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Detection limits and goodness-of-fit measures for the
two-component model of chemical analytical error

Machelle D. Wilsona,*, David M. Rockeb, Blythe Durbinb, Henry D. Kahnc

-

Abstract

The utility of analytical chemistry measurements in most applications is dependent on an assessment of measurement error. This paper
demonstrates the use of a two-component error model in setting limits of detection and related concepts and introduces two goodness-of-fit
statistics for assessing the appropriateness of the model for the data at hand. The model is applicable to analytical methods in which high concen-

near
zero concentration, and approximately constant relative standard deviation at high concentrations, a pattern that is frequently observed in prac-
tice. Here we discuss several important applications of the model to environmental monitoring and also introduce two goodness-of -fit statistics,
to ascertain whether the data exhibit the error structure assumed by the model, as well as to look for problems with experimental design.

~ 2004 Elsevier B. V. All rights reserved.
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a model assuming a constant error is used, there is an implicit
assumption that the absolute size of the error is unrelated
to the concentration of the analyte. This assumption is not
supported by empirical observation of behavior at the higher
levels. If a model assuming a proportional error is used, then
there is an implicit assumption that the measurement error
becomes vanishingly small as the concentration approaches
zero. This assumption is also contrary to experience of be-
havior at the lower levels. Since environmental monitoring
data often fall into this gray area, understanding measure-
ment error in this region is of considerable importance.

The model presented here was first proposed by Rocke
and Lorenzato [3], where some of the technical background
to this model can be found. The model resolves the difficul-
ties discussed above by incorporating both types of error that
are observed in practice into a single model. This model pro-
vides an obvious advantage over existing models by describ-
ing the precision of measurements across the entire usable
range. We will present two examples in detail--one of Ni
by ICP/MS and one of proprionitrile by GC/MS-numerical
illustrations using Zn and Ag by ICP/MS, and summary re-
sults for a larger group of organics by GC/MS and met-
als by ICP/MS. These examples support the validity and

1. Introduction

Limitations of the analytical methodology used to mea-
sure the concentration of toxic substanc~s in the environ-
ment have had an important policy role in regulation. It is
difficult to regulate emissions of toxic substances at levels
below what can be reliably measured, and a definition of
the level of reliable measurement is therefore crucial to pol-
icy making. In this paper, we discuss the implications of a
model for measurement error for these policy issues.

It has been observed from long experience that the mea-
surement error of an analytical method, for example atomic
absorption spectroscopy, is of two types. Over a range of
concentrations near zero, the measurement error is seen to
be constant. Over ranges of higher concentration, the mea-
surement error is observed to be proportional to the con-
centration of the analyte [1,2]. This poses some difficulty in
estimating the overall precision of an analytical method for
data that span the "gray area" where a transition occurs be-
tween near zero concentrations and quantifiable amounts. If
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advantages of this two-component model. We also discuss
the application of the model t<l> detection limits, quantifica-
tion limits, sample size calcuJations, and the construction
of confidence intervals. We i.troduce two goodness-of-fit
statistics and estimate their di~tributions using the paramet-
ric bootstrap. Some related work with a different point of
view on some of the policy is~ues can be found in [4-6].

It should perhaps be noted hfre that this model deals with
variation in the calibration curve produced by the analytical
instrument only. It does not defil with other sources of vari-
ation, such as the inter-laboratory variation, human-error,
or error in identification of peak area in gas chromatogra-
phy/mass spectroscopy. Identifying a signal as a peak is a
non-trivial task and the inhere~t variation produced by this
difficulty is beyond the scope qf this paper. For further read-
ings in this area, see [7]. I

known, these quantities can be estimated by simply substi-
tuting the estimates from the algorithms. This step is justi-
fied in application, since, as the bootstrap results show, the
variance of the parameter estimates for maximum likelihood
estimation (MLE) is quite small [3].

Two derived quantities will be useful in interpretation of
the results. Sf = O'f/,8 represents the standard deviation of

(L at low levels.) SIj = ~~~~ is the RSD of {L
for high levels. For values of 0'1j appropriate for analytical
technologies (say not more than 0.3), SIj is very near ulj. For
example, if ulj = 0.1, then SIj = 0.1008 and if 0'1j = 0.3,
then SIj = 0.32.

Using these derived quantities, we can represent the vari-
ance of y as

Var{y} = JL2,82 S2 + 0'1: (4)
Ij f

and for the estimated concentration,

Var{{L} = JL2S; + S; (5)2. The model

The usefulness of the two-component error model is clear
when compared to using only the relative standard deviation,
which is defined to be equal to the standard deviation of the
estimated concentration divided by the concentration [8].
For the two-component model, we have

RSD{[L} = P (6)

Most measurement technologies require a calibration
curve, often linear, to estimate the actual concentration of an
analyte in a sample for a given response. We can incorporate
into the linear calibration mod41 the two types of errors that
are observed in most analyses. 'lnte two-component model is

y=a+.BJLe'1+~.I (1)

~

If the error structure is described only in tenDs of RSD,
we see that measurements at high concentrations have a
nearly constant RSD, whereas small concentrations have an
increasing RSD that tends to infinity as the concentration
approaches zero, which is not observed in practice. Use of
RSD alone to characterize measurement error in the low
concentration region can cause difficulties when attempting
to make decisions regarding detection and quantification.
The two-component model allows for a more reasonable
estimation of error near zero, and hence more reasonable
criteria for setting detection limits and critical levels.

Likewise, using the simple model, i.e. assuming that the
standard error remains constant across all concentrations,
results in grossly inaccurate estimates of error at higher con-
centrations. For example, assume that the standard deviation
of blanks is 29 gn, but that 0"1/ = 0.3, a very high coeffi-
cient of variation that nevertheless often occurs with some
technologies, and that fJ = I. Suppose we have an esti-
mated concentration of 600 gn and would like to calculate
confidence intervals around that estimate. Using the simple
model, we would estimate the standard deviation to be that
of the blanks, or 29 gn. However, since 0"1/ = 0.3, the true

standard deviation is J292 + 60()2 S~ = 182 gn, an increase

of the variance of over six times the variance at zero. Poor

where y is the response (such ~ peak area) at concentration
.a, a and .8 are the parameterstf the calibration curve, 77 ""
N(O, u1/) and E "" N(O, Uf). H re, 77 represents the propor-

tional error that always exists, but dominates at concentra-
tions significantly above zero, ~nd E represents the additive
error that always exists but do~nates mainly for near zero
concentrations. This two-comwnent model approximates a
constant standard deviation fori very low concentrations and

I

approximates a constant relat
~' e standard deviation (RSD)

for higher concentrations. Not that y is the response of the

measuring apparatus, for exam Ie peak area. In order to ob-
tain the estimated concentrati n, we perform the back cal-
culation A

IIi = ~ (2)
-;;:-

fJ

where & and p are estimates 0 a and .8, respectively, in the
model (I).

Under this model, the vari ce of the response y at con-
centration /l. when a and .8 are known is given by

Var{y} = /l.2.82e(1~(e(1~ -1) +U; (3)

This calculation relies on the~SumPtion that a and .8 are
known, which is perhaps an un sual circumstance. It is safe
to consider these parameters own when the estimates are
based on large amounts of available historical data where
there is little variation in the o~served calibration line over
time. When the regression andl variance parameters are un-

1 Here we assume that a and .8 are well enough estimated that they

can be treated as known.
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estimation of error at a given co~centration will heavily af-
fect the estimation of limits of d~tection, and hence regula-

tory practices. I

3. 

Estimation

The parameters in the two-component model can be es-

timated in a number of ways.11te standard deviation (1f of

the low level measurements carl be estimated from repli-

cate blanks, for example by th

i ' e routinely included with

batches of samples. If this num r is stable, it can also be

estimated from routine QC data 0 long as measurements at

zero concentration are replicatedf The parameter (1 TJ can be

likewise estimated from the stan~ard deviation of the loga-

rithm of high level measurementsf The calibration curve can

then be estimated using weigh ~ least squares, weighting each point by the inverse estimat d variance (using (4) with

estimates of the parameters inse ed). It is also possible to

estimate all four parameters sim ltaneously using weighted

least squares, although our expepence is that this estima-

tion method is often not very s~ble and can lead to non-

convergence or impossible esti~ates (such as negative

variances). !

The most effective estimation ~ ethod is maximum like-

lihood estimation, as described i [3]. A computer program

that solves for the maximum likeli ood estimates for a, {3, (1f'

(1TJ is available at http://www.cipic.ucdavis.edu/''-'dmrocke.

Two example data sets and the Fsults from the maximum

likelihood algorithm will be showr here, as well as summary

results for several other data sets~

4. Limits of detection

In this section we describe some applications of the
two-component model. Special emphasis is given to detec-
tion and measurement of toxins ~t very low levels.

4.1. 

Critical levels

Detection refers to the capability of an analytical mea-
surement process to indicate the p sence of an analyte. This
requires an agreed upon procedur for determining whether
or not a given measurement resu t conclusively establishes
that the analyte is present in the s pIe [9]. In practice, this
means that the investigators establ.sh a numerical value such
that a result greater than this val e is extremely unlikely to
occur if the true concentration is n fact zero, while a result
lower than this value indicates th t the true concentration in
the sample is either zero, or is t low to detect (with cer-
tainty) with the technology in us .The measurement error
that exists in any technology lea s to this inability to de-
tect concentrations below a ce n level. The critical level
is defined by the International U ion of Pure and Applied
Chemistry (IUPAC) to be the val e, Lc, such that the prob-

ability of a measurement exceeding this value will be very
small, say 0.01, when the true concentration in the sample
is zero [10]. That is, samples that do not contain the analyte
are very unlikely to generate measurement results that ex-
ceed L<;. Note that the critical level is defined at first in the
units of the measurement technology (e.g., peak area) not in
units of concentration. Of course, we can also express the
critical level in units of concentration by taking the criti-
callevel (in measured units) and dividing by the calibration
slope ,8. Since the critical level is the point at which the de-
tection decision is made, it has been called by some authors
a detection limit, but it should be noted that it is distinct
from the IUPAC definition of the limit of detection. Limits
of detection will be discussed later in this paper.

Under the assumption of normality, the value of Lc may
be calculated as follows: assume that uf, the standard devia-
tion of the response at ,IL = 0, is known and that we require
99% confidence in our statement that the analyte is present.
Then the one-sided 99% confidence level is represented by
Lc = a + zouf, where Zo is the z-value corresponding to
the 99th percentile of the standard normal distribution (i.e.,
zo = 2.326). To find the critical level for any level of con-

fidence, simply find the appropriate one-sided z-value, then
multiply by the standard deviation of the blanks and add this
to the mean value of the blanks, i.e.,

Lc = a + zoUf (7)

in units of the response of

Lc = ZOSf (8)

in units of concentration. Generally, the mean and standard
deviation of the blanks will be well enough known from
experience to use this method. If these are estimated from
data, then a t-value (from the t-distribution), with the ap-
propriate degrees of freedom, is substituted for the z-value.
The advantage of the two-component error model is that
an estimate for uf with desirable statistical properties can
be obtained from data that span a range of concentrations,
resulting in greater accuracy from a given amount of data.
Specifically, the two-component model accounts for the in-
herent error structure of the entire data set. Once we have
achieved adequate goodness-of-fit by considering the error
structure as a whole, the parameter estimates provide us with
more accurate estimates of error at the concentrations we are
interested in, here, concentrations near the limit of detection.

For our example zinc data, we have Uf = 204 in units of
peak area and Sf = 28.9 g/l. If we use a 99% confidence
level, the normal percentage point is 2.326, so that Lc in
units of peak area is 490 + (2.326)(204) = 965 and in units
of concentration is (2.326)(28.9) = 67.2 g/l.

Note that a measured value below Lc does not establish
that the analyte is absent, only that it has not been shown
conclusively to be present. This means that the value should
be reported as measured, together with the standard devia-
tion at the measurement value. Cases in which limitations
of the instrument itself prevent reporting a value (e.g. as
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closed form solution is possible. The required condition isis the case with some spectroscopic measurements) are an
obvious exception. In other cases, censoring of values be-
low Lc may be required as a ~tter of policy by regulatory
agencies. Such practices result i data sets with reduced util-
ity from the loss of informatio , which makes tracking of
trends, monitoring of laborato quality, summarization of
data, and other data analysis all more difficult. More impor-
tantly, this censoring needlessl prevents investigators from
being able to reach probabilisti ly quantified conclusions
about the true presence of an alyte. Sometimes more or
less sophisticated methods can be used to cope with these
censored data [11-13], but si pIe reporting of measured
values would allow use of basi ,easily understood method-
ology instead of these complex techniques.

(12)S7/ <
z\

For details and proof, see Appendix A. Note that if this
condition is not satisfied, then there is no solution at all. The
closed fonn solution derived then is

Sf [zo + JZ5 -(I -ztS~)(Z5 -zt) J
1.",= (13)-,... 2 2 ,-

,} -Zl 511

When zo = Zl = Z, we have the particularly simple fonn

LD = 2zSf (14)
1 -Z2S2

1/

4.2. Minimum detectable value Then an estimated Lo is found by simply substituting the
sample variance estimates into the above equation.

For our example zinc data, we have Sf = 28.9 and SII =
0.0390. If we use ZO = Zl = 2.326, corresponding to 99%
confidence, we have a minimum detectable value of

(2)(2.326)(28.9)1 -(2.326)2(.0390)2 = 135 g/l (15)

One important use of Lo is to assess and monitor the
performance of a laboratory. If samples are spiked at a
concentration of Lo, then almost all of the time the result-
ing responses should exceed the critical value Lc. Such
trials can be run periodically to monitor the ability of the
laboratory to detect analytes up to specifications. Another
important use is to determine what concentrations in the
field can reliably be detected with a given technology. If
concentrations below the minimum detectable value are im-
portant to detect, consideration should be given to the use of
better technology or replicate measurements. The minimum
detectable value should never be used to assess a measured
value to decide if it should be reported or censored. It should
only be used for planning purposes or for quality assurance.

4.3. Quantification limit

By a quantification limit, some authors have meant the
lowest level at which the quantitative assessment is suffi-
ciently accurate for practical use. Since the standard devia-
tion at low levels is actually smaller than that at high levels,
the most precise measurements, in terms of standard devia-
tion, are actually those for the lowest level of the analyte. A
definition with some practical utility is the true concentration
at which the relative standard deviation falls to a specified
level [6,15,16]. However, measurement of some analytes at
an arbitrarily low RSD, such as 10% may not be possible.
The model allows for evaluation of each case in terms of
what RSD is feasible. The RSD at 0 is automatically infi-
nite, no matter how accurate the measurement process is,
and the RSD at high levels is 0'1} so it is meaningful to define
the quantification limit as the level at which the RSD falls
to a specified multiple of 0'1}' say 20'1}' It makes little sense

The limit of detection or min mum detectable value is the
true concentration, Lo, of an an yte that will, with high con-
fidence, produce a measured v ue above the critical level.
For example, if the concentrati n Lo is chosen for labora-
tory QC, it should be detected measured above the critical
level Lc) almost all of the tim [14]. Although Lc can be
given either in the units of the measurement technology or
in units of concentration, Lo i purely in units of concen-
tration. Conceptually, Lc is de ermined so that the desired
confidence level of the test that e true concentration is zero
is met, and Lo is determined 0 that the desired statistical
power is obtained. It usually c not be safely assumed that
the standard deviation at the d tection limit is the same as
the standard deviation of a bl k, so reliable estimates of
variance at any specified conce tration are necessary for re-
liable determination of the min.mum detectable value.

We can find a good estimate of Lo by noting that the
level is low enough that a no~al approximation is appro-
priate (at high levels, the distribution is essentially log nor-
mal). We treat y as being nonnally distributed with mean
a + fJJl, and with variance given by (4) and solve the result-
ing equation. When the standard deviation is estimated, the
following is analogous, but weluse the appropriate quantile
from the Student's t distributi?n rather than that from the
normal. Recall that, from (5),

Var{jJ.} = 11. 2 S~ + s; (9)

so that Lo is the solution to th~ equation

Lo = ZOSf + ZlJVa"f TLD} (10)

LD = ZOSE + zlfii~+"Si, (11)

where zo is the percentile of th~ standard normal distribution

corresponding to the desired c nfidence level for the critical

level, and Zt the percentile c rresponding to the desired
confidence level for the minim m detectable value. So long
as the variance of y does not i crease too rapidly with JL, a
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to specify a particular arbitraryIRSD, such as 20%, since
the limit of quantification would then be undefined for any
measurement process with 0"" > 0.20. This is easily seen
by substituting in 0.2 in the example given earlier. If it is
desirable to make this computation for a particular process,
this can easily be done using the model presented here. Let
R be the desired RSD, e.g. 10%. Then the equation

~~ = R (16)
LQ

we focus on comparing the model predicted variance (1;2 at
each concentration to the mean square deviation s; from
the calibration curve. Hence we propose the following
goodness-of-fit statistic for testing the appropriateness of the
modeled error structure for the data. Values of (1;2 Is; close
to I (or values of log (11 Is; close to 0) indicate a good fit.

For the maximum likelihood estimation method, the pre-
dicted variance at a given concentration was estimated using
the formula

(11 = (1; + fJ2JL;e~(e(1; -I), (19)where V(LQ) = L~S~ + S; has solution

r---~LQ = V ~
where JLi is the concentration.

Suppose, for example, that one wishes to calculate the ra-
tio a1jsf for the maximum likelihood method at a concen-
tration of JL = 100.0. Suppose, furthermore, that we have
the results a = 114.80, fJ = 11.586, &1/ = 0.028424, and
&f = 10.525745, and that there are r = 5 replicates for
JL = 100.0 with the values YlOO.l = 1286, YlOO.2 = 1239,
YlOO.3 = 1273, YlOO.4 = 1177, YlOO.5 = 1306. We calculate
the predicted value

Yi = a + PILi

(17)

whenever R > SII' No real solution is possible when R ~ SII.
This is readily apparent once (16) is re-written as a quadratic
equation in LQ.

For our zinc example, Sf = 28.9 ppt SII = 0.0390. If the
desired RSD is 10%, then

28.9
LQ = j(0.1)2 -(0.0390)2 -r' Compare this to the 99% confidence critical level of 67.2 ppt

and the minimum detectable value of 135 ppt. The limit of

quantification is somewhat arbitrary by comparison. While

the critical level and the minimum detectable value are quan-

tified using standard nonnal probability theory, the limit of

quantification is set arbitrarily by the investigator. For exam-

ple, if the target RSD is chosen to be 15%, rather than 10%

then the quantification limit is 200 ppt instead of 314 ppt.

For analytes that are toxic at very low levels, this arbitrary

choice may have rather severe consequences. As in the case

of the minimum detectable value, the limit of quantification

has no use in interpreting measurements that have already

occurred. The estimated concentration along with a measure

of the uncertainty of the measurement convey all of the nec-

essary infonnation.

= ~14nnt (18)

or

Yi = 114.80+ 11.586(100.0)

giving a predicted response of 1273.2. We then calculate st
using the formula

I r
s1; = -L(Yi,jI r.

IJ=

-YiY (20)

and obtain SIoo = 1413.7. Calculating afoo from (19), we
obtain a?oo = 1196.6 and a?oo/sIoo = 0.84648, indicating
a fairly good fit at this concentration.

The goodness-of-fit statistic for an entire data set is
n 2.!."'~

L., -2n S ..-) I.1-

Tgf = In (21)

5. Goodness-of-fit tests where n is the number of concentrations. A value near zero
for T gf indicates a good fit.

As the two-component model is relatively new, there are
no existing goodness-of-fit tests available for evaluating the
conformity of the data to the model, or the efficacy of the
various algorithms used to fit the data to the model. Hence,
we need goodness-of-fit statistics to help determine if the
data indeed fit the model, and as a way of comparing differ-
ent methods of estimation.

5.2. Good experimental design

When running standards to obtain a calibration curve, the
best experimental design is to randomize the replicates, so
that the replicates at a given concentration are not all run
sequentially. The reason for this is that when the replicates
at a given concentration are all run sequentially, values will
tend to be closer together than if the replicates are random-
ized among the other concentrations. This often results in a
calibration curve that runs through the data in such a way
that at some concentrations all the data are bunched above
the curve and at others all the data are bunched below the
curve. A graph of the data and the calibration curve that

5.1. Error structure

Since estimates for IX and .B are easily and reliably ob-
tained using standard weighted linear regression techniques
and since the variance estimates are computationally in-
tensive and crucial to important applications of the model,
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saved in a file. By plotting histograms of the 1000 parame-
ter estimates and the statistics, and ranking their values, we
can obtain an estimate of the distribution and its quantiles.

A 95% bootstrap confidence interval can be obtained by
sorting the vectors of parameter estimates. The 95% con-
fidence interval is then the interval between the 25th and
975th data points in the sorted data vector. If the estimation
routine is working well, and the data fit the model, all the
histograms of the 1000 parameter estimates will be centered
at the true value and approximately bell-shaped about this
value. For both the goodness-of-fit statistic and the experi-
mental design statistic, the value obtained from the real data
set will lie within the 95% bootstrap confidence interval if
the data fit the model and the experimental design is optimal.

(22)

where S; is the unbiased sample variance at a given concen-
tration and s~ the mean square deviation away from the cal-
ibration curve, as above. Values of Sgf close to zero indicate
good randomization.

It should be noted that data with a non-linear calibration
curve will produce a high absolute value for Sgf if the data
are fit to a linear model. Basic visual diagnostics easily re-
veal whether the lack-of-fit is caused by poor experimental
design or a non-linearity in the data. If the true calibra-
tion curve is non-linear, the data will lie along a quadratic
or exponential curve. If the lack-of-fit is due to poor ex-
perimental design, the data will approximately follow the
linear calibration curve, but will bunch above and below it
randomly across concentrations. If the data follow an expo-
nential curve, then an exponential calibration model, rather
than a linear one, should be fit;

7. Results

Here we describe the application of the two-component
model to two data sets. In one data set, EPA method 1638
(metals by ICPMS) was used in separate analyses to evaluate
spiked samples from 0 g/I to a high level (up to 85,000 g/I)
depending on the analyte. Twenty-three metals were ana-
lyzed, with 8-11 replicates per concentration of each metal.
In the second data set, EPA method 5031 (volatile organ-
ics by GC/MS) was used to analyze spiked samples for 15
volatile organics, at nine spike levels from 0 to 3000 ~g/l,
with 4-8 replicates per concentration level.

We give detailed results in this section for one analyte
from each data set. The other analytes yielded similar results,
and the space required to provide detailed examples for each
analyte would be prohibitively large.

6. Methods: the parametric bootstrap

7.1. Tgf

A scatterplot of Tgf for all analytes is shown in Fig. I.
Histograms of the bootstrapped T gf for the example data sets
show no or very small skewness for the MLE results (not
shown), suggesting little or no bias. A slight skewness was
observed in the MLE results, but this is not unexpected, since
this statistic is not expected to be exactly normal. Values
for Tgf which indicate lack-of-fit will vary depending on the
error structure of each analyte. The statistical significance of
each of the values shown here would have to be generated
by the bootstrap, but it appears that the largest three values
are inconsistent with the null hypothesis while the others are
consistent.

Because the exact distribution of any goodness-of-fit
statistic for this model would be difficult to derive, we use
the parametric bootstrap to obtain an estimate of the null dis-
tribution. We can also use the bootstrap to obtain estimated
distributions of the parameter estimates, which are helpful
for assessing the efficacy of the estimation algorithm.

The parametric bootstrap [17] is performed by first ob-
taining the parameter estimates from the algorithms. These
parameter estimates are used as parameter values to gener-
ate data sets that we know fit the model. This procedure is
repeated a large number of times (about 1000) for each ana-
lyte. These simulated data sets are then run through the esti-
mation routines and parameter estimates for each parameter
for aliI 000 data sets for each analyte are obtained.

For example, the parameter estimates using the maximum
likelihood routine for the Ag data set (results not shown)
were: IX = 21.4022, P = 27.4918, o-E = 43.4769, and 0-1/ =

0.0235. We generate measurement errors ~""N(O,o-;) and
1J""'N(O, o-~). We can then generate an artificial data set that

follows the fitted model by setting y = IX + PIL e1/ + ~ using
the same value of IL as in the original data set. This procedure
is repeated 1000 times, generating 1000 data sets. These sim-
ulated data sets are then run through the estimation routine
and the parameter estimates and goodness-of-fit statistics

7.2. Sgf

We calculated the experimental design statistic, Sgf by
MLE for each data set. A scatterplot of Sgf for all data
sets is shown in Fig. 2. As can be seen, poor experimental
design is a common problem, with many data sets showing
an estimated goodness-of-fit statistic well above zero. We
chose nickel as a striking example of this phenomenon.

shows this behavior indicates poor experimental design. An
extreme example of this phenomenon is shown in Figs. 4
and 5. If the replicates are correctly randomized, the mean
square deviation away from the mean will be very close to
the mean square deviation away from the calibration curve.
Thus, to detect possible poor experimental design and dis-
tinguish it from true lack-of-fit in the inherent error structure
of the analytical instrument, we propose the statistic
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Scatterplot of Tgf for all Analytes

1.4

1.2

.

0.8

.

0.6

m 0.4
I- '+Tgf(mle) I

.

0.2

0 -

! 

.., &... ~.. !
I 5 10 15 ~ 25 30 35 4

.,
I-0.2

.

-0.4

-0.6

analyte
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Fig. 2. Scatterplot of Sgf for all analytes. Values of Sgf near zero show goodness-of-fit.
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It is important to point out that since the sum of the
squared deviations away from the mean minimizes the sum
of the squared deviations away from all possible points, Sgf
is expected to be positive. However, we are using the unbi-
ased estimate for the sample variance about the mean, i.e.,
we divide by n -I, but are using the mean square error
away from the calibration curve, i.e., we divide by n. Hence,
in data sets where the sum of squared deviations about the
mean is quite close to the sum of squared deviations away
from the calibration curve, we get values for Sgf that are
slightly negative. This occurs in the acetaldehyde, acetone,
and acrylonitrile, acrolein, and proprionitrile data sets.

Table I
Bootstrap results for proprionitrile parameters

Parameter True value 95% BS confidence
interval

3.05
0.891
3.68
0.0508
-0.00863
0.00674
6.81

13.71

(1.69.4.47)
(0.875.0.909)
(1.97.5.35)
(0.0175. 0.0811)
(-0.557. 1.32)
(-0.159.0.346)
(3.61. 9.86)
(7.34. 19,9)

a

fJ
IT.
IT"
Tgf
Sgf
Lc
LD

predicted response. Table 1 shows bootstrap results for the
parameter estimates for Il, .8, O'v 0'11 the decision quantities
Lc and Lo and the goodness-of-fit statistics. Note that the
true value is well within the bootstrap confidence interval
for all parameters and statistics. The two goodness-of-fit
statistics show no lack-of-fit for this data set.

7.3. Example data sets

Here we show the results for proprionitrile and nickel and
the parametric bootstrap analyses. Proprionitrile is an exam-
ple of a data set that shows both excellent fit and excellent
experimental design. The nickel data set shows extremely
poor experimental design and hence lack-of-fit as well. Also
shown are bootstrap results for the detection decision quan-
tities for proprionitrile.

7.3.2. Nickel
Fig. 4 shows the observed and predicted response for the

nickel data set. Note the erratic behavior of the observed
response around the calibration line. Fig. 5 highlights this
erratic behavior at low concentrations, which are difficult
to observe for the full data set, due to scale. The phe-
nomenon associated with poor experimental design is clear.
The T gf statistic lies well outside the upper bound of the 95%

7.3.1. Proprionitrile
Proprionitrile is an example of a data set that shows both

excellent fit and excellent experimental design. In Fig. 3,
we see that the observed response scatters nicely around the

Propionitrile Predicted Response
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0

Fig. 3. Proprionitrile predicted response. Estimated calibration line for proprionitrile using maximum likelihood. Note the increasing variance at high

concentrations and the near constant variance near zero.
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Nickel Predicted and Observed Response
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Fig. 4. Nickel predicted and observed response. Estimated calibration line for nickel using maximum likelihood. Note the variance structure. indicating
two components of variation and poor experimental design.

Nickel Response at Low Concentrations
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Fig. 5. Nickel response at low concentrations. This figure shows more clearly the erratic nature of scatter about the calibration line. indicating poor

experimental design.
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670
10.3
43.3
0.226
1.19
1.%

a

.8
u.
U"
Tgf
Sgr

(653, 689)
(10.2, 11.1)
(23.1.61.1)
(0.133.0.314)
(-0.600.0.844)
(-0.0835.0.118)

bootstrap confidence interval, showing that poor experimen-
tal design can result in lack-of-tjt; see Table 2. This particular
experimental design results in junderestimation of the vari-
ance at each concentration. Th~ experimental design statis-
tic, Sgf, lies well above the ~tstrap confidence interval,
confirming that the lack-of-fit is probably due to poor exper-
imental design. Here again botft a and .B are well estimated
by the MLE routine. The MLEI routine produces reasonable
estimates of the variance com~nents in spite of poor exper-
imental design, see Table 2. ! Appendix A. Closed form solution for IUPAC

minimum detectable value

7.4. Conclusion
Given a critical level Lc with associated confidence level

8, and a desired confidence level 8' for Lo, the IUPAC mini-
mum detectable value is the true concentration Lo such that
the measured response will exceed Lc at least a fraction
I -8' of the time. The exact solution of this problem under
the two-component model can be difficult, but a good ap-
proximation can be derived using normal theory by letting
Lo be the solution to the following equation:

(a + fJLo) -ZI y'Var(y; Lo) = Lc = a + ZOGf (A.I)

fJLo -Zl JVar(y; Lo) = zou£

LD -Z\ JV([L; LD) = ZOSf

where zo == Z8 and Z\ = Z.5'. the appropriate quantiles of the

normal distribution:

LD -z\jL~~-sl = ZOSE (A.4)

has a solution for LD exactly when

The two-component error
~ odel is useful for many ap-

plications in the assessment 0 environmental data since it

provides accurate estimates 0 error across the entire us-

able range of a measurement technology, so long as the

data exhibit the error structU ! specified by the model. The model has been tested n a wide variety of data

sets, two of which were show here. The estimation rou-

tine produces highly accurate maximum likelihood esti-

mates for the model paramete for each of the data sets

tested. i

The two-component error fnodel is especially. useful

in the calculation of critical values and limits of detec-

tion based on standard prOba ~ lity theory and also allows

calculation of limits of quan ification. Thus, the model

provides a solid analytical amework for making de-

tection decisions and a supe 'or alternative to previous

methods for calculating the qrantities mentioned above.

That is, the model facilitates! explicit evaluation of the

efficacy of alternative values ror RSD as a criterion of

quantification. !

The two-component model ~rovides reasonable and re-

liable method for obtaining parameters estimates for cali-

bration curve data that have d t irable statistical properties

using well-understood principl s of probability. The MLE

algorithm produces excellent re ults as seen in simulations.

Goodness-of-fit statistics whic~ test for overall fit of the

data and valid experimental design can be useful in identi-

fying data which do not fit the model or were not properly

randomized, respectively. Estimated distributions for the pa-

rameter estimates, along with c9nfidence intervals for use in

the goodness-of-fit tests can be iconstructed using the para-

metric bootstrap. i

(A.S)
.

S <-II Z\

The solution is given by

Sf [zo + Jz5 -(I -z~S'!i)(z5 -zv J
Lo-

-l-Z~S~

If zo = Z\ = Z, the solution has the particularly simple form

2zS£
LD=1-Z2S2" (A.7)

'1
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A.i. Proof

It is almost immediately apparent that Lo need not ex-
ist under the two-component model, or any model that al-
lows the error variance to increase with the concentration.
If Zl,..(V[ji'j exceeds JL for everyj value of 11., then Eq. (A.3)
certainly cannot be solved. This lin turn will be true if

ZI eu; (e~ -1) > 1 (A.8)

ZI S; > 1 (A.9)

5 .J;i:~¥r;' ~;':':i (A 10)" > -1!t'i;,\}',;~ .
Zl

Thus, it is necessary for LD to xist that 5" < l/ZI, and it
also turns out to be sufficient. ,

We can solve the defining equa~ion for LD in the following

way: I

-ZI/L~~-+Sf = zoS~ -LD (A. 1 1 )

ZI L~S~ + zI S; = (ZOSf -LDY (A. 12)

and this solution is positive exactly under our hypothesis. If
Zo = Zl, the solution has the particularly simple form

2zoLD = SE
I 2 2 (A.20)

-ZIS1}

Intuitively, the limit of detection would be SE(ZO + ZI} if the
variance were constant, and the factor in the denominator
inflates the result to account for the increasing variance.

Let us consider an example. Suppose that a = 0 and .B =
I, so that the concentration and the response are on the same
scale, and suppose that the measurement process parameters
are UE = SE = I and U1} = 0.1. Then

1~2,~2 .,S1} = yeU" (eU" -I} = 0.10075, (A.21)

which is essentially the same as u1}' When the confidence
level for both the critical value and the detection limit are
chosen to be 95%, that is zo = ZI = 1.645, application of
the formulas leads to Lc = 1.645 and LD = 3.383 (only
slightly greater than if the variance did not increase with
the concentration). If a confidence level of 99% for both is
desired then, ZO = ZI = 2.326 and Lc = 2.326 and LD =
4.923.

On the other hand, if u1} = 0.3, then Lc = 2.326 as
before, but LD now increases to 10.518. Finally, when U1} =
0.385, we cannot find a solution for LD since S1} = 0.4305 >
1/2.326 = 0.4299. When the variance increases this rapidly
with the concentration, no concentration can guarantee at the
99% confidence level that the measured value will exceed

Lc.

zi L~S~ + zi S; = z5S; -2zoSEfD + L~ (A.13)

or

Lb(l -Z!S;) -Lo(2zoSf) + (z~ -Z!)S; = O. (A.14)

i

It is not difficult to show that is quadratic equation will
have real solutions whenever (A. ) holds. The discriminant
of (A.14) is

D = 4Z5S; -4(1 -Z!S;)(Z5 -!)S; (A.15)

D = 4S;[z5 -(1 -Z! S;)(Z5 -i)]. (A.16)
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