Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Scheduling in Heterogeneous Grid Environments: The Effects of Data Migration

Permalink
https://escholarship.org/uc/item/1f44x9nn

Authors

Oliker, Leonid
Biswas, Rupak
Shan, Hongzhang

Publication Date
2004

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/1f44x9nn
https://escholarship.org/uc/item/1f44x9nn#author
https://escholarship.org
http://www.cdlib.org/

Scheduling in Heterogeneous Grid
Environments: The Effects of Data Migration

Hongzhang Shan, Leonid Oliker Warren Smith, Rupak Biswas
Computational Research Division NASA Advanced Supercomputing Division
Lawrence Berkeley National Laboratory NASA Ames Research Center
Berkeley, CA 94720 Moffett Field, CA 94035
{hshan,lolike} @Ibl.gov {wwsmith,rbiswas@mail.arc.nasa.gov
Abstract— Computational grids have the potential for In our previous work [12], we developed a grid

solving large-scale scientific problems using heterogene® scheduling architecture that consisted of autonomous
and geographically distributed resources. However, a num- |04 schedulers and distributed grid schedulers. The

ber of major technical hurdles must be overcome before s
this goal can be fully realized. One problem critical to local schedulers schedule access to individual computer

the effective utilization of computational grids is efficint ~Systems, while the grid schedulers (paired with local

job scheduling. Our prior work addressed this challenge schedulers) send jobs to the corresponding local sched-
by defining a grid scheduling architecture and several job ylers and/or migrate jobs between grid schedulers. We
migration strategies. The focus of this study is to explore also proposed several algorithms for transferring jobs

the impact of data migration under a variety of demanding . . .

grid conditions. We evaluate our grid scheduling algorithns !oetween grid s.ch.edulers. These algorithms strlv.e to move
by Simu|ating Compute servers, various groupings of server JObS When walt times at the Compute Servers rise abOVe
into sites, and inter-server networks, using real workloag or fall below specific thresholds. The migration strategies

obtained from leading supercomputing centers. Several key determine whether to send and/or receive jobs using the
performance metrics are used to compare the behavior oqqrce requirements of each job, the availability of

of our algorithms against reference local and centralized tati | d th tual f f
scheduling schemes. Results show the tremendous benefitfOMmputational resources, an € actual performance o

of grid scheduling, even in the presence of input/outputdat the computer systems. For completeness, the scheduling
migration — while highlighting the importance of utilizing architecture and migration algorithms are described in

communication-aware scheduling schemes. Sections Il and llI, respectively. However, the volume of
input/output data across the limited network bandwidth
between systems had not been taken into consideration
One of the primary goals of grid computing [5], [6]in our prior work. Here, we extend our algorithms to
is to provide shared access to geographically distributettlude these important factors. The goal is to examine
heterogeneous resources in a transparent manner. Thew the performance advantages of a computational grid
will be many benefits when this goal is fully realizedare impacted as these parameters are varied.
including the ability to execute applications whose com- Scheduling algorithms that consider data transfer over-
putational requirements exceed local resources, and thead have been proposed; however, they are primarily
reduction of job turnaround time through load balancinguited for data-intensive applications where the data is
across multiple computing facilities. The developmershared among multiple jobs or used repeatedly. Ran-
of computational grids and associated middleware hganathan and Foster [10] developed an algorithm in
therefore been actively pursued in recent years. Howevetich job scheduling and data movement are decoupled.
many technical hurdles stand in the way of achievinly includes two components: an external scheduler that
these objectives. Among the myriad research issuesdelects the destination for the job, and a dataset scheduler
be addressed is the problem of distributed resourcesponsible for data replication. However, our simulation
management and job scheduling for computational gridgsults show that serious performance degradation will
Although numerous researchers have studied this praiecur for slower networks if data migration is not consid-
lem [1], [2], [4], [7], [12], [13], the effect of transferrip ered when scheduling jobs. Another strategy, called the
input/output data files for the migrated jobs on overafftorage Affinity algorithm proposed by Santos-Neto et
grid performance has not been comprehensively are-[11], tracks the location of data and replicates pogion
lyzed, particularly the conditions under which the neto produce schedules that avoid, as much as possible,
work communication cost begins to dramatically affedarge data transfers. This is suitable in environments
the job turnaround time. This is the focus of this papewhere the data is frequently reused by different tasks.

I. INTRODUCTION

XSufferage [3], by Casanova et al., also considers data | Grid Middleware |

. . . X X
location when scheduling tasks to exploit reuse. Conobs T Jobs T

ared with these techniques, our focus is quite different. Grid i ‘ Grid i
b . C q . g Queuer<> Scﬁggule Queuer=<}’ Scﬁggule
Instead of investigating intelligent ways to reuse data,
our objective is to understand the conditions under which ¢ ¢
the data transfer overhead must be considered in dis- Local <) Local <]
tributed job scheduling, and how the advantages of a grid || Q4eUe=<-> g 5o Quetei<—s ﬂ Seieatle
environment are affected by variations in this parameter.
We therefore assume no data reuse. All input files are o : ?

. A . h ompute Server Compute Server
resident on the host where the job is submitted, and all PE | PE |« [PE PE [PE | s [PE
output files must be redirected to the same machine. This
is true for most scientific applications. Fig. 1. Our grid scheduling architecture (solid arrows espnt

We evaluate our grid scheduling algorithms by simmovement of jobs, dashed arrows represent transfer ofnivaftion).
ulating compute servers, various groupings of servers

into sites, and inter-server networks, and drive thegge |ocal scheduling policy. One issue not addressed in
simulations using real workloads derived from trace datgis work is how, in practice, a GS locates other GSs. We
gathered from leading supercomputing centers over tBgpect to utilize traditional peer-to-peer (P2P) strasgi
same time period. The experimental methodology {fat use centralized or distributed indices, and plan to
described in Section V. We gather several key perfogxamine it in detail at a later time.
mance metrics, and use them to compare the behaviofrhere are other grid scheduling architectures that we
of our algorithms against reference local and centralizegyid have adopted. A centralized scheme with a single
scheduling schemes. Our specific objective in this papgiheduler for multiple computer systems might be a good
is to understand the effects of data migration. choice for a relatively small set of servers at a single
Our results, presented in Section V, show that oudfte, but the approach does not scale and is not fault
best scheduling strategy delivers turnaround times thaferant. A hierarchy of grid schedulers organized into
are 60% smaller than those without grid scheduling, tree where jobs flow up and down is an interesting
even in the presence of input/output data migratiogpproach [7], but we do not expect it to scale as
Alternatively, our algorithm can execute 40% more jobgell as a P2P strategy. A variation of our architecture
in the grid environment and deliver the same turnarourRgmbines pairs of local and grid schedulers into a single
times as in a non-grid scenario. Finally, for large datgcheduler. This is starting to occur as vendors adopt a
files (or slow networks), we find that it is imperative toyrid perspective to scheduling [8], [9], but these systems
consider data transfer times when making job migratioqy not interoperate and are not yet widely used.
decisions as results show an increase of up to 43x in jobanother approach to grid scheduling is where users
turnaround times if data migration overhead is ignore(émpk)y user-level schedulers to select the compute
servers for submitting their applications [2]. This stopte
is somewhat similar to our P2P method, the difference
We use a simple grid scheduling architecture, showseing that user-level grid schedulers seek to optimize the
in Fig. 1, for evaluating our proposed job migratiorexecution of jobs for a single user while our grid sched-
algorithms. The architecture is composed of distributaglers strive to optimize the execution of all jobs. We
compute servers, local schedulers with local queues, apglieve this distinction results in the P2P grid scheduling
grid schedulers with grid queues. A new job is alwayapproach having potentially greater overall performance.
submitted to thegrid scheduler(GS) of the compute In the end, we chose a P2P architecture with a grid
server with which it has an “affinity” and placed in thescheduler co-located with each local scheduler. This
associatedyrid queue(GQ). The GS then analyzes thestrategy [12] gives us the best scalability, fault toleenc
job’s resource requirements after gathering local infoand scheduling performance without requiring that sites
mation from the correspondirigcal schedulelLS) and replace their local schedulers.
remote information from its peer GSs. The LS provides
data about théocal queue(LQ) and the local compute lll. GRID SCHEDULING ALGORITHMS
server, while other GSs supply data about remote sites.This section presents the three distributed scheduling
Based on all this information, the GS determines whethalgorithms that are the subject of this work, and the two
to send the job from the GQ to its own LQ or to theeference algorithms against which they are compared.
LQ of another server through the grid middleware anflhe three distributed algorithms amender-initiated
appropriate GS. Once a job is placed in a LQ, the Lfceiver-initiated and symmetrically-initiated All three
schedules it for execution on the compute server usiogerate in a P2P manner but use different strategies

Il. GRID SCHEDULING ARCHITECTURE

for migrating jobs between grid schedulers. The firgtesigns and program characterizations. We simplify the
reference algorithm iscentralized that uses a single calculation of ERT by assuming that run time is only
grid scheduler interacting with all local schedulers. Theelated to the clock frequency of the compute server.
second reference algorithm iscal that has no grid RU is the fraction of the computer server that is
schedulers and executes all jobs on the compute sergarrently being utilized. We assume our compute servers
where they are submitted. Details of all five methods ateave multiple CPUs that are space shared so we calculate
given in the following subsections. RU as the fraction of CPUs assigned to jobs.
A. Distributed Algorithms Based on _al! _collected i_nformation, the. GS at server
o) s; wherej is initially submitted calculates its loc&;TT
Our three distributed algorithms are based on theggy compares it against the values from each peer that
common primary steps: responded. If the locaATT is within a factor+ of
« Ajob jis submitted to a GS on compute Serer the minimumATT, j is scheduled for execution o#;
and placed in the associated GQ. otherwise,j is migrated (the migration threshofdacts
« The GS queries the LS og for the approximate a5 3 gate to discourage excessive job movement). In
wait time (AWT) of j. AWT s the amount of time case multiple machines respond Wi T values that are
LS estimatesj, if submitted to it, will wait in within a small tolerance, the server with the lowesU
LQ before beginning to executAWTis computed s chosen to accept This heuristic process attempts to
by simulating the local scheduling policy usingminimize the user’s time-to-solution, while using system
the local jobs that are either running or waitingtjlization as a tiebreaker. We found this approach to be
in LQ, and j. If LS cannot satisfy the resourcemgre effective than simply relying oATT. The job is
requirements of, an AWT of infinity is returned. then sent to the LQ (by way of its partner GS and LS) on
« The GS comparedWTfor j against a threshold. the winning compute server. Note that once a job enters
If the AWT s less thanp, j is moved from GQ to 5 | Q, it is scheduled and run based exclusively on the
LQ for execution or;. Otherwise,j is retained in pojicy of the LS, and cannot migrate to another site.
GQ and one of the following three distributed job 2y Receiver-Initiated:The receiver-initiated (R-1) al-
migration algorithms is invoked. gorithm takes a more passive approach to job migration.
1) Sender-Initiatedin the sender-initiated (S-I) strat-Here, each compute server periodically checks its own
egy, the GS sends the resource requirementg & RuU at time intervalo. If the RU is below a threshold
its peers. In this study, we only consider the CPU angl the system volunteers itself for receiving jobs by
run time requirements of each job; however, this caRforming other machines of its low utilization. Once a
be easily extended to an arbitrary number of resourg@er GS at serverreceives this information, it checks its
constraints. In response to the query, each peer @) to see if any jobs are waiting to be scheduled. If so,
returns theapproximate turnaround timgATT) for j and the resource requirements of the first job are sent to the
the resource utilization(RU) of the associated computeyolunteer server. The underutilized system then responds
server. If a peer GS does not respond within a specifiggth the job’s ATT, as well as its owrRU. If the ATT
time limit due to traffic congestion or machine failureof the volunteer system is lower than thatyofor if the
it is simply ignored for that request. local and remotéTTs are within the tolerance but the
ATTis an estimate of the amount of time it will takery of the volunteer is smaller), the job is transferred to
to complete a job. ThATT for j on compute serves; the LQ of that system. Otherwise, the job continues to
initially submitted tos; is derived as follows: wait in the GQ until either its locahWT falls below ¢

ATT(j, s¢) = max(AWTj, s), ADT(jin, i, 57)) + (exa_lmined at timc_a interv_a&), or an available machine
i) again volunteers its services.

ERT, 57) + ADT(out, 51, 5:)). 3) Symmetrically-Initiated:Unlike S-1 and R-I, the
Before j begins to execute, it must wait in a LQ andymmetrically-initiated (SY-I) algorithm works in both
transfer input data te;. AWT(j, s;) is the approximate active and passive modes. As with the R-1 strategy, each
wait time of j on s; while ADT(ji,,s:,sy) is the machine periodically checks its owRU and broadcasts
approximate data transfer timaf j’s input dataj;,, from a message if it is underutilized. The difference occurs
s; t0 sy. We assume these activities can be performachen the localAWT of a job exceedsp but no un-
simultaneously, so the maximum of the two constraintterutilized machine volunteers its services. In the R-I
determines whery can begin executing. The job thenapproach, the job passively sits in the GQ while waiting
runs onsy; with an expected run timef ERT(j,s;), for a volunteer, periodically checking its loca#WT
and the output datg,,; is transferred back te; in time at eachos time interval. However, the SY-I algorithm
ADT(jout, sf, si). Note thatERTcan vary from one com- immediately switches to active mode and sends out a
pute server to another depending on their architecturaiquest using the S-I strategy. The main differences in the

three job migration algorithms therefore lie in the timingre either cache-coherent SMP clusters or NUMA shared
of the job transfer request initiations and the destinatianemory systems, interconnected by a fast proprietary
choice for those requests. network. Both architectures partition CPUs into nodes
for management purposes, and the current practice is to
allocate each node to a single application so that applica-
We use two scheduling algorithms as baseline refions do not interfere with each other. We therefore used
erences for comparison. The centralized strategy hashés allocation approach in our simulation environment.
single GS and represents a performance target for outWe wanted to use 12 servers to give us more flexibility
distributed scheduling approaches. The local algorithrfor grouping them into sets; so we duplicated five of
on the other hand, performs no job migration and repréie seven systems. The systems were then split into 3,
sents a traditional non-grid scheduling environment. 6, and 12 sets to simulate machines grouped at 3, 6,
1) Centralized:In the centralized algorithm, all jobsand 12 different sites. Each site has an equal nhumber of
are submitted to a single GS which does not hawaeachines with equivalent total computational power. The
an affinity to a specific compute server. The GS isharacteristics of these systems and the sites to which
responsible for making global decisions and assignirilgey are assigned are shown in Table I.
each job to a specific machine. It tracks the status of each

B. Reference Algorithms

job and maintains current information on all available re- TABLE |
sources, a”owing it to CompukTTand RU without any CONFIGURATIONS OF THE COMPUTE SERVERS AND THEIR
communication. When a job is submitted, the GS selects ASSIGNMENT TO SITES
the optimal server (based &TT andRU) and migrates LServer #of | CPUs/| Clock Site Locator
the job to that system. Although communication-fre = Nigjs Nige ('\g';;) 3 So'tes| 6 Z'tes| 12 S'tes
i isti i yel
resource awareness is ur_1reaI|st|c, this _strategy allows uss 305 7 330 1 1
to model the potential gain of a centralized architecture=—g; 144) 375 2 3 2
However, the model is impractical as it constitutes p_Ss 256 4 600 1 0 3
single point of failure and thus suffers from a lack of 5 32 2 250 2 2 4
labil d fault tol Additionally. thi Se 128 4 400 2 5 5
reliability and fault tolerance. itionally, this ap_[m:h S 54 5 550 5 5 5
has severe scalability problems that may res_ult in a pef—g; 144 3 375 1 > -
formance bottleneck for large-scale grid environments| Sy 256 4 600 0 4 8
2) Local: In the local scheduling algorithm, there arg glo 13; i 42188 8 é 190
H H AA P11
no GSs. All jobs are submitted to LSs and executgd 51, o7 5 550 T 7 T

on the compute server associated with each LS. This
approach represents how scheduling is currently being

performed and we use it to demonstrate the benefits ofwe also simulate the networks connecting the servers.
grid scheduling algorithms. The local scheduling policye assume that all systems at a single site share a local
for all strategies is first-come-first-serve with backfiin network and that each of these networks is connected
to every other local network (at remote sites) using a

point-to-point connection. When we model the transfer

We evaluate our grid scheduling algorithms by simef a job’s input/output data, we simulate the use of
ulating resources and jobs. Our environment modedslocal network on the sending side, a point-to-point
the submission of workloads to grid schedulers, thater-site network, and a local network on the receiving
operation of grid and local schedulers, the transfer of jaide. Any of these three networks can constrain the end-
input/output data between compute servers, the netwdekend data migration bandwidth. We assume that all
bandwidth contention, and the execution of jobs odata transfers share the network bandwidth equally, and
compute servers. During these simulations, we gatheetwork contention occurs when multiple data transfers
performance information so that we can compare the vaimultaneously utilize a given network path. In our
ious grid scheduling algorithms. Our specific objective imodel, each site network has a peak bandwidth of
this paper is to understand the effects of data migratioB00 Mb/s, while 40 Mb/s is available from each point-to-

) _ point network. This represents a gigabit Ethernet LAN
A. Resource Configurations and a relatively high-performance WAN.

We simulate seven actual compute servers in ourFor the experiments reported here, we make two
simulations. These systems are located at Lawrensienplifying assumptions. First, we assume that program
Berkeley National Laboratory, NASA Ames Researcherformance is linearly related to CPU speed. Second,
Center, Lawrence Livermore National Laboratory, andven though the systems we are simulating are not all
San Diego Supercomputer Center. All seven machinbmary compatible, we assume that users have compiled

IV. METHODOLOGY

their codes for each of the heterogeneous platforms. e Performance Metrics

plan to relax both these assumptions in future work. We use several key metrics to evaluate the effective-

B. Job Workloads ness of our grid scheduling and job migration algorithms,

We base our job workloads on trace data obtainéd to capture the effects of data movement. These
from schedulers on the seven compute servers (see Mgtrics are also used to compare performance with the
ble 1), each recorded from March through May of 20020cal and centralized job scheduling schemes.

Five other traces were gathered from a subset of theSince individual users and system administrators often
systems but recorded from September through Novemib@ive different (and possibly conflicting) demands, no
of 2002. Unfortunately, these 12 traces do not includéngle measure can comprehensively capture overall grid
the input or output data volume for each job, because tH§rformance. From the users’ perspective, key measures
information is typically not available to local schedulersof grid performance includeAverage Response Time
We therefore added synthetic input/output data sizes @®RT) and Average Wait TimgAWT). These are com-

each job in the workloads. puted as follows § is the total number of jobs):
We assume that the data volume is correlated to the 1

amount of work (number of CPUs multiplied by run ART= — Z (ET; — QT))

. . . N

time) performed by each job. To somewhat randomize jEJobs

this, we set the input data size for jglusing a Gaussian)

distribution with means; = B x cpus; X runtime_secs; AWT= — Z (ST; — QT;)

and standard deviation; = %, whereB is the number
of Kbytes for each unit of work. Using anecdotal obser-
vations, our best estimate fd is 1 Kb for each CPU WhereQT};, ST}, and ET} are the times when job is
second the application executes. This set of workloa@lyeued to the grid, when it starts execution, and when
is denoted asB (for baseline), and their characteristicdt ends. The response (or turnaround) time is probably
are shown in Table II. In all cases, we assume that tffee single most important measure for an individual

output data volume is five times the input data size. Submitting a job; however, the wait time is also critical
to users even though it is usually beyond their control.

jeJobs

TABLE Il In our results, we actually present normalized values
WORKLOAD CHARACTERISTICS FOR SETB (W, IS SUBMITTED TO of AWT and ART (NAWTand NART respectively) with
SERVERS) respect to the local scheduling approach.
Workload Time Period #of | Avg. Input A system administrator, on the other hand, may be
ID (Start-End) Jobs | Size (MB)

more interested in maximizing the utilization of the
available computational resources at the site. Thus, we

Wy 03/01/02-05/31/02| 59,623 312.7
Wo 03/01/02-05/31/02| 22,941 300.8

W3 03/01/02—05/31/02] 16,295 305.0 presentWeighted Grid Utilization(UTIL), which mea-

Wa 03;01502—05;31;02 8,291 237.3 sures the overall ratio between consumed and available
W 03/01/02—-05/31/02] 10,543 28.9 ; : : .
W 03/0T/02-05/3 /027,591 5361 computational resources across a grid. It is computed as:
Wr 03/01/02-05/31/02] 7,251 86.5 S (ET; — ST}) x CPU; x Clock

Ws 09/01/02—11/30/02] 27,063 293.0 UTIL = J

Wo 09/01/02—11/30/02| 12,666 328.3 (ETiast — QT first) X >, CPU,, x Clock,,

Wio 09/01/02-11/30/02| 5,236 29.3)))

W1 09/01/02—11/30/02 11,804 226.5 where ETiqse — QT irs:) is the duration of the entire
Wiz | 09/01/02-11/30/02] 6,911 53.7 simulation;CPU; andClock; are the number of proces-

sors used by job and their clock speed; ar@PU,,, and

For comparison, we also create other workload setd0Ck, are the number of processors in machinend
when B is 0, 0.1, 10, and 100 Kb (referred to a#, their clock speed.
0.1B, 10B, and100B, respectively). Note that these sets The Fraction of Jobs Migrated FOJM) allows us to
can also be interpreted in terms of network bandwid@gtermine if there is any relationship between the number
variability. For example, workload sé is equivalent to of jobs transferred and the performance of the scheduling
0.1B, but with a network that is an order of magnitud@lgorithms. This metric is defined as:
slower (80 Mb/s LAN an_d 4 Mb/s WAN). S_eB is also Number of Jobs Transferred
equivalent tol0B, but with a network that is an order FOJM =
of magnitude faster (8 GB/s LAN, 400 Mb/s WAN). A
similar relationship also exists faB, 10B, and100B. However,FOJM can be misleading as it captures only
The setOB is a special case where the jobs have nihe number of migrated tasks, but does not consider
input/output files or the network has infinite bandwidththeir data requirements. We therefore also measure the

Total Number of Jobs

Fraction of Data Volume MigratedFDVM) to help de-

termine if the amount of data transferred by a schedulin ool
algorithm affects its performance. It is defined as: 0:8 msv1
FDVM — >, (InputSize + OutputSizg) 0.7 Hlocal
>, (InputSize + OutputSize) 06

where the numerator is a summation only over migrate
jobs but the denominator is a summation over all jobs

The final performance metric is thRata Migration
Overhead(DMOH), which is defined as: 21
. . . 01 T
DMOH — Total Data Migration Time 0.0 - ‘ ‘ ‘ =
Zj (ETj — QTj) NAWT NART FOIM FDVM DMOH

In other words,DMOH is the fraction of job response
time that is spent moving data, across all jobs. The metﬁ}é’
basically captures the overhead of grid scheduling.
Note that scheduler performance, measured by any
metric, is highly dependent on the workload. For ex€duceNAWTby as much as 25x, which also improves
amp'e, we would not expect an underloaded gnd '[UART Second, an inverse relationship exists between
derive much benefit from a smart distributed schedulée migration EOJM, FDVM) and the timing NKAWT,
in terms of efﬁciency, as there may not be much rOOIHAR-D metrics. This indicates for the data volume asso-
for improvement' In our experimentS, we use moderateq:).bated with these Workloads, there is sufficient network
heavy workloads that were derived from real trace dagndwidth so that more aggressive job migration is

. 2. Performance comparison of our job scheduling tegres for
kload setB using 12 sites.

collected at |eading Supercomputer centers. reWarded by |0Wer response and Wa.|t timeS. ThIS iS aISO
evident from the very small fraction of response time that
V. RESuLTS is spent moving dataQMOH) for workload setB. We

This section presents and analyzes the simulatitimerefore examine the effects of varying the data volume
results of our job migration algorithms using the perforassociated with each job in the next set of experiments.
mance metrics described in Section I1V-C. We performed
an initial set of experiments and determined that tt®. Data Volume

optimal value for the migration threshold is 1.4. Figure 3 compares the effects of our different assump-

This means that a job is not migrated unless its Ioc%ns of inputioutput data size per job (or equivalently,

I 1 I 0,
approximate turnaround imeA{) is 40% more than network bandwidth characteristics), using 12 sites. Since
the ATT on a remote system. The other parameters ale

set as follows: threshold for waiting = 1 min, ATT e Sl aIgonthr_n was established to be the_best dis-
. . . tributed scheduling strategy, we only present its results
comparison tolerance = 0.01, interval for checking

workloado = 5 mins, and utilization thresholdl = 0.7. for th? remainder of the paper. Rgcall that workload
set B is our best estimate of data size per job. Results

A. Scheduling Policy show that set$B, 0.1B, and B have almost identical

Figure 2 compares the performance of our three dis-
tributed job scheduling algorithms with the centralizeg o
and local schemes for workload sé& using 12 sites oo mos
(i.e. one server per site). Results show the S-I algorith{ _ E‘;‘IB
minimizes both the normalized average response a o108
wait times NARTandNAWT, respectively). Furthermore, . m1008
S-1 has aNARTthat is only 1% greater than that for the
centralized approach but 60% less than the local schen °
In terms of NART, the other two distributed algorithms °
(R-1, SY-I) are also comparable with centralized, an¢”’
50% better than local. Thus, our scheduling algorithm
perform much better than the local approach and a
almost as effective as the impractical centralized styateg

While job turnaround time is the most important

me_tric to optimize, W_e can mak_e other int_ereSting Obsqfl'g. 3. Comparison of the effects of job data sizes (for déffe
vations from Fig. 2. First, our grid scheduling approache®rkioad sets) using 12 sites and the S-I scheduling algurit

oo N

o

.2 9

.14

o o

.0 -

T T
NAWT NART FOIM FDVM DMOH

response and wait times, while sétsB and100B have be transferred over the network. The performance of
increasingly larger values. For examadAWTfor 1008 this approach is presented in Fig. 5. Comparing these
is almost 8x that forB, while the associatetlARTIis results with those presented in Fig. 4 reveal that for
50% higher. This is explained by examining the fractiothe 0.1B and B workload sets, ignoring the volume of
of response time spent moving data. Observe@MOH data to be migrated does not significantly affect any of
for 0.1B and B is very low, but jumps to 28% and 44%our metrics. However, fol0B, there is a very large
for 10B and 1008, respectively. performance impact of not considering data movement
Another observation that can be made from Fig. ®hen migrating jobs. The average response tiN&RT)
is that as the amount of data per job increases, tfar 12 sites is over 6x greater than just performing local
fraction of data volume migrated=DVM) across the scheduling, and almost 14x larger than our S-I algorithm
network decreases. This is expected due to the fahat does consider the data movement overhead. The
that while the total data volume increases, the availabl@pact is even bigger (28x) for the normalized average
network bandwidth remains fixed. THEOJM metric wait time (NAWT), which increases from 0.07 to 2.1.
is somewhat inconsistent (highest fofB instead of The same general trend holds for 3 sites except that the
100B); however, such anomalies occur because it refezffects are more pronounced: 40x and 43xN&RTand
to the number of jobs migrated without considering thBAWT, respectively, compared to communication-aware
data size associated with each job. scheduling (see Fig. 4).

C. Number of Sites

Figure 4 shows the effects of varying the number 0 1.0+
sites while having 12 compute servers spread across t 0. -
sites. Observe that for ttiel B workload set, the number | o.s -
of sites does not have a significant impact on any of th 0.7 -
five metrics. This is due to the relatively small volume o -
of data associated with each job. FO0B, however, o5
changing the number of sites has a noticeable effeqo.4
Decreasing the number of sites causes the availak o
network bandwidth between systems to increase, thio-:
the average wait and response timRa\\VTandNART) |o.1 1
drop slightly. Also, as expected, with fewer sites, th¢o.o-
fraction of data volume migrated-DVM) increases and
the fraction of response time spent moving d&MQOH)
decreases. IndeeBMOH decreases by 40% when goin
from 12 sites to 3 sites.

[0.1B,12Sites
OB, 12Sites

W 10B,12Sites
[@0.1B,3Sites
M B,3Sites

W 10B,3Sites

T T T
NAWT NART FOIM FDVM DMOH

ig. 5. Effects of not considering input/output data sizeilevh
cheduling using the S-I algorithm.

Another interesting observation for workloddB is

that most of the job response time is spent transferring

1.0 H0.18,1251tes data. This is captured by thBMOH metric which is
0.9 £0.18,6Sites 96% and 98% for 12 and 3 sites, respectively (only
08 B106 obies 4% and 3% forB). As a side-effect (data not shown),
0.7 W 108, 6Sites the number of blocked jobs with allocated resources
06 B 108, 3ites unable to execute because their data have not arrived
0.5 increases from practically 0% using communication-
0.4 aware scheduling, to 16% when job migration decisions
0.3 ignore the impact of data-transfer overhead.
Zj E. Increased Workload
0.0 ,_El:i:-‘ ‘ ‘ ‘ One of the benefits of grid scheduling is that the

NAWT NART FoM FOVM DMOH distributed system can handle a larger number of jobs

without degrading the performance seen by users. The

Fig. 4. Effects of varying the number of sites with a total & 1 data presented in Fig. 6 shows the effects of increasing
compute servers and the S-I scheduling algorithm. the number of jobs in workload sét for the same time

o o) period. We constructed these workloads by duplicating

D. Communication-Oblivious Scheduling certain jobs. For example, to obtain a workload that is

We next examine the effects of migrating jobs without25% heavier than the baseline, we duplicated every

considering their input/output data that would need timurth job in the trace files. Observe that almost 40%

more jobs can be handled by the S-I grid scheduler whilghen making job migration decisions as results show an
maintaining the samBARTandNAWTvalues as for the increase of up to 43x in average turnaround times using
local scheduling approach. In other words, a user (@communication-oblivious scheduling algorithm.
average) will not see an increase in his/her job’s responseThere are several areas that we plan to explore in fu-
and wait times while the system processes 40% mauge. We wish to study the scalability of our grid schedul-
jobs. This increases the weighted grid utilizati®fT{L) ing algorithms, including problems such as resource
from 66% to 93%. However, like any scheduling systendiscovery and fault tolerance. We plan to incorporate
there is a fine line: when the number of jobs is increasexdore realistic grid environments such as true server het-
by 45%,NARTandNAWTgrow precipitously, exceeding erogeniety and multiple resource requirements. Finally,
the base case by factors of 3.5x and 2.4x. we would like to compare our peer-to-peer approach
with other competing strategies such as hierarchical and

o Ll Lel Tyl - combined local-grid schedulers.

0.9 0125% ACKNOWLEDGMENTS

08] The authors would like to thank LBNL, LLNL, NASA
07 mi45% | o Ames, and SDSC for providing the batch job trace files.

0.6

This work was supported by the Office of Computational
and Technology Research, Division of Mathematical,
Information, and Computational Sciences of the U.S.
Department of Energy under contract number DE-ACO03-
76SF00098 and the NASA Computing, Information and
Communications Technology Program.

0.5

0.4 1
0.3
0.2 1

0.1

0.0 -

NAWT NART FOIM FMD DMOH UTIL REFERENCES

[1] M. Arora, S.K. Das, and R. Biswas. A de-centralized schied
Fig. 6. Effects of increasing the number of jobs in workload B and load balancing algorithm for heterogeneous grid enviro
when using 12 sites and the S-l scheduling algorithm. ments. InNICPP Workshop on Scheduling and Resource Manage-
ment for Cluster Computingpages 499-505, 2002.
VI. CONCLUSIONS AND FUTURE WORK [2] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao.
' Application-level scheduling on distributed heterogaremet-

One of the primary goals of grid computing is to works. InSupercomputing '961996.

provide shared access to geographically distributed hefl H: Casanova, A. Legrand, D. Zagorodnov, and F. Berman.
Heuristics for scheduling parameter sweep applicationgrid

erogeneous resources in a transparent manner. Among environments. I19th Heterogeneous Computing Workshpages
the many open research issues is the problem of dis- 349-363, 2000.

tributed resource management and job scheduling fdf! C- Ememann, V. Hamscher, U. Schwiegelshohn, A. Steeit
R. Yahyapour. On advantages of grid computing for parallel

computational grids. Our previous work addressed this jop scheduling. In2nd International Symposium on Cluster
challenge by defining and evaluating a grid schedulini; Computing and the Gridpages 39-46, 2002.
5

architecture and several job migration algorithms. In thid® |- Foster and C. Kesselman, editors.The Grid: Blueprint
for a New Computing Infrastructure Morgan Kaufmann, San

study, we focused on understanding the impact of data Francisco, CA, 1999.
migration under a variety of demanding grid conditions[6] Global Grid Forum. http://www.gridforum.org.

We evaluated our grid scheduling algorithms by simul?] V- Hamscher, U. Schwiegelshohn, A. Streit, and R. Yaloyap
Evaluation of job-scheduling strategies for grid compgitinin

lating compute servers, various groupings of servers into 1st international Workshop on Grid Computingolume LNCS
sites, and inter-server networks, using workloads derived 1971, pages 191-202, 2000.

from real trace data collected at Ieading supercomputin] Load Sharing Facility. http://ww.platform.com/pmcts/LSFfamin.
.] Portable Batch System. http://www.pbspro.com.
centers. Several key performance metrics were used[i§] k. Ranganathan and I. Foster. Decoupling computatiod a

compare the behavior of our algorithms against reference data scheduling in distributed data-intensive applicatio In

local and centralized scheduling schemes. ggr')’&ttﬁ:gaz“c‘)’gz"’" Symposium for High Performance Distéxl
Results showed the tremendous benefits of grjgh; E. santos-Neto, W. Cirne, F. Brasileiro, and A. Lima.piting

scheduling. Our best distributed strategy, sender- replication and data reuse to efficiently schedule datnsive

initiated, reduced average turnaround times by 60% com- applications on grids. IrL0th Workshop on Job Scheduling
’ Strategies for Parallel Processin@004.

Pared with the |Oca_| approach, even in the presence %] H. Shan, L. Oliker, and R. Biswas. Job superschedulehiar
input/output data migration. Alternatively, our algorith tecture and performance in computational grid environseht

0 i H H : SC2003 2003.
caq execute 40% more JObS II’P the gl’ld. enVIronme.m a P&] V. Subramani, R. Kettimuthu, S. Srinivasan, and P. $appan.
del'_Ver t_he same tumaround_t'mes as in a non-grid sceé-" pistributed job scheduling on computational grids usindiple
nario. Finally, for large data files (or slow networks), we simultaneous requests. Irith International Symposium for High

found that it is critical to consider data transfer overhead Performance Distributed Computing002.

