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Abstract

In this paper we present a theory of how
machines can learn from attention focusing
failures. Our method requires that learning
mechanisms have available a detailed model
of decision-making mechanisms they are to
modify; it is therefore central to this research
to develop and present such a model. The
portions of our developing model presented
below concern those parts of a decision-making
apparatus that should be approximately the
same from one agent to another. Though
learning mechanisms would have to be sensitive
to both the idiosyncratic and agent-invariant
elements of an adaptable decision architecture,
we have concentrated on the invariant elements,
which provide the most general constraints on
learning.

Introduction

An agent in a complex environment can generally
afford to consider only a tiny fraction of the infor-
mation that is available to it before deciding on an
action; therefore, such an agent must have some
mechanism for focusing its attention on the infor-
mation most likely to prove useful. The mechanisms
of attention focusing are thus a critical part of the
agent’s cognitive apparatus, and serious failures may
result when attention is focused improperly. For
example, a driver may fail to react to a stop sign
even though the sign is within his visual field, he
understands the meaning of the sign and he wishes
in general to stop at stop signs. In other words,
although the high-level mechanisms for reacting to
stop-signs were in place, and the raw data necessary
to recognize this particular stop sign were available,
the driver’s attention-focusing mechanisms failed to
recognize that this data should be processed further.
This is the problem of attention focusing.
Attention focusing failures typically arise because
of unanticipated interactions between cognitive
tasks, each of which is placing demands on an
agent’s attentional resources. For instance, a driver
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might miss a stop sign because he is distracted by a
commotion on the sidewalk. The task of determining
what is happening at the side of the road draws
off some of the perceptual and cognitive resources
that would normally be committed to driving the
car, thus causing the failure. In order to prevent a
recurrence of this type of failure, the agent must
determine how the competing tasks caused it to
make the mistake, and modify its attention-focusing
mechanisms so that they can successfully deal with
similar task conflicts in the future.

In this paper we present a theory of how machines
can learn from attention focusing failures.

Learning from Failure

Our approach is based on the paradigm of failure-
driven learning, in which the agent relies on the
observed failure of specific, monitored expectations
to signal an opportunity to learn [Sussman, 1975,
Schank, 1982, Hammond, 1989, Birnbaum et al.,
1990]. In particular, when an agent expects a plan to
achieve its goal, and this expectation is violated, one
response is to attempt to determine what aspect of
the agent’s decision making machinery was respon-
sible for the faulty plan, and how that aspect can be
modified to avoid the recurrence of such failures.?

When a plan unexpectedly fails, the first step in
learning is to fault a modifiable component of the
agent’s decision-making machinery. One approach
to identifying the faulty component is model-based
reasoning [Davis et al., 1982]. Just as in model-based
systems whose task is to identify the underlying
faults in devices like electronic circuits, the agent
will use a model of itself to facilitate the reasoning
process that leads to a diagnosis of the cause of
failure.

The ability to diagnose planning failures in general
depends critically on having a decision-making mod-
el that is rich enough to account for a wide variety of

!We have previously presented [Collins et al., 1991]
a model of the learning process involving three stages
- reconstruction (of the causal history of the failure),
diagnosis and repair.



Figure 1: Part of a component network

possible errors. The construction of such self-models
is thus a vital part of any attempt to construct agent-
models capable of failure-driven learning. Previous
attempts to construct such models have for the
most part depended on a number of highly domain-
specific assumptions [Collins et al., 1992]. Here we
describe aspects of what is intended to be a general
model of attention-focusing and decision-making in
an intelligent agent, and show in detail how this
model can be applied to handle a complex example.

Component Architecture

A model of decision-making that is to be used to
support learning must represent the decision-making
system in enough detail to enable precise? charac-
terizations of a failure; this makes it possible to
implicate a relatively small portion of the decision-
making mechanism, which in turn makes the task
of considering how that portion might be changed
manageable.

In our model, decision-making is carried out by
a network of semi-autonomous components, each
responsible for executing some specialized subtask.
For instance, a component responsible for detecting
a specific word whenever it is uttered near the
agent might be connected to components that detect
individual phonetic elements, each present in one
or more pronunciations of the word (see figure 1).
The information flow between these components
is bidirectional. The word-detector receives infor-
mation useful for inferring whether the word has
been uttered, and also provides expectations to
phoneme detectors which may be used to simplify
the processing of sensor data. We will consider such
a component in greater detail.

2The maximum useful specificity depends on what
repair strategies are available. In repairing a faulty
circuit, it is useful to know which component needs to
be replaced, but probably not useful to know how the
component is broken. In repairing a faulty decision-
maker, it is useful to know enough about a failure to
select a repair strategy to apply [Owens, 1990, Freed et
al., 1992).
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Figure 2: Generic Component Structure

Internal Structure of Components As dia-
grammed in figure 2, the components of our model
incorporate three sets of rules: output rules, bias
rules and selection rules. Output rules enable a
component to make the specialized inferences that
define its function. When it is determined that each
condition of an output rule is satisfied a specified
value is placed on the component’s output buffer,
making it available for use by output rules of other
components. Conversely, if a condition becomes
unsatisfied and the associated value is already on
the output buffer, then the value is removed. For
example, consider how a component whose function
is to identify intervals of sound sensor data corre-
sponding to the spoken word ‘fear’ should behave
as the agent hears the well-known phrase, “We have
nothing to fear but fear itself.”

Several output rules from a ‘fear’ detecting com-
ponent are shown in figure 3. Each specifies that
when certain sounds (phonemes) register at specified
(relative) intervals in the agent’s aural sensor data,
a value corresponding to a pronunciation of the
word ‘fear’ should be placed on the output buffer.
The word-detector can test whether a phoneme has
registered in its sensors by matching the appropriate
rule condition against the contents of a phoneme-
detector’s output buffer.3

Each output-rule condition in our example rules is
associated with a pair of variable sound parameters

SBecause our purpose is mainly to enable (and
present) a planning architecture which may be easily
adapted to deal with attention focusing problems, our
treatment of this example takes a substantially idealized
of view of speech analysis, dealing with only a few of
the many legitimate complications. To the extent pos-
sible, we have made our model consistent with current
phonological research [Blumstein, 1981].



IF f(e,f) A i(g,h) A r(a,b) A h=a A f=¢g
THEN add-to-output-buffer(midwest US,e,b)

IF f(e,f) A i(g,h) A I(c,d) A h=c A f=¢g
THEN add-to-output-buffer(boston,e,d)

IF f(e,f) A i(g,h) AD (i) A h>i A h<j A f=¢g
THEN add-to-output-buffer(southUS,e,b)

Figure 3: ‘fear’-detector output rules

representing the start and end of the data interval
to be tested for the sound. Ordering constraints
supplied with the rule can be used to limit the
amount of sensor data analysis needed to locate
a phoneme. For instance, if an expectation that
the word ‘fear’ will occur has been derived from
midsentence recognition of the phrase in which it
appears, any information about the location (in
the sensor data) of the first phoneme /f/ can be
used to constrain search for the second phoneme
/i/. Of course, the component which performs the
search, the /i/-detector, must somehow learn of
this constraint from the ‘fear’-detector. We enable
this in the following way: every time a parameter
of an output-rule condition becomes specified, that
specification is placed on the the ezpectation buffer
to be used as bias by other components.

To be wuseful in conserving computational
resources, expectations generated by other compo-
nents must be translated into useful constraints on
variables. This translation process is performed
by the component’s bias rules which encode depen-
dencies between values likely to be found in the
expectation buffers of specified components and
parameter values of output rules. Once generated,
bias on one parameter (such as the time-location of
an /f/) should be propogated to other parameters
(such as the time-location of an /i/). Constraint
propogation is facilitated by representing output
rules in a compiled form such as the rule network
depicted in figure 4. The output rules are thus treat-
ed as a set of tests to be run on the output buffers
of other components; when a certain set of tests
(corresponding to the conjuncts of an uncompiled
rule) are passed, a give output value thresholds and
is placed on the component’s output buffer. Tests in
the network may be run in any order.

The ability of an agent to make efficient use
of its attentional resources depends in part on
whether individual components make effective use
of their share of computational resources. One way
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1 (a,b) ﬁ h=d (midwestUS,e,b)
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Figure 4: Compiled Output Rules

to manage resource use is for components to be
discriminating about which tests in the output rule
network to run and which bias rules to execute;
those tests and rules that are least likely to help the
component carry out its function will be given lower
priority are thus least access to the components
resources. Selection rules determine which tests and
rules to run. In our example, a ‘fear’-detector’s
selection rules, having determined the dialect of a
speaker, will improve that component efficiency by
giving first priority to tests associated with the pro-
nunciation in that dialect and least priority to tests
associated exclusively with other pronunciations.

Selection rules must take account of a number of
factors, including:

¢ Whether to run more tests or generate more bias.

e Whether the information produced by a previously
run test or bias rule is likely to have become obsolete;
selection rules must weigh the need to produce more
information against the need to reevaluate the old.

¢ The number of outputs that may be ruled in or out
by running a test; preference should be given to the
most discriminating tests.

o Leverage on potential productivity supplied by cur-
rent test results and bias; preference should be given
to tests most likely to cause some output to threshold.

o The expected cost of running a test or bias rule vs.
the cost of other tests and bias rules.

Selection rules determine how the component uses
its resources by producing a set of permissions
that enable specified output tests and bias rules to
execute using a supplied set of variable constraints.*
As these rules more effectively take into account the
above listed factors, the attentional performance of
the component, and thus of the agent as a whole,
improves.

* Alternately, permissions may supply bias-derived
truth-values to be used in place of running a test. This
allows components to compensate for noisy or missing
data and to trade off some accuracy for speed/efficiency.
E.g. when expecting the word ‘fear,” the relevant
detector may choose to test for only the first and last
phoneme, simply assuming the presence of the middle
one.



Component failures In carrying out its respon-
sibilities, each component depends on a number
of other components to provide valid information.
When a component provides faulty information, that
failure may propogate and cause a planning failure
for the agent as a whole. One way to prevent
recurrence of a planning failure is to fix the source
of the problem; this requires an analysis of the
way in which a particular component failed. As
listed below, components can fail in a number of
ways; such failures may result in planning errors
corresponding to an attention-focusing failure.

Output rules don’t license a valid output or do license
an invalid one — in this case, the agent is not
knowledgable enough to perform some process no mat-
ter how resources are allocated. Attention-focusing
failures occur when an invalid output results in an
unproductive diversion of computational resources in
a client component.

Bias rules don’t license some useful constraint (or
truth-value assumption), making it impractical or
unproductive to run a critical test.

Bias rules license an unwarranted constraint or value
assumption, causing a critical test not to be run (over
certain parameter values).

Selection rules fail to run a critical test in time
— available constraints would have enabled a useful
output.

Selection rules fail to rerun a test in time to retract
an obsolete output. The output is used to license an
invalid inference (output or expectation) in another
component.

Selection rules fail to run a bias rule in time to make
a critical test cost-effective

Insufficient resources are available to the component
to generate a critical output using any good selection
strategy.

A component interacts pathologically with a down-
line component — e.g. by flooding it with correct but
irrelevant information [Freed et al., 1992)

Each of these kinds of failure may be associated
with one or more general strategies for modifying
the component so as to prevent its recurrence.® For
instance, a failure of bias rules to license a useful
constraint can be dealt with by using explanation-
based learning [DeJong and Mooney, 1986] to create
a new bias rule. [Krulwich, 1991] describes such a
process in detail.

5Failure categories have been used as indices to repair
strategies in other domains including strategic planning
[Collins, 1989] and device repair [Goel, 1991]; see also
(Owens, 1990]
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An Example

After riding the Tokyo subways for several weeks,
one of us became inured to the novelty and decided
to read a novel while waiting for his stop. Despite
regular public address (PA) announcements contain-
ing the name of the next station, the rider missed his
stop.

How might the rider explain his failure? A variety
of common sense explanations seem plausible. For
instance:

Story 1: I never heard my station announced. It prob-
ably was announced, but it didn’t get my attention.
Story 2: I remember hearing my station announced,
but somehow this didn’t strike me as important. I

must have been too absorbed in my book.

Story 3: I wasn’t sure whether I heard my station, so
I decided to check the station-sign once it became
visible out the window. I then became absorbed in
my book and forgot to do this.

In each failure story, the rider failed to get off
the train because some easily obtained information
was not taken into account. Such failures, which
can be described as failures to “pay attention,” can
each be traced to an underlying failure in the model
of sound-interpretation mechanisms of the agent’s
decision-making apparatus. We will now consider
several of the components in this model and the
accounts they provide for these stories of failure.

Interpreting Perceptual Information

Our model of perceptual interpretation assumes
a hierarchy of detectors that process the data in
stages. For example, a vocalization-detector, in
our model of aural interpretation, may provide
information to a b-detector, which may in turn
inform a detector responsible for identifying the
sound sequence ba when it occurs. This detector,
along with several others, will inform a component
responsible for detecting the sound of the station
called *Takadanobaba’.® This process is graphically
depicted in figure 5.

The agent’s aural interpretation machinery must
be constructed so that contextual knowledge can be
brought to bear on the interpretation task. For
example, the fact that the agent is trying to hear
a name spoken by a Japanese person and broadcast
over an intercom should produce some expectations

6Such a model appears to be consistent with phono-
logical research indicating that humans employ special-
ized detectors in interpreting human speech. See, e.g.,
[Eimas and Corbit, 1973], which presents evidence for
vocalization detectors that allow listeners to discriminate
vocalized phonemes such as /b/ from non-vocalized
phonemes such as /p/.
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Figure 5: Aural interpretation components

about how the announcement will sound, which
should in turn be employed to bias components
of the interpretation process. Since the listening
agent expects to hear Japanese, the a-detector might
conform its analysis to expectations about Japanese
vowel sounds, e.g. that unlike English vowel sounds
these persist for an approximately equal duration.”
For such facts to influence the behavior of the a-
detector, they must be translated into meaningful
advice about how to best process sensor data, for
example, “only look for /a/ sounds having durations
within [some specific range of times].” As previously
discussed, this translation task is the responsibility
of the detector’s bias rules.®

We will characterize the bias on a detector as
the expectation that target stimuli will fall within
a certain range on a certain dimension, for example
that the duration of a Japanese /a/ will fall within
a certain range. In effect, the bias determines the
range over which the detector must search, meaning
that the narrower the range of the bias, the less
costly it will be to run the detector. On the other
hand, the narrower the range of the bias, the more
likely the detector is to miss examples of the stimuli

"Japanese is a syllable-timed language.

®High level expectations concerning (e.g.) which
language an agent should listen for may be derived from
schemas, or scripts [Schank and Abelson, 1975), that the
agent is tracking. E.g. A script describing a typical ride
on a Japanese train will include a scene in which a PA
announcement, spoken in Japanese, conveys the name
of the next station at which the train will stop. See
[Hammond et al., 1990] for a discussion of how schemas
may be used as a source of expectations in a hierarchical
agent architecture.
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it is meant to detect. There is thus a tradeoff
between the expense of running a detector and its
hit rate.

If an instance of the detector’s target concept falls
outside of the range of its bias, the detector will miss
that instance. This failure may lead to the failure
of a higher-level detector that uses this detector as
input. For example, if the detector for the /a/
sound fails to trigger during the announcement of
the Takanobaba station, this may cause a failure to
detect the word ‘Takadanobaba’, which may in turn
cause a failure to detect the fact that the agent is
at Takadanobaba station. In this way, the failure
of any particular detector may propagate arbitrarily
far up the network. The system thus has an
obvious motivation to bias its detectors as broadly as
possible. However, this is balanced by the fact that
the broader the bias, the more resources consumed
by the detector. For example, in attempting to
detect the word ‘Takadanobaba’, the agent might
bias its phoneme detectors so broadly that it is in
effect carefully attending to every vocalization that
is made during its train ride (and perhaps other
sounds as well). While this will make it very likely
that the agent will detect the name of its station,
it will also draw so heavily on the agent’s cognitive
resources that it will be very difficult for the agent
to perform other tasks such as reading a book.

Let us consider the stories of our example in
light of this discussion. After the agent enters the
train and finds a seat, it is expected that a station
announcement in Japanese will be heard. Biasing
mechanisms identify these factors as relevant, then
translate them into detector-specific advice on what
to look for in the way of (e.g.) minimum phoneme
duration, dynamic range and maximum pitch fluctu-
ation. The detectors are then given a certain share of
the cognitive resources of the agent, which is severely
limited, because the agent is attempting at the same
time to read a book. The combined effects of the
inaccuracy of the original bias and narrowing of that
bias due to resource limitations causes the relevant
detectors to miss the critical station announcement
and ultimately causes the failure of the plan.

The agent’s interpretation of the failure will
depend on where failures occurred in the component
network. For example, suppose that the agent’s
failure to exit the train was caused by the lack of a
bias rule in the a-detector that would have enabled
the detector to translate the expectation that the
PA announcement would be spoken in Japanese into
suitable constraints on its search of sensor data. The
lack of constraint leaves the detector unable to cope
with the diminished resources it has available due to



the agent’s reading task, causing it to fail to detect
an instance of its target concept and, thus, unable to
provide knowledge of this occurrence to the higher-
level ba-detector. This causes the ba-detector to
fail, which in turn causes other failures including,
ultimately, a failure to recognize that the agent
has reached its destination and should therefore
exit the train. In this instance, since the initial
component failure prevented the ‘Takadanobaba’-
detector from carrying out its responsibilities, the
agent experiences the failure as described in story 1:
I didn't hear my destination announced. Ii probably
was announced but it didn’t get my atlention. If
instead, the intial failure occurred in between detect-
ing the sound of the station name and detecting
the imminent need to exit the train (the schema
transition), the agent would have experienced the
failure as described in story 2: I remember hearing
my station announced, but somehow this didn’t sirike
me as important. I must have been too absorbed in
my book.®

The agent can respond to its failure to exit the
train at the right time by trying to learn how not
to repeat its mistake. In the case of the failing a-
detector, this means learning a new bias rule whirl,
relates an expectation that Japanese will be spoken
to an appropriate set of constraints on its output rule
tests. The learning process proceeds in several steps.
First, diagnostic mechanisms compare the actual
behavior of components to their ideal, intended
behavior as described in the model. When a compo-
nent is found which may be considered the source
of the problem (see [Birnbaum et il., 1990] and
[Owens, 1990]), a repair strategy is indexed based
on the way in which the component failed [Freed
et al., 1992]. Finally, explanation-based learning
mechanisms employing a model of the component
they are to modify are invoked to implement the
indexed repair strategy [Krulwich, 1991].
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