
UC Berkeley
UC Berkeley Previously Published Works

Title
DRONA

Permalink
https://escholarship.org/uc/item/1f60v540

ISBN
9781450349659

Authors
Desai, Ankush
Saha, Indranil
Yang, Jianqiao
et al.

Publication Date
2017-04-18

DOI
10.1145/3055004.3055022

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1f60v540
https://escholarship.org/uc/item/1f60v540#author
https://escholarship.org
http://www.cdlib.org/

DRONA: A Framework for Safe Distributed Mobile Robotics
Ankush Desai

University of California, Berkeley
ankush@eecs.berkeley.edu

Indranil Saha
Indian Institute of Technology,

Kanpur
isaha@cse.iitk.ac.in

Jianqiao Yang
University of California, Berkeley

jq.yang@berkeley.edu

Shaz Qadeer
Microso� Research, Redmond

qadeer@microso�.com

Sanjit A. Seshia
University of California, Berkeley

sseshia@eecs.berkeley.edu

ABSTRACT

Distributed mobile robotics (DMR) involves teams of networked
robots navigating in a physical space to achieve tasks in a coor-
dinated fashion. A major challenge in DMR is to program the
ensemble of robots with formal guarantees and high assurance of
correct operation. To this end, we introduce Drona, a framework
for building reliable DMR applications.

�is paper makes three central contributions: (1) We present
a novel and provably correct decentralized asynchronous motion
planner that can perform on-the-�y collision-free planning for
dynamically generated tasks. Moreover, the motion planner is
the �rst to take into account the fact that distributed robots may
have clocks that are only synchronized up to a tolerance, i.e., they
are almost synchronous; (2) We formalize the DMR system as a
mixed-synchronous system, and present a sound abstraction-based
veri�cation approach for DMR systems, and (3) Drona provides a
state-machine based language for safe event-driven programming
of a DMR system and the code generated by the compiler can be
executed on platforms such as the robot operating system (ROS).

To demonstrate the e�cacy of Drona, we build and verify a pri-
ority mail delivery system. Using our abstraction-based veri�cation
approach we were able to �nd, within a few minutes, bugs which
could not be found by performing random simulation for several
hours. Our veri�ed decentralized motion-planner scales e�ciently
for large number of robots (upto 128 robots) and workspace sizes
(upto a 256x256 grid).

CCS CONCEPTS

•Computing methodologies →Motion path planning; Coop-

eration and coordination; •Computer systems organization

→Robotic autonomy; Embedded so�ware; •So�ware and its

engineering →So�ware veri�cation and validation;

KEYWORDS

Distributed Robotics, Veri�cation, Programming Language for Ro-
botics, Safe Mobile Robotics, Multi-Robot Motion Planning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ICCPS 2017, Pi�sburgh, PA USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4965-9/17/04. . . $$15.00
DOI: h�p://dx.doi.org/10.1145/3055004.3055022

ACM Reference format:

Ankush Desai, Indranil Saha, Jianqiao Yang, Shaz Qadeer, and Sanjit A.
Seshia. 2016. DRONA: A Framework for Safe Distributed Mobile Robotics. In
Proceedings of �e 8th ACM/IEEE International Conference on Cyber-Physical

Systems, Pi�sburgh, PA USA, April 2017 (ICCPS 2017), 10 pages.
DOI: h�p://dx.doi.org/10.1145/3055004.3055022

1 INTRODUCTION

Recent demonstrations of autonomous robots collaborating to ac-
complish complex missions have fueled excitement about future
opportunities o�ered by distributed mobile robotics (DMR). Ap-
plications of DMR systems span a broad spectrum of areas like
surveillance, law enforcement, agriculture, disaster management,
warehouse and delivery systems. As DMR systems are becoming
increasingly prevalent in complex safety-critical applications, pro-
grammability with high assurance and provable guarantees is a
major barrier to their large scale adaptation.

In this paper, we consider a class of DMR systems where a �xed
set of robots shares a known workspace with static obstacles and
the tasks to be performed by the system are generated dynami-
cally. Safe programming of such a DMR system is notoriously hard
as the programmer has to correctly reason about failures, uncer-
tain environments, asynchrony, dynamically generated tasks and
interfering robots in the workspace. To address this problem, we
present Drona, a so�ware framework that helps build reliableDMR
systems.

Figure 1: Workspace for the mail delivery system.

Example DMR application: Fig. 1 shows the 2D representation
of a city area in which a �eet of drones operates to pickup and
deliver packages. �e black blocks represent buildings and are the
static obstacles in the workspace. �e do�ed blocks are ba�ery
charging locations that the drones must visit to charge their ba�er-
ies. Mail delivery tasks are nondeterministically generated by the

ICCPS 2017, April 2017, Pi�sburgh, PA USA A. Desai et al.

environment. We use the mail delivery system as an example DMR
application in rest of the paper and demonstrate how Drona can
be used for the safe programming of such applications.

When a team of mobile robots shares the same workspace, one of
the fundamental problems is to prevent collisions and still compute
optimal motion plans for the individual team members. For example,
in the mail delivery system, mail requests are generated in real-
time and the drones might have to move simultaneously in the
workspace computing collision-free paths on-the-�y. To address
this problem, Drona implements a provably correct multi-robot
motion planner (MRMP) which is decentralized, asynchronous, and
reactive to dynamically generated task requests.

Prior work on multi-robot motion planning (e.g. [5, 26, 27, 29, 30])
makes an assumption that the robots in the system step syn-
chronously, or in other words, their local clocks are synchro-
nized. However, in distributed systems there is no perfect syn-
chrony and hence this unsound assumption can lead to motion
planner computing colliding trajectories. With the advances in
time-synchronization protocols [12], clocks in the distributed sys-
tem can be synchronized within a small bound. One of the salient
features of MRMP implemented in Drona is that it does not as-
sume perfect synchrony of the distributed clocks. It produces safe
collision-free trajectories taking into account the “almost synchro-
nized” nature of a time-synchronized DMR system.

A major challenge in programming autonomous reactive robots
is to correctly handle nondeterministically generated events and
their interleavings. We integrate a state-machine based program-
ming language P [8] into the Drona tool-chain. P simpli�es the
process of implementing and specifying event-driven asynchronous
programs. �e generated C code from the high-level P program can
be directly deployed on Robot Operating System (ROS) [25]. P sup-
ports Zing [2, 9], a state-of-the-art model-checker for veri�cation
of P programs.

We take a principled approach towards specifying and imple-
menting a generic DMR so�ware stack (Sec. 2.1) in P language. A
DMR system implemented using Drona so�ware stack consists of
both event-driven asynchronous processes and periodic processes.
We formalize such a DMR system as a mixed-synchronous system.
We verify the system using Zing’s implementation of a model
checking approach based on the notion of approximate synchrony,
an idea we previously introduced [10].

To demonstrate the e�cacy of the Drona tool chain, we imple-
mented and veri�ed the mail delivery system. Using the abstraction-
based veri�cation approach we found several critical bugs in our
implementation of the application and so�ware stack which the ran-
dom simulation based approach failed to �nd. Our results show that
MRMP scales e�ciently for systems with large number of robots
(upto 128 robots), and can be used for on-the-�y computation of
safe-trajectories in real systems. Drona tool-chain and simulation
videos of some of our experiments are publicly available [11].

In summary, our contributions are the following:
• We present a novel and provably correct decentralized asynchro-

nous motion planner that can perform on-the-�y collision-free
planning for dynamically generated tasks. Moreover, the motion
planner is the �rst to take into account the fact that distributed

robots may have clocks that are only synchronized up to a toler-
ance.

• We formalize the DMR system as a mixed synchronous system
and implement a sound abstraction-based model checking ap-
proach in Drona for verifying DMR systems.

• We demonstrate the advantages of using Drona for safe pro-
gramming and veri�cation of DMR systems by implementing
the mail delivery system as a case study. Using Drona, we found
several critical bugs in our implementation which a rigorous
random simulation based approach failed to �nd.

2 PRELIMINARIES

In this section, we �rst provide an overview of the DMR so�ware
stack implemented in Drona, followed by the set of de�nitions
used in the rest of the paper.

2.1 Overview of DMR So�ware Stack

So
ft

w
ar

e
St

ac
k

Multi-Robot Motion Planner

Plan
Executor

Sense And
Infer

Mail Delivery
System

Robot State

Network Comm.

Controllers

R
o

b
o

t
SD

K
Ta

sk

P
la

n
n

er

API

Time
Synchronization

Protocol

Figure 2: Robotics So�ware Stack

Fig. 2 presents the modular so�ware stack executed by each
robot in the DMR system. �e edges in Fig. 2 represent interac-
tion between modules, these modules interact by sending events
asynchronously.

At the top is the task-planner (TP) that implements the ap-
plication speci�c protocol to guarantee that the system satis�es
application-speci�c goals. For example, the task-planner for mail
delivery system is responsible for ensuring that the mail requests
are handled responsively and are always delivered in priority order.
Whenever task-planner wants the robot to perform a task by going
to a location, it sends a request to the motion-planner to compute
a trajectory to the goal location. It is the role of multi-robot mo-
tion planner (MRMP) module to compute safe and collision-free
trajectory for the robot by coordinating with other robots in the
system. On computing a trajectory, the motion-planner sends the
trajectory to the plan-executor module.

�e plan-executor (PE) module ensures that the robot correctly
follows the trajectory computed by the motion planner. �e sense
and infer (SI) module implements the monitoring state-machines
that continuously monitor the sensor streams coming from the
robot and informs the task-planer only if it infers an event that
requires task planner’s a�ention. For example, there is a Ba�ery-

Monitor state-machine that monitors the ba�ery sensor data-stream

DRONA: A Framework for Safe Distributed Mobile Robotics ICCPS 2017, April 2017, Pi�sburgh, PA USA

coming from the robot and only informs the task-planner when the
ba�ery level is less than a threshold. Robot manufacturing compa-
nies also provide a so�ware development kit (SDK) that implements
basic primitives for programmatically controlling a robot, sampling
its state and communicating with other robots in the system. We
veri�ed the implementation of DMR so�ware stack under the as-
sumption that the robot SDK is correct. Further details about the
so�ware stack are available online [11].

2.2 Terminology and De�nitions

In this section, we formalize the de�nitions needed for the rest of
the paper.
Workspace: We represent the workspace for a DMR application
as a 3-D occupancy grid map, the top view of an example 3-D
workspace is shown in Fig. 1. �e grid decomposes the workspace
into cube-shaped blocks. �e size of a workspace is represented
using the number of blocks along each dimension. For example, if
the workspace contains nx , ny and nz blocks along the x, y and z
dimension respectively, the size of the workspace is represented as
[nx × ny × nz]. Each block is assigned a unique identi�er (Fig. 1)
which represents the location of that block in the workspace. �e
set of all locations in the workspace is denoted by the setW . Some
parts of the workspace can be occupied by static obstacles. If a grid
block is partially occupied by an obstacle, we mark the entire grid
block to be covered by obstacle. �e set of locations covered by
obstacles is denoted by Ω. �e set of free locations in the workspace
is denoted by F , where F =W \Ω. �e �xed set of robots operating
in the workspace is denoted by the set R = {r1, . . . , r |R |}.
Tasks: In a DMR application, tasks can be generated dynamically
and assigned to a robot. An atomic task is denoted as the tuple (l ,p),
where l ∈ F denotes the goal location where the robot needs to
reach for �nishing the task, and p ∈ N denotes the unique identi�er
of the task. We denote by T the set of all atomic tasks. A complex
task can be represented as a sequence of atomic tasks. In the rest
of the paper, we will use the term task to refer to an atomic task.
Motion primitives: Motion primitives are a set of short closed-
loop trajectories of a robot under the action of a set of precomputed
control laws [20, 22]. �e set of motion primitives form the basis of
the motion for a robot. A robot moves from its current location to a
destination location by executing a sequence of motion primitives.
We denote by Γ the set of all motion primitives available for a robot.
For example, in the most simple case a ground robot has �ve motion
primitives: {H, L, R, U, D}, where the primitive H keeps the robot in
the same grid block and the primitives L, R, U and D move the robot
to the adjacent le�, right, upper, and lower grid block respectively.

For a grid location l and a motion primitive γ ∈ Γ, we denote
by post(l ,γ) the location where the robot moves when the motion
primitive γ is applied at l . We use intermediate(l ,γ) to denote
the set of locations through which the robot may traverse a�er
applying γ at location l (including l and post(l ,γ)). For a motion
primitive γ ∈ Γ, we denote by cost(γ) the cost (e.g., energy ex-
penditure) to execute the motion primitive. We assume that for all
robots in the system, each motion primitive requires τ unit time
for execution. �is assumption may not hold for heterogeneous
systems and extending our approach for such systems is le� as a
future work.

Motion plan: Now we formally de�ne a motion plan.

De�nition 2.1 (Motion Plan). A motion plan is de�ned as a se-
quence of motion primitives to be applied to a robot ri to move
from its current location l ic to a goal location l iд . A motion plan is
denoted by ρi = (γ1 . . .γk), where, γq ∈ Γ for q ∈ {1, . . . ,k}.

Timed trajectories: �e trajectory of a robot ri can be represented
as a sequence of timestamped locations (τ i0 , l

i
0), (τ

i
1 , l

i
1) . . ., where

τ in represents the n-th periodic time step for robot ri . In the rest
of the paper we refer to (τ in , l in) as l in representing the location of
robot ri in the n-th time step. �e size of the period |τ in − τ in+1 | = τ ,
where τ is the time it takes to execute any motion primitive.

De�nition 2.2 (Trajectory). Given the current location l ic of the
robot ri and a motion plan ρi = (γ1 . . .γk) that is applied to the
robot at the time step τ in , the trajectory of the robot is a sequence of
locations ξi = (l inl in+1 . . . l

i
n+k), such that l in = l ic , ∀q ∈ {0, . . . ,k −

1}, γq+1 is applied to the robot at location l in+q at the time step
τ in+q and l in+q+1 = post(l in+q ,γq+1).

Safe-trajectory property: �e trajectory computed by the motion
planner must always satisfy the safe-trajectory property (Φst) which
is a conjunction of following three properties: (a) obstacle avoidance
(ϕo), (b) collision avoidance (ϕc), and (c) successful task completion
(ϕf). �e property ϕo requires that a robot never a�empts to pass
through a location l ∈ Ω associated with a static obstacle. �e
property ϕc entails that two robots never collide with each other.
�e property ϕf captures the requirement that if a robot follows
the trajectory then it will eventually reach the goal location.

3 MULTI-ROBOT MOTION PLANNER

In this section, we present the multi-robot motion planner (MRMP)
implemented in Drona. MRMP is asynchronous, decentralized, and
robust to clock skew in distributed systems.
Motion planning problem in DMR:

Problem 1. Given a set of robots R = {r1, . . . , r |R |} operating in
a common workspaceW , if a dynamically generated task (l ,p) ∈ T
is assigned to a robot ri ∈ R, �nd trajectory ξi such that it satis�es

safe-trajectory property Φst .

We decompose the above motion planning problem into two
sub-problems:
1. Trajectory coordination problem: For computing the

collision-free trajectory of a robot, motion planner must have a
consistent snapshot of the trajectories of all other robots in the
system (Sec. 3.1).

2. Safe plan-generation problem: Given the set of current tra-
jectories of all the robots (Ψ), synthesize a safe trajectory that is
robust against time-synchronization errors in distributed sys-
tems and satis�es Φst (Sec. 3.2).

3.1 Distributed Trajectory Coordination

In a DMR system, tasks are generated dynamically. Hence, the
motion planner for such a system should be able to compute trajec-
tories on-the-�y and in a decentralized fashion.

�e decentralized motion-planner for robot ri ∈ R is shown in
Protocol 1 in the form of a state machine, which is executed by

ICCPS 2017, April 2017, Pi�sburgh, PA USA A. Desai et al.

each robot in the system. It is presented in the form of pseudo-code
that closely represents the syntax of the P programming language.

A P program comprises of concurrently executing state machines
(a.k.a. actors) communicating asynchronously with each other
using events accompanied by typed data values. Each state machine
has an input queue and machine-local store for a collection of
variables. On entering a state, the entry function corresponding to
that state is executed. Each state has a set of event-handlers which
get executed on receiving the corresponding event. �e function
send (tr , ev,pd) is used to send an event ev with payload data pd
to target machine tr . �e function broadcast (ev,pd) broadcasts
event ev with payload pd to all the robots in workspace, including
oneself (more details about P language is available at [24]).

�e motion-planner state machine has three states: WaitForT-
askReqest, CoordinateAndGeneratePlan, and WaitForPlanComple-
tion. Planner starts executing in the WaitForTaskReqest state. On
receiving a NewTask event from the task-planner, it updates the task
information (currTaskid and l iд) and moves to the CoordinateAnd-
GeneratePlan state. If the planner receives a ReqForCurrentTraj
event from another robot r j ∈ R, it sends its current location l ic to
robot r j .

Upon entering the CoordinateAndGeneratePlan state, planner
broadcasts ReqForCurrentTraj event with the identi�er of the cur-
rent task and its own identi�er, asking for trajectories of all robots
in the workspace. Rr ecv stores identi�ers of the robots that have
sent their trajectories as a response to the ReqForCurrentTraj
event, and Ψi stores the current trajectories of all those robots.
Rpend is used for storing identi�ers of all robots from which it has
received ReqForCurrentTraj and have to send its newly computed
trajectory. Upon receiving the CurrentTraj event from another
robot r j , the planner adds robot r j to set Rr ecv and its trajectory ζj
to the set Ψi . �e planner state machine is blocked in Coordinate-
AndGeneratePlan state until it receives CurrentTraj event from
all the robots.

On receiving trajectories from all the robots (line 19), the plan-
ner invokes the synthesizeMotionPlan function with its current
location l ic , the goal location l iд , the set of static obstacles Ω and
the set of trajectories of all the robots Ψi . �e implementation of
plan generator function synthesizeMotionPlan is described in
Sec. 3.2. �e motion-plan returned by the synthesizeMotionPlan
function is sent to the plan-executor module so that the robot can
start executing it, and the corresponding trajectory is sent to all
the robots whose identi�ers are present in the set Rpend and are
blocked waiting for the trajectory of robot ri .

If two robots ri and r j a�empt to generate motion plans simulta-
neously then a race situation arises as both of them are waiting for
the current trajectory of the other robot. �is deadlock situation is
resolved based on the unique identi�er assigned to each tasks. If the
planner of ri receives a ReqForCurrentTraj event from r j in the
CoordinateAndGeneratePlan state and if the task identi�er taskid
in the event is less than its current task identi�er currTaskid then
it implies that the robot r j is dealing with a higher priority task. In
such a case, the motion planner of ri sends its current location l ic to
the motion planner of r j to unblock it and waits for r j ’s computed
trajectory. Otherwise, it adds the robot r j to the set Rpend , and

once it computes its own trajectory, sends the trajectory to unblock
r j (Line 23-25).

In the WaitForPlanCompletion state, motion planner waits for
a Reset event from the plan-executor indicating that the task is
completed, on receiving which it moves to WaitForTaskReqest.

Notice that if the planner for robot ri generates trajectory ξi ,
then ξi is always safe as the coordination protocol guarantees that
all future trajectories computed by any other robot r j will have ξi
in Ψj .

Protocol 1 Decentralized Motion Planner
1: machine DecentralizedMotionPlanner {
2: start state WaitForTaskReqest {
3: entry { l ic ←getCurrentLocation() }
4: on NewTask (task : T) do {
5: currTaskid ← task .id , l iд ← task .дoal
6: goto CoordinateAndGeneratePlan
7: }
8: on ReqForCurrentTraj (taskid , r j) do {
9: send (r j , CurrentTraj, (ri , [l ic]))

10: }
11: }
12: state CoordinateAndGeneratePlan {
13: entry {
14: Rpend ← {} , Rr ecv ← {}, Ψi ← {}
15: broadcast (ReqForCurrentTraj, (currTaskid , ri))
16: }
17: on CurrentTraj (r j , ζj) do {
18: Rr ecv ← Rr ecv ∪ {r j}, Ψi ← Ψi ∪ {ζj}
19: if (sizeof(Rr ecv) = |R |) then
20: ρi ← synthesizeMotionPlan(l ic , l iд ,Ω,Ψi)
21: SendMotionPlanToPlanExecutor(ρi)
22: ξi ← ConvertMotionPlanToTraj(ρi)
23: foreach r j ∈ Rpend
24: send (r j , CurrentTraj, (ri , ξi))
25: end

26: goto WaitForPlanCompletion
27: end if

28: }
29: on ReqForCurrentTraj (taskid , r j) do {
30: if (taskid ≤ currTaskid) then
31: send (r j , CurrentTraj, (ri , [l ic]))
32: else

33: Rpend ← Rpend ∪ {r j}
34: end if

35: }
36: }
37: state WaitForPlanCompletion {
38: on ReqForCurrentTraj (task id , r j) do {
39: send (r j , CurrentTraj, (ri , ξi))
40: }
41: on Reset () do {
42: goto WaitForTaskReqest
43: }
44: }
45: }

DRONA: A Framework for Safe Distributed Mobile Robotics ICCPS 2017, April 2017, Pi�sburgh, PA USA

3.2 Safe Plan Generator

In this section, we present an approach for synthesizing a motion
plan to generate a trajectory that satis�es the safe-trajectory prop-
erty Φst .

3.2.1 Motion Plan Synthesis Problem. �e inputs to the motion
plan synthesis problem (Protocol 1, line 20) for a robot ri is the
current location of the robot (l ic), the goal location (l iд), the set
of static obstacles (Ω), and the set of current trajectories of other
robots (Ψi). We call the tuple Pi = 〈l ic , l iд ,Ω,Ψi 〉 as the motion plan

synthesis problem instance for robot ri .
Recall that a trajectory ξi of robot ri is a sequence of locations

(l in , l
i
n+1, . . . , l

i
n+k), where the trajectory starts at the n-th time

step. We adopt a technique based on composition of motion primi-
tives [26, 27] to solve the motion-plan synthesis problem. To gener-
ate such a trajectory ξi , we must synthesize a motion plan (Def. 2.1)
ρi = (γ1,γ2, . . . ,γk), where γq ∈ Γ, 1 ≤ q ≤ k . Recollect that the
desired trajectory (Def. 2.2) is realized by applying motion primitive
γq+1 to the robot at time step τ in+q .

We now de�ne the motion plan synthesis problem:

Problem 2. Given a motion plan synthesis problem instance Pi
for robot ri , a set of motion primitives Γ, and the time step τ in when the

plan executor will start executing the motion plan, synthesize a motion

plan ρi = (γ1 . . .γk) such that the trajectory ξi = (l
i
nl
i
n+1 . . . l

i
n+k)

generated by the plan executor by executing the motion plan ρi satis-
�es the safe-trajectory property Φst .

Accounting for clock skew: Each robot ri ∈ R operates based on
its own local clock χi . Let t denote an ideal global time reference
(just for purposes of formalization). We denote by χi (t) the valua-
tion of the clock χi at the global time t . Synchronization of these
clocks plays an important role in the correctness of our distributed
motion planning algorithm with respect to the collision avoidance
property ϕc . We assume that the DMR so�ware stack implements a
time-synchronization protocol [12] that bounds the skew between
two clocks, given by |χi (t) − χj (t)| ≤ β . If β = 0, we say that the
clocks of the robots are in perfect synchrony. Otherwise, the clocks
are almost-synchronous with precision β > 0.

To capture the skew between timed trajectories of two robots,
we de�ne a parameter ∆ that denotes the maximum o�set between
the sequences of periodic steps τ i and τ j of any two robots ri and
r j . �e value of ∆ is computed as ∆ =

⌈
β
τ

⌉
.

Theorem 3.1. If the local clocks of robots ri and r j are time-

synchronized with a synchronization precision β , and at some global

time point t , if robot ri takes the time step τ ip and robot r j takes the

time step τ
j
q , then |p − q | ≤ ∆, where ∆ is given by ∆ =

⌈
β
τ

⌉
where τ

is the duration of a time step [10].

�e above condition is called approximate synchrony and was
introduced and proved in our previous work [10]. Informally, �e-
orem 3.1 states that if the clocks of two robots are synchronized
within a bound β then the di�erence between the number of pe-
riodic steps taken by the two robots is bounded by ∆. Hence, for
collision avoidance, while synthesizing motion plan it is important
to know precisely where the other robots in the system would be
for a time-step window of size ±∆. �e parameter ∆ determines

how conservative a robot should be, when computing its trajectory
that avoids collision with other robots.

3.2.2 Motion Plan Generation. We now describe how a motion
plan ρi = (γ1, . . . ,γk) is synthesized from a motion plan synthesis
problem instance Pi = 〈l ic , l iд ,Ω,Ψ〉. We formulate the problem
as an optimization problem where the decision variables are the
motion primitives to be applied at di�erent time steps, and the
objective is to minimize the total cost to execute the trajectory. �e
functions post, cost, and intermediate used in this section are
de�ned in Sec. 2.2.
�e objective function is given as follows:

minimize
(γ1,γ2, ...,γk)

k∑
j=1

cost(γj) (1)

�e constraints for the optimization problem is a conjunction of
four constraints as described below:
(1) Initial and �nal location: �e �rst location in ξi is the
current location l ic of the robot. Similarly, the last location in ξi
must be the goal location l iд .

l in = l
i
c ∧ l

i
n+k = l

i
д (2)

(2) Trajectory continuity: A location in a trajectory is reachable
from the previous location using the motion primitive applied at
the previous location.

∀q ∈ {0, . . . ,k − 1} : l in+q+1 ∈ post(l
i
n+q ,γq+1) (3)

(3) Obstacle avoidance: No location on the trajectory should be
covered with obstacles.

∀q ∈ {0, . . . ,k − 1} ∀l ∈ intermediate(l in+q ,γq+1) : l < Ω (4)

�is constraint ensures the obstacle avoidance component ϕo of
the safe-trajectory property Φst .

(4) Collision avoidance: If the local clocks of all the robots are in
perfect synchrony, ensuring collision avoidance would require that
the robots do not occupy the same grid location in the workspace
at the same time period according to their local clock. Motion plan
synthesizer must ensure collision avoidance of robot ri ’s trajectory
represented as ξi = (l inl in+1 . . . l

i
n′) with the trajectories of other

robots captured in the set Ψ. �e trajectory of any other robot r j is
denoted by (l jm , . . . , l

j
n , . . . , l

j
m′) ∈ Ψ, wherem ≤ n.

�e following constraint guarantees collision avoidance property
ϕc for a perfectly synchronous system:

∀r j ∈ R \ {ri }, (l jm , . . . , l jn , . . . , l jm′) ∈ Ψ :
((∀q ∈ {n, . . . , min(n′,m′)} : l iq , l

j
q) ∧

/* �e robot ri reaches destination before robot r j */
(n′ < m′ ⇒ ∀q ∈ {n′ + 1, . . . ,m′} : l in′ , l

j
q) ∧

/* �e robot ri reaches destination a�er robot r j */
(n′ > m′ ⇒ ∀q ∈ {m′ + 1, . . . ,n′} : l iq , l

j
m′))

(5)

ICCPS 2017, April 2017, Pi�sburgh, PA USA A. Desai et al.

Once a robot reaches its destination, it stays there unless it com-
putes a new trajectory using the motion planner. Eq. (5) comprises
conjunction of three constraints (one per line). �e �rst constraint
enforces that two robots cannot occupy the same location at the
same instant while moving. �e second and third constraint spec-
ify that a robot that is moving does not occupy the location of a
stationary robot (that has stopped a�er reaching destination).

When the clocks are not perfectly synchronous, then one must
consider the synchronization precision β . We do so using the notion
of approximate synchrony introduced in �eorem 3.1. Speci�cally,
to ensure collision avoidance with another robot, the plan synthe-
sizer of a robot should ensure that its location at time step τ in does
not overlap with the location of the other robot at any step in the

range of (τ in − ∆,τ
i
n + ∆). Eq. (6) extends Eq. (5) to encode collision

avoidance constraint with an approximate synchrony bound of ∆.

∀r j ∈ R \ {ri }, (l jm , l jm+1, . . . , l
j
n , . . . , l

j
m′) ∈ Ψ :

((∀q ∈ {n, . . . , min(n′,m′)} ∀p ∈ {q − ∆, . . . ,q + ∆} :
(n ≤ p ≤ m′ ⇒ l iq , l

j
p) ∧

(p < m ⇒ l iq , l
j
m) ∧ (p > m

′ ⇒ l iq , l
j
m′)) ∧

/* �e robot ri reaches destination before robot r j */
((n′ < m′) ⇒ ∀q ∈ {n′ + 1, . . . ,m′} ∀p ∈ {q − ∆, . . . ,q + ∆} :
(p ≤ n′ ⇒ l ip , l

j
q) ∧ (p > n′ ⇒ l in′ , l

j
q)) ∧

/* �e robot ri reaches destination a�er robot r j */
((n′ > m′) ⇒ ∀q ∈ {m′ + 1, . . . ,n′} ∀p ∈ {q − ∆, . . . ,q + ∆} :
(p ≤ m′ ⇒ l iq , l

j
p) ∧ (p > m

′ ⇒ l iq , l
j
m′)))

(6)

SMT solver based safe plan-generator: To synthesize the motion
plan using an satis�ability modulo theories (SMT) solver [4], we
�rst start by initializing the length of the trajectory (k) to be the
manha�an distance between the current location of the robot and
its goal location. �e constraints (Eq.(1)-Eq.(6)) are from the theory
of linear integer arithmetic and the theory of equality with uninter-
preted functions. We represent the obstacles using an uninterpreted
function. If there exists a solution for the set of constraints, the
solution provides us the desired motion plan. If no solution exists,
we increase the value of k by 1 and a�empt to solve the constraints
again. We iterate that process until the value of k is less than or
equal to Limax (a parameter that represents the maximal length
to be considered for generating the trajectory for robot ri). If no
motion plan of length less than or equal to Limax is found, it is guar-
anteed that there does not exist a feasible motion plan of length
less than equal to Limax for the given problem instance.

However, as our experimental results reveal (Sec. 6), an SMT
based solution su�ers from lack of scalability for large grid sizes
and multi-robot systems as constraints become hard to solve.
A* based safe plan-generator: To have a scalable implementation,
we extend the well-known A* search algorithm [16] to generate safe
motion plans. A* search algorithm can natively handle the objective
function Eq. (1) and the constraints Eq. (2)-(4) for static obstacles.
We extended the function that computes adjacent nodes in A* to
incorporate the constraints in Eq. (5) and Eq. (6). We associate a
time-stamp value to each node in the A* search graph. �e time-
stamp denotes the number of steps required to reach the current
node from the start node. During adjacent node calculation, we use

time-stamp at a node to encode the constraints in Eq. (5) and Eq. (6)
to ensure that the trajectory through the potential adjacent node
will not be in collision with the trajectory of any other robot.

3.3 Plan Executor

�e plan-executor (PE) module plays an important role in the over-
all correctness of MRMP. It is the responsibility of the plan-executor
module to ensure that the robot correctly follows its computed
trajectory. �e plan-generator (Sec. 3.2) generates safe trajectory
under the assumption that all robots in the system will follow their
timed-trajectories that they communicated to other robots.

Recollect that the MRMP protocol (Protocol 1, line 21) on com-
puting a motion plan ρi sends it to the plan-executor module. �e
plan-executor executes the sequence of motion-primitives in ρi
such that the robot ri realizes its timed-trajectory ξi (Def. 2.2). It is
implemented as a periodic state-machine with the duration of each
period as τ , executing the next motion-primitive at each period.

For all the robots to follow their timed-trajectories correctly,
the path-executor processes across robots must step periodically
with a symmetric period τ , i.e, ∀ri ∈ R,∀n, |τ in − τ in+1 | = τ . Since
path-executor at each robot ri step using its local clock χi , the path-
executors across the system do not step perfectly synchronously but
almost-synchronously with a bound ±∆ which the plan-generator
has accounted for in Eq. (6).

3.4 Provably Correct Motion Planner

Recollect that when computing a trajectory for a robot ri , the execu-
tion of MRMP is decomposed into two phases: �rst the coordination
protocol computes the avoid trajectories set Ψi which is then used
by the safe plan-generator for computing the collision-free trajec-
tory ξi . We say that the avoid trajectories set Ψi is consistent if
∀ζj ∈ Ψi , ζj = ξ j , where ζj is the trajectory sent by robot r j to
robot ri and ξ j is the actual trajectory being executed by robot r j .

As described in Sec. 3.2.2, the A* based plan-generator always
generates trajectories that satisfy the safe-trajectory property Φst
under the assumption that avoid trajectory set Ψi is consistent. In
other words, given the set of trajectories Ψi , if the plan-generator
computes trajectory ξi then consistent(Ψi) =⇒ (ξi |= Φst).

In order to prove that the assumption consistent(Ψi) holds, we
verify (using model-checking) the following properties about the
coordination protocol: (1) Safety: �e avoid trajectory set Ψi com-
puted by the coordination protocol is always consistent. (2) Liveness:
If a dynamically generated task (l ,p) ∈ T is assigned to the robot ri
then it eventually computes consistent Ψi .

�e multi-robot motion planner described in this section satis�es
the following soundness theorem:

Theorem 3.2 (Soundness). If a dynamically generated task (l iд ,p)
is assigned to a robot ri then the corresponding trajectory ξi computed

by MRMP always satis�es the safe-trajectory property Φst .

Proof. As stated earlier, if ξi is the trajectory computed
by the plan-generator using Ψi then it provides the guarantee
that consistent(Ψi) =⇒ (ξi |= Φst) and we proved using
model-checking that the coordination protocol always satis�es
∀Ψi , consistent(Ψi). �

DRONA: A Framework for Safe Distributed Mobile Robotics ICCPS 2017, April 2017, Pi�sburgh, PA USA

However, MRMP is not complete due to the following reason:
for a given task the corresponding robot may not be able to reach
the destination due to the fact that its feasible trajectories may be
blocked by the other stationary robots.

4 VERIFICATION OF DMR SYSTEM

In this section, we describe our approach for verifying that a DMR
system (M) satis�es speci�cation Φ.

As explained in Sec. 3.3, for the robots in the system to suc-
cessfully follow their computed trajectories, the plan executor (PE)
processes must step almost-synchronously with symmetric period τ .
Hence, the PE processes across robots are implemented as periodic
processes. All the other processes in the so�ware stack e.g., TP,
MRMP, and SI are event-driven and are composed asynchronously.

We call the DMR system as a mixed synchronous system as it is
a composition of asynchronously composed processes and almost-

synchronously composed processes.

4.1 Formal Model of DMR system

We model the DMR mixed synchronous system as a tuple
(k,S,I,Psp ,Pas , ®χ ,τ ,δ) where:
- k is the number of robots in the system.
- S is the set of discrete states of the system which is a product

of the local states of all the processes.
- I ⊆ S is the set of initial states of the system.
- Psp = {P1

sp ,P
2
sp , . . . ,P

k
sp } is the set of process identi�ers for

the symmetric periodic (PE) processes. Pisp represents symmet-
ric periodic process running on ri .

- Pas = {P1
as ,P

2
as , . . . ,P

k
as } is the set of process identi�ers for

the asynchronous processes. Pias represents composition of
asynchronous process running on ri . Pias = T P i ‖ MRMP i ‖
SI i .

- ®χ = (χ1, χ2, . . . , χk) is a vector of real valued local clocks, each
robot ri has an associated local clock χi .

- ®τ is the common global process timetable for the periodic Psp
processes. �e timetable ®τ is an in�nite vector (τ 1,τ 2,τ 3, . . .)
specifying the time instants according to local clock χi when
the process Pisp executes (steps). In other words, Pisp makes its
jth step when χi (t) = τ

j where χi (t) is the value of the local
clock χi at global reference time t . Also, since the Psp processes
step with a period of τ , |τ j+1 − τ j | = τ .

- δ ⊆ S × ΣMS ×S is the labeled transition relation for the mixed

synchronous system. ΣMS denote (2Psp \{})tPas , the transition
labels of the system.
Note that the periodic Psp processes have the same timetable but

that does not mean that the processes step perfectly synchronously,
since their local clocks may report di�erent values at the same
global time t .
Timed traces: A timed trace σ of the mixed synchronous system
MMS is an in�nite sequence of the timestamped record of the exe-
cution of the system according to the global (ideal) time reference t
and is of the form σ : (s0, t0), . . . (sn , tn) . . . with ∀i . i ≥ 0, si ∈ S,
ti ∈ R≥0 and ti ≤ ti+1 satisfying requirements:

Initiation: s0 ∈ I, and ∀i . χi (t0) = 0, t0 = 0.
Consecution: for all i ≥ 0, there is a transition of the form
(si ,ai , si+1) in δ such that the label ai is either one of the follow-
ing:
1. �e label ai is an asynchronous process, ai ∈ Pas and the

transition represents process ai stepping at time ti .
2. �e label ai is a subset of symmetric periodic processes, ai ⊆
Psp and ∀j .P jsp ∈ ai , χj (ti) = τm for some m ∈ {0, 1, 2, . . .}.
χj (ti) is the value of the local clock χj at current global reference
time ti . �is transition represents a subset of symmetric periodic
processes making a step whose local clock value at time ti is
equal to some timetable value. Moreover, Psp processes step
according to their timetables; thus, if any process Pisp ∈ Psp
makes itsmth and lth steps at times tj and tk respectively, for
m < l , then χi (tj) = τ

mi < τ li = χi (tk).

4.2 Mixed Synchronous Abstraction

MMS system described above can be modeled as a hybrid or timed
system (due to the continuous dynamics of physical clocks), but the
associated methods [14, 19] for veri�cation tend to be less e�cient
for systems with huge discrete state space. Instead, we construct
the discrete abstraction M̂MS ofMMS that preserves the relevant
timing semantics of the ‘mixed synchronous’ systems.

We restate the approximate synchrony abstraction introduced
in [10] (�eorem 3.1) for symmetric periodic processes.

De�nition 4.1. A systemMas is said to satisfy approximate syn-

chrony (is approximately-synchronous) with parameter ∆ if, for any
two processes Pi and Pj inMas , the number of steps Ni and Nj
taken by the two processes always satis�es the following condition:

|Ni − Nj | ≤ ∆ (7)

We extend the approximate synchrony abstraction to create an
untimed mixed synchronous abstraction ofMMS .

We de�ne M̂MS as a tuple (k,S,I,Psp ,Pas , ρ∆,δa) where ρ∆
is a scheduler process that performs an asynchronous composi-
tion of all the processes while enforcing approximate synchrony
condition with parameter ∆ (computed using �eorem 3.1) only
for the Psp processes. �e scheduler ρ∆ maintains counter Ni of
the number of steps taken by each process Pisp from the initial
state. A con�guration of M̂MS is a pair (s,N) where s ∈ S and
N ∈ Zk is the vector of step counts for the Psp processes. �e
transition function δa for the abstract model M̂MS can be de�ned
as ((s,N),ai , (s ′,N ′)) ∈ δa i� δ (s,ai , s ′) and one of following holds:
(1) N ′j = Nj + 1 and ρ∆ permits all P jsp ∈ ai to make a step, (2)
ai ∈ Pas and ai makes a step.
ρ∆ scheduler enforces the mixed synchrony condition during

exploration by allowing Psp processes to step i� their step does
not violate the approximate synchrony condition and the Pas are
always allowed to step.
Untimed traces: Traces of M̂MS are (untimed) sequences of dis-
crete (global) states s0, s1, s2, . . ., where sj ∈ S, s0 ∈ I, and for all j ,
(sj ,aj , sj+1) ∈ δa .

Theorem 4.2. �e abstract model M̂MS is a sound abstraction of

the concrete modelMMS . Hence, M̂MS |= Φ impliesMMS |= Φ.

ICCPS 2017, April 2017, Pi�sburgh, PA USA A. Desai et al.

Proof. (Proof Sketch) Let traces(M) represent the set of all
untimed traces of the system M. �e untiming logic for timed
traces is as de�ned by Alur in [1]. M̂ is a sound abstraction of
M if traces(M) ⊆ traces(M̂) We derive the proof-sketch from
�eorem 3.1 in [10] which proves that for a time-synchronized
systemMps with synchronization β , the approximate synchrony
based abstract model M̂ps is a sound abstraction with parame-
ter ∆ =

⌈
β
τ

⌉
. Since the Pas are interleaved asynchronously in

bothMMS and M̂MS we can further prove that traces(MMS) ⊆

traces(M̂MS). �

Note that mixed-synchronous abstraction is critical for the veri�ca-
tion of DMR systems. Performing synchronous composition of all
processes in the system is unsound and performing asynchronous
composition can lead to false-positives due to over-approximation.
Implementation of the veri�cation approach: Zing model
checker supports directed search based on an external scheduler [9].
We implemented the mixed synchrony scheduler (ρ∆) as an external
scheduler for Zing that constraints the interleaving explored during
veri�cation. �e model-checking algorithm that uses approximate
synchrony scheduler is described in [10].

5 DRONA FRAMEWORK

�e Drona tool-chain consists of four main building blocks — (1)
an event-driven programming language for implementing and speci-
fying a DMR application, (2) a reliable DMR so�ware stack, (3) a
model checking backend for e�ciently verifying the DMR system,
and (4) a runtime library for executing the generated C code on
ROS.

We extended the state-machine based programming language
P [8, 24] so that the generated C code from the compiler can be
directly executed on ROS. We also extended the language with
primitives for specifying the workspace con�guration.

Drone SDK or ROS

Autogen. C
Implementation

DRONA
Runtime

Drone SDK or ROS

Autogen. C
Implementation

DRONA
Runtime

Workspace
Config. (XML)

Implementation

Specification

Test Driver/
Environment

DRONA Application

DRONA
Compiler

Generic
Software Stack

Execution
Based
Model

Checker

Reproducible Error Trace

Autogen.
C Code

DRONA
Deployment

Tool

Robot SDK or ROS

Autogen.
C Code

DRONA
Runtime

Robot Hardware
Or Simulator

Figure 3: Drona Tool Chain

A Drona application implemented using the extended P
language consists of four blocks—implementation, speci�cation,
workspace con�g., and test-driver. �e implementation block is a
collection of P state-machines implementing the task planner (TP)
module. Speci�cation block capture the application speci�c correct-
ness properties. �ese speci�cations are implemented in the form
of monitors and can be used for any temporal safety or liveness
property. �e workspace con�g. XML �le provides details about the

workspace, like size of the workspace grid, location of static obsta-
cles, location of ba�ery charging points, starting location of each
robot, etc. �e test-driver block implements the �nite environment
state machines that close the DMR system for veri�cation.

�e Drona compiler generates a translation of the DMR ap-
plication into the Zing modeling language. We extended Zing to
support mixed-synchronous abstraction to automatically check if
the program satis�es the desired properties expressed in the speci-
�cation block. �e compiler also generates C code that is compiled
by a standard C compiler and linked against the Drona runtime
and robot SDK to generate the executable code to be deployed on
each robot or the ROS simulator.

�e generic so�ware stack (Fig. 2) consisting of the MRMP, PE
and SI modules is provided as a part of the Drona tool-chain. �e
entire so�ware stack was implemented in less than 2500 lines of P
code and was systematically tested using the Zing model-checker.

6 EVALUATION

We empirically evaluate Drona with the following goals: (1) show
that the safe plan-generator can be used for on-the-�y motion plan-
ning with large number of robots and large workspace size, (2)
demonstrate advantages of using Drona for building reliable DMR
system by implementing and verifying the priority mail delivery
system as a case-study, (3) deploy the generated code from Drona
on ROS simulator for various con�gurations to validate the reliabil-
ity, and (4) show how time-synchronization error (∆) e�ects safe
optimal path computation.
All experiments were performed on a laptop with 2.5 GHz Intel i7
core processor with 16GB RAM.
Evaluation of safe plan generator: Recently, there is an in-
creased interest towards using SMT solvers for motion plan synthe-
sis [23, 26, 27]. �e performance of plan generator depends on the
complexity of constraints generated, which varies based on the size
of workspace, number of robots, their current trajectories, and the
density of static obstacles. From our experiments, we found that
the state-of-the-art solver Z3 [6] does not scale for plan generation
in the context of multi-robot systems. Generating a motion plan
with a workspace of size 64x64 and 16 robots takes 2 min 18 secs
(see Table 1).

Time in seconds
|R | Grid Size

16x16 32x32 64x64
4 0.66 3.5 15.4
8 0.9 8.5 33.55
16 - 44.6 138

Table 1: Performance of SMT-

based plan-generator

We implemented the plan-
generator using a publicly
available A* implementa-
tion [3] and encoded the path
constraints into A* search. In
our evaluation of A* based
plan generator, we increase
the number of robots from 4
to 128 and consider 2-D grids
of sizes 16x16 to 256x256 (our
motion planner supports 3-D
workspaces, simulation video at [11]). We generated random
workspaces of varying size such that 20% of the grid locations are
occupied by obstacles. We simulated a system with n robots and
created an environment that pumps in a sequence of task requests
with random goal location. We measured the amount of time it
takes for each robot to compute its trajectory. Table 2 reports the

DRONA: A Framework for Safe Distributed Mobile Robotics ICCPS 2017, April 2017, Pi�sburgh, PA USA

average computation time over 300 invocations of plan-generator
for di�erent con�gurations.

Computation time in seconds
Grid Size

|R | 16x16 32x32 64x64 128x128 256x256
4 0.0174 0.0179 0.0215 0.0518 0.1485
8 0.0179 0.0184 0.0249 0.0837 0.2651
16 0.0187 0.0206 0.0318 0.0884 0.3038
32 - 0.0247 0.0435 0.1007 0.3186
64 - - 0.0666 0.1538 0.3882
128 - - - 0.2293 0.5159
Table 2: Performance of A* based plan-generator

�e results show that our plan generator that takes into account
time-synchronized clocks is scalable for large grid sizes and number
of robots. Hence we believe that it can be used for generating plans
on-the-�y in a decentralized fashion with formal guarantees.
Building mail delivery system: We implemented the priority
mail delivery system in P and composed it with the reliable Drona
so�ware stack. We used the mixed synchronous discrete abstrac-
tion (Section 4.2) for verifying that the mail delivery system satis�es
application speci�c properties Φa like (1) mails are always delivered
in priority order, (2) mail request if received is eventually delivered,
and (3) ba�ery status of the drones is always higher than a safe
threshold. �ese speci�cations were implemented as P monitors.
As Drona supports �nite state model-checking, we bounded the
environment to nondeterministically send 10 mail delivery requests
with random pickup-dropo� locations and veri�ed that the system
satis�ed Φa . During the process of implementing the generic so�-
ware stack and the priority mail delivery system we found many
critical bugs that would have been hard to �nd otherwise using
traditional simulation based approach. For example, there was a
bug (race condition) in the coordination protocol which led to the
case where a robot computes its trajectory using an older trajectory
of other robot, causing collision. �is race condition could not be
reproduced with 2 hours of random simulations but was caught in
a few seconds using the model-checker. We also deployed the gen-
erated code on to an AscTec Fire�y1 drone for conducting simple
drone missions.
Evaluation of Veri�cation: We performed analysis of the appli-
cation in two phases:

Max depth explored
in 10 hours

|R |
Grid Size

8x8 16x16 32x32
2 X X X

4 X X X

8 X X (78)
Table 3: Scalability of veri�-

cation approach

(1) Strati�ed random sampling: To
catch shallow bugs in our im-
plementation, we �rst performed
strati�ed sampling [9] of execu-
tions. In this mode, Zing uni-
formly samples execution of max
depth 1000. We were able to �nd
most of the bugs in our implemen-
tation during this mode of testing.
Note that this is similar to perform-
ing random simulations, but much
more scalable as we use a parallel model checker for exploration.

1h�p://www.asctec.de/uav-uas-drohnen-�ugsysteme/asctec-�re�y/

(2) Deterministic exploration: Sampling based approaches fail to
provide coverage guarantees, for that, we performed deterministic
enumeration (with state caching) of all possible executions in the
system with max depth 100 and time budget of 10 hours. Table 3
shows the coverage results for various grid sizes and number of
robots. Xrepresents that Zing explored all possible executions
till depth 100 and (n) represents that Zing explored all possible
executions till the depth n in the given time budget.
Simulations: We also implemented a ROS simulator that supports
3-D simulation of the code generated from Drona framework. Sim-
ulation videos for various con�gurations are available at [11]. To
validate the reliability of code generated by Drona, we added run-
time assertions into the generated C code and ran the simulations
for 128 robots with random task generator for 12 hours. We did not
�nd any bug during this stress testing, con�rming that the veri�ed
code generated from the Drona framework is reliable.
E�ect of ∆ on planning: �e approximate-synchrony parameter
∆ represents the clock skew (and thus, step skew) in the system and
e�ects the window of locations avoided by robots when computing
trajectory. In other words, it a�ects how conservative a robot is
when computing the trajectory. Hence, the optimal path for a
robot may change based on the value of ∆. A simulation video to
demonstrate this scenario is available at [11].

7 RELATEDWORK

Related work can be summarized into the following categories:
Multi robot motion planning: �e problem of synthesizing colli-
sion free trajectories for multi-robot systems in a scenario where
the robots are preassigned a set of tasks has been addressed in
several prior work. It can be categorized as follows: (1) Centralized
motion planning (e.g. [13, 26–28]) where a central server, given a set
of tasks and robots in the system, computes the collision-free tra-
jectory for each robot o�ine, (2) Decentralized prioritized planning
(e.g. [5, 15, 29]) where given a �xed set of tasks, the robots in the
system coordinate with each other asynchronously for computing
the trajectories. �ese papers empirically show that decentralized
approaches can converge faster than centralized approach. In this
paper, we present a decentralized motion planning that can han-
dle dynamically generated tasks and are robust against “almost
synchrony”.
Reactive motion planning: Recently, there is increased interest
towards using temporal logic formalism for synthesizing reactive
motion plans [7, 18, 31]. �is approach, in principle, can be ex-
tended and applied to solve a DMR problem. However, the problem
with automated synthesis is that the algorithms scale poorly both
with the number of robots and the size of the workspace. Also,
they resolve collisions only locally and therefore cannot always
guarantee that the resulting motion plan will be deadlock-free and
that the robot will eventually reach its destination. Also, in this
paper we present a framework that veri�es the entire so�ware stack
and not just the task-planner and motion-planner.
Programmingmodels: Programming frameworks like Gio�o [17]
have been used for building critical distributed embedded systems
so�ware. Gio�o provides an abstract model for the implementation
of periodic so�ware tasks with real-time constraints. �e closest

ICCPS 2017, April 2017, Pi�sburgh, PA USA A. Desai et al.

work related to Drona is the recently proposed StarL [21] frame-
work, that uni�es programming, speci�cation and veri�cation of
distributed robotic system. Drona integrates a state-machine based
programming language for event-driven robotics so�ware, it pro-
vides a novel motion planner which is robust against clock-skew
in distributed systems and presents an abstraction based model-
checking approach for veri�cation.

8 CONCLUSION

In this paper, we presented the Drona so�ware framework for
building reliable DMR systems. �e multi-robot motion planner
(MRMP) implemented in Drona is provably correct and scales e�-
ciently for large number of robots and large workspaces. MRMP is
the �rst to take into account the time-synchronization error in a
distributed multi-robot system when generating safe motion plans .
Using a model-checking approach leveraging the notion of approx-
imate synchrony, we were able to �nd bugs in our implementation
which rigorous random simulations failed to �nd.

As future work, we plan on applying the Drona so�ware stack
for real-world complex missions. We also plan to extend Drona
with runtime monitoring and adaptation.

9 ACKNOWLEDGEMENTS

�e �rst and last author were supported by STARnet, a Semicon-
ductor Research Corporation program, sponsored by MARCO and
DARPA.

REFERENCES

[1] Rajeev Alur and David L Dill. 1994. A theory of timed automata. �eoretical

computer science 126, 2 (1994), 183–235.
[2] Tony Andrews, Shaz Qadeer, Sriram K. Rajamani, Jakob Rehof, and Yichen Xie.

2004. Zing: A Model Checker for Concurrent So�ware. In 16th International

Conference on Computer Aided Veri�cation (CAV).
[3] Astar. 2017. Astar Algorithm Cpp Github. h�ps://github.com/justinhj/astar-

algorithm-cpp.git. (2017).
[4] C. Barre�, R. Sebastiani, S. A. Seshia, and C. Tinelli. 2009. Satis�ability Modulo

�eories. In Handbook of Satis�ability, Armin Biere, Hans van Maaren, and Toby
Walsh (Eds.). Vol. 4. IOS Press, Chapter 8.

[5] Michal Cáp, Peter Novák, Martin Seleckỳ, Jan Faigl, and Ji� Vok�nek. 2013.
Asynchronous decentralized prioritized planning for coordination in multi-robot
system. In International Conference on Intelligent Robots and Systems. IEEE, 3822–
3829.

[6] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An E�cient SMT Solver.
In Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
337–340.

[7] Jonathan A. DeCastro, Javier Alonso-Mora, Vasu Raman, Daniela Rus, and Hadas
Kress-Gazit. 2015. Collision-Free Reactive Mission and Motion Planning for
Multi-Robot Systems. In International Symposium on Robotics Research (ISRR).
Sestri Levante, Italy.

[8] Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Rajamani, and
Damien Zu�erey. 2013. P: Safe Asynchronous Event-driven Programming. In
Programming Language Design and Implementation (PLDI). 321–332.

[9] Ankush Desai, Shaz Qadeer, and Sanjit A. Seshia. 2015. Systematic Testing of
Asynchronous Reactive Systems. In Foundations of So�ware Engineering (FSE).
73–83.

[10] Ankush Desai, Sanjit A. Seshia, Shaz Qadeer, David Broman, and John C. Ei-
dson. 2015. Approximate Synchrony: An Abstraction for Distributed Almost-
Synchronous Systems. In Computer Aided Veri�cation (CAV). 429–448.

[11] Drona. 2017. Drona Website. h�ps://drona-org.github.io/Drona/. (2017).
[12] John Eidson and Kang Lee. 2002. IEEE 1588 standard for a precision clock

synchronization protocol for networked measurement and control systems. In
Sensors for Industry Conference, 2002. 2nd ISA/IEEE. Ieee, 98–105.

[13] Michael Erdmann and Tomas Lozano-Perez. 1986. On Multiple Moving Objects.
Algorithmica 2 (1986), 1419–1424.

[14] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Sco� Co�on, Rajarshi Ray,
Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, �ao Dang, and Oded Maler.
2011. SpaceEx: Scalable veri�cation of hybrid systems. In Computer Aided

Veri�cation (CAV). 379–395.
[15] Yi Guo and L. E. Parker. 2002. A distributed and optimal motion planning

approach for multiple mobile robots. In International Conference on Robotics and

Automation (ICRA), Vol. 3. 2612–2619.
[16] P. E. Hart, N. J. Nilsson, and B. Raphael. 1968. A Formal Basis for the Heuristic

Determination of Minimum Cost Paths. IEEE Transaction on Systems Science and

Cybernetics (1968).
[17] �omas A Henzinger, Benjamin Horowitz, and Christoph Meyer Kirsch. 2001.

Gio�o: A time-triggered language for embedded programming. In International

Workshop on Embedded So�ware. Springer, 166–184.
[18] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. 2009. Temporal-

logic-based reactive mission and motion planning. IEEE transactions on robotics

6 (2009), 1370–1381.
[19] Kim G Larsen, Paul Pe�ersson, and Wang Yi. 1997. UPPAAL in a nutshell.

International journal on so�ware tools for technology transfer 1, 1-2 (1997), 134–
152.

[20] Steven M LaValle. 2006. Planning algorithms. Cambridge university press.
[21] Yixiao Lin and Sayan Mitra. 2015. StarL: Towards a Uni�ed Framework for Pro-

gramming, Simulating and Verifying Distributed Robotic Systems. In Languages,

Compilers and Tools for Embedded Systems (LCTES). Article 9, 10 pages.
[22] Daniel Mellinger and Vijay Kumar. 2011. Minimum snap trajectory generation

and control for quadrotors. In International Conference on Robotics and Automa-

tion (ICRA). 2520–2525.
[23] Srinivas Nedunuri, Sailesh Prabhu, Mark Moll, Swarat Chaudhuri, and Lydia E

Kavraki. 2014. SMT-based synthesis of integrated task and motion plans from
plan outlines. In International Conference on Robotics and Automation (ICRA).
IEEE, 655–662.

[24] P. 2017. P Github. h�ps://github.com/p-org/P. (2017).
[25] M. �igley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and

A. Y. Ng. 2009. ROS: an open-source Robot Operating System. In ICRA Workshop

on Open Source So�ware.
[26] Indranil Saha, Ra�anachai Ramaithitima, Vijay Kumar, George J Pappas, and San-

jit A Seshia. 2014. Automated composition of motion primitives for multi-robot
systems from safe LTL speci�cations. In International Conference on Intelligent

Robots and Systems (IROS). IEEE, 1525–1532.
[27] Indranil Saha, Ra�anachai Ramaithitima, Vijay Kumar, George J Pappas, and

Sanjit A Seshia. 2016. Implan: scalable incremental motion planning for multi-
robot systems. In International Conference on Cyber-Physical Systems (ICCPS).
IEEE, 1–10.

[28] Jur P Van Den Berg and Mark H Overmars. 2005. Prioritized motion planning
for multiple robots. In Intelligent Robots and Systems (IROS). IEEE, 430–435.

[29] Prasanna Velagapudi, Katia Sycara, and Paul Scerri. 2010. Decentralized priori-
tized planning in large multirobot teams. In International Conference on Intelligent

Robots and Systems (IROS). IEEE, 4603–4609.
[30] Glenn Wagner and Howie Choset. 2011. M*: A complete multirobot path planning

algorithm with performance bounds. In International Conference on Intelligent

Robots and Systems (IROS). IEEE, 3260–3267.
[31] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M Murray. 2012. Receding

horizon temporal logic planning. IEEE Trans. Automat. Control 57, 11 (2012),
2817–2830.

