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On the Relationship among Values of the Same Summary Measure 

of Error when it is used across Multiple Characteristics at the 

Same Point in Time: An Examination of MALPE and MAPE
1
 

 
Dr. David A. Swanson 

Department of Sociology, University of California Riverside 

Riverside, California 92521, U.S.A. 

Tel.: +1-951-827-4373  E-mail: dswanson@ucr.edu 

Abstract: This paper deals with an issue that appears to be unexplored by demographers and others 

who conduct cross-sectional forecasts of populations with multiple characteristics. The issue is based 

on the question: "if one was conducting an ex post facto evaluation of a forecast or estimate that 

includes more than one characteristic (e.g., age, gender, race, and geography), how can one explain 

the fact that there are differences among the summary measures of error for all of the 

characteristics?"  Using a hypothetical demographic forecast as an illustration, the paper examines 

this issue for two characteristics (race and geography) using a standard summary measure of forecast 

errors for each of two error dimensions, bias and precision. For the bias dimension, we examine the 

“Mean Algebraic Percent Error” (MALPE) and “Mean Absolute Percent Error (MAPE) for the 

precision dimension. The paper finds that hitherto unknown relationships across characteristics exist 

for each of the two summary error measures. For example, in evaluating a forecast that includes more 

than one characteristic, one can express MAPE taken for one characteristic (e.g., race) in terms of 

each of the other characteristics (e.g., age and geography). This finding allows one to explain the 

reason for differences in the summary error measures used to evaluate a forecast or estimate done for 

more than one characteristic. The findings are informative and suggestive and are likely to be 

generalizable. While the discussion is not formally rigorous, a formal general proof is presented of 

the relationship between values of MALPE across multiple characteristics as well as the values of 

MAPE. 

Keywords:  Forecasting; Errors; Summary measure reconciliation  

JEL Classifications: B4, C8, and Z1 

1. The Problem 

Summary measures of error are part of the toolkit for those who evaluate forecasts and 

estimates. In the field of demography, the evaluations are often in the form of ex post facto 

assessments against census data (Chi and Voss, 2011; Chu, 1974; Coleman and Swanson, 2007; 

Long, 1995; Rayer, 2008; Shahidullah and Flotow, 2005; Smith and Sincich, 1992; Smith, Tayman, 

and Swanson, 2013: 324-328; Swanson, Tayman, and Barr, 2000; Tayman, 1996; Tayman and 

Swanson, 1999; Tayman, Swanson and Barr, 1999).  The most commonly used summary measures 

of error are Mean Algebraic Percent Error – MALPE - and Mean Absolute Percent Error – MAPE 

                                                 
1  This research was prompted by Dr. George Hough, the first person known by the author to ask how the 

differences among summary measures of forecast error taken across different characteristics of the 
same population could be explained. 
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(Smith, Tayman and Swanson, 2013: 324-328; Swanson and Tayman, 2011: 268-272). MALPE is 

used to measure bias – is the estimate or forecast high or low, on average; MAPE is used to measure 

precision – how close is the estimate to the benchmark numbers on average? 

Their ubiquity testifies to the desirable properties of MALPE and MAPE. However, like all 

measures they have their shortcomings (Coleman and Swanson, 2007; Swanson and Tayman, 2011: 

268-280; Swanson, Tayman and Barr, 2000; Swanson, Tayman, and Bryan, 2011; Tayman and 

Swanson, 1999; and Tayman, Swanson and Barr, 1999). One shortcoming that has not been 

addressed is one specific to forecasts and estimates done for a range of characteristics (e.g., age, 

gender, race, geographic area) at a given point in time. Perhaps, the best way to introduce this 

shortcoming is through an anecdotal description.  

Suppose we have done forecasts back in 2002 for the year 2010 by race (using three race 

groups) for a state that has four counties.  That is, we have done forecasts for two population 

characteristics, race and geography. The sum of the population by race is equal to the sum of the 

population by geography, both of which are equal to the grand total. We now want to do an ex post 

facto evaluation of the accuracy of our multi-characteristic forecast across the two major dimensions 

of error, precision and bias.   To assess these two dimensions, we use, respectively, the two summary 

measures most commonly used for these purposes, Mean Algebraic Percent Error (MALPE), and 

Mean Absolute Percent Error (MAPE). As we will see in Sections III through V, when we evaluate 

our hypothetical multi-characteristic forecast, the MALPEs associated with these characteristic will 

not only be different from one another, but also different from the overall algebraic percent error. We 

also will find that this holds true for the MAPEs.  

These differences in the same measure across the different characteristics may lead to questions 

that will be difficult to answer if one does not understand the nature of the relationship for a given 

summary error measure across a range of characteristics that roll up to a single grand total. This 

paper is aimed at providing this understanding. Before we turn to an explanation of these 

relationships, however, it is important to define the two summary error measures, MALPE and 

MAPE.  

2. Summary Measures for the Two Major Dimensions of Error 

Before turning to a definition of MALPE and MAPE, a definition of error is needed. One can 

define forecast error (E) as the difference between a given forecast (F) for a particular population and 

the 2010 census (CEN): 

E = F – CEN     (1) 

The error will be positive when the forecast is larger than the census count and it will be 

negative when it “under-forecasts” the census.  Errors are often expressed as percent differences 

rather than absolute differences.  The use of percent errors is particularly helpful when making 

comparison across geographic areas.  A forecast error of 2,000 has a very different meaning for a 

place with 20,000 residents than a place with 200,000 residents.  The definition of Error given above 

can be broadened to include age, sex, race, and ethnicity. For example, the definition of error for a 

particular age group i would be  

Ei = Fi – CENi     (2) 

Without adjustments for population size, errors for places with large populations (or age groups 

with large numbers of people) would dominate the effects of errors for places with small populations 

(or age groups with small numbers of people). Thus, the definition of error can be broadened to 

provide a “relative” perspective as follows: 
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ALPE = (E / CEN) * 100; and           (3) 

   APE = │(E / CEN) *100                         (4) 

ALPE (algebraic percent error) preserves the sign of the percent error; it has a theoretical 

minimum of -100% and no upper bound, while the APE (absolute percent error) has a minimum at 

zero and no upper bound.  ALPE and APE represent individual forecast errors for the set of 

geographic areas under study and form a distribution of forecast errors.  As before, the definition of 

relative error given above can be broadened to include age, sex, race, and ethnicity. For example, the 

definition of relative error for a particular age group i would be  

ALPEi = (E i / CEN i) * 100; and          (5) 

 APE i = │(E i / CEN i)│ * 100          (6) 

Two common summary measures of relative error are MALPE and MAPE, both of which are 

arithmetic means. MALPE measures bias and MAPE measures precision.  MALPE is defined as:  

                                                MALPE = ∑i ALPE i / n               (7) 

where  ALPE i is as defined above;  n = number of groups. 

MALPE is a measure in which positive and negative values offset each other (Smith, Tayman, 

and Swanson 2013: 324-328).  Consequently, it is often used as an average measure of bias.  A 

positive MALPE reflects the average tendency for forecasts to be too high and a negative MALPE 

reflects the average tendency for forecasts to be too low.  A zero MALPE would indicate no bias in 

the set of forecasts, as the sum of the positive percentage errors would equal the sum of the negative 

percentage errors. A MALPE less than +5% and greater than -5% is considered as an indication that 

the forecast is not substantially biased. A MALPE greater than +10% but less than +25% or less than 

-10% but not less than -25%  indicates considerable bias and one greater than +25% indicates 

substantial upward bias (the forecast is way too high) and one less than -25% indicates substantial 

downward bias (the forecast is way too low). MAPE is defined as:  

MAPE = ∑ i APE i / n              (8) 

where APE i is as defined above; n = the number of groups. 

MAPE is a measure in which positive and negative values do not offset each other; it measures 

the precision of the forecasts by showing the average percent difference between forecasts and actual 

activities regardless of whether the individual forecasts were too high or too low.  MAPE has several 

desirable properties including reliability; ease of use and interpretation. It also incorporates all of the 

information in its calculation, but MAPE has a major drawback.  Like any average, MAPE is affected 

by extreme values, but in the case of MAPE, the extreme values most often occur at the high end of 

the distribution (Swanson, Tayman, and Bryan, 2011).  Thus, the error distribution of the APEs is 

often asymmetrical and right-skewed because it is bounded on the left by zero and unbounded on the 

right.  Therefore, MAPE is susceptible to being pulled upward and to overstating the error 

represented by most of the observations. Given this undesirable property, a zero MAPE would 

indicate perfect accuracy in the set of forecasts, as the sum of the positive percentage errors would 

equal the sum of the negative percentage errors. A MAPE less than 5% is considered as an indication 

that the forecast is acceptably accurate. A MAPE greater than 10% but less than 25% indicates low, 

but acceptable accuracy and MAPE greater than 25% very low accuracy, so low that the forecast is 

not acceptable in terms of its accuracy.  
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3. The Problem Revisited 

Suppose we have done forecasts back in 2002 for the year 2010 by race (using three race 

groups) for a state that has four counties.  That is, we have done forecasts for two population 

characteristics, race and geography. We now want to do an ex post facto evaluation of the accuracy 

of our forecasts across the two dimensions of error, bias and precision.   To assess these two 

dimensions, we use, respectively, MALPE and MAPE.  

Table 1 contains the results of our 2010 forecasts for the state by race and county, while Table 2 

contains the actual 2010 population counts, Table 3, the numerical errors, Table 4, the percent errors, 

and Table 5, the absolute percent errors. 

Note that in each table, 1 through 5, we have a 3 (race groups) by 4 (geography) table, with 

marginal totals for race in the fifth row and marginal totals for geography in the fourth column. 

Table 1. 2010 Illustrative Forecast (Fij) for the State by Race & Geography 

  Forecasted Population     

 race1 race2 race3 total 

geog1 250 100 55 405 

geog2 500 125 40 665 

geog3 80 10 5 95 

geog4 125 20 10 155 

Total 955 255 110 1320 

Table 2. 2010 Illustrative Census Counts (CENij) for the State by Race & Geography 

  Census Population       

 race1 race2 race3 total 

geog1 291 98 45 434 

geog2 490 130 51 671 

geog3 85 8 4 97 

geog4 130 25 12 167 

Total 996 261 112 1369 

Table 3. Numerical Error (Fij-CENij) in the 2010 Forecast by Race & Geography 

  Numerical Error       

 race1 race2 race3 total 

geog1 -41 2 10 -29 

geog2 10 -5 -11 -6 

geog3 -5 2 1 -2 

geog4 -5 -5 -2 -12 

Total -41 -6 -2 -49 

Table 4. Relative Error ((Fij-CENij)/CENij) in the 2010 Forecasts by Race & Geography 

  Relative Error       

 race1 race2 race3 total 

geog1 -0.1409 0.0204 0.2222 -0.0668 

geog2 0.0204 -0.0385 -0.2157 -0.0089 

geog3 -0.0588 0.2500 0.2500 -0.0206 

geog4 -0.0385 -0.2000 -0.1667 -0.0719 

Total -0.0412 -0.0230 -0.0179 -0.0358 
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Table 5. Absolute Relative Error│(Fij-CENij)/CENij│in the 2010 Forecasts by Race & Geography 

  Absolute Relative Error     

 race1 race2 race3 total 

geog1 0.1409 0.0204 0.2222 0.0668 

geog2 0.0204 0.0385 0.2157 0.0089 

geog3 0.0588 0.2500 0.2500 0.0206 

geog4 0.0385 0.2000 0.1667 0.0719 

Total 0.0412 0.0230 0.0179 0.0358 

 

Table 6. Summary Error by Characteristic  

As was the case for Table 4, 

keep in mind that when at the “totals” 

for the rows and columns in Table 5 

are not the sums of the errors across 

the rows and columns, respectively, 

but the result of finding the relative difference between the forecast for a given geographic area or 

race group and the census number. For example, the absolute relative error for race in geographic 

area 1 is 0.0668 =│-29/434│, while the absolute relative error for geographic within race group 1 is 

0.1412 =│-41/996│. 

Table 6 provides the MALPEs for Race (RMALPE) and Geography (GMALPE), and the 

TALPE, calculated from Table 4 as follows: 

RACE MALPE (RMALPE)    = -0.0274 = (-0.0412-.0230 -.0179)/3 

Thus, RMALPE is found by summing the “total” relative errors for each of the three race 

groups across all four geographic areas and dividing the result by three. 

GEOG MALPE (GMALPE)   = -0.0421 = (-.0668-.0089-.0206-.0719)/4 

GMALPE is found by summing the “total” relative errors for each of the four geographic areas 

across all three race groups and dividing the result by four. 

TOTAL ALPE (TALPE)         = -.03580   = [(1320-1369)/1369] 

Finally, TALPE is found by simply subtracting the census population by the total forecasted 

population and dividing the difference by the census population. 

In percent terms, we have Race MALPE = -2.74%, Geog MALPE = -4.21% and Total MALPE 

= -3.58%. Not only is it the case that none of the MALPEs is equal to another, but there is no clear 

relationship among them.   

Table 6 provides the MAPEs for Race (RMAPE) and Geography (GMAPE), and the TAPE, 

calculated from Table 5 as follows: 

RACE MAPE (RMAPE)  = 0.0274 = (.0412+.0230+.0179)/3 

Thus, RMAPE is found by summing the “total” absolute relative errors for each of the three 

race groups across all four geographic areas and dividing the result by three. 

GEOG MAPE (GMAPE)  = 0.0421 = (.0668+.0089+.0206+.0719)/4 

GMAPE is found by summing the “total” absolute relative errors for each of the four 

geographic areas across all three race groups and dividing the result by four. 

 TOTAL APE (TAPE)  = 0.0358 = [│(1320-1369)/1369│] 

Characteristic Algebraic Error Absolute Error 

RACE -0.0274      .0274 

GEOG -0.0421      .0421 

TOTAL  ERROR -0.0358      .0358 
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Finally, TAPE is found by simply subtracting the census population by the total forecasted 

population, dividing the difference by the census population and taking the absolute value of this 

difference.  In percent terms, we have RMAPE = 2.74%, GMAPE = 4.21% and TAPE = 3.58%.  As 

you can see, not only is it the case that neither of the two MAPEs is equal to one another or to the 

Total APE, but also, that there is no obvious relationship among these three measures.   

Now imagine yourself in front of a group of “stakeholder” discussing these forecasts and you 

are describing these error measures (and how accurate your estimates are) when you are asked “why 

are the MAPEs different from one another” and “why are the MALPEs different from one another?” 

The answer is not apparent, likely because it appears that demographers have not yet addressed the 

issue of simultaneous measures of error on a multi-characteristic forecast or estimate. What follows 

is an initial attempt to answer the question, “Why are they different?” As you will see, the answer has 

to do with “weighting” in the case of MALPE and MAPE, and lack thereof.  We start with MALPE 

3.1 MALPE and Weighted MALPE 

The calculations shown for the MALPEs in Table 6 reveal that the two MALPEs are “not 

weighted.” That is, the algebraic proportionate errors (ALPEs) underlying each of them are 

calculated without regard to the proportion of the “actual” numbers they are associated with (the data 

shown in Table 2). Suppose, however, we do weight them. The two weighted MALPEs are 

calculated as follows: 

 WEIGHTED RACE MALPE (WRMALPE)  = -0.0358 = 

[-(.0412)*(996/1369)] + 

                                                                        [-(.0230)*(261/1369)] + [-(.0179)*(112/1369) 

Note that WRMALPE is found by summing the product of the “total” relative errors for each of 

the three race groups and the corresponding population weight across all four geographic areas. This 

corresponds to how RMALPE was calculated, given that we are weighting each of the three race 

group’s “total” relative error instead of dividing the sum by three (which is equivalent to giving them 

all the same “weight.”). 

WEIGHTED GEOG MALPE (WGMALPE) = -0.0358 =  

                                                                        [-(.0668)*(434/1369)] + [-(.0089)*(671/1369)] + 

                                                                       [-(.0262)*(97/1369)]   + [-(.0719)*(167/1369)] 

WGMALPE is found by summing the product of the “total” relative errors for each of the four 

geographic areas and the corresponding population weight across all three race groups. 

Finally we have  

WRMALPE = WGMALPE =  

TOTAL ALPE (TALPE)  = 0.0358 = [│(1320-1369)/1369│] 

That is, once the two MALPEs have been “weighted,” we see they are equal not only to one 

another, but also to the Total ALPE (Table 7). 

Table 7. Summary Algebraic Error by Characteristic 

These weighted MALPEs provide a key to 

understanding the relationship between the two 

unweighted MALPES and the relationship 

between each of them and the Total ALPE. 

 

Characteristic Error 

WEIGHTED RACE MALPE -0.0358 

WEIGHTED GEOG MALPE -0.0358 

TOTAL ALGEBRAIC ERROR -0.0358 
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Let 

Fi  =  Forecast counts for population in a given characteristic (e.g., race); 

CENi   = Census counts in a the same characteristic (e.g., race); and 

k  = number of categories in the characteristic (e.g., there are three race groups). 

Then, in general terms,  

 MALPE  =  (1/k)*[∑i (Fi-CENi)/CENi]                                                            (9) 

 and  

Weighted MALPE (WMALPE) = ∑ [(CENi/∑CENi)*((Fi-CENi)/CENi)]      (10) 

 We can re-express the preceding definitions of MALPE and WMALPE as follows. 

 MALPE = [∑(Fi/(k*CENi))] - 1                                                                      (11) 

and WALPE as [(∑Fi)/(∑CENi)] -1                                                       (12) 

Note that  

1 + WMALPE = [(∑Fi)/(∑CENi)]                                             (13) 

So, 1+ WMALPE can be viewed as simply the sum of the forecasted population for a given 

characteristic divided by the total census population. 

The re-expression found in (12) represents a short-cut way to calculate WMALPE, which is to 

subtract 1 from the ratio of the sum of the forecasted population to the total census population. 

As an example, we know that 1+ WMALPE = 1+ (-0.0358) = 0.9642. This is equal to the ratio 

of the sum of the forecasted population (for either race or geography) to the total census population, 

which in our example is 1329/1369 = 0.9642.  Thus, MALPE = -0.0358  = .9642 – 1.                          

 Using the re-expressions in equations (12) and (13), the following relationship can be seen 

between WMALPE and MALPE: 

 WMALPE = MALPE + [(∑Fi)/(∑CENi)] - [∑(Fi/(k*CENi))]                          (14) 

 MALPE = WMALPE - [(∑Fi)/(∑CENi)]  + [∑(Fi/(k*CENi))]                         (15) 

WMALPE can be viewed as MALPE plus the sum of the forecasted population divided by the 

total census population from which is subtracted the sum of the (1 = 1 to k) ratios of estimated 

populations to the census populations with the latter weighted by a constant, k Thus, a WMALPE for 

a given characteristic (e.g., race) equals the WMALPE for another characteristic (e.g., geography). 

The WMALPEs for different characteristics also equal their joint MALPE, which simultaneously is 

equal to the TALPE. 

Note that if we have another characteristic (geographic areas), we can modify our notation 

accordingly 

Let   Fj  =  Forecast counts for population for another characteristic (e.g., geography); 

       CENj   = Census counts for the same characteristic (e.g., geography); and 

        L = number of categories in the characteristic (e.g., there are 4 geographic areas). 

So that, equations (1) through (6) can be expressed in terms of the “jth” characteristic and its 

“L” categories.  
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3.2 The Relationship between RMALPE & GMALPE and their Relationship to the 
Total Algebraic Percent Error (TALPE) 

To be more specific, again using the two example characteristics of race and geography (but 

noting that this result can be generalized to more than 3 columns and 4 rows, as demonstrated in the 

appendix), we have the following.  

Since 

RMALPE = WMALPE -  (∑Fi)/(∑CENi)  + ∑(Fi/(k*CENi))            (16) 

Then      

WMALPE = RMALPE + (∑Fi)/(∑CENi) - ∑(Fi/(k*CENi))                          (17) 

and since 

GMALPE = WMALPE -  (∑Fj)/(∑CENj)  + ∑(Fj/(L*CENj))            (18) 

Then 

WMALPE = GMALPE + (∑Fj)/(∑CENj) -   ∑(Fj/(L*CENj))             (19)                     

It follows that  

RMALPE = GMALPE +∑Fj)/(∑(CENj)-∑(Fj/(L*CENj)) - 

                       (∑Fi)/(∑CENi)+∑(Fi/(k*CENi))                                                          (20) 

and that    

RMALPE = GMALPE - ∑(Fj/(L*CENj)) + ∑(Fi/(k*CENi))                           (21a) 

and  

GMALPE = RMALPE + ∑(Fj/(L*CENj)) -  ∑(Fi/(k*CENi))                         (21b) 

 

We can interpret these relationships as follows. RMALPE is equal to GMALPE - (the sum of 

the ratios of the forecasts by each geographic area to: the product of the corresponding census 

numbers for each geographic area and the number (l) of column marginal's (the 4 geographic 

categories)) + ( the sum of the ratios of the forecasts by each racial category to: the product of the 

corresponding census numbers for each racial category and the number (k) of row marginal's (the 3 

racial categories).        

Table 8. Empirical Examples of the Relationships Regarding MALPE* 

WMALPE= RMALPE - [∑(Fi/(k*Pi))] + {[(∑Fi)/(∑Pi)] 

-0.0358 = -0.0273 - 0.9727 + 0.9642 

    

RMALPE = WMALPE - [∑(Fi/(k*Pi))] + [(∑Fi)/(∑Pi)] 

-0.0273 = -0.0358 - 0.9727 + 0.9642 

    

WMALPE= GMALPE - [∑(Fj/(l*Pj))] + [(∑Fj)/(∑Pj)] 

-0.0358 = -0.0421 - 0.9579 + 0.9642 

    

GMALPE = WMALPE + [(∑Fi)/(∑Pi)]  - [∑(Fi/(k*Pi))] 

-0.0421 = -0.0358 + 0.9579 - 0.9642 

                    *Some numbers do not algebraically sum exactly due to rounding. 

 
GMALPE is equal to RMALPE + (the sum of the ratios of the forecasts by each geographic 

area to: the product of the corresponding census numbers for each geographic area and the number (l) 

of column marginal's (the 4 geographic categories)) - ( the sum of the ratios of the forecasts by each 

racial category to: the product of the corresponding census numbers for each racial category and the 
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number (k) of row marginal's (the 3 racial categories).These relationships are displayed in Table 8 

using the data for our hypothetical forecast. 

As can be seen in comparison with the values shown in Table 7, the values in Table 8 for 

WMALPE derived from RMALPE and GMALPE are the same and from this we can see that TALPE 

= WMALPE, which means that:  

TALPE = WMALPE  

              = RMALPE + [(∑Fi)/(∑CENi)]  - [∑(Fi/(k*CENi))]   

              = GMALPE + [(∑Fj)/(∑CENj)]  - [∑(Fj/(L*CENj))]   

             = -0.0358 

4.  MAPE and Weighted MAPE 

As was the case in the preceding discussion of MALPE, note that in the calculations shown for 

the MAPEs in Table 6 the two MAPEs are “not weighted.” That is, the absolute proportionate errors 

(APEs) underlying each of them are calculated without regard to the proportion of the “actual” 

numbers they are associated with (the data shown in Table 2). Suppose, however, we do weight 

them. The two weighted MAPEs are calculated as follows: 

WEIGHTED RACE MAPE (WRMAPE)  = 0.0358 =  

       [(.0412)*(996/1369)] + [(.0230)*(261/1369)] + [(.0179)*(112/1369) 

Note that WRMAPE is found by summing the product of the “total” absolute relative errors for 

each of the three race groups and the corresponding population weight across all four geographic 

areas. This corresponds to how RMAPE was calculated, given that we are weighting each of the 

three race group’s “total” relative error instead of dividing the sum by three (which is equivalent to 

giving them all the same “weight.”). 

WEIGHTED GEOG MAPE (WGMAPE) = 0.0358 =  

 [(.0668)*(434/1369)] + [(.0089)*(671/1369)] + [(.0262)*(97/1369)] + [(.0719)*(167/1369)] 

WGMAPE is found by summing the product of the “total” absolute relative errors for each of 

the four geographic areas and the corresponding population weight across all three race groups. 

Finally we have  

WRMAPE = WGMAPE = TOTAL APE (TAPE)   = 0.0358  = [│(1320-1369)/1369│] 

That is, once the two MAPEs have been “weighted,” we see they are equal not only to one 

another, but also to the Total APE, as shown in Table 9. 

Table 9. Summary Absolute Error by Characteristic 

As was the case for MALPE, these 

weighted MAPEs provide a key to understanding 

the relationship between the two unweighted 

MAPEs and the relationship between each of 

them and the Total APE. 

Let   Fi = Forecast counts for population on a given characteristic (e.g., race); 

      CENi = census counts in a the same characteristics (e.g., race); and 

       k = number of categories for the characteristic (e.g., there are three race groups). 

Then, in general terms,  

Characteristic Error 

WEIGHTED RACE MAPE 0.0358 

WEIGHTED GEOG MAPE 0.0358 

TOTAL ABS ERROR 0.0358 
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  MAPE  =  (1/k)*[∑ │((Fi-CENi)/CENi)│]                                           (22) 

 and weighted MAPE,  

WMAPE = ∑ [(CENi/∑CENi)*(│(Fi-CENi)/CENi)│]                      (23) 

We can re-express the preceding definitions of MAPE and WMAPE as follows. 

MAPE = │[∑(Fi/kCENi)] - 1│                                                               (24) 

and  WMAPE = │[(∑Fi)/(∑CENi)] -1│                                                                        (25) 

Note that  

          1 + WMAPE = [(∑Fi)/(∑CENi)]│                                                           (26) 

So, as was the case for WMALPE, 1+ WMAPE can be viewed as simply the sum of the 

forecasted population for a given characteristic divided by the total census population. 

The re-expression found in (13) represents a short-cut way to calculate WMAPE, which is to 

subtract 1 from the ratio of the sum of the forecasted population to the total census population. As an 

example, we know that 1+ WMAPE = 1+ (-0.0358) = 0.9642. This is equal to the ratio of the sum of 

the forecasted population (for either race or geography) to the total census population, which in our 

example is 1329/1369 = 0.9642.  Given this, we know that MAPE = - 0.0358 = .9642 – 1.               

Using the re-expressions in (22) and (23) the following relationship is revealed between 

WMAPE and MAPE
.2
  

   WMAPE = MAPE + │(∑Fi)/(∑CENi) - ∑(Fi/(k*CENi))│                   (27) 

 

     MAPE = WMAPE -  │(∑Fi)/(∑CENi)  + ∑(Fi/(k*CENi))│                   (28) 

 Thus, WMAPE can be viewed as MAPE + the absolute value of the difference between two 

terms: (1) the sum of the Forecasted Population counts on a given characteristic (e.g., race with k 

categories) divided by the sum of Census Population counts on the same characteristic; and (2) the 

sum of the (k) ratios of Forecasted Populations counts to the Census Population counts, with the 

latter weighted by the constant, k (the number of categories for the characteristic in question). MAPE 

can be viewed as the difference between WMAPE, on the one hand, and on the other,  the absolute 

value of the sum of  two terms: (1) the sum of the Forecasted Population counts on a given 

characteristic (e.g., race with k categories) divided by the sum of Census Population counts on the 

same characteristic; and (2) the sum of the (k) ratios of Forecasted Populations counts to the Census 

Population counts, with the latter weighted by the constant, k (the number of categories for the 

characteristic in question). 

Note that if we have another characteristic (geographic areas), we can modify our notation 

accordingly 

Let  Fj =  Forecast counts for population for another characteristic (e.g., geography); 

   CENj   = Census counts for the same characteristic (e.g., geography); and 

   L = number of categories in the characteristic  (e.g., there are 4 geographic areas). 

So that, equations (1) through (6) can be expressed in terms of the “jth” characteristic and its 

“L” categories. 
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As Table 9 suggests, the two WMAPEs taken on two characteristics (e.g., race and geography) 

are not only equal to one another, but also the Total APE. This should extend to n characteristics, 

such that all n WMAPEs = one another = the Total APE.  We follow this up in the appendix, where 

we provide a proof that it does generalize to n characteristics.  Thus, it appears that we also have 

general statements for the relationship between a MAPE for a given characteristic and its equivalent 

WMAPE. With this knowledge in hand, we can now specify the relationships between MAPEs taken 

on two characteristics, and the Total APE.  Moreover, since the two weighted MAPEs (e.g., 

WRMAPE and WGMAPE) are the same, we can simply refer to “WMAPE” in relation to either 

dimension.  

5.  The Relationship between RMAPE & GMAPE and 
Their Relationship to TAPE 

To be more specific, again using the two example characteristics of race (with i=1 to k 

categories) and geography (with j=1 to l categories), we have the following relationships for the 

MAPEs on each of the two characteristics, (RMAPE = RACE MAPE and GMAPE = GEOG 

MAPE). 

Since 

RMAPE = WMAPE -  (∑Fi)/(∑CENi)  + ∑(Fi/kCENi)            (29) 

Then      

WMAPE = RMAPE + (∑Fi)/(∑CENi) - ∑(Fi/kCENi)             (30) 

and since 

GMAPE = WMAPE -  (∑Fj)/(∑CENj)  + ∑(Fj/lCENj)            (31) 

Then 

WMAPE = GMAPE + (∑Fj)/(∑CENj) -   ∑(Fj/lCENj)             (32)                      

It follows that  

RMAPE = GMAPE +∑Fj)/(∑CENj)-∑(Fj/lCENj) 

                 -(∑Fi)/(∑CENi)+∑(Fi/kCENi)                                            (33) 

RMAPE = GMAPE - ∑(Fj/lCENj) + ∑(Fi/kCENi)                            (34a) 

and  

GMAPE = RMAPE + ∑(Fj/lCENj) -  ∑(Fi/kCENi)                             (34b) 

 

We can interpret these relationships as follows. RMAPE is equal to GMAPE - (the sum of the 

ratios of the forecasts by each geographic area to: the product of the corresponding census population 

numbers for each geographic area and the number (l) of column marginal's (the 4 geographic 

categories)) + (the sum of the ratios of the forecasts by each racial category to: the product of the 

corresponding census population numbers for each racial category and the number (k) of row 

marginal's (the 3 racial categories). GMAPE is equal to RMAPE + (the sum of the ratios of the 

forecasts by each geographic area to: the product of the corresponding census population numbers for 

each geographic area and the number (l) of column marginal's (the 4 geographic categories)) - ( the 

sum of the ratios of the forecasts by each racial category to: the product of the corresponding census 

population numbers for each racial category and the number (k) of row marginal's (the 3 racial 

categories).These relationships are displayed in Table 10 using the data for our hypothetical forecast. 
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Table 10. Empirical Examples of the Relationships Regarding MAPE* 

WMAPE=                        

   

   RMAPE +    [∑(Fi/(k*Pi))] - {[(∑Fi)/(∑Pi)]   

0.0358 =     0.0273 +    0.9727 - 0.9642 

        

RMAPE =    WMAPE -  [∑(Fi/(k*Pi))] + [(∑Fi)/(∑Pi)]  

        

0.0273 =      0.0358 -   0.9727 + 0.9642 

WMAPE=                        

   

  GMAPE +    [∑(Fj/(l*Pj))] - [(∑Fj)/(∑Pj)]   

0.0358 =     0.0421 +    0.9579 - 0.9642 

        

GMAPE =   WMAPE -     [(∑Fi)/(∑Pi)]  +  [∑(Fi/(k*Pi))] 

0.0421 =    0.0358 -    0.9579 + 0.9642 

*Some numbers do not algebraically sum exactly due to rounding. 

 

As can be seen in comparison with the values shown in Table 10, the values in Table101 for 

WMAPE derived from RMAPE and GMAPE are the same and from this we can see that TAPE = 

WMAPE, which means that:  

TAPE = WMAPE  

           = RMAPE + [(∑Fi)/(∑CENi)]  - [∑(Fi/(k*CENi))]   

           = GMAPE + [(∑Fj)/(∑CENj)]  - [∑(Fj/(l*CENj))]   

                   = 0.0358 

6. Discussion 

As  noted earlier in the discussion of the hypothetical data set and its two characteristics, race 

and geography, RMAPE is equal to GMAPE - (the sum of the ratios of the forecasts by each 

geographic area to: the product of the corresponding census population numbers for each geographic 

area and the number (l) of column marginal's (the 4 geographic categories)) + ( the sum of the ratios 

of the forecasts by each racial category to: the product of the corresponding census population 

numbers for each racial category and the number (k) of row marginal's (the 3 racial categories). 

GMAPE is equal to RMAPE + (the sum of the ratios of the forecasts by each geographic area to: the 

product of the corresponding census population numbers for each geographic area and the number (l) 

of column marginal's (the 4 geographic categories)) - ( the sum of the ratios of the forecasts by each 

racial category to: the product of the corresponding census population numbers for each racial 

category and the number (k) of row marginal's (the 3 racial categories).These relationships are 

displayed in Table 10 using the data for our hypothetical forecast.  Either of the preceding two 

“interpretation” statements concerning the relationship between RMAPE and GMAPE is likely to 

lead to glazed-over eyes on somebody who asked why the MAPEs in Table 6 are different. The same 

would apply to the two relationships for each of the other summary measure, MALPE.  

Here is an alternative way to answer someone who asks why they are different and, given these 

differences, how they are related to one another and to the Total error. We express this in terms of 

MAPE, with the understanding that the same statement applies to MALPE, given appropriate 

substitutions: 
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“We can answer this question by looking first at the Total APE, which is .0358. One 

might think at first glance that it is an average of RMAPE (.0273) and GMAPE 

(.0421), but it is not. The relationship between, RMAPE and GMAPE, and in turn, the 

relationship of both of them to Total APE turns out to be a bit more complicated in 

that they involve the implicit weights that are used when one takes a simple 

arithmetic average, as is the case with MAPE. The implicit weight for each of the 

three race categories used in calculating RMAPE is 1/3 and the implicit weight for 

each of the four geographic areas used in calculating GMAPE is 1/4. That is, the 

forecast errors found for the categories within a given dimension are given equal 

weights. These implicit weights do not correspond to the actual weights, which for 

the former are the proportions of the population in each of the three race categories 

and for the latter are the proportions of the population in each of the four geographic 

areas. When these “actual weights” are used then RMAPE is equal to GMAPE, and in 

turn both are both equal to the Total APE: .0358. There is nothing wrong about using 

the implicit weights in that the resulting MAPEs provide useful information about the 

average error for each dimension. However, it also is useful to know that when actual 

weights are used, all of the dimensional MAPEs are not only the same, but also equal 

to the Total Absolute Percent Error.” 

7.  Summary 

This paper has examined an issue that appears to be hitherto unexplored by demographers and 

others who routinely evaluate the accuracy of population forecasts and estimates, namely the lack of 

an apparent relationship between the same summary measures of error when taken across multiple 

characteristics.  In a non-rigorous manner it has demonstrated that there is a relationship among each 

of two important summary measures of error, MALPE and MAPE, respectively, when used to 

evaluate forecasts or estimates done across multiple characteristics in terms of bias and precision. 

That is if MALPE is taken on one dimension (e.g., age), it has a relationship to a MALPE taken 

across another dimension (e.g., race). The same finding holds for MAPE.  This means in evaluating a 

forecast that includes more than one characteristic, one can express MALPE (or MAPE) as found for 

one characteristic (e.g., race) in terms of each of the other characteristics (e.g., age and geography). 

This finding allows one to explain the reason for differences in a summary error measure used to 

evaluate a forecast done for more than one characteristic. The findings are informative and suggest 

that the results are generalizable. Following this suggestion, a general formal general proof is 

available from the author, both for MALPE and for MAPE.  This proof supports the non-rigorous 

treatment found in the main body of the text.  
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