almost identical

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

NAWT NART FOJM FDVM DMOH

0B

0.1B

B

10B

100B

Fig. 3. Comparison of the effects of job data sizes (for different
workload sets) using 12 sites and the S-I scheduling algorithm.



response and wait times, while sets10B and100B have
increasingly larger values. For example,NAWTfor 100B

is almost 8x that forB, while the associatedNART is
50% higher. This is explained by examining the fraction
of response time spent moving data. Observe thatDMOH
for 0.1B andB is very low, but jumps to 28% and 44%
for 10B and100B, respectively.

Another observation that can be made from Fig. 3
is that as the amount of data per job increases, the
fraction of data volume migrated (FDVM) across the
network decreases. This is expected due to the fact
that while the total data volume increases, the available
network bandwidth remains fixed. TheFOJM metric
is somewhat inconsistent (highest for10B instead of
100B); however, such anomalies occur because it refers
to the number of jobs migrated without considering the
data size associated with each job.

C. Number of Sites

Figure 4 shows the effects of varying the number of
sites while having 12 compute servers spread across the
sites. Observe that for the0.1B workload set, the number
of sites does not have a significant impact on any of the
five metrics. This is due to the relatively small volume
of data associated with each job. For10B, however,
changing the number of sites has a noticeable effect.
Decreasing the number of sites causes the available
network bandwidth between systems to increase, thus
the average wait and response times (NAWTandNART)
drop slightly. Also, as expected, with fewer sites, the
fraction of data volume migrated (FDVM) increases and
the fraction of response time spent moving data (DMOH)
decreases. Indeed,DMOH decreases by 40% when going
from 12 sites to 3 sites.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

NAWT NART FOJM FDVM DMOH

0.1B,12Sites

0.1B,6Sites

0.1B,3Sites

10B,12Sites

10B,6Sites

10B,3Sites

Fig. 4. Effects of varying the number of sites with a total of 12
compute servers and the S-I scheduling algorithm.

D. Communication-Oblivious Scheduling

We next examine the effects of migrating jobs without
considering their input/output data that would need to

be transferred over the network. The performance of
this approach is presented in Fig. 5. Comparing these
results with those presented in Fig. 4 reveal that for
the 0.1B andB workload sets, ignoring the volume of
data to be migrated does not significantly affect any of
our metrics. However, for10B, there is a very large
performance impact of not considering data movement
when migrating jobs. The average response time (NART)
for 12 sites is over 6x greater than just performing local
scheduling, and almost 14x larger than our S-I algorithm
that does consider the data movement overhead. The
impact is even bigger (28x) for the normalized average
wait time (NAWT), which increases from 0.07 to 2.1.
The same general trend holds for 3 sites except that the
effects are more pronounced: 40x and 43x forNARTand
NAWT, respectively, compared to communication-aware
scheduling (see Fig. 4).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

NAWT NART FOJM FDVM DMOH

0.1B,12Sites

B,12Sites

10B,12Sites

0.1B,3Sites

B,3Sites

10B,3Sites

2.1 2.4 6.3 17.1

Fig. 5. Effects of not considering input/output data size while
scheduling using the S-I algorithm.

Another interesting observation for workload10B is
that most of the job response time is spent transferring
data. This is captured by theDMOH metric which is
96% and 98% for 12 and 3 sites, respectively (only
4% and 3% forB). As a side-effect (data not shown),
the number of blocked jobs with allocated resources
unable to execute because their data have not arrived
increases from practically 0% using communication-
aware scheduling, to 16% when job migration decisions
ignore the impact of data-transfer overhead.

E. Increased Workload

One of the benefits of grid scheduling is that the
distributed system can handle a larger number of jobs
without degrading the performance seen by users. The
data presented in Fig. 6 shows the effects of increasing
the number of jobs in workload setB for the same time
period. We constructed these workloads by duplicating
certain jobs. For example, to obtain a workload that is
125% heavier than the baseline, we duplicated every
fourth job in the trace files. Observe that almost 40%



more jobs can be handled by the S-I grid scheduler while
maintaining the sameNARTandNAWTvalues as for the
local scheduling approach. In other words, a user (on
average) will not see an increase in his/her job’s response
and wait times while the system processes 40% more
jobs. This increases the weighted grid utilization (UTIL)
from 66% to 93%. However, like any scheduling system,
there is a fine line: when the number of jobs is increased
by 45%,NARTandNAWTgrow precipitously, exceeding
the base case by factors of 3.5x and 2.4x.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

NAWT NART FOJM FMD DMOH UTIL

Base

125%

133%

140%

145%

1.2 1.13.5 2.4

Fig. 6. Effects of increasing the number of jobs in workload set B

when using 12 sites and the S-I scheduling algorithm.

VI. CONCLUSIONS ANDFUTURE WORK

One of the primary goals of grid computing is to
provide shared access to geographically distributed het-
erogeneous resources in a transparent manner. Among
the many open research issues is the problem of dis-
tributed resource management and job scheduling for
computational grids. Our previous work addressed this
challenge by defining and evaluating a grid scheduling
architecture and several job migration algorithms. In this
study, we focused on understanding the impact of data
migration under a variety of demanding grid conditions.

We evaluated our grid scheduling algorithms by simu-
lating compute servers, various groupings of servers into
sites, and inter-server networks, using workloads derived
from real trace data collected at leading supercomputing
centers. Several key performance metrics were used to
compare the behavior of our algorithms against reference
local and centralized scheduling schemes.

Results showed the tremendous benefits of grid
scheduling. Our best distributed strategy, sender-
initiated, reduced average turnaround times by 60% com-
pared with the local approach, even in the presence of
input/output data migration. Alternatively, our algorithm
can execute 40% more jobs in the grid environment and
deliver the same turnaround times as in a non-grid sce-
nario. Finally, for large data files (or slow networks), we
found that it is critical to consider data transfer overhead

when making job migration decisions as results show an
increase of up to 43x in average turnaround times using
a communication-oblivious scheduling algorithm.

There are several areas that we plan to explore in fu-
ture. We wish to study the scalability of our grid schedul-
ing algorithms, including problems such as resource
discovery and fault tolerance. We plan to incorporate
more realistic grid environments such as true server het-
erogeniety and multiple resource requirements. Finally,
we would like to compare our peer-to-peer approach
with other competing strategies such as hierarchical and
combined local-grid schedulers.

ACKNOWLEDGMENTS

The authors would like to thank LBNL, LLNL, NASA
Ames, and SDSC for providing the batch job trace files.
This work was supported by the Office of Computational
and Technology Research, Division of Mathematical,
Information, and Computational Sciences of the U.S.
Department of Energy under contract number DE-AC03-
76SF00098 and the NASA Computing, Information and
Communications Technology Program.

REFERENCES

[1] M. Arora, S.K. Das, and R. Biswas. A de-centralized scheduling
and load balancing algorithm for heterogeneous grid environ-
ments. InICPP Workshop on Scheduling and Resource Manage-
ment for Cluster Computing, pages 499–505, 2002.

[2] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao.
Application-level scheduling on distributed heterogeneous net-
works. In Supercomputing ’96, 1996.

[3] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman.
Heuristics for scheduling parameter sweep applications ingrid
environments. In9th Heterogeneous Computing Workshop, pages
349–363, 2000.

[4] C. Ernemann, V. Hamscher, U. Schwiegelshohn, A. Streit,and
R. Yahyapour. On advantages of grid computing for parallel
job scheduling. In2nd International Symposium on Cluster
Computing and the Grid, pages 39–46, 2002.

[5] I. Foster and C. Kesselman, editors.The Grid: Blueprint
for a New Computing Infrastructure. Morgan Kaufmann, San
Francisco, CA, 1999.

[6] Global Grid Forum. http://www.gridforum.org.
[7] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour.

Evaluation of job-scheduling strategies for grid computing. In
1st International Workshop on Grid Computing, volume LNCS
1971, pages 191–202, 2000.

[8] Load Sharing Facility. http://www.platform.com/products/LSFfamily.
[9] Portable Batch System. http://www.pbspro.com.

[10] K. Ranganathan and I. Foster. Decoupling computation and
data scheduling in distributed data-intensive applications. In
11th International Symposium for High Performance Distributed
Computing, 2002.

[11] E. Santos-Neto, W. Cirne, F. Brasileiro, and A. Lima. Exploiting
replication and data reuse to efficiently schedule data-intensive
applications on grids. In10th Workshop on Job Scheduling
Strategies for Parallel Processing, 2004.

[12] H. Shan, L. Oliker, and R. Biswas. Job superscheduler archi-
tecture and performance in computational grid environments. In
SC2003, 2003.

[13] V. Subramani, R. Kettimuthu, S. Srinivasan, and P. Sadayappan.
Distributed job scheduling on computational grids using multiple
simultaneous requests. In11th International Symposium for High
Performance Distributed Computing, 2002.




