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Advances in numerical methods under wiggler period averaging for
free electron laser simulation

Kilean Hwang* and Ji Qiang†

Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley 94720, California, USA

(Received 27 August 2018; published 7 December 2018)

Advances in numerical methods for free-electron-laser (FEL) simulation under wiggler period averaging
(WPA) are presented. First, WPA is generalized using the perturbative Lie map method. The conventional
WPA is identified as the leading order contribution. Next, the shot-noise model under WPA is improved
along with a particle migration scheme across the numerical mesh. The artificial shot noise arising from
particle migration is suppressed. The improved model also allows using arbitrary mesh size, slippage
resolution, and integration step size. These advances will improve modeling of longitudinal beam profile
evolution for fast FEL simulation.

DOI: 10.1103/PhysRevAccelBeams.21.120702

I. INTRODUCTION

The FEL simulation codes under the standard approxi-
mation that includes slowly varying envelope approxima-
tion (SVEA) and wiggler period averaging (WPA) have
been extensively used in past decades and still are widely
used, and considered to be effective and efficient [1]. In
efforts to improve FEL simulations, reliability issues of
standard approximation were raised and most newly
developed codes were built without such approximations
at the cost of heavy computational loads [2–4]. However,
the design optimization of FEL requires extensive start-to-
end simulations. As a result, there are still high demands on
codes under the standard approximation. Indeed, most of
the start-to-end design codes choose to incorporate the FEL
simulation code with the standard approximation [5–9].
Therefore, efforts toward improving codes under the
standard approximation are desired. In this paper, we
present several advances in numerical methods under the
WPA and the SVEA.
The SVEA assumes slow field envelope variation tem-

porally and longitudinally compared with the resonant
frequency ωr and wavelength λr. These conditions are
well met in most typical FEL parameters [1], and was
shown to remain valid even in the case when the seed
violates these conditions [10]. The WPA presumes stronger
condition because it asserts small change in the field

envelope and particle bunching factor over wiggler period
length scale longitudinally. In this paper, we generalize the
WPA using the perturbation Lie map method. The conven-
tional WPA is identified as the leading order contribution.
The next order corrections are coupling between betatron
and wiggling motion, longitudinal field envelope variation,
and transverse field gradient effect for even harmonics.
Many implementations of the standard approximation

limit the macroparticle migration across the numerical
mesh, especially the temporal mesh called slice [11].
This can reduce the simulation data size as well as the
computation time. However, such limitation may fail to
model the evolution of temporal electron bunch profile,
self-consistent wakefield and space charge [12]. An intui-
tive and straightforward implementation of particle migra-
tion can lead to large artificial shot noise due to the nature
of the particle loading methods used in many FEL codes
[13,14]. In this paper, we also present an improved particle
loading method for shot-noise modeling and a migration
scheme compatible with the loading method.
The proposed particle migration scheme allows using

arbitrary weight and shape functions. Here, the weight
function refers to the integral kernel used for particle
deposition on numerical mesh points. The shape function
refers to the shape of the field representation at numerical
mesh points used for field interpolation frommesh points to
particles’ coordinates. The proposed particle migration
scheme also allows using arbitrary mesh size, slippage
length and thus arbitrary integration step size independent
of the temporal mesh size called slice length. The arbitrary
slippage resolution is important in modeling correct slip-
page especially for nonresonant transport line other than
wiggler. The arbitrary slippage resolution further allows
applying the operator split-composition method [15] on a
field solver to increase numerical accuracy.
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The particle loading method can naturally accept the
particle data from upstream simulation enabling start-to-
end simulation seamless. In addition, it enables coherent
spontaneous emission (CSE) to be simulated within the
resonant band.
The organization of this paper is as follows: After the

introduction, we present the WPA generalization in Sec. II,
particle loading and compatible migration scheme in
Sec. III, implementations of arbitrary slippage resolution
and split of slippage operator in Secs. IV, and V respec-
tively, and an illustration of CSE modeling in Sec. VI
followed by the conclusion in Sec. VII.

II. GENERALIZATION OF WIGGLER
PERIOD AVERAGING

A. Review: Perturbative Lie map

The Lie map of a Hamiltonian system is a time evolution
operator acting on canonical variables of the Hamiltonian.
The Hamiltonian equation can be written as,

df
dz

¼ −½HðzÞ; f� ð1Þ

where the square bracket is the Poisson commutator, f is an
arbitrary function of canonical variables, and z is the
independent variable. It can be shown that the time
evolution operator HðzÞ from z ¼ 0 to z ¼ z is

HðzÞ ¼ eGðzÞ ð2Þ

GðzÞ ¼ −
Z

z

0

dz1Hðz1Þ

þ 1

2!

Z
z

0

dz1

Z
z1

0

dz2½Hðz2Þ;Hðz1Þ�

−
1

3!

Z
z

0

dz1

Z
z1

0

dz2

Z
z2

0

dz3½Hðz3Þ; ½Hðz2Þ;Hðz1Þ��

þ ½½Hðz3Þ;Hðz2Þ�;Hðz1Þ� þ � � � ð3Þ

Here, G is the generator serving as a Poisson operator. The
expansion in the generator is called Magnus’ series [16].
However, in general, Magnus’ series does not converge
when the bare Hamiltonian HðzÞ is the integrand.
Consider HðzÞ ¼ Sþ VðzÞ, where S is an autonomous

Hamiltonian and VðzÞ is a small potential. Then, it can be
shown that the map can be factorized into the unperturbed
map S and the perturbed map V such that

HðzÞ ¼ SðzÞVðzÞ
SðzÞ ¼ e−zS

VðzÞ ¼ eGVðzÞ ð4Þ

where the generator of the perturbed map is

GVðzÞ ¼ −
Z

z

0

dz1Sðz1ÞVðz1Þ

þ 1

2!

Z
z

0

dz1

Z
z1

0

dz2½Sðz2ÞVðz2Þ;Sðz1ÞVðz1Þ�

þ � � � ð5Þ

Note that the integrand is propagated by the unperturbed
map S. The propagated potential SV is called the inter-
action potential [16].

B. Integration over one wiggler period

In general, a perturbative Lie map is built in order of
small parameters for convergence. However, in wiggler, if
we build a map over one wiggler period, the wiggling
motion is integrated out leaving small coupling effects
between the fast wiggling motion and slow motions like
betatron motion. This idea enables us to generalize WPA
with perturbative Lie map formalism.
We split the Hamiltonian into H ¼ Sþ FðzÞ þ VðzÞ

where S is the wiggler period averaged Hamiltonian
representing slow motion, V is the radiation field potential,
F is the rest of the Hamiltonian which represents the fast
wiggling motion. Accordingly, the Lie map is factorized
into slow map S, fast mapF and field potential map V such
that

HðλuÞ ¼ SðλuÞF ðλuÞVðλuÞ
SðλuÞ ¼ e−λuS

F ðλuÞ ¼ eGFðλuÞ

VðλuÞ ¼ eGVðλuÞ ð6Þ

where λu is the wiggler period and

GFðzÞ ¼ −
Z

z

0

dz1Fint
1

þ 1

2!

Z
z

0

dz1

Z
z1

0

dz2½Fint
2 ; Fint

1 �

−
1

3!

Z
z

0

dz1

Z
z1

0

dz2

Z
z2

0

dz3½Fint
3 ; ½Fint

2 ; Fint
1 ��

þ ½½Fint
3 ; Fint

2 �; Fint
1 � ð7Þ

GVðzÞ ¼ −
Z

z

0

dz1V int
1 ð8Þ

with the interaction potentials

Fint
i ≡ SðziÞFðziÞ ð9Þ

V int
i ≡ SðziÞF ðziÞVðziÞ: ð10Þ
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We truncate the field potential generator GV at the first
sequence of the Magnus’s series because the radiation field
strength is much weaker than the external magnetic field
strength. For example, using LCLS-II like parameters of
energy 4 GeV, wave length 4 Å, radiation size 0.23 μm and
normalized wiggler strength K ¼ 1.44, the ratio between
the normalized radiation strength and the wiggler strength
is about 10−5 when the power is 100 GW.
Note, in Eq. (7), although the integrand SF is not small,

the fast wiggling motion is integrated out when the
generator GF is evaluated over one wiggler period leaving
the small coupling effect between slow and fast motion due
to the propagation by S.

C. The leading and the next leading order

If we calculate the Lie map generators GS ¼ −zS and
Eqs. (7), (8) to the leading order, we can recover the
conventional WPA. In order to generalize it, we need to
include the next leading order terms. Table I roughly
describes our definition of the leading the next leading
order of the generators. Note that, if the F is used instead of
SF as an integrand for GF, the fast map will become
identity when integrated over one wiggler period. Similarly,
when FV is used instead of SFV as an integrand for GV,
the slow drift on FEL phase will be ignored. In addition, the
first order of field envelope gradient will be considered in
the next leading order contributions.

D. Hamiltonian

We start from the following Hamiltonian

Hðx; p; ct;−γ; zÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1 − ðpx − axÞ2 − ðpy − ayÞ2

q
where ct is the light speed flight serving as the longitudinal
canonical variable whose canonical momentum pair is
negative of the normalized energy −γ. We assume the
ideal planar wiggler model for the normalized vector
potentials

ax ¼ K cosh ðkxxÞ cosh ðkyyÞ cos ðkuzÞ þ ar

ay ¼ K
kx
ky

sinh ðkxxÞ sinh ðkyyÞ cos ðkuzÞ ð11Þ

where ku is the wiggler wave number, kx and ky are the
natural focusing strength of the wiggler, K is the normalized

wiggler strength, and ar is the radiation vector potential
which we write in harmonic decomposition,

ar ¼ ℜ
X
h≥1

Khðx; t; zÞeihkrðz−ctÞ: ð12Þ

Here,Kh is the radiation envelope of the hth harmonic mode,
and kr is the wave number of the fundamental mode. Using
the following generating function,

G2ðct; ηÞ ¼ ½krðz − ctÞ þ kuz�η ð13Þ
we define the new conjugate variables

θ≡ krðz − ctÞ þ kuz; η≡ γ=kr ð14Þ
and the new Hamiltonian.

H ¼ ðku þ krÞη −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2rη2 − 1 − ðpx − axÞ2 − ðpy − ayÞ2

q
Then, we expand and split it into slow, fast and field potential
parts.

S≡ ku
ks

γ þ 1

2γ

�
1þ p2

x þ p2
y þ

K2

2
ð1þ k2xx2 þ k2yy2Þ

�

þ K2

4γ

�
1

3
ðk4xx4 þ k4yy4Þ þ k2xk2ux2y2

�

þ 1

ð2γÞ3
�
1þ K2 þ 3

8
K4

�
þO

�
q6⊥
γ
;
q2⊥
γ3

;
1

γ5

�
ð15Þ

F≡ K2
eff

4γ
cos ð2kuzÞ þ

Keff

γ
px cos ðkuzÞ þO

�
q3⊥
γ
;
1

γ3

�
ð16Þ

V ≡ −ℜ
X
h

�
Keff

γ
cosðkuzÞ þ

px

γ

�
Kheihðθ−kuzÞ

þO

�
Khq2⊥
γ

;
Kh

γ3
;
K2

h

γ

�
ð17Þ

where q⊥ ∈ fkxx; px; kyy; pyg and

Keff ¼ K

�
1þ k2x

x2

2
þ k2y

y2

2

�
ð18Þ

is the effective wiggler strength.

E. Fast map

After integration over one wiggler period, the nonzero
leading order term of Eq. (7) becomes

GFðλuÞ ¼ −λu
K4k2x
16k2uγ3

ð19Þ

This corresponds to the coupling between slow betatron
oscillation and fast wiggling oscillation. It is negligible in
most cases as it scales as γ−2 compared to the wiggling

TABLE I. The leading and the next leading order.

Leading order Next leading order

GS Integrand S is linear S includes nonlinear terms
GF Integrand is F Integrand is SF
GV Integrand is FV Integrand is SFV

No gradients on Kh ∂zKh and ∂xKh are included

ADVANCES IN NUMERICAL METHODS UNDER … PHYS. REV. ACCEL. BEAMS 21, 120702 (2018)

120702-3



motion in Eq. (16). Physically the smallness is due to the
large frequency ratio between the betatron and wiggling
oscillation. Therefore, such coupling can be more relevant
when a strong focusing quadrupole present on top of the
wiggler field.

F. Field potential map

From Eq. (17), the interaction field potential can be
written as,

V int ¼ −
�
Keff

γ
cos ðkuzÞ þ

px

γ

�
Kint

h eihðθint−kuzÞ ð20Þ

where the real value operator and the summation over h is
assumed for simplicity, Kint

h ðzÞ is the interaction field
envelope and θintðzÞ is the interaction FEL phase propa-
gated by the slow and fast map SðzÞF ðzÞ. We neglected the
propagation on terms in the square bracket of Eq. (20) as
they are less significant compared with the propagation on
field envelope and phase.
The interaction FEL phase is

θint ¼ θ þ _θz − ξ sin ð2kuzÞ − ζ sin ðkuzÞ ð21Þ

where

_θ≡ ku −
kr
2γ2

�
1þ p2

x þ p2
y þ

K2
eff

2

�

ξ≡ krK2
eff

8kuγ2

ζ ≡ krK
kuγ2

px ð22Þ

The 2nd term of Eq. (21) is a drift of FEL phase that comes
from the slow map SðzÞ. The 3rd and the 4th term of
Eq. (21) are the longitudinal wiggling motion. The 4th term
is coupled to slow transverse motion, (see definition of ζ),
and thus smaller than the 3rd term. These terms are from the
action of the fast map F ðzÞ. Note that the drift vanishes
_θ ¼ 0 on resonance, which means that the inclusion of it
encompasses small off-resonant effects.

The interaction envelope is

Kint
h ðzÞ ¼ KhðzÞ þ

Keff

kuγ
sin ðkuzÞ

∂
∂xKhðzÞ ð23Þ

where we used

F ðzÞx ¼ Keff

kuγ
sin ðkuzÞ ð24Þ

which can be understood by looking Eq. (16).
In order to evaluate the integration in Eq. (8), we need the

field envelope model as a function of z. Assuming small
field envelope variation over a wiggler period, we model z
dependence of Eq. (23) by

Kint
h ðzÞ ¼ Kh þ

Keff

kuγ
sin ðkuzÞ

∂
∂xKh þ z∂zKh ð25Þ

where Kh ¼ 1
z

R
z
0 Khdz is an averaged field envelope and

∂zKh represent the first order field variation.
Integrating Eq. (25), the generator of the field potential

map can be written by

GV ¼ λuℜ
X
h

eihθ

γ

�
Keff

Z
h

C
þpx

Z
h

1

þK
Z

h

zC
∂z

þ K2
eff

kuγ

Z
h

SC
∂x

�
Kh ð26Þ

where C≡ cosðkuzÞ, S≡ sinðkuzÞ, and the integration
parameter

R
h
f for an arbitrary function fðzÞ is defined by

Z
h

f
≡ e−ihθ

λu

Z
λu

0

fðzÞeihðθint−kuzÞdz ð27Þ

Explicitly, to the 1st order of _θ, ζ, and Δξ≡ ξ − ξR where

ξR ≡ krK2

8kuγ2R
with γR being the resonant energy, the integration

parameters read [17],

Z
h

C
¼ 1

2

�
JhξR−h−1

2

þ JhξR−hþ1
2

��
1þ ih_θλu

2

�
−
1

2

h_θ
ku

 X
l≠−h−1

2

JhξRl

ð2lþ h − 1Þ þ
X
l≠−hþ1

2

JhξRl

ð2lþ hþ 1Þ

!

−
1

2
Δξ
�
h − 1

2ξR
JhξR−h−1

2

þ hJhξR−h−3
2

þ hþ 1

2ξR
JhξR−hþ1

2

þ hJhξR−h−1
2

�
þ hζ

2

1

2

�
JhξR−hþ2

2

− JhξR−h−2
2

�
ð28Þ

Z
h

1

¼ JhξR−h
2

�
1þ ih_θλu

2

�
−
h_θ
ku

X
l≠−h

2

JhξRl

ð2lþ hÞ − Δξ
�

h
2ξR

JhξR−h
2

þ hJhξR−h
2
þ1

�
þ hζ

2

�
JhξR−hþ1

2

− JhξR−h−1
2

�
ð29Þ
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Z
h

zC
¼ λu

4

�
JhξR−h−1

2

þ JhξR−hþ1
2

�
þ iλu

4π

 X
l≠−h−1

2

JhξRl

ð2lþ h − 1Þ

þ
X
l≠−hþ1

2

JhξRl

ð2lþ hþ 1Þ

!
ð30Þ

Z
h

SC
¼ 1

4i

�
JhξR−h−2

2

− JhξR−hþ2
2

�
ð31Þ

where JhξRi is the Bessel function of the first kind of order i
and argument hξR. Only the integer order of Bessel
functions are allowed, otherwise, it is understood to be
zero. The first term of

R
h
C corresponds to the JJ factor of

FEL terminology. Note that the integration parameter
R
h
SC

coupled with the transverse field gradient vanishes for odd
harmonics. For comparison, we write down generator for
the conventional WPA,

GV

λu
¼ eihθ

γ

�
Keff

2

�
JhξR−h−1

2

þ JhξR−hþ1
2

�
þ pxJ

hξR
−h
2

�
Kh ð32Þ

where the summation and real operator is dropped for
simplicity. For even harmonics it becomes,

GV

λu
¼ eihθ

γ
pxJ

hξR
−h
2

Kh ð33Þ

However, plugging Eq. (31) into the generalized WPA
Eq. (26), for the even harmonics, it becomes

GV

λu
¼ eihθ

γ

�
pxJ

hξR
−h
2

þ K2
eff

4ikuγ

�
JhξR−h−2

2

− JhξR−hþ2
2

�
∂x

�
Kh

þOðζ;Δξ; ∂zKhÞ ð34Þ

Note that the transverse gradient term in Eq. (34) can be as
large as the leading order term that is the first term of
Eqs. (34) or (33) when px ∼Oð10−2Þ, 1=ku∂x ∼Oð102Þ
and γ ∼Oð103Þ. The term proportional to the transverse
gradient of the field envelope was already reported in
Ref. [18]. Here, we are readdressing its importance on even
harmonics.

G. Effective Hamiltonian

The factorized map Eq. (6) with Eqs. (19), (26) are not
yet practically useful for numerical implementation
because each factorized map is not solvable and the step
size is fixed by one wiggler period. A trick is to concatenate
the map using the Baker-Campbel-Hausdorff (BCH) for-
mula and define an effective Hamiltonian [16,19],

Heff ¼ −
1

λu
ðGS þ GF þ GVÞ

−
1

2λu
ð∶GS∶GF þ ∶GS∶GV þ ∶GF∶GVÞ þ � � � ð35Þ

Since, ∂ηGS ¼ −λu _θ, the concatenation term ∶GS∶GV

cancel out the _θ term in the parenthesis of the 1st term
in Eqs. (28) and (29). Therefore, it is convenient to define

Z̄ h

C
≡
Z

h

C
−
1

2
ðJhξR−h−1

2

þ JhξR−hþ1
2

Þ
�
ih_θλu
2

�
ð36Þ

Z̄ h

1

≡
Z

h

1

−JhξR−h
2

�
ih_θλu
2

�
ð37Þ

and

ḠV

λu
≡eihθ

γ

�
Keff

Z̄ h

C
þpx

Z̄ h

1

þK
Z

h

zC
∂zþ

K2
eff

kuγ

Z
h

SC
∂x

�
Kh

so that, the effective Hamiltonian reads,

Heff ¼ −
1

λu
ðGS þ GF þ ḠVÞ: ð38Þ

Note that the effective Hamiltonian does not have explicit
dependency on z. Therefore, the integration step size need
not necessary resolve the wiggler period as long as the field
envelope variation is slow. Now, we can apply general
numerical methods like Runge-Kutta (RK) with arbitrary
step size to solve the effective Hamiltonian. For example, a
popular FEL simulation code GENESIS uses the 4th order
RK method [11]. Figure 1 shows an order of magnitude
improvement in accuracy of particle pusher compared to
the conventional WPA. We used the GENESIS pusher to
represent conventional WPA. Since, we used converging
small enough step sizes, the error from the exact solution
originate from the differences of the effective equations of
motion in use. However, such an accuracy improvement on
particle pusher can easily become obscured by other
sources of error such as external field error, standard
approximation on the radiation field solver, and numerical
discretization.

H. Source term

Maxwell’s equation of the vector potential is�
∇2 −

1

c2
∂2

∂t2
�
ar ¼ −

eZ0

mc2
X
j

Jjx ð39Þ

where e and m are the electron charge and mass respec-
tively, Z0 is the vacuum impedance, and

Jjxðx; tÞ ¼ qjv
j
xðx; tÞδðx − xjðtÞÞδðy − yjðtÞÞδðz − zjðtÞÞ
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is the x-directional current density contributed by jth
particle at a given time t. Here, qj is the charge weight,

vjx is the x-directional velocity. Under SVEA, Eq. (39)
becomes

X∞
h¼−∞

eihðθ−kuzÞ
�
∇2⊥ þ 2ihks

� ∂
∂zþ ku

∂
∂θ
��

Kh

¼ −2
eZ0

mc2
X
j

Jjx ð40Þ

In order to separate the harmonic modes, we multiply
e−ihðθ−kuzÞ on both sides and integrate over a wiggler period.
By doing so, we are also implying WPA on field equation.

�
∇2⊥ þ 2ihkr

� ∂
∂zþ ku

∂
∂θ
��

Kh ¼ −2
eZ0

mc2
X
j

Sjh ð41Þ

where Kh ¼
R λu
0 Kh

dz
λu
, and

Sjh ≡
Z

λu

0

Jjxe−ihðθ−kuzÞ
dz
λu

ð42Þ

is the source term contributed by the jth particle. Before,
we evaluate the integration of Eq. (42), we need to write the
current as a function of z and transform the temporal
coordinate from t to θ. Ignoring the particle-radiation
interaction, the particle dynamics is determined by external
magnet field, e.g., xjðtÞ → xjðzÞ ¼ SðzÞF ðzÞxj and sim-
ilarly for yj and θj. Also, by definition of θ, we can replace
δðz − zjðtÞÞ in terms of θ. Therefore,

Jjx ¼ qjv
j
xδ½x − xjðzÞ�δ½y − yjðzÞ�δ

�
θ − θjðzÞ
kr þ ku

�
: ð43Þ

However, the dependence on z inside of the delta functions
make the integration of Eq. (42) still formidable. One
possible trial is to deposit the source on numerical mesh
points, i.e.,

Si;jh ≡
Z

λu

0

Z
Ω
φiðx; y; θÞJjxe−ihðθ−kuzÞdxdydθ

dz
λu

ð44Þ

where φi is a weight function localized at the ith mesh point
and Ω is the ðx; y; θÞ simulation domain. Note that, after
integration over Ω with Eq. (43), the weight function will
depend on z through xjðzÞ, yjðzÞ, and θjðzÞ. Thus,
integration over z can still be cumbersome especially for
localized nonsmooth weight functions. Reference [20]
provides an elegant trick to this problem. The idea is to
replace the source by a multipole expansion model Sj

h
which we parametrize by

Sj
h ≡Whδðx − x̄jÞδðy − ȳjÞδðθ − θ̄jÞ

þWh
x ½δðx − x̄j − xWÞ − δðx − x̄j þ xWÞ�δðy − ȳjÞδðθ − θ̄jÞ

þWh
θ ½δðθ − θ̄j − θWÞ − δðθ − θ̄j þ θWÞ�δðx − x̄jÞδðy − ȳjÞ

þ High order multipoles ð45Þ

where Wh is the monopole strength, Wh
x and Wh

θ are the
dipole strengths, ðx̄j; ȳj; θ̄jÞ is the monopole location, and
xW , θW are the dipole separation length. It is natural to
chose the monopole location by the average position over
the integration step. For example,

x̄j ≡
Z

λu

0

xjðzÞ
dz
λu

ð46Þ

This way, the wiggling motion average out which means
that the monopole location can be naturally obtained by
particle pusher under WPA. For example, in principle, the

FIG. 1. Comparison of particle pushers derived from Lie map
and conventional WPA. The error is defined by Δθ≡ jθ − θref j
where θref is from a converging small enough step size integration
of exact Hamiltonian and the two θ (blue and orange) are from
the 4th order RK tracking of the conventional WPA and the
generalized WPA. Exponentially growing Gaussian field
envelope from 0.4 MW to 1 GW in power, σr ¼ 56 μm and λr ¼
27 nm is assumed. Electron beam parameters used are
σx;y ¼ 56 μm, ϵx;y ¼ 0.6 μm, γ ¼ 1000 and Δγ=γ ¼ 2 × 10−4.
wiggler parameters used are K ¼ 1.5, λu ¼ 2.5 cm, and
kx ¼ ky ¼ ku=

ffiffiffi
2

p
. The thick line represents the ensemble aver-

age and the shadowed area corresponds to the range of error of
simulated particles’ population.
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particle pusher always gives particle location at the middle
of the integration step when leap-frog scheme is used. It is
also natural to choose the dipole separation length by the
amplitude of the wiggling motion.

xW ¼ K
2kuγR

ð47Þ

θW ¼ ξR=2 ð48Þ

Once the multipole locations are fixed, the following weak
formulation can be used to calculate the multipole strength.Z

Ω
Sjhρðx; y; θÞdxdydθ ¼

Z
Ω
Sj
hρðx; y; θÞdxdydθ ð49Þ

where ρ is an slowly varying (compared to the scale of the
wiggling amplitude) otherwise arbitrary basis function of
the weak formulation. If Eq. (49) holds for all the arbitrary
basis functions definable in the domain of interest, the
multipole source model Eq. (45) becomes effectively
equivalent to the source Eq. (42) in the domain of interest.
Each multipole strength can be obtained separately by
comparing with each multipole component of the basis
function,

ρðx; y; θÞ ¼ ρj þ ðx − x̄jÞ∂xρj þ ðθ − θ̄jÞ∂θρj þ � � � ð50Þ

where ρj ≡ ρðx̄j; ȳj; θ̄jÞ. Plugging Eqs. (45) and (50) into
Eq. (49), the right-hand side becomes,

RHS ¼ Wh
jρj þ 2xWWh

x;j∂xρj þ 2θWWh
θ;j∂θρj þ � � � ð51Þ

where Wj ≡Wðx̄j; ȳj; θ̄jÞ and used

Wðx̄j � xW; ȳj; θ̄j � θWÞ ≃Wj � xW∂xWj � θW∂θWj:

Comparing Eq. (51) with the left hand side of Eq. (49), the
multipole strength reads,

Wh
j ¼

Z
Ω
Sjhdxdydθ

Wh
x;j ¼

1

2xW

Z
Ω
ðx − x̄jÞSjhdxdydθ

Wh
θ;j ¼

1

2θW

Z
Ω
ðθ − θ̄jÞSjhdxdydθ ð52Þ

Explicitly,

Wh
j ¼

Z
λu

0

Z
Ω
qjv

j
xδðx − xjðzÞÞδðy − yjðzÞÞδ

�
θ − θjðzÞ
kr þ ku

�
e−ihðθ−kuzÞdxdydθ

dz
λu

¼
Z

λu

0

c
qj
γj
ðkr þ kuÞðpx;j þ Keff;j cos ðkuzÞÞe−ihðθjðzÞ−kuzÞ

dz
λu

¼ c
qj
γj
ðkr þ kuÞ

�
px;j

Z
h�

1

þKeff;j

Z
h�

C

�
e−ihθ̄j ð53Þ

where the superscript � on the integration parameters is
the complex conjugate operator and used vjx ¼
c
γj
ðpx;j þ Keff;j cos ðkuzÞÞ. For the dipole strengths, we take

the leading order term Keff;j only from vjx.

Wh
x;j ¼ c

qj
γj
ðkr þ kuÞKeff;j

Z
h�

SC
e−ihθ̄j

Wh
θ;j ¼ −2c

qj
γj
ðkr þ kuÞKeff;j

Z
h�

SC2

e−ihθ̄j ð54Þ

where Z
h

SC2

¼ 1

16i

�
JhξR−h−3

2

þ JhξR−h−1
2

− JhξR−hþ1
2

− JhξR−hþ3
2

�
: ð55Þ

Recall that
R
h
SC vanishes at odd harmonics. Therefore, the

horizontal dipole strength Wh
x;j is important only for even

harmonics. As for the temporal dipole, since the dipole
separation length θW is smaller than the wave length, the
effect can be negligible when the temporal mesh size is
multiple of the wave length.
Note that the field Eq. (41) and the multipole source

model Eq. (45) with Eqs. (53), (54) does not depend on the
wiggler period explicitly. Also, recall that the wiggling
motion is averaged out for the choice of the monopole
location in the multipole source model. This means that the
field solver based on Eqs. (41), (45) together with the
particle pusher based on the effective Hamiltonian Eq. (38)
can be numerically integrated with arbitrary step sizes.
In practice, it can be efficient to choose the temporal

coordinate of the monopole location at the beginning
instead of the middle of the integration step when the
particle pusher is split into transverse and longitudinal map.
As the averaged transverse and longitudinal particle
dynamics are weekly coupled in wiggler, we build the
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particle pusher by transverse and longitudinal map alter-
natively in leap-frog method. This gives us the transverse
and temporal coordinate at the middle and the beginning of
the integration step respectively. Therefore, we choose the
monopole location at the middle of the integration step for
the transverse coordinates and at the beginning of the
integration step for the temporal coordinate.

III. NUMERICAL SHOT NOISE MODELING

In addition to the efficient particle pusher and field
solver, an efficient shot-noise modeling algorithm is
required for a fast FEL simulation. This task can be
especially difficult when compatibility with the numerical
discretization scheme is considered under WPA framework
[12]. In this section, we present a possible solution to this
problem.

A. Review of 1D model

We start by reviewing two widely used 1D shot noise
modeling methods.
One method is based on the temporal coordinate per-

turbation of particles by Fawley [13]. The temporal
coordinate perturbation for fundamental harmonic mode
was first introduced by Penman and McNeil [21]. This idea
was extended to higher harmonics by Fawley [13] and by
doing so, the perturbation takes a quiet different form from
the original model by Penman and McNeil [21]. That is to
say, the perturbation of Penman and McNeil method is a
uniform random number independent for each particles
while the perturbation of Fawley method is harmonic sum
of Gaussian random numbers shared among a set of
particles, see Eq. (57).
The other method is based on the charge weight

perturbation of particles by McNeil, Poole, and Robb
[22]. In fact, the 1D model in their paper [22] is based
on the combination of the charge weight and temporal
coordinate perturbation. However, the temporal coordinate
perturbation of Ref. [22] is based on the statistical property
of the particle arrival time in a given temporal segment,
independent for each particles, and relatively insignificant
when it comes to RMS bunching factor, see Eq. (61).
Therefore, from now on, when we say “temporal coordinate
perturbation”, we are referring to Fawley’s method, and
when we say “charge weight perturbation”, we are referring
to the 1D method of McNeil et al. without their temporal
coordinate perturbation.
These twomethods are illustrated in Fig. 2. schematically.
The first step is to populate particles uniformly along the

temporal coordinate with equal charge weight to remove
artificial temporal shot-noise. The bunching factor at this
step is

b0h ¼
1

Ne

XM
j¼1

mjeihθj ¼ 0 ð56Þ

Here, index 0 denotes vanishing bunching factor, Ne is the
number of electrons, M is the number of the simulated
particles and mj ¼ Ne=M is the electron number weight of
the jth particle. It vanishes as all the weights are equal, and
the temporal coordinates θj ¼ θ0 þ jΔθ are uniformly
distributed with equal distance Δθ ¼ 2π=M. If the longi-
tudinal beam profile varies within a wavelength, one can
weight the charge based on the profile. This enables
coherent spontaneous emission, see Sec. VI.
The second step is to model physical shot-noise by

adding proper perturbation on the temporal coordinates or
charge weights. The root-mean-square (RMS) bunching
factor of the physical shot-noise is hbhb�hi ¼ 1=Ne. The
numerical model has to satisfy this condition at least.
Following Ref. [13], the perturbation on temporal coor-
dinate of the jth particle is given by

δθj ≡
XM=2

h0¼1

ξh0e−ih
0θj : ð57Þ

where the number of particles is assumed to be twice of the
maximum harmonic number to be modeled and ξh is a
random variable. Note that these random variables are
shared among 1D particles. Therefore, particles of 1D
model with temporal perturbation are correlated. Then,
bunching factor changes to

bh ¼
1

Ne

XM
j¼1

mjeihðθjþδθjÞ ≃ ihξh: ð58Þ

Therefore,

hbhb�hi ≃ h2hξhξ�hi≡ 1

Ne
ð59Þ

where the condition hξhξ�hi ¼ 1=ðh2NeÞ is imposed on the
random variable ξh.

FIG. 2. Schematic description of the 1D shot-noise modeling
methods. First step: unperturbed uniform particle loading (top-
left). Optional step when the longitudinal beam profile varies
within a wavelength: mean charge weight based on beam profile
(left-bottom). Shadowed curve represent a longitudinal beam
profile. Second step: temporal coordinate perturbations (top-
right) or charge weight perturbations (bottom-right). The trans-
parent particles represent the particles before perturbations.
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On the other hand, the RMS bunching factor of the
charge weight perturbation [22] is

hbhb�hi ¼
1

N2
e

XM
j

XM
k

hm̃jm̃kieihðθj−θkÞ ð60Þ

¼ 1

N2
e

XM
j

ðhm̃2
ji − hm̃ji2Þ ¼

1

Ne
ð61Þ

where m̃j ≡mj þ δmj is the perturbed number weight
taken from a random variable whose mean and variance is

hm̃ji ¼ hm̃2
ji − hm̃ji2 ¼

Ne

M
: ð62Þ

From now on, we will call a set of particles composing
1D model by “beamlet” following conventional terminol-
ogy [13].

B. Review of 6D extension

Here,we review twowidely usedmethods of 6Dextension
of the 1D shot-noisemodel. One is the 5Dmirroring [13] and
the other is the 6D volume division [22] method. Figure 3
illustrates these two methods schematically.
For 6D phase-space volume division method, the arrival

of electrons into the volume segment can naturally be
assumed to follow the Poisson process. Particle density of
each volume is represented by a single particle sitting at the
center of the corresponding volume segment whose charge
is sampled from Poisson random number of mean weighted
by the density profile. Note that this method is physically
intuitive. All the particles are statistically independent.
Thus there is no compatibility issue with the numerical
discretization. However, it requires a lot of particles. For
example, considering 10 divisions in each dimension, it
requires 106 particles.
The 5D mirroring method is to copy 5D phase-space of a

particle to the particles of corresponding beamlet. In other
words, each beamlet consists of a number of particles
sharing same 5D coordinates x; y; px; py;; γ initially. The
temporal coordinates of the particles in a beamlet follow
Eq. (56), localized within one wavelength. Then, the
physical shot-noise can be modeled either by adding

temporal coordinate perturbation, Eq. (57) or charge weight
perturbation, Eq. (62). Note that the member particles of a
beamlet are not statistically independent of each other
because they are sharing the same 5D phase-space coor-
dinates. In the 5D mirroring method, particle migration
across numerical mesh can break the bond of the member
particles in a beamlet and thus can produce artificial shot-
noise. For example, when one particle in a beamlet migrate,
the cancellation of bunching factor in Eq. (56) does not hold.

C. Particle loading and migration

Although the 6D volume division together with the 1D
charge perturbation method is free of compatibility issue
with numerical discretization schemes, it requires a lot of
particles. Since we are concerned with fast simulation, we
adopt the 5D mirroring strategy. Our idea is to interpret one
beamlet as one statistically independent entity whose
phase-space coordinate is given by the average over the
member particles in it. This is based on the observation that
the member particles are not statistically independent of
each other and the movement of the beamlets describe the
macroscopic (≳λr) dynamics while the movements of the
individual member particles of the beamlet describe micro-
scopic (≲λr) dynamics [14]. This way, as a usual particle
loading algorithm, a beamlet can be regarded as an instance
of a random variable whose property follows that of the
density probability.
This interpretation allows us to load particles naturally.

First, the beamlet is loaded from a random generator or
from external upstream tracking code. Then, each beamlet
is divided into M ¼ 2hmax particles whose temporal coor-
dinates are uniformly distributed in one wavelength follow-
ing Eq. (56) while the average coordinate is the value of the
corresponding beamlet. Here hmax is the maximum har-
monic number to be included in the simulation. This
procedure is described in Fig. 4. Second, we assign mean
charge weights to particles based on the temporal density
profile then add the temporal coordinate or charge weight
perturbation to model physical shot-noise. This procedure
was described in Fig. 2.

FIG. 3. Schematic description of the 6D extension methods of
the 1D shot-noise modeling methods. The 5D mirroring method
on the left and the 6D volume division method on the right.

FIG. 4. Schematic illustration of beamlets (red) and member
particles (blue) composing a beamlet.
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Since the particles in a beamlet are not independent of
each other, we migrate all the particles composing a
beamlet when the beamlet migrates across the numerical
mesh. This migration scheme allows us to use arbitrary
weight and shape functions for source deposition and field
interpolation respectively. Furthermore, it allows the use of
temporal mesh size smaller than the radiation wavelength.
This is because the weight and shape functions are
evaluated at the beamlet position regardless of individual
member particle’s relative coordinates. In other words, the
same value of evaluated weight and shape is shared among
the particles of the corresponding beamlet. Figure 5
presents a self-amplified spontaneous emission (SASE)
simulation benchmark between the beamlet migration and
GENESIS which does not allow particle migration across
temporal mesh. For comparison of migration scheme, we
used same macroparticle and mesh data, and same particle
pusher and field solver to the leading order. Therefore, the
good agreement between the two codes indicates that the
numerical beamlet migration is negligible in the parameter
settings we used. It also indicates that the beamlet migra-
tion suppresses numerical shot noise due to migration
oppose to Fig. 6. which shows significant artificial shot-
noise due to individual particle migration dominating initial
emission. It also shows that as the number of macro-
particles increases the artificial shot noise decreases.
The migration scheme enables natural slippage along

nonresonant transport lines like drift, quadrupole, dipole,
etc. The slippage resolution can also be chosen arbitrary
regardless of the integration step size or the mesh size as
one can use moving window. This will be further illustrated
in detail in the next section.

IV. SLIPPAGE RESOLUTION

The particle migration enables us to use arbitrary
resolution of slippage. The typical implementation of
slippage is to copy the field data from the previous temporal

mesh point to the next temporal mesh point. This procedure
can be best understood by a pseudocode in Fig. 7. Our
implementation is the moving window which is also
illustrated in Fig. 7. For convenience, we will call “CD”
for copying data from the previous mesh point and “MW”
for the moving window. Note that the slippage resolution of
MW is arbitrary while the slippage resolution of CD is one

FIG. 5. Bench mark between GENESIS v.1.3 and beamlet
migration of SASE simulation using Next Generation Light
Source (NGLS) parameters [23]. Blue is the beamlet migration.
Dashed orange is GENESIS v.1.3.

FIG. 6. Illustration of artificial shot-noise due to particle
migration. Same parameters used as in Fig. 5. Blue is from
the beamlet migration. Dashed orange is from the individual
particle migration. Number of macroparticles are denoted in text
boxes.

FIG. 7. Pseudocode illustrating slippage implementation of the
copying data and the moving window. The first two indices of the
field data represented by Fld.data are for the transverse mesh
points while the last index is for the temporal mesh point. Here,
nt is the number of temporal mesh points. The domain range
represented by Fld.domain is used by deposition and inter-
polation algorithm. Therefore, change of the domain range by
dtheta effectively slip the field by dtheta.
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temporal mesh size. Figure 8 shows kinks on power gain
curve due to rough slippage resolution for CD and smooth
curve for MW.

V. SPLIT AND COMPOSITION METHOD
IN FIELD SOLVER

The field equation (41) can be split into two equations,

∂
∂zKh ¼

i
hkr

�
eZ0

mc2
Sh þ

1

2
∇2⊥Kh

�
ð63Þ

∂
∂zKh ¼ −ku

∂
∂θKh: ð64Þ

Let F⊥ and F k represent the operator solving Eq. (63)
and (64), respectively. Then, the following composition
method F of step size Δz,

F ¼ F slip

�
Δz
2

�
F⊥ðΔzÞF slip

�
Δz
2

�
ð65Þ

is a second order method for field equation integration
provided that F⊥ and F k are one-step method of order

higher than two [15]. Following GENESIS [11], we adopt the
alternating-direction implicit (ADI) method to build F⊥.
And the moving window implementation of F k is an exact
method and the computational load is not significant as
can be inferred from Fig. 7. For comparison, we define
three integration orderings as shown in Table II. Here, we
write “leap-frog-gen” to denote the integration order of
GENESIS v.1.3 code [11]. The definition of “leap-frog-SE”
method is based on the last paragraph of subsection II H.
The “split” method replaces the field solver of leap-frog-
SE by Eq. (65). Figure 9 shows comparison of the three
integration orderings. We took a simulated power gain
curve with small enough step size as a reference and
compared how each method varies from the reference when
a large step size is used. Note that the split method is the best
converging.

VI. COHERENT SPONTANEOUS EMISSION

Consider an artificially truncated uniform electron beam
in temporal domain. A strong CSE is expected from such a
sharp edge [24–26]. It is pointed out in the end of Sec. 2 of
Ref. [25] that CSE cannot be modeled under WPA as the
charge weight of every particle is regarded uniform over
the radiation wave length. However, since we are weighting
the macroparticle’s charge individually by the longitudinal
beam profile, we can include the CSE effect. Figure 10
shows an example of the initial strong CSE within resonant
band at the ends of a uniform beam profile. As the beam
propagates through the wiggler, the resonant power gain
became stronger than the CSE. In this illustration of CSE,
we used an sharp ends beam profile in order to exaggerate
this effect. Although the sharp edge violates the standard
approximation, for a more physical beam profile, such
violation by CSE can be moderate. For example, Ref. [10]
showed validity of standard approximation in cases when

FIG. 8. Effect of slippage resolution on power gain curve. Same
parameters are used as Fig. 5. The integration step size is 5
wiggler period and the temporal mesh size is 20 wavelength. The
blue line is CD and the orange line is the MW.

TABLE II. Definition of three integration order. push⊥ re-
present a transverse particle pusher, and pushk represent a
longitudinal particle pusher. The order follows from the top to
bottom of the table.

Leap-frog-gen Leap-frog-SE Split

push⊥ðΔz=2Þ push⊥ðΔz=2Þ push⊥ðΔz=2Þ
pushkðΔzÞ F⊥ðΔzÞ F kðΔz=2Þ
push⊥ðΔz=2Þ F kðΔzÞ F⊥ðΔzÞ
F⊥ðΔzÞ pushkðΔzÞ F kðΔz=2Þ
F kðΔzÞ push⊥ðΔz=2Þ pushkðΔzÞ

push⊥ðΔz=2Þ

FIG. 9. Comparison of the convergence between three different
integration orderings. P0 is the reference power curve, ΔP is the
difference between the power curve simulated with a large step
size (Δz ¼ 20λu) and the reference curve. Same parameters are
used as Fig. 6. The large deviation at the initial stage is due to
shot-noise.
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the fast temporal profile variation is present. This capability
can be useful for a short bunch or temporal density
modulated beam.

VII. CONCLUSION

Several advances in numerical methods for FEL simu-
lation under the WPA are presented.
First, we generalized the WPA using the perturbation Lie

map method. The perturbative correctional terms to WPA
are identified to be negligible for odd harmonics in typical
parameter region. However, when the ratio between wig-
gling frequency and slow motion frequencies becomes
more comparable or when there is large energy spread, the
correctional terms may become important. As for the even
harmonics, the terms proportional to the transverse gradient
of the field envelope can be a leading order correction to the
conventional WPA.
Second, we improved the shot-noise modeling method to

allow seamless start-to-end simulation and include the CSE
effect. The idea is based on the interpretation of the beamlets
as statistically independent entities describing macroscopic
(≳λr) dynamics. This allows us to combine advantages of
two different shot-noise modeling methods in Refs. [13,22].
These are the 5D mirroring from Ref. [13] to reduce number
of simulated particles and charge weighing from Ref. [22] to
include CSE. Such an interpretation also leads us to develop
a particle migration scheme compatible with the particle
loading method. This enables us to model the temporal beam
profile evolution and to correctly simulate nonresonant beam
transport through elements other than wigglers. Furthermore,
the use of arbitrary weight and shape functions, mesh size,
slippage length and integration step size becomes possible.
Finally, we presented and illustrated the advantage

of moving window implementation, split-composition

methods for field equation and charge weight for CSE.
These implementations are possible due to the development
of the particle loading and migration method.
All these methods presented in this paper are imple-

mented in, the parallel beam dynamics simulation frame-
work IMPACT code suite [27].
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