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Summer temperature extremes can have large impacts on humans and the biosphere,
and an increase in heat extremes is one of the most visible symptoms of climate
change. Multiple mechanisms have been proposed that would predict faster warming
of heat extremes than typical summer days, but it is unclear whether this is occurring.
Here, we show that, in both observations and historical climate model simulations, the
hottest summer days have warmed at the same pace as the median globally, in each
hemisphere, and in the tropics from 1959 to 2023. In contrast, the coldest summer days
have warmed more slowly than the median in the global average, a signal that is not
simulated in any of 262 simulations across 28 CMIP6 models. The observed stretching
of the cold tail indicates that observed summertime temperatures have become more
variable despite the lack of hot day amplification. The interannual variability and trend
in the warming of both hot and cold extremes compared to the median can be explained
from a surface energy balance perspective based on changes in net surface radiation
and evaporative fraction. Tropical hot day amplification is projected to emerge in the
future (2024–2099, SSP3-7.0 scenario), while Northern Hemisphere heat extremes
are expected to continue to follow the median.

heat extremes | climate change | temperature variability

The question of whether temperature extremes have warmed faster than typical summer
days, or should be expected to do so, gains new urgency each summer as record-breaking
heat waves occur around the world (e.g., refs. 1–5). While an increase in heat extremes,
including record-breaking events, is an expected result of increasing mean temperatures
(6, 7), the magnitude and frequency of recent extremes raise questions about the nature
of changes in summertime temperature distributions. In particular, can recent events be
explained by a simple shift in the distribution combined with unpredictable sampling of
weather variability, or are we now seeing evidence that extremes are warming faster than
typical summer temperatures?

Multiple mechanisms have been proposed that would predict greater warming of hot
days. In the midlatitudes, concurrent summertime heat extremes are commonly associated
with amplified quasi-stationary planetary waves (8–11), and it has been hypothesized
that the probability of these events is increasing, possibly due to a reduced equator-to-
pole temperature gradient (12–15). These conclusions, however, remain debated in the
literature, and observed trends are difficult to identify amid internal variability (16–21).
In the tropics, climate models tend to project that the hottest summer days will warm
faster than the average (22–25), which has been explained from both a dynamics and land
surface perspective as a consequence of hot days being climatologically drier (25, 26).
Finally, reductions in soil moisture on hot days, and the associated increases in sensible
heating, have been used to explain amplified warming of heat extremes in climate model
simulations in various regions around the globe (23, 27–31).

Despite this large body of work, it remains unclear whether we are observing amplified
warming of hot extremes. We a priori expect the signal, if present, to be relatively
small because the primary drivers of historical trends in observed (32, 33) and projected
(34, 35) heat extremes are trends in the mean or the median, although the signal is
nevertheless important to identify given the nonlinear impact of high temperatures (36).
Prior work has primarily asked whether extremes are warming at a different rate from the
middle of the distribution at the local level (22, 31, 32, 37–39), and these local trends
will have a large contribution from unforced internal variability, even on multidecadal
timescales. The combination of a small signal and large internal variability precludes
clear conclusions about differential changes in temperature extremes from the current
literature and motivates the spatially aggregated approach ultimately taken here.

In contrast to the focus on heat extremes, there has been little focus in the literature on
mechanisms causing differential changes in the cold tail of summer temperatures, likely
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due to their smaller human impacts. Nevertheless, quantifying
changes in cold extremes compared to the median provides a
more complete picture of changes in the spread of summertime
temperature and is key to interpreting results that focus on trends
in daily temperature variance (e.g., ref. 40), which reflects changes
in both tails.

Here, we address the questions of whether large-scale changes
in the shape of warm season continental temperature distribu-
tions are evident in the historical record, what causes differential
changes in the distributions, and whether climate models are
broadly consistent with observations.

A Framework for Quantifying Large-Scale
Changes in Extremes

We are interested in understanding whether there are significant
trends in the tails of daily maximum warm season temperature
anomalies that cannot be explained by changes in the median.
To do so, at each location, we calculate daily temperature
deviations by first removing the climatological seasonal cycle,
and then removing the sample median of each warm season’s
deseasonalized daily values. Long-term trends in the extreme
values of the deviations then reflect a stretching or compression of
the tails of the distribution compared to the middle. We take this
nonparametric approach to avoid the need to specify the correct
parametric form for the forced time evolution of the median
at each location, which is not generally known. This statistical
framework reflects the testing of a specific physical hypothesis:
by definition, 50% of warm season days will be warmer than
the median, and 50% will be cooler. Therefore, the median is
unaffected by any change in the magnitude of temperature on hot
or cold days, and a trend in differences between the tails and the
median provides evidence of a mechanism that is preferentially
affecting the extremes within a season.

Averaging information about extremes across space requires
careful consideration, because the probability of a given extreme
(e.g., an event measured in SD, or sigma, units) is strongly
dependent on the underlying nonnormality of the distribution
of daily temperature (2, 33, 41), and random sampling of these
nonnormal distributions across space can give rise to larger or
smaller trends in the spatial average of extremes than would
be expected from sampling normal distributions (SI Appendix,
Fig. S1). To address this issue, after defining the extremity of a
given season as the maximum or minimum of the temperature
deviations from the seasonal median, we transform this metric
into a rank. For the 65-y record we consider in the main text,
ranks will range between 1 and 65; the year with the largest
difference between the seasonal extreme and median will have
the largest rank. Thus, an increase in ranks over time indicates
faster warming of the extremes compared to the median, and
a decrease indicates slower warming. Analyses with synthetic
datasets indicate that this method is effective at distinguishing
between median and variance changes, and allows for detection of
signals that are small locally, but consistent across many locations
(Materials and Methods and SI Appendix, Fig. S2).

The primary results use the ERA5 reanalysis (42) given its
spatial completeness and duration. The ERA5 results are also
compared to those using high-quality station data from the
Global Historical Climatology Network-Daily (43), as well as
the shorter-duration CHIRTSdaily dataset, which focuses on
providing improved estimates of climate variables in regions with
few in situ observations (44). However, the three datasets are not
independent of each other.

Little Evidence of Amplification of Hot
Extremes Locally, Hemispherically, or Globally

We do not find evidence that hot extremes tended to warm
faster than the median at any spatial scale over 1959–2023
(Fig. 1 A–E). At the local (gridbox) scale (Fig. 1A), there are
few significant positive or negative trends in the ranks (0.7% of
the land area for positive, 1.0% for negative) when accounting
for the large number of hypothesis tests performed through
controlling for a false discovery rate of �FDR = 0.05 (Materials
and Methods). Notably, one of the few regions with a significant
positive trend toward faster warming of heat extremes is north-
west Europe where it has been suggested that dynamical changes,
largely not simulated by climate models, have caused amplified
warming of heat extremes (15, 39, 45). There is good agreement
between ERA5 and available GHCND stations in terms of both
the magnitude and spatial pattern of the trends (SI Appendix,
Fig. S3), although the number and spatial distribution of
GHCND stations is limited because complete temporal sampling
is necessary to quantify the extreme values in each season. In
many ways, the lack of clear signal locally is unsurprising: as
discussed above, if amplification of extremes is present, it is
likely a small signal that would be difficult to detect at the local
scale. We are thus motivated to consider whether differential
warming of hot extremes is present in aggregate over larger spatial
scales.

Because the distribution of ranks at each location is identical,
they can be straightforwardly averaged across gridboxes with
appropriate area-weighting. The global average rank time series
has been largely constant since 1959 (Fig. 1B), indicating that
warm season heat extremes are, on average at the global scale,
following the median. Because heat extremes are driven by
distinct processes in the tropics and extratropics, we further
divide the global domain into the extratropics in each hemisphere
(poleward of 10◦), and the deep tropics (equatorward of
10◦, Fig. 1 C–E). In the Northern Hemisphere, there is no
significant or visually apparent trend in the rank time series. The
trends in both the tropics and the Southern Hemisphere are
visibly positive; while neither are found to be significant when
controlling for �FDR = 0.05, the Southern Hemisphere trend
has an estimated P-value of 0.06, so is near the edge of what
could be expected from random sampling of internal variability.
The result that hot days are warming at the same rate as the
median at the hemispheric, tropical, and global scale holds when
using four other metrics of extremity, some of which account
for heat wave duration (SI Appendix, Figs. S4–S7). Results are
also consistent if the seasonal medians are first smoothed using
a 5-y running average (SI Appendix, Fig. S8), if the analysis is
limited to the satellite era (1980–2023, SI Appendix, Fig. S9),
and when using the shorter CHIRTSdaily dataset (1983–2016,
SI Appendix, Fig. S10).

The lack of clear signal in any domain is notable for two
reasons. First, a growing body of literature has suggested that
heat extremes will warm more than typical temperatures in the
tropics, supported by climate model simulations (22, 23, 25, 26),
atmospheric dynamics theory (25), and land-atmosphere pro-
cesses (23, 26). While it is possible that the tropical signal
of amplification will still emerge in the observations, it is
notable that it is not yet present. Second, the rank values
for recent Northern Hemisphere summers with multiple high-
impact extremes are not particularly unusual. Thus, a different
sampling of internal variability combined with the trends in the
median could have led to even more extreme summers than were
recently observed.
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Fig. 1. Hot extremes have followed the median, and cold extremes have warmed more slowly. (A) The linear trend (1959–2023) in the ranks of the length of the
upper tail (seasonal maximum minus median). Positive values indicate greater warming of hot extremes compared to the median. Gridboxes with significant
trends are shown with white stippling outlined by white contours. The (B) global, (C) Northern Hemisphere, (D) tropical, and (E) Southern Hemisphere average
rank anomaly by year (black squares and line) and the fitted linear trend (purple line). The 95% range of samples from the null hypothesis of no trend is shown
in gray; Materials and Methods. The ranks predicted by the surface energy balance framework (Large-Scale Behavior Explained through the Surface Energy Balance;
gray circles and line) and their fitted trend (blue line) are also shown. Comparable information for the cold tail in summertime temperature is shown in (F–J),
based on the ranks of the seasonal minimum minus median.

Daily Summer Temperature Distributions Are
Stretching Due to Damped Warming of the
Cold Tail

While changes in hot summer days largely followed the median,
trends in summertime cold extremes of daily maximum temper-
ature did not keep pace, indicating a stretching of the cold tail
of summertime temperatures. Based on our definition of ranks, a
slower warming of the cold tail compared to the median is associ-
ated with a reduction in ranks over time. Similar to the analysis for
hot extremes, only a small minority of gridboxes show significant
trends for differential changes in the cold tail, but in this case the
majority of the significant trends are negative, indicating slower
warming of the cold days (0.6% of the land area for positive,
4.0% for negative). There is again good agreement with available
GHCND stations in terms of the spatial pattern and magnitude
of trends in ranks (SI Appendix, Fig. S3). The trends in the cold
tail ranks are not explained by a change in the timing of the cold
extremes within the warm season (SI Appendix, Fig. S11).

The signal of stretching of the cold tail becomes more obvious
after averaging the ranks across larger domains, all of which show
a clear and significant negative trend. The largest magnitudes of
the negative trends are in the tropics and Southern Hemisphere.
Given the relative sparsity of in situ measurements of temperature
in these regions, we again compare to satellite-era ERA5 and
CHIRTSdaily (SI Appendix, Figs. S9 and S10). While all trends

remain visibly negative, and near the edge of what we would
expect from the null hypothesis, only the tropical cold tail
stretching is found to be significant for this shorter record.
The change in estimated significance is due to both the larger
range of trends that could be expected from sampling of internal
variability over a shorter period, and the smaller value of the fitted
trends outside of the tropics; in particular, the magnitude of the
Southern Hemisphere trend using only satellite era data is half of
its value during the full 1959–2023 period. The tropical signal,
on the other hand, has the same magnitude during both periods.
For all of the domains, nearly all of the possible trends based
on at least 20 y of data during the satellite era are negative (SI
Appendix, Fig. S12), suggesting a relatively consistent signal
toward stretching of the cold tail over the last 44 y. Thus, the
distribution of daily maximum temperature has generally been
increasing in variance, although primarily due to cold day stretch-
ing rather than hot day amplification compared to the median.

Large-Scale Behavior Consistent with the
Surface Energy Balance

What is the cause of the observed stretching of the cold tail, as well
as the lack of stretching of the warm tail? Given the importance
of land-atmosphere fluxes for summertime daily maximum
temperatures (e.g., refs. 46–50), we combine the surface energy
balance with the definition of evaporative fraction (EF ; the
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Fig. 2. Relative trends in surface energy balance terms and precipitation on hot and cold days versus median days. The difference between trends in (A and
B) the forcing anomaly term, (1− EF)R′ (Wm−2/65 y), (C and D) the evaporative fraction anomaly term, −RnEF ′ (Wm−2/65 y), (E and F ) their sum, and (G and H)
total daily precipitation (mm/day/65 y) in ERA5 on hot [left column, panels (A, C, E, and G)] or cold [right column, panels (B, D, F, and H)] minus median days. Hot
days are defined as days with temperature anomalies exceeding the 90th percentile, cold days below the 10th percentile, and median days between the 45th
and 55th percentiles. The global and subdomain averages are shown in each panel. A positive sign in panels (A–F ) would be expected to be associated with
greater warming of the extreme than the median.

fraction of incoming energy partitioned into evapotranspiration),
linearize, and assume a linear scaling between temperature
anomalies and sensible, ground, and longwave heat anomalies
(Materials and Methods) to propose a proportionality for temper-
ature anomalies,

T ′ ∝ (1− EF )R′ − RnEF ′. [1]

In the equation, EF is the evaporative fraction, Rn is the
downward net surface radiative forcing, and R′ is the down-
ward net surface radiative forcing anomaly after removing the
component of longwave that is collinear with temperature
(Materials and Methods). Overbars indicate time means, and
primes indicate anomalies from the climatological seasonal cycle.
The evaporative fraction generally increases with increasing soil
moisture (48, 51, 52), but can also be influenced by radiation
and meteorological conditions including temperature, humidity,
and wind speed (53, 54). The first (“forcing”) term predicts
that temperature increases with greater heating, but that the
influence of the heating is scaled by the climatological EF , with
drier regions having a greater sensitivity to the forcing. The
second (“evaporative fraction”) term predicts that temperature
increases with decreases in evaporative fraction (drying), but that
the influence of the drying is scaled by the climatological net

radiation at the surface. Using daily ERA5 data to estimate each
term on the right-hand side, we produce estimates of temperature
from the surface energy balance that are then converted into ranks
in the same manner as we did for the actual temperatures.

The trends in ranks predicted by the surface energy balance-
based equation are shown in gray in the time series in Fig. 1,
and closely align with what has been observed: no significant
trends in hot days beyond the median, and a significant stretching
of the cold tail in all domains. The interannual variability in
ranks predicted by the surface fluxes is similar to the ranks based
on actual temperatures for the cold tail, with correlations of
0.75, 0.72, 0.89, and 0.65 for the globe, Northern Hemisphere,
tropics, and Southern Hemisphere respectively. The interannual
correlations for the hot tail are more moderate (0.50, 0.54, 0.52,
and 0.42 for the same regions), indicative of the importance of
other processes such as advection (39, 55, 56) and/or limitations
of the assumptions of the surface energy balance framework.

To identify the relative importance of each term in Eq. 1,
we show the difference in linear trends (1959–2023) on hot
and cold days, minus those on median days (Fig. 2 A–F ).
Hot, cold, and median days are defined as those days that
exceed the 90th percentile, are below the 10th percentile,
and are between the 45th and 55th percentile of detrended
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daily temperature anomalies, respectively, for each location. We
detrend temperature before calculating the percentiles in order
to more evenly sample days across the period of study, and
percentiles are calculated individually for each day of the year
within the warm season to sample evenly across the season.

The difference in trends between hot and median days is rela-
tively small for the forcing term, although the values are, on aver-
age, positive in each domain considered (Fig. 2A). There are larger
differences in the trends of the evaporative fraction term between
hot and median days, with substantial regional variability in sign
and magnitude; the average value in each domain, however, is
negative, and thus counteracts the positive tendency in the forcing
term at large scales (Fig. 2C ). However, the maps of the relative
trends in the forcing and evaporative fraction terms are only
weakly negatively correlated across space (correlation of −0.14),
indicating that they do not tend to counteract each other locally,
and the sign of the average values of the relative trends in each do-
main often switches when instead considering the shorter satellite
era period (SI Appendix, Fig. S13). Collectively, this suggests a
lack of a clear surface energy balance signal in the trends of hot
versus median day warming, as expected due to the lack of signif-
icant trends in the rank of the seasonal maximum minus median.

In contrast, there are large differences in trends in both
the forcing and evaporative fraction term between median
and cold days, with both the evaporative fraction and forcing
trends causing, on average globally and in each subdomain,
slower warming of the cold tail than the median (Fig. 2 B and
D). Further, the two components exhibit similarities in their
spatial patterns (the spatial correlation between the two maps
is 0.40), and thereby reinforce the same types of changes in the
temperature distribution. The similar spatial structure suggests
the possibility of a common driver of changes in both net surface
radiation and evaporative fraction. A likely candidate is changes

in precipitation: cold days in the summer tend to be rainy (SI
Appendix, Fig. S14), and a relative increase in precipitation on
cold days would be associated with both a relative decrease in net
radiation at the surface and increase in evaporative fraction due to
increased soil moisture. Indeed, the spatial structure of the relative
trends in precipitation in ERA5 during cold minus median days
(Fig. 2H and SI Appendix, Fig. S15) mirrors the changes in the
forcing and evaporative fraction (spatial correlations of −0.45
and −0.46, respectively), and their sum (Fig. 2F, correlation of
−0.53), and all domains show greater increases in precipitation
on cold than median days, with the greatest relative increases
in the tropics and Southern Hemisphere. The relative trends in
the surface energy balance terms are qualitatively similar when
considering only the satellite era (SI Appendix, Fig. S13), as
are the relative trends in precipitation using satellite-era ERA5
and five additional different precipitation datasets that span all
or most of the satellite era and variously incorporate gauges,
satellites, and reanalyses (SI Appendix, Fig. S16).

CMIP6 Models Also Do Not Amplify Heat
Extremes in the Historic Period, but Miss
Stretching of Cold Tail

Despite large differences in climate sensitivity (57) and spatial
patterns of warming (58) across CMIP6 models, they largely agree
with each other and the observations regarding a lack of hot day
amplification globally and in each subdomain over 1959–2023
(Fig. 3 A–D). The multimodel ensemble-mean trend in ranks
is surprisingly consistent with the observations in all domains,
given that the latter includes sampling of internal variability that
would be averaged out in the former.

In contrast, the observed stretching of the cold tail is entirely
outside the envelope of all model simulations (262 simulations

A

B

C

D H

G

F

E

Fig. 3. Historical and future trends in the length of the hot tail of temperature in CMIP6 simulations. The trend in ranks of the difference between the seasonal
maximum and median for the historical (1959–2023, A–D) and future (2024–2099 using SSP3-7.0, E–H) periods for the globe, Northern Hemisphere, tropics,
and Southern Hemisphere (top to bottom rows, respectively) in CMIP6 models with available daily maximum temperature output. Individual model simulations
(black dots), the single-model ensemble mean (red dots), the multimodel ensemble mean (green line, calculated as average across red dots), the trend in ERA5
(purple line, historical period only), and the 95% range of samples from the null hypothesis of no trend (gray shading) are shown.
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Fig. 4. Historical and future trends in the length of the cold tail of temperature in CMIP6 simulations. As in Fig. 3, but for the trend in ranks of the difference
between the seasonal minimum and median for the historical (A–D) and future (E–H) periods. In panel (G), the single outlier for TaiESM1 is not shown; it has a
trend value of −18.54/65 y (the ranks are unitless).

across 28 models) for the global, tropical, and Southern Hemi-
sphere averages, and only one simulation has more cold day
stretching than the observations in the Northern Hemisphere
(Fig. 4 A–D). The multimodel ensemble-mean in all cases is
consistent with the null hypothesis of the coldest temperatures
warming at the same pace as the median. While this may
seem less important than hot day amplification given that cold
summer days do not tend to have adverse human impacts, cold
temperatures during the warm season can constrain net primary
productivity across colder regions (59) and provide a window
for wildfire suppression given the strong, nonlinear relationship
between vapor pressure deficit (largely a function of temperature)
and wildfire spread (60). In addition, it suggests that the processes
controlling changes in the shape of summertime temperature
distributions differ between the models and observed world.
Specifically, the prior observational analyses suggest that changes
in the distribution of precipitation across days, with a more
positive trend in precipitation on the coldest days compared
to median days, may be a dominant cause of the observed
stretching via reductions in net surface radiation and increases
in the evaporative fraction through increased soil moisture on
cold days. Is this behavior simulated by the climate models?

For each of the CMIP6 simulations spanning 1959–2023, we
similarly identify cold and median days, calculate the difference in
precipitation trends conditional on each type of day, and compare
to the trends in cold tail ranks (SI Appendix, Fig. S17). The
across-simulation spread in precipitation trends on cold minus
median days has a significant negative relationship with the trends
in cold tail ranks for the global, Northern Hemisphere, and
tropical averages: simulations with greater precipitation increases
on cold days tend to have greater stretching of the cold tail,
as expected. However, outside of the tropics, the relationship is
weak, and not significant in the Southern Hemisphere, indicating
that additional factors are needed to explain the cross-model

spread in cold tail stretching in the extratropics. We next
compare the observed relative trends in cold day precipitation
to the model trends. The observed trends are at the edge of the
distribution of climate model simulations for the tropics and
Southern Hemisphere, but near the multimodel ensemble mean
for the global and Northern Hemisphere averages. Combined,
the evidence suggests that the difference between models and
observations for cold tail stretching in the tropics can be partially
explained by model-observational differences in precipitation
trends on cold versus median days. However, more work is
needed to identify the processes controlling the cross-model
spread in cold tail stretching, and whether the same processes
can explain the mismatch between the models and observations.
Other factors not explored here such as model-observational
differences in sea surface temperature trends (61), and the warm
season temperature response to ozone loss and recovery (62, 63)
or aerosols (64) may be playing a role.

Future simulations (2024–2099) using the SSP3-7.0 scenario
suggest that the signal of hot day amplification will emerge in
the tropics, as has been noted in prior studies (23, 25): the
multimodel ensemble mean exhibits a significant trend in the
areal-averaged ranks, and 299 out of 316 simulations show a
trend in the same direction (Fig. 3G), although there is substantial
intermodel spread in the magnitude of the amplification. While
the multimodel ensemble mean in the Southern Hemisphere is at
the edge of significance, over 80% of simulations also suggest hot
day amplification (Fig. 3H ). In contrast, the multimodel behavior
for the globe and Northern Hemisphere remains consistent with
the hottest days shifting with the median (Fig. 3 E–F ). The
stretching of the lower tail also emerges in the future simulations
(Fig. 4 E–H ), with a significant negative trend in the ensemble
mean for the global, Northern Hemisphere, and tropical averages.

It is notable that the observed cold day stretching is at the
edge of or entirely exceeds historical CMIP6 simulations in all
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domains, and is also greater in magnitude than nearly all of the
trends from the future simulations in the tropics and Southern
Hemisphere. There are three plausible explanations for the outlier
behavior of the observed cold tail amplification. The first is
that the observed trends are erroneous. The greatest differences
between the models and observations are in the tropics and
Southern Hemisphere, where long-term in situ measurements are
limited, so it is difficult to both constrain and validate a reanalysis
product. We do find agreement between the spatial structure of
trends in ERA5 and GHCND in Australia (SI Appendix, Fig. S3),
but ground observations are assimilated into ERA5 so this does
not offer independent validation. When considering only satellite
era data, the magnitudes of the extratropical trends are reduced,
which may place them in the envelope of the models; however,
the magnitude of the tropical trend is unchanged, and would
likely remain outside the envelope of the models. Nevertheless,
given a lack of ground truth, the trends being an artifact of
the data cannot be excluded. The second is that the observed
trends are primarily due to sampling of low-frequency internal
variability that is not simulated by the climate models; indeed,
studies comparing climate model simulations and proxy records
have suggested that climate models tend to underestimate longer-
than-decadal temperature variability, especially at subglobal scales
(65, 66). While it is difficult to definitively conclude that the
observed trends are not due to sampling of internal variability
without relying on the model-simulated variability, we note that
the sign of the trend in the domain-average ranks across starting
and ending dates is very consistent (SI Appendix, Fig. S12 E–H ).
As such, very low-frequency (centennial-scale) internal variability
would be required to explain the observed trends. The third
explanation is that the observations are indicating a forced trend
that is underestimated in models and therefore emerges later in
the models than observations. There are two pieces of evidence in
support of this explanation, although neither excludes the prior
two explanations: 1) The observed trend far exceeds the range of
trends that would be expected from sampling internal variability
as estimated through either averaging across a random sample
of ranks (gray shading in Figs. 3 and 4; Materials and Methods)
or the spread across climate model large ensembles, and 2) most
climate model simulations exhibit a trend in the same direction as
the observations under stronger, future forcing. It is also possible
that multiple or all of the above explanations are true, as has often
been found for other model-observational discrepancies (e.g., the
tropical tropospheric warming discrepancy; 67, 68).

Discussion

An increase in summertime heat extremes is one of the most
obvious and high-impact consequences of global warming. But
are extremes around the globe warming faster than typical sum-
mertime temperatures? Despite the intensity of recent heatwaves,
we suggest the answer is “not yet.” We have shown that changes in
historical warm season heat extremes can be explained by changes
in the median when aggregating across global and hemispheric
scales, indicating that proposed processes for amplification of
heat extremes are not yet dominant at large scales. Nevertheless,
the spread of summertime temperatures has increased in the
global average due to the slower warming of cold summer days.
Trends in both warm and cold extremes compared to the median
can largely be explained by changes in net surface radiation
and evaporative fraction. We do not diagnose the origin of the
relative changes in radiation and evaporative fraction for the
warm tail, which could be responses to local conditions like

surface moisture availability (48, 51, 52, 69, 70), changes in the
large-scale circulation (71), and/or changes in forcing, including
aerosols (72). For the observed stretching of the cold tail, the
changes in radiation and evaporative fraction generally reinforce
each other, which we interpret as suggesting a common driver. In
particular, there have been greater increases in precipitation on
cold compared to median days that would be expected to reduce
net radiation through increased cloudiness and increase the
evaporative fraction through increases in soil moisture, although
the changes could be moderated by other, associated changes in
radiation and meteorology.

The behavior of the extremes was benchmarked with respect
to the seasonal median, rather than mean, because the former is
unaffected by changes in the tails of a distribution. In particular,
the slower warming of the cold tail relative to the median
(combined with the hot tail keeping pace with the median) would
be expected to induce slower warming of the mean compared to
the median. As a direct result of this asymmetry, repeating our
analysis of the amplified warming of hot days but benchmarking
against the mean, instead of the median, leads to a conclusion
that there has been significantly faster warming of hot days in
the tropics and Southern Hemisphere where there has been the
greatest stretching of the cold tail (SI Appendix, Fig. S18). The
use of the median allows for a clearer separation of the trend
in each tail, and we suggest that the amplification of hot day
warming compared to the mean can be viewed as an artifact of
the cold tail stretching, which has rather different implications
in terms of impacts than if the variability increase were due to
stretching of the warm tail.

There is general agreement between CMIP6 models and
observations that hot days have warmed at the same pace as the
median at large scales. The good agreement historically provides
some confidence that the projected hot day amplification in the
tropics, and perhaps in the Southern Hemisphere, may indeed
emerge, and motivates future work to reduce the substantial
intermodel spread in the magnitude of the amplification. This
stands in contrast to the Northern Hemisphere where models
agree that future heat extremes will follow changes in the median.
The agreement between models and observations is diminished
for the cold tail, where the observed signal generally falls outside
the envelope of 28 CMIP6 models. However, it should be noted
that the disagreement is largest in the tropical and Southern
Hemisphere domains where our observing systems, particularly
in situ observations, are more limited, and the possibility of data
artifacts cannot be excluded.

Extreme heat is the most deadly type of extreme weather
(73). The results found here suggest that historical changes in
heat extremes at large spatial scales can be relatively simply
explained by a spatially variable shift in median temperatures.
The extent to which this continues to hold in the future should
be monitored to provide relevant information about the expected
future probabilities of extreme temperatures.

Materials and Methods

PeriodofAnalysis. The main analysis focuses on the years 1959–2023. The year
1958 is included for the Southern Hemisphere because we assign any Southern
Hemisphere warm season that begins in year X to the year X + 1. The starting year
of the analysis was chosen because of data quality concerns in ERA5 temperature
in prior years (SI Appendix, Fig. S19 as an example), as well as the fact that many
GHCND stations come online throughout the late 1940s and 1950s; prior to
1950, very few stations are available outside of North America (43).
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ERA5 Data. The primary source of data is the ERA5 global reanalysis (42) due
to its duration and quality. Daily maximum values of 2 m air temperature
(ERA5 variable name “2m_temperature”) are calculated as the maximum hourly
value in each day. This will, in general, lead to underestimated values of the
maxima since they are not recorded instantaneously, but will not induce spurious
trends in the data. Net surface shortwave (“surface_net_solar_radiation”), net
surface longwave (“surface_net_thermal_radiation”), latent heat flux (“surface_
latent_heat_flux”), and sensible heat flux (“surface_sensible_heat_flux”) are
also used. For shortwave, longwave, latent, and sensible heat fluxes, the daily
value is the average across the hourly values. The hourly data are downloaded
at the native 0.25◦×0.25◦ latitude-longitude resolution. After calculating the
daily maximum or average, the data are regridded to a 1◦×1◦ latitude-longitude
grid. The evaporative fraction, EF, is calculated as the fraction of net radiation at

the surface that is partitioned into latent heating: EF =
LH↑

SW↓−LW↑
, where the

direction of the subscripted arrow indicates our sign convention for the fluxes.
Note that the raw data from ERA5 always have the sign convention of positive
downward.

GHCND Data. To provide some validation of the ERA5 temperature trends,
we compare to in situ measurements contained within the Global Historical
Climatology Network-Daily (GHCND; 43) database. Stations are first selected if
their first year is at least as early as 1959 for the Northern Hemisphere and 1958
for the Southern Hemisphere, and their last year is 2023 or later. Measurements
that fail any quality control checks or are lagged with respect to the reported time
of observation (mflag of “L”) are set to missing. Because our analysis relies on the
seasonal maxima and minima of temperature, seasons that do not have 100%
data coverage within the season are removed. We then retain only the stations
that have data for at least 75% of the years (at least 48 out of 65 y), with the
additional requirement that they must also have the same fraction of coverage
during the first and last 10 y of the study period (at least eight out of 10 y). The
remaining stations are primarily in the United States, Europe, and Australia.

Additional Gridded Observational Datasets. We compare the ERA5 results
to other gridded, daily datasets for temperature and precipitation that are
available for various subsets of the satellite era. For temperature, we use the
CHIRTSdaily dataset (1983–2016) that merges remote sensing, in situ data, and
ERA5 reanalysis, and is specifically focused on creating a high-quality product
in regions with low in situ data coverage (44). For precipitation, we consider five
additional datasets beyond ERA5: 1) CHIRPS (1981–2023), based on in situ and
remote sensing measurements, with a focus on quality in regions with sparse in
situmeasurements(74);2)MSWEP(1979–2023),whichmergesgauge,satellite,
and reanalysis (ERA5) data (75); 3) PERSIANN-CDR (1983–2023), which uses an
artificial neural network to predict precipitation based on satellite imagery, which
is trained using National Centers for Environmental Prediction (NCEP) Stage IV
hourly precipitation and bias-corrected with Global Precipitation Climatology
Project (GPCP) monthly precipitation data (76); 4) CPC Global Unified Gauge-
Based Analysis of Daily Precipitation (77); and 5) GPCC Full Data Daily Version
2022 (1982–2020) (78). The latter two datasets are based solely on in situ gauge
measurements that are statistically interpolated; GPCC generally draws on a
greater number of in situ observations than CPC (79). All datasets are bilinearly
interpolated to the same 1◦×1◦ latitude-longitude grid used for ERA5.

CMIP6 data. For comparison to the observed trends in temperature, we use all
CMIP6 models (80) that provide daily data in the Earth System Grid Federation
database for daily maximum temperature (“tasmax”) for both the historical (up
to 2014) and SSP3-7.0 scenarios (2015 and onward) (81), leading to 262 simula-
tions across 28 models, four of which are large ensembles (at least 30 members;
ACCESS-ESM1-5, CanESM5, MIROC6, and MPI-ESM1-2-LR). For the future trends,
only the SSP3-7.0 simulations are required, and 316 simulations across 28
models are available, five of which are large ensembles (ACCESS-ESM1-5,
CanESM5, EC-Earth3, MIROC6, and MPI-ESM1-2-LR). To create SI Appendix,
Fig. S17, we additionally use daily precipitation (“pr”) for the historical (up
to 2014) and SSP3-7.0 scenarios (2015–2023); there are slightly fewer (255)
simulations available for this analysis because a small number of models do not
provide daily precipitation data for both the historical and SSP3-7.0 scenarios.

Geographic Domain and Definition of Land. We consider 60◦S to 80◦N for
the analysis. Both Greenland and Antarctica are excluded given the different
processes that govern temperature over persistently ice-covered surfaces.
Gridboxes marked as having at least 50% land fraction are included in the
analysis. For ERA5, the native landmask is regridded to 1◦×1◦ latitude-
longitude resolution before masking; the same land mask is used for all other
gridded observational products. For CMIP6, the land mask for each model is
used.

Anomaly Calculation. The climatological seasonal cycle in temperature is
removed before calculation of the seasonal median and extremes. The seasonal
cycle is estimated by fitting the data to the first five Fourier basis functions with
annual frequency (e.g., a sine and cosine pairs with frequencies 1/ y, 2/ y,...,
5/ y). This model explains >99% of the variance in the empirical seasonal
cycle (estimated by averaging by day of year) on average across gridboxes in
ERA5, and comparable amounts for the other temperature datasets. The terms
in the surface energy balance in Eq. 1 are also considered as anomalies from
the seasonal cycle. In these cases, the seasonal cycle is estimated through
applying a forward-backward third-order lowpass Butterworth filter with a cutoff
frequency of 1/30 d to the empirical seasonal cycle. This approach is taken
for the budget terms because their seasonality (particularly for latent and
sensible heat fluxes) is harder to capture with a small number of Fourier basis
functions.

Defining the Warm Season. In order to perform a global analysis of changes
in warm season temperature distributions, we consider a latitudinally varying
warm season. At each latitude, the fitted seasonal cycle (from the first five Fourier
bases, discussed above) over land is averaged across longitude, the hottest day
of year from the averaged seasonal cycles is identified, and then the warm
season is defined as a 91-d window around that day (SI Appendix, Fig. S20).
Warm seasons south of the equator are shifted forward by half a year, such that,
e.g., the austral summer that spans 1958–1959 is assigned the year 1959.

Alternative Metrics of Extremes. The primary analysis defines the extremity
of temperature deviations (after removing the seasonal median) of a given year
by the seasonal maximum and minimum. We also consider three other metrics
of extremity to provide a more holistic perspective. For the hot tail, the metrics
are (1a) the cumulative degree-days over the 95th percentile of the temperature
deviations from the median (i.e., the sum of temperature deviations across the
season that exceed the 95th percentile), (2a) the number of days per season
that exceed the 95th percentile of the temperature deviations, and (3a) the
average exceedance over the 95th percentile of the temperature deviations,
i.e. (1a) normalized by (2a). The comparable metrics for the cold tail are (1b)
the cumulative degree-days less than the 5th percentile of the temperature
deviations, (2b) the number of days per season that are below the 5th percentile
of the temperature deviations, and (3b) the average exceedance less than
the 5th percentile of the temperature deviations, i.e. (1b) normalized by (2b).
The equivalent of Fig. 1 for these alternative definitions of extremes are in SI
Appendix, Figs. S4–S6; the spatial patterns and time series are very similar to
the main results. An advantage of performing the full analysis in rank space
is that the ranks from the different definitions of extremes can be averaged
together, providing a single metric that incorporates all of the characteristics of
each metric. The trends in the average metric are shown in SI Appendix, Fig. S7,
and are again very similar to the others.

Null Hypothesis for Rank Trends and Spatial Degrees of Freedom. The
null hypothesis for the rank trends is that there is no change in the ranks
over time. To quantify this null hypothesis for the domain-average values, we
perform the following procedure 1,000,000 times: N random time series of
ranks (e.g., a random draw without replacement of values between 1 and 65 for
a 65-y record) are created, and averaged, where N is an estimate of the number
of spatial degrees of freedom in the field (the global land masses, or each
hemisphere or tropics). The 1,000,000 resulting time series (each an average
across N time series) are treated as samples from the null hypothesis. The value
of N is estimated using the eigenvalue formula method of Bretherton et al. (82)
and is found to be 57, 53, 48, and 43 for the seasonal maximum ranks for the
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globe, Northern Hemisphere, tropics, and Southern Hemisphere, respectively,
and 57, 54, 45, and 43 for seasonal minimum ranks in the same domains.
Note that the degrees of freedom estimated with this method are limited by
the number of time samples (65, in our case), and may be biased low in cases
when the estimated number of degrees of freedom is close to 65, such as for the
global and Northern Hemisphere averages. Increasing the degrees of freedom
(e.g., ref. 33 estimated≈100 degrees of freedom in the Northern Hemisphere
for similar data) would slightly shrink the null intervals. However, none of the
general conclusions would change given the general lack of signal of hot day
amplification in the global and Northern Hemisphere averages and strong signal
of cold tail stretching.

Multiple Hypothesis Testing and Significance. To account for multiple
hypothesis testing (on average, 5% of null hypotheses will be rejected if
performing individual tests at the 0.05 level), we control for a false discovery rate
(83) of 0.05. Through this control, in expectation, no more than 5% of rejected
nulls will be false discoveries (i.e., true nulls). The false discovery control is
performed independently to test the null hypothesis of no trend at each gridbox
in each map in Fig. 1, for each of the eight time series in Fig. 1, and for each of
the 16 multimodel ensemble means in Figs. 3 and 4. For the domain-average
trends, a two-sided P-value for each trend is estimated as the percentile of
the observed trend within the trends estimated from the 1,000,000 samples
of the null hypothesis produced from the procedure discussed above. For the
gridboxtrends, thetwo-sidedp-valueisestimatedusingthescipy.stats.linregress
function, which uses the Wald Test with t-distribution of the test statistic. For
Figs. 1 B–E and G–J, 3, and 4, each null envelope (gray shading) shows the
95% range of the samples from the null hypothesis, while the cutoff p-value
for significance will vary (and generally be less than 0.05) depending on the
distribution of P-values and number of hypotheses being tested.

Illustration of Trends in Ranks ApproachUsing Synthetic Data. In order to
test and demonstrate the power of the spatially aggregated rank-based approach
to detecting changes in extremes, we apply the method to synthetic data. The
synthetic data are generated from a normal distribution to straightforwardly
simulate separate changes in the median (equal to the mean for a normal
distribution) and the tails (as a function of the variance). We explore three
different scenarios: 1) increase in median and no change in variance, 2) increase
in variance and no change in median, and 3) increase in both median and
variance. In scenario (1), all changes in extremes should be accounted for by
the change in the median, and we use it to confirm that our proposed method
is not leading to false positives. In scenarios (2) and (3), the extremes are
changing beyond what is explained by a median shift, and we use them to test
the power of the proposed method. We also consider a case with no change
in median or variance to provide the null hypothesis. For each experiment,
we generate data for 50 “locations” (analogous to the aforementioned ≈50
spatial degrees of freedom estimated for each domain), each with 65 “years”
of data containing 91 d, analogous to the observational records used in the
analysis. We consider median changes over 65 y between 0.25 ◦C and 2 ◦C in
steps of 0.25 ◦C, and fractional variance changes between 5% and 50% in steps
of 5%. For each case of median-only, variance-only, or median-and-variance
changes, we assess the fraction of tests with a significant trend in ranks for
both the individual “locations” and for the average across locations. In the case
of individual locations, we employ a false discovery rate control, analogous to
our actual analysis of individual gridboxes (although with a smaller number of
tests here). SI Appendix, Fig. S2 shows the fraction of N = 100 hypothesis tests
that were rejected for each median and variance combination, before and after
averaging. Even in cases of large variance changes (35% increase over 65 y), only
≈30% of individual locations were found to have a significant trend in ranks.
In contrast, after averaging the rank time series, variance changes as small as
5% over 65 y could be detected ≈65% of the time, and a variance change of
10% was detected over 99% of the time. Importantly, when only the median
was changing over time, a “significant” trend in the spatially averaged ranks was
found, on average, 5% of the time, consistent with our choice of significance
level.

Inferring Temperature Anomalies from the Surface Energy Balance. The
evaporative fraction is generally defined as,

EF =
LH
Rn

=
LH

SW − LW
, [2]

where LH is latent heat (positive upward) and Rn is the net radiation at the
surface, which can be decomposed into net shortwave (SW , positive downward)
and net longwave (LW , positive upward) components. Each component of the
equation can be written in terms of a time-mean state (shown as ·) and an
anomaly (shown as ·′). Through assuming that any product of anomalies is small
compared to terms that include the mean state, and noting that Eq. 2 holds for
the mean state,

EF(SW ′ − LW ′) + RnEF′ = LH′ = SW ′ − LW ′ − SH′ − G′, [3]

where the second equality draws on the surface energy budget (SW − LW =
LH+ SH+G;G is the ground heat flux and SH is the sensible heat flux, both are
defined as positive upward). The anomalies are calculated from the climatological
seasonal cycle, although the mean states are chosen to be time-constant for
simplicity, and because the seasonality in the mean is much smaller than the
time-mean (SI Appendix, Fig. S21). In order to move from the surface energy
budget to temperature, it is necessary to assume some relationships between
the terms and temperature anomalies. We first assume that the longwave
heat flux anomalies can be decomposed as LW ′ = aT ′ − LW ′f . The first term
varies linearly with temperature, and is assumed to capture both upward and
downward longwave radiation caused by surface and atmospheric temperature,
respectively. The linearity in upward longwave is from the linearization of the
nonlinear Stefan–Boltzmann law. The second term is interpreted as the forcing
related to increased greenhouse gas concentrations. In addition, we assume
SH′ = bT ′ and G′ = cT ′. Note that a, b, and c can be spatially variable, are all
expected to be positive and largely unchanged between climate states (see p.
1664 in ref. 69 for a discussion of these assumptions). Using these assumptions,
we can rearrange to get an expression for temperature,

T ′ =
1

a(1− EF) + b + c

(
(1− EF)R′ − RnEF′

)
, [4]

where R′ = SW ′ + LW ′f , i.e., the forcing anomaly is the sum of shortwave and
longwave anomalies. We assume that a, b, and c do not vary between hot, cold,
and median days, yielding Eq.1, which is used to calculate the gray lines in Fig. 1.

Data, Materials, and Software Availability. All codes (in Python) to analyze
the data and make the figures are available at https://zenodo.org/doi/10.
5281/zenodo.12640136 All datasets used in this study are freely available
at the following websites: ERA5: https://www.ecmwf.int/en/forecasts/dataset/
ecmwf-reanalysis-v5 (42); GHCND: https://www.ncei.noaa.gov/data/global-
historical-climatology-network-daily/ (43); CHIRTSdaily: http://data.chc.ucsb.
edu/products/CHIRTSdaily/ (44); CHIRPS: https://data.chc.ucsb.edu/products/
CHIRPS-2.0/global_daily/ (74); MSWEP: https://www.gloh2o.org/mswep/
(75); PERSIANN-CDR: https://www.ncei.noaa.gov/data/precipitation-persiann/
access/ (76); CPC: https://downloads.psl.noaa.gov/Datasets/cpc_global_precip/
(77); GPCC: https://opendata.dwd.de/climate_environment/GPCC/full_data_
daily_v2022/ (78); and CMIP6: https://esgf-node.llnl.gov/search/cmip6/ (80).

ACKNOWLEDGMENTS. K.A.M. acknowledges support from the NSF (Awards
No. 1939988 and 2338237) and the David and Lucile Packard Foundation. I.R.S.
acknowledges funding from the NSF National Center for Atmospheric Research,
which is a major facility sponsored by the NSF under Cooperative Agreement
No. 1852977. A.P.W. acknowledges support from the MacArthur Foundation.

Author affiliations: aDepartment of Statistics and Data Science, University of California,
Los Angeles, CA 90095; bDepartment of Atmospheric and Oceanic Sciences, University
of California, Los Angeles, CA 90095; cInstitute of the Environment and Sustainability,
University of California, Los Angeles, CA 90095; dClimate and Global Dynamics Laboratory,
NSF National Center for Atmospheric Research, Boulder, CO 80305; and eDepartment of
Geography, University of California, Los Angeles, CA 90095

PNAS 2024 Vol. 121 No. 42 e2406143121 https://doi.org/10.1073/pnas.2406143121 9 of 11

https://www.pnas.org/lookup/doi/10.1073/pnas.2406143121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2406143121#supplementary-materials
https://zenodo.org/doi/10.5281/zenodo.12640136
https://zenodo.org/doi/10.5281/zenodo.12640136
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
https://www.ncei.noaa.gov/data/global-historical-climatology-network-daily/
https://www.ncei.noaa.gov/data/global-historical-climatology-network-daily/
http://data.chc.ucsb.edu/products/CHIRTSdaily/
http://data.chc.ucsb.edu/products/CHIRTSdaily/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/
https://www.gloh2o.org/mswep/
https://www.ncei.noaa.gov/data/precipitation-persiann/access/
https://www.ncei.noaa.gov/data/precipitation-persiann/access/
https://downloads.psl.noaa.gov/Datasets/cpc_global_precip/
https://opendata.dwd.de/climate_environment/GPCC/full_data_daily_v2022/
https://opendata.dwd.de/climate_environment/GPCC/full_data_daily_v2022/
https://esgf-node.llnl.gov/search/cmip6/


1. R. Vautard et al., Human contribution to the record-breaking June and July 2019 heatwaves in
Western Europe. Environ. Res. Lett. 15, 094077 (2020).

2. K. A. McKinnon, I. R. Simpson, How unexpected was the 2021 Pacific Northwest heatwave?
Geophys. Res. Lett. 49, e2022GL100380 (2022).

3. R. H. White et al., The unprecedented Pacific Northwest heatwave of June 2021. Nat. Commun. 14,
727 (2023).

4. T. Zhang, Y. Deng, J. Chen, S. Yang, Y. Dai, An energetics tale of the 2022 mega-heatwave over
central-eastern China. npj Clim. Atmos. Sci. 6, 162 (2023).

5. C. Qian et al., Rapid attribution of the record-breaking heatwave event in North China in June 2023
and future risks. Environ. Res. Lett. 19, 014028 (2024).

6. S. Rahmstorf, D. Coumou, Increase of extreme events in a warming world. Proc. Natl. Acad. Sci.
U.S.A. 108, 17905–17909 (2011).

7. E. Fischer, S. Sippel, R. Knutti, Increasing probability of record-shattering climate extremes. Nat.
Clim. Change 11, 689–695 (2021).

8. V. Petoukhov, S. Rahmstorf, S. Petri, H. J. Schellnhuber, Quasiresonant amplification of planetary
waves and recent northern hemisphere weather extremes. Proc. Natl. Acad. Sci. U.S.A. 110,
5336–5341 (2013).

9. J. A. Screen, I. Simmonds, Amplified mid-latitude planetary waves favour particular regional
weather extremes. Nat. Clim. Change 4, 704–709 (2014).

10. M. Röthlisberger, L. Frossard, L. F. Bosart, D. Keyser, O. Martius, Recurrent synoptic-scale Rossby
wave patterns and their effect on the persistence of cold and hot spells. J. Clim. 32, 3207–3226
(2019).

11. K. Kornhuber et al., Amplified Rossby waves enhance risk of concurrent heatwaves in major
breadbasket regions. Nat. Clim. Change 10, 48–53 (2020).

12. D. Coumou, K. Kornhuber, J. Lehmann, V. Petoukhov, “Weakened flow, persistent circulation, and
prolonged weather extremes in boreal summer” in Climate Extremes: Patterns and Mechanisms,
S. -Y. Simon Wang, J. -H. Yoon, C. C. Funk, R. R. Gillies, Eds. (Wiley, 2017), pp. 61–73.

13. M. E. Mann et al., Projected changes in persistent extreme summer weather events: The role of
quasi-resonant amplification. Sci. Adv. 4, eaat3272 (2018).

14. K. Kornhuber et al., Extreme weather events in early summer 2018 connected by a recurrent
hemispheric wave-7 pattern. Environ. Res. Lett. 14, 054002 (2019).

15. E. Rousi, K. Kornhuber, G. Beobide-Arsuaga, F. Luo, D. Coumou, Accelerated western European
heatwave trends linked to more-persistent double jets over Eurasia. Nat. Commun. 13, 3851
(2022).

16. J. A. Screen, I. Simmonds, Caution needed when linking weather extremes to amplified planetary
waves. Proc. Natl. Acad. Sci. U.S.A. 110, E2327 (2013).

17. E. A. Barnes, J. A. Screen, The impact of Arctic warming on the midlatitude jet-stream: Can it? Has
it? Will it? Wiley Interdiscip. Rev. Clim. Change 6, 277–286 (2015).

18. T. Woollings et al., Blocking and its response to climate change. Curr. Clim. Change Rep. 4,
287–300 (2018).

19. J. Riboldi, F. Lott, F. d’Andrea, G. Rivière, On the linkage between Rossby wave phase speed,
atmospheric blocking, and Arctic amplification. Geophys. Res. Lett. 47, e2020GL087796 (2020).

20. R. Blackport, J. A. Screen, Insignificant effect of Arctic amplification on the amplitude of midlatitude
atmospheric waves. Sci. Adv. 6, eaay2880 (2020).

21. M. Stendel, J. Francis, R. White, P. D. Williams, T. Woollings, “The jet stream and climate change”
in Climate Change, T. M. Letcher, Ed. (Elsevier, 2021), pp. 327–357.

22. M. H. Gross, M. G. Donat, L. V. Alexander, Changes in daily temperature extremes relative
to the mean in Coupled Model Intercomparison Project Phase 5 models and observations.
Int. J. Climatol. 39, 5273–5291 (2019).

23. S. Q. Duan, K. L. Findell, J. S. Wright, Three regimes of temperature distribution change over dry
land, moist land, and oceanic surfaces. Geophys. Res. Lett. 47, e2020GL090997 (2020).

24. C. Simolo, S. Corti, Quantifying the role of variability in future intensification of heat extremes.
Nat. Commun. 13, 7930 (2022).

25. M. P. Byrne, Amplified warming of extreme temperatures over tropical land. Nat. Geosci. 14,
837–841 (2021).

26. S. Q. Duan, K. A. McKinnon, I. R. Simpson, Two perspectives on amplified warming over tropical
land. J. Clim. 37, 4743–4760 (2024).

27. N. S. Diffenbaugh, J. S. Pal, F. Giorgi, X. Gao, Heat stress intensification in the Mediterranean
climate change hotspot. Geophys. Res. Lett. 34, L11706 (2007).

28. M. G. Donat, A. J. Pitman, S. I. Seneviratne, Regional warming of hot extremes accelerated by
surface energy fluxes. Geophys. Res. Lett. 44, 7011–7019 (2017).

29. M. M. Vogel et al., Regional amplification of projected changes in extreme temperatures
strongly controlled by soil moisture-temperature feedbacks. Geophys. Res. Lett. 44, 1511–1519
(2017).

30. C. Schwingshackl, M. Hirschi, S. I. Seneviratne, A theoretical approach to assess soil moisture-
climate coupling across CMIP5 and GLACE-CMIP5 experiments. Earth Syst. Dyn. 9, 1217–1234
(2018).

31. A. K. Srivastava, M. Wehner, C. Bonfils, P. A. Ullrich, M. Risser, Local hydroclimate drives differential
warming rates between regular summer days and extreme hot days in the Northern Hemisphere.
Weather Clim. Extremes 45, 100709 (2024).

32. K. A. McKinnon, A. Rhines, M. P. Tingley, P. Huybers, The changing shape of Northern Hemisphere
summer temperature distributions. J. Geophys. Res. Atmos. 121, 8849–8868 (2016).

33. S. Van Loon, D. W. Thompson, Comparing local versus hemispheric perspectives of extreme heat
events. Geophys. Res. Lett. 50, e2023GL105246 (2023).

34. D. Argüeso, A. Di Luca, S. E. Perkins-Kirkpatrick, J. P. Evans, Seasonal mean temperature changes
control future heat waves. Geophys. Res. Lett. 43, 7653–7660 (2016).

35. K. van der Wiel, R. Bintanja, Contribution of climatic changes in mean and variability to monthly
temperature and precipitation extremes. Commun. Earth Environ. 2, 1 (2021).

36. T. A. Carleton, S. M. Hsiang, Social and economic impacts of climate. Science 353, aad9837 (2016).
37. N. R. Cavanaugh, S. S. Shen, Northern Hemisphere climatology and trends of statistical moments

documented from GHCN-daily surface air temperature station data from 1950 to 2010. J. Clim. 27,
5396–5410 (2014).

38. D. Coumou, G. Di Capua, S. Vavrus, L. Wang, S. Wang, The influence of Arctic amplification on
mid-latitude summer circulation. Nat. Commun. 9, 2959 (2018).

39. M. Patterson, North-West Europe hottest days are warming twice as fast as mean summer days.
Geophys. Res. Lett. 50, e2023GL102757 (2023).

40. M. Kotz, L. Wenz, A. Levermann, Footprint of greenhouse forcing in daily temperature variability.
Proc. Natl. Acad. Sci. U.S.A. 118, e2103294118 (2021).

41. P. D. Sardeshmukh, G. P. Compo, C. Penland, Need for caution in interpreting extreme weather
statistics. J. Clim. 28, 9166–9187 (2015).

42. H. Hersbach et al., The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
43. M. J. Menne, I. Durre, R. S. Vose, B. E. Gleason, T. G. Houston, An overview of the global historical

climatology network-daily database. J. Atmos. Ocean. Technol. 29, 897–910 (2012).
44. A. Verdin et al., Development and validation of the CHIRTS-daily quasi-global high-resolution daily

temperature data set. Sci. Data 7, 303 (2020).
45. R. Vautard et al., Heat extremes in Western Europe increasing faster than simulated due to

atmospheric circulation trends. Nat. Commun. 14, 1–9 (2023).
46. G. Lenderink, A. Van Ulden, B. Van den Hurk, E. Van Meijgaard, Summertime inter-annual

temperature variability in an ensemble of regional model simulations: Analysis of the surface
energy budget. Clim. Change 81, 233–247 (2007).

47. A. J. Teuling et al., Contrasting response of European forest and grassland energy exchange to
heatwaves. Nat. Geosci. 3, 722–727 (2010).

48. S. I. Seneviratne et al., Investigating soil moisture-climate interactions in a changing climate: A
review. Earth-Science Rev. 99, 125–161 (2010).

49. D. O. Benson, P. A. Dirmeyer, Characterizing the relationship between temperature and soil
moisture extremes and their role in the exacerbation of heat waves over the contiguous United
States. J. Clim. 34, 2175–2187 (2021).

50. J. Zhou, A. J. Teuling, S. I. Seneviratne, A. L. Hirsch, Soil moisture-temperature coupling increases
population exposure to future heatwaves. Earth’s Future 12, e2024EF004697 (2024).

51. M. Budyko, Climate and Life (Academic Press, 1974), p. 508.
52. P. S. Eagleson, Climate, soil, and vegetation: 4. The expected value of annual evapotranspiration.

Water Resour. Res. 14, 731–739 (1978).
53. T. W. Ford, C. O. Wulff, S. M. Quiring, Assessment of observed and model-derived soil moisture-

evaporative fraction relationships over the United States Southern Great Plains. J. Geophys. Res.
Atmos. 119, 6279–6291 (2014).

54. E. Haghighi, D. J. Short Gianotti, R. Akbar, G. D. Salvucci, D. Entekhabi, Soil and atmospheric
controls on the land surface energy balance: A generalized framework for distinguishing moisture-
limited and energy-limited evaporation regimes. Water Resour. Res. 54, 1831–1851 (2018).

55. C. R. Holmes, T. Woollings, E. Hawkins, H. De Vries, Robust future changes in temperature
variability under greenhouse gas forcing and the relationship with thermal advection. J. Clim.
29, 2221–2236 (2016).

56. T. Tamarin-Brodsky, K. Hodges, B. J. Hoskins, T. G. Shepherd, Changes in Northern Hemisphere
temperature variability shaped by regional warming patterns. Nat. Geosci. 13, 414–421 (2020).

57. M. D. Zelinka et al., Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 47,
e2019GL085782 (2020).

58. S. I. Seneviratne, M. Hauser, Regional climate sensitivity of climate extremes in CMIP6 versus
CMIP5 multimodel ensembles. Earth’s Future 8, e2019EF001474 (2020).

59. R. R. Nemani et al., Climate-driven increases in global terrestrial net primary production from 1982
to 1999. Science 300, 1560–1563 (2003).

60. J. K. Balch et al., Warming weakens the night-time barrier to global fire. Nature 602, 442–448
(2022).

61. R. C. Wills, Y. Dong, C. Proistosecu, K. C. Armour, D. S. Battisti, Systematic climate model biases in
the large-scale patterns of recent sea-surface temperature and sea-level pressure change. Geophys.
Res. Lett. 49, e2022GL100011 (2022).

62. L. M. Polvani, D. W. Waugh, G. J. Correa, S. W. Son, Stratospheric ozone depletion: The main driver
of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Clim. 24,
795–812 (2011).

63. J. Bandoro, S. Solomon, A. Donohoe, D. W. Thompson, B. D. Santer, Influences of the Antarctic
ozone hole on Southern Hemispheric summer climate change. J. Clim. 27, 6245–6264 (2014).

64. Y. Xu, J. F. Lamarque, B. M. Sanderson, The importance of aerosol scenarios in projections of future
heat extremes. Clim. Change 146, 393–406 (2018).

65. T. Laepple, P. Huybers, Ocean surface temperature variability: Large model-data differences at
decadal and longer periods. Proc. Natl. Acad. Sci. U.S.A. 111, 16682–16687 (2014).

66. T. Laepple et al., Regional but not global temperature variability underestimated by climate
models at supradecadal timescales. Nat. Geosci. 16, 958–966 (2023).

67. S. Po-Chedley, T. J. Thorsen, Q. Fu, Removing diurnal cycle contamination in satellite-derived
tropospheric temperatures: Understanding tropical tropospheric trend discrepancies. J. Clim. 28,
2274–2290 (2015).

68. S. Po-Chedley et al., Internal variability and forcing influence model-satellite differences in the rate
of tropical tropospheric warming. Proc. Natl. Acad. Sci. U.S.A. 119, e2209431119 (2022).

69. W. Kong, K. A. McKinnon, I. R. Simpson, M. M. Laguë, Understanding responses of summer
continental daily temperature variance to perturbations in the land surface evaporative resistance.
J. Clim. 36, 1653–1678 (2023).

70. Q. Kong, M. Huber, Regimes of soil moisture-wet-bulb temperature coupling with relevance to
moist heat stress. J. Clim. 36, 7925–7942 (2023).

71. M. Chiacchio, M. Wild, Influence of NAO and clouds on long-term seasonal variations of surface
solar radiation in Europe. J. Geophys. Res. Atmos. 115, D00D22 (2010).

72. R. M. Horton, J. S. Mankin, C. Lesk, E. Coffel, C. Raymond, A review of recent advances in research
on extreme heat events. Curr. Clim. Change Rep. 2, 242–259 (2016).

73. W. M. Organization, 2023 state of climate services: Health (Tech. Rep., 2023).
74. C. Funk et al., The climate hazards infrared precipitation with stations—A new environmental record

for monitoring extremes. Sci. Data 2, 1–21 (2015).
75. H. E. Beck et al., MSWEP: 3-hourly 0.25 global gridded precipitation (1979–2015) by merging

gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 21, 589–615 (2017).
76. H. Ashouri et al., PERSIANN-CDR: Daily precipitation climate data record from multisatellite

observations for hydrological and climate studies. Bull. Am. Meteorol. Soc. 96, 69–83 (2015).
77. P. Xie, M. Chen, W. Shi, “CPC unified gauge-based analysis of global daily precipitation” in

Preprints, 24th Conference on Hydrology (American Meteorological Society, Atlanta, GA, 2010),
vol. 2.

78. U. Schneider et al., GPCC’s new land surface precipitation climatology based on quality-controlled
in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol. 115, 15–40
(2014).

10 of 11 https://doi.org/10.1073/pnas.2406143121 pnas.org



79. Q. Sun et al., A review of global precipitation data sets: Data sources, estimation, and
intercomparisons. Rev. Geophys. 56, 79–107 (2018).

80. V. Eyring et al., Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6)
experimental design and organization. Geosci. Model. Dev. 9, 1937–1958 (2016).

81. B. C. O’Neill et al., The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci.
Model. Dev. 9, 3461–3482 (2016).

82. C. S. Bretherton, M. Widmann, V. P. Dymnikov, J. M. Wallace, I. Bladé, The effective
number of spatial degrees of freedom of a time-varying field. J. Clim. 12, 1990–2009
(1999).

83. Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: A practical and powerful
approach to multiple testing. J. R. Stat. Soc.: Ser. B (Methodological) 57, 289–300
(1995).

PNAS 2024 Vol. 121 No. 42 e2406143121 https://doi.org/10.1073/pnas.2406143121 11 of 11




