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Abstract
Backgrounds Digital, online assessments are efficient means to detect early cognitive decline, but few studies have 
investigated the relationship between remotely collected subjective cognitive change and cognitive decline. We 
hypothesized that the Everyday Cognition Scale (ECog), a subjective change measure, predicts longitudinal change in 
cognition in the Brain Health Registry (BHR), an online registry for neuroscience research.

Methods This study included BHR participants aged 55 + who completed both the baseline ECog and repeated 
administrations of the CANTAB® Paired Associates Learning (PAL) visual learning and memory test. Both self-reported 
ECog (Self-ECog) and study partner-reported ECog (SP-ECog), and two PAL scores (first attempt memory score 
[FAMS] and total errors adjusted [TEA]) were assessed. We estimated associations between multiple ECog scoring 
outputs (ECog positive [same or above cut-off score], ECog consistent [report of consistent decline in any item], and 
total score) and longitudinal change in PAL. Additionally we assessed the ability of ECog to identify ‘decliners’, who 
exhibited the worst PAL progression slopes corresponding to the fifth percentile and below.

Results Participants (n = 16,683) had an average age of 69.07 ± 7.34, 72.04% were female, and had an average of 
16.66 ± 2.26 years of education. They were followed for an average of 2.52 ± 1.63 visits over a period of 11.49 ± 11.53 
months. Both Self-ECog positive (estimate = -0.01, p < 0.001, R²m = 0.56) and Self-ECog consistent (estimate=-0.01, 
p = 0.002, R²m = 0.56) were associated with longitudinal change in PAL FAMS after adjusting demographics and 
clinical confounders. Those who were Self-ECog total (Odds ratio [95% confidence interval] = 1.390 [1.121–1.708]) and 
SP-ECog consistent (2.417 [1.591–3.655]) had higher probability of being decliners based on PAL FAMS.
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Background
Alzheimer’s disease (AD) is characterized as amyloid 
plaques, tau tangles, and neurodegeneration, leading to 
cognitive decline and dementia [1]. AD can be diagnosed 
with biomarkers including amyloid positron emission 
tomography (PET) scans [2, 3], tau PET scans [4, 5], anal-
ysis of cerebrospinal fluid [6], and plasma testing [6, 7]. 
During the last year, Eisai’s monoclonal antibody called 
Leqembi has been approved by FDA and CMS in the 
USA [8]. The development of disease-modifying therapy 
emphasizes the need for cost-effective and scalable meth-
ods to identify individuals likely to have AD and benefit 
from AD drugs.

Online, self-administered, digital neuropsychologi-
cal tests are one approach to identify individuals with 
cognitive impairments [9, 10]. Popular in-clinic tests 
such as the Clinical Dementia Rating, Montreal Cogni-
tive Assessment, Cogstate Brief Battery, and Cambridge 
Neuropsychological Test Automated Battery (CANTAB®) 
have been developed as online versions [11–15]. These 
may be useful for early detection of cognitive decline in 
cognitively unimpaired (CU) adults [16], providing acces-
sibility, efficiency, and diagnostic accuracy for demen-
tia [9, 10, 17]. The CANTAB paired associates learning 
(PAL) neuropsychological test assesses visual learning 
and episodic memory, which are among the initial symp-
toms of AD [18]. Patients with mild cognitive impairment 
(MCI) and AD show poorer performance on PAL com-
pared to CU adults [19–22]. PAL differentiates patients 
with MCI from age-matched CU individuals with a sen-
sitivity of 0.83 and specificity of 0.82 [23]. PAL also has 
been shown to predict progression to dementia [19–21, 
24] and correlates with AD biomarkers such as cerebro-
spinal fluid amyloid β and tau [25], hippocampal volume 
and activation [25, 26], and amyloid β positivity in PET 
scans [27]. The PAL online version showed comparable 
agreement with in clinic-based assessment [14]. A report 
from the Brain Health Registry (BHR), an online platform 
for aging and neuroscience research [28], showed that 
remotely collected PAL showed moderate feasibility and 
good construct validity [29].

Another approach is to identify individuals with sub-
jective cognitive decline (SCD), such as self-reported 
memory problems in CU people [30]. The Everyday 
Cognition scale (ECog) is a well-established instrument 
which collects self-report and study partner-reported 
subjective information about cognitive change and 

instrumental activities of daily living which relate to cog-
nitive function [31]. The ECog is especially effective in 
CU people [32, 33], and various cut-off points have been 
suggested for detecting MCI or AD in several older adult 
cohorts [33–35]. The BHR is utilizing ECog to detect 
SCD, with remotely collected ECog showing comparable 
scores to in-clinic assessments [36]. This measure is asso-
ciated with cognitive function, probability of diagnosis of 
dementia, and AD biomarkers in cross-sectional studies 
[37, 38].

Subjective change measures are well known to be asso-
ciated with cognitive decline and AD progression in 
in-clinic settings [39–42]. Remotely collected caregiver-
reported SCD has been shown to be associated with 
future in-person assessed cognitive decline and demen-
tia [43]. Despite the importance of subjective cognitive 
measures, however, there is relatively little information 
concerning the ability of subjective cognitive change 
to predict future cognitive decline in remote, online 
settings.

Therefore, the overall goal of this study was to inves-
tigate the association between SCD and longitudinal 
objective cognition in an unsupervised and online set-
ting. Specifically, our aim was to investigate the asso-
ciation between subjective cognitive change and future 
cognitive decline in terms of both continuous change and 
determined dichotomized status. We hypothesized that 
ECog categorizations, previously established in in-clinic 
cohorts for detecting cognitive impairment, would pre-
dict changes in longitudinal PAL performance and iden-
tify older adults who were ‘cognitive decliners’, those who 
showed a significant declining slope (defined as lowest 
5th percentile) in PAL scores, among our study partici-
pants in an online setting.

Methods
Participants
Participants were from the BHR database, which is an 
online neuroscience registry for developing cohorts 
focusing on cognitive aging. BHR participants provide 
electronic informed consent and complete self-report 
surveys and unsupervised online cognitive tests every 
six months [28, 44]. BHR launched in 2014 and the num-
ber of participants enrolled in BHR has reached 100,000 
at March 2024. Additionally, caregivers or family mem-
bers invited by participants can enroll separately into 
BHR as study partners and answer questionnaires about 

Conclusion In the BHR’s unsupervised online setting, baseline subjective change was feasible in predicting 
longitudinal decline in neuropsychological tests. Online, self-administered measures of subjective cognitive change 
might have a potential to predict objective subjective change and identify individuals with cognitive impairments.

Keywords Subjective cognitive decline, Everyday cognition scale, Paired associates learning, Brain health registry, 
Digital cognitive assessment
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participants’ cognition every six months [45]. The BHR 
study is approved by the UCSF Institutional Review 
Board.

This study included participants meeting the follow-
ing criteria: (i) completed PAL test one or more times; (ii) 
age at baseline PAL test ≥ 55; (iii) age at any longitudinal 
PAL tests ≤ 90; (iv) completed ECog questionnaire within 
six months of baseline PAL. According to the inclusion 
criteria, this study used data collected from March 2021, 
when PAL was newly implemented in BHR, to December 
2023, the time of analysis.

Sociodemographic and clinical measures
Baseline demographic information included age, gender 
(male, female, other, and prefer not to say), and years of 
education. In terms of ethnocultural background, we 
categorized participants into the following groups: non-
Latinx African American, Latinx, non-Latinx White, and 
all others.

We used participants’ self-report of medical his-
tory including the diagnosis of MCI, dementia, and AD 
(“Please indicate whether you currently have or have had 
any of the following conditions in the past.”), history of 
taking medication for dementia (“Are you currently tak-
ing any of the following medications?”; donepezil, riv-
astigmine, galantamine, and memantine), and family 
history of AD (“Do you have any biological parents, full 
siblings, or biological children who have been diagnosed 
with Alzheimer’s Disease?”). We also included par-
ticipant scores on an online adaptation of the Geriatric 
Depression Scale-Short Form (GDS) [46]. The GDS item 
regarding memory problems (“Do you feel you have more 
problems with memory than most?”) was excluded in this 
study as it might confound the results. The total score of 
GDS in this study ranged from 0 to 14 with higher score 
meaning more depressive symptoms. We also collected 
the status of subjective memory concern, focusing on the 
worries about subjective cognitive change, assessed with 
a yes or no question: “Are you concerned that you have a 
memory problem?”

Everyday cognition scale
ECog scores at baseline were used in this study. ECog is 
a 39-item scale measuring subjective changes in instru-
mental activities of daily living compared to 10 years 
before [31]. Every item is rated on a 1–4 Likert scale 
(1 = no change or better; 2 = questionable or occasion-
ally worse; 3 = consistently a little worse; 4 = consistently 
much worse) and the total score is the average of all 
responses ranging from 1 to 4 with a higher score mean-
ing more decline. The original version of ECog, imple-
mented in BHR, was analyzed in this study [31]. ECog 
ratings can be completed either by the individual them-
selves (self-reported ECog or Self-ECog) or by a study 

partner (study partner-reported ECog or SP-ECog). SP-
ECog was used in this study when it was available.

In addition to the total ECog score, we also evaluated 
additional ECog scoring outcomes for predicting cog-
nitive impairment [33–35]. We categorized ‘Self-ECog 
positive’ using cut-off score 1.31 or higher (impaired vs. 
normal) and ‘SP-ECog positive’ using cut-off score 1.36 
or higher (impaired vs. normal) from studies by Rueda et 
al. [34]. and van Harten et al. [35]. We also categorized 
‘ECog consistent’, defined as the respondent indicating 
any ECog item ≥ 3 (consistently worse) as shown in the 
study by van Harten et al. [35]. These categorizations 
have shown optimal performance in discriminating or 
predicting cognitive impairments in in-clinic cohorts.

Paired associates learning
All participants are invited to complete the PAL online 
test every six months. Longitudinal PAL scores starting 
from the same baseline as ECog were used in this study. 
The PAL task is one of the CANTAB assessments devel-
oped by the University of Cambridge [47].

In the version of PAL used in the BHR, participants 
in the registry have the chance to undergo five stages 
of assessment, wherein they are tasked with learning 
two, four, six, eight, or twelve pattern-location pairings. 
Initially, participants are presented with boxes in a ran-
domized sequence, each revealing either a pattern or an 
empty space, which they must commit to memory. Sub-
sequently, patterns are displayed one at a time in the cen-
ter of the screen, and participants must identify the box 
where each pattern was originally located. In the event 
of an error, the boxes reopen, allowing the participant up 
to four attempts to correctly recall the pattern locations. 
Progression to a more difficult stage is contingent upon 
correctly recalling all patterns in the current stage. Fail-
ure to complete a stage after four attempts results in the 
termination of the task.

PAL outcome measures were the number of correct 
answers at the first attempt (first attempt memory score, 
FAMS) and the number of errors made by the partici-
pants plus the estimated number of errors the partici-
pants would have made in any trials not reached due to 
early termination (total errors adjusted, TEA). These two 
measures are independent of each other and the most 
reported measures in previous literature [47]. Data clean-
ing steps excluded only participants who were unable to 
begin the PAL test due to challenges in understanding the 
online instructions or navigating the digital platform.

Decliner
Additionally, we identified “decliner” groups based on 
separate evaluations of the PAL FAMS and PAL TEA 
scores. By examining individual slopes of PAL FAMS pro-
gression, participants with slopes equal to or lower than 
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the fifth percentile, relative to the group’s average slope, 
were categorized as experiencing cognitive decline. Con-
versely, for PAL TEA, participants with slopes exceeding 
the 95th percentile, compared to the group’s slope, were 
deemed decliners. This analysis involved participants 
with at least two longitudinally assessed PAL scores avail-
able (n = 10,065). We followed a method used in previous 
studies for other computerized cognitive tests and unsu-
pervised cognitive test batteries [48, 49], which involved 
inspecting slopes for longitudinal change to identify par-
ticipants who were statistically abnormal, adjusting for 
the absence of any longitudinal change in performance or 
improvement as a learning effect [49, 50].

Statistical analysis
For descriptive statistics, we employed independent 
t-tests for continuous variables and chi-squared tests for 
dichotomous variables. We also conducted linear regres-
sion analysis between clinical and demographic variables 
and PAL scores at baseline.

First, we aimed at determining the predictive capacity 
of baseline ECog outcomes—ECog positive, ECog con-
sistent, and ECog total score—on PAL score longitudinal 
changes. We examined time interactions to assess the 
relationship between baseline ECog outcomes and longi-
tudinal PAL progression in a linear mixed effect model. 
PAL scores served as the dependent variables, while 
ECog*time (month) and baseline PAL score were fixed 
effect variables in model 1. Additional variables includ-
ing age at each PAL test, gender, years of education, race, 
GDS, family history of AD, AD medication use, and self-
reported any impairment were included as fixed-effect 
variables in model 2. As we used several ECog outcomes 
as the dependent variables, false discovery rate correc-
tions were conducted using Benjamini-Hochberg method 
[51]. We also calculated marginal R-squared (R²m) to 
evaluate the explanatory power of fixed effects in the 
linear mixed model [52]. The linear mixed models were 
also re-analyzed in participants excluding those who self-
reported any impairment.

Second, we aimed at predictive capacity of baseline 
ECog outcomes on the ‘cognitive decliners’ status. We 
conducted multivariate logistic regression analyses to 
estimate associations between baseline ECog outcomes 
and the status of ‘decliners’, individuals exhibiting PAL 
progression slopes corresponding to the fifth percentile 
and below. For each ECog variable, separate multivariable 
logistic regression models to predict decliners were con-
ducted, with age, gender, years of education, race, and the 
baseline PAL score included as additional predictors. We 
also calculated the odds ratios (OR) for predicting PAL 
decliners based on subjective memory concern, GDS, AD 
medication use, and self-reported any impairment. OR 
and 95% confidence intervals (CI) were calculated based 

on the logistic regression models. Additionally, the logis-
tic regression models were re-analyzed in participants 
excluding those who self-reported any impairment. We 
used R version 4.3.2 (R Core Team, 2023) and SAS 9.4 
(SAS Institute, Cary NC) in all analyses.

Results
Participants
The total of 16,683 participants were included in this 
study. The flow chart illustrating the participant selec-
tion process based on the study’s inclusion and exclusion 
criteria is presented in Fig. 1. Baseline demographic and 
clinical characteristics of the participants are presented 
in Table 1. Among these participants, the mean age was 
69.07 ± 7.34 years and the mean for years of education 
was 16.66 ± 2.26. The majority of the participants were 
non-Latinx white (88.8%) and female (72.0%). They were 
followed for an average of 2.52 ± 1.63 times (min 1, max 
6) for 11.49 ± 11.53 (min 0, max 33) months, which pro-
vided 42,049 person-visits data in total.

Comparisons of clinical variables between ECog positive 
and negative groups
Participants were divided into Self-ECog positive 
(n = 7,378) and negative (n = 9,305) using the cut-point 
of Self-ECog total score 1.31 [34]. Compared to the Self-
ECog negative group, the Self-ECog positive group had a 
higher percentage of individuals with subjective memory 
concerns, higher GDS scores (indicating more depressive 
symptoms), and higher percentages of a self-reported 
diagnosis of cognitive impairment (MCI, AD, and 
dementia), and AD medication use  (Table 1). Self-ECog 
scores differed significantly between the two groups 
(1.76 ± 0.46 in the positive and 1.14 ± 0.10 in the negative 
group, t = -114.22, p < 0.001) and SP-ECog scores also 
differed (1.44 ± 0.50 in the positive and 1.20 ± 0.29 in the 
negative group, t = -16.22, p < 0.001). Baseline PAL scores 
were worse in Self-ECog positive group with lower score 
in PAL FAMS (t = 11.44, p < 0.001) and higher score in 
PAL TEA (t = -11.65, p < 0.001) (Table 1).

Baseline association between demographic and clinical 
variables and PAL scores
Demographic and clinical variables associated with PAL 
FAMS and TEA are presented in Table S1 in supplemen-
tal data. Demographic factors such as younger age (esti-
mate = -0.164, p < 0.001), female gender (estimate = 0.771, 
p < 0.001), higher education (estimate = 0.098, p < 0.001), 
and non-Latinx white race were associated with bet-
ter PAL FAMS. Clinical factors such as having subjec-
tive memory concern (estimate = -0.373, p < 0.001), 
higher GDS (estimate = -0.052, p < 0.001), AD medi-
cation use  (estimate = -0.690, p = 0.014), and having 
self-reported cognitive impairment (estimate = -1.458, 
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p < 0.001) were associated with worse PAL FAMS. How-
ever, Self-ECog positive was not associated with either 
baseline PAL score (FAMS: estimate = -0.067, p = 0.370; 
TEA: estimate = 0.533, p = 0.306). Standardized estimates 
were also calculated and presented in Table S1 in supple-
mental data.

Longitudinal PAL scores
The number of participants at each visit and the progres-
sion of mean PAL scores, stratified by Self-ECog positive 
status, are presented in Fig. 2.  

Effect of baseline ECog outcomes on the longitudinal PAL 
scores
The results of linear mixed effect model with time interac-
tions of the baseline ECog outcomes on the longitudinal 
PAL scores are presented in Table  2. Self-ECog positive 
and Self-ECog consistent showed significant associa-
tions with decline in PAL FAMS in model 1 adjusted for 
the baseline PAL score (Self-ECog positive: estimate = 
-0.010, p < 0.001; Self-ECog consistent: estimate = -0.008, 
p = 0.004) and model 2 adjusted for age, gender, years of 
education, race, GDS, family history of AD, AD medica-
tion use, self-reported any impairment, and baseline PAL 

score (Self-ECog positive: estimate = -0.011, p < 0.001; 
Self-ECog consistent: estimate = -0.009, p = 0.002). Self-
ECog positive also predicted longitudinal change of PAL 
TEA score in both models (Model 1: estimate = 0.046, 
p = 0.005; Model 2: estimate = 0.046, p = 0.006). They all 
showed good model fit with large explanatory power 
of fixed effects (R²m 0.559–0.661). Predicted trajecto-
ries of both PAL scores by Self-ECog positive in model 
2 are presented in Fig.  3. Neither Self-ECog total score 
nor any SP-ECog total scores were associated with lon-
gitudinal change in PAL scores after adjusting multiple 
comparisons. However, when the linear mixed model was 
applied to participants without self-reported any impair-
ment, both the Self-ECog total and SP-ECog total scores 
showed significant time interactions with longitudinal 
PAL FAMS and PAL TEA scores, whereas the dichoto-
mized ECog scores showed weaker effects (Table S2 and 
Figure S1).

Effect of baseline ECog outcomes on PAL decliner status
Among the 10,065 participants who completed at least 
two PAL tests, 517 participants (5.1%) were identified as 
PAL decliners, showing the worst slope of PAL progres-
sion corresponding to the fifth percentile and below, 

Fig. 1 Flow chart for participant inclusion/exclusion. BHR, Brain Health Registry; PAL, paired associates learning; ECog, Everyday cognition scale
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based on PAL FAMS scores, and 505 participants (5.0%) 
were identified based on PAL TEA scores. The spaghetti 
plots of the decliners and non-decliners with groupwise 
regression lines and 95% CIs are presented in Fig. 4.

ORs for identifying PAL decliner by ECog scores using 
logistic regression models are presented in Table  3. 
For PAL FAMS decliners, most Self- and SP-ECog out-
comes showed significant associations with ORs ranging 
1.173–2.417. For identifying PAL TEA decliners, three 
Self-ECog outcomes showed significant associations 
(OR 1.200–1.466). Additionally, baseline clinical vari-
ables including subjective memory concern, higher GDS 
scores, and self-reported any impairment were associated 

with higher probability of being a PAL decliner. In the 
analysis of participants without self-reported any impair-
ment, SP-ECog variables showed the same significant 
results, whereas Self-ECog Positive and Self-ECog 
Consistent did not show significant associations with 
Decliner status on PAL FAMS (Table S3).

Discussion
The major findings of this study of older adults enrolled 
in the BHR were: First, subjective cognitive change posi-
tive status, defined using a previously established ECog 
cut-off or categorization for identifying those with cogni-
tive impairment, was associated with longitudinal decline 

Table 1 Baseline descriptive statistics
Variable Total

(n = 16,683)
Self-ECog positive
(n = 7,378)

Self-ECog negative
(n = 9,305)

t or x2, p

Age 69.07 ± 7.34 (55–90) 69.21 ± 7.69 (55–90) 68.53 ± 7.29 (55–90) -5.85, < 0.001
Gender (female) 12,018 (72.0%) 5247 (71.1%) 6771 (72.8%) 5.48, 0.019
Years of education 16.66 ± 2.26 (6–20) 16.44 ± 2.32 (6–20) 16.64 ± 2.28 (6–20) 5.70, < 0.001
Race: Latinx 969 (5.8%) 488 (6.6%) 481 (5.2%) 15.44 < 0.001
Race: Non-Latinx African American 364 (2.2%) 159 (2.2%) 205 (2.2%) 0.02, 0.875
Race: Non-Latinx White 14,815 (88.8%) 6470 (87.7%) 8345 (89.7%) 16.19, < 0.001
Race: All other 535 (3.2%) 261 (3.5%) 274 (2.9%) 4.47, 0.035
Subjective memory concern 7263 (43.5%) 5062 (68.6%) 2201 (23.7%) 3381.4, < 0.001
GDS 2.37 ± 2.79 (0–14) 3.71 ± 3.37 (0–14) 1.70 ± 2.22 (0–14) -42.68, < 0.001
Family history of AD 7289 (43.7%) 3288 (44.6%) 4001 (43.0%) 4.04, 0.044
AD medication use 219 (1.3%) 151 (2.1%) 68 (0.7%) 53.99, < 0.001
Self-reported MCI 1494 (9.0%) 1231 (16.7%) 263 (2.8%) 967.63, < 0.001
Self-reported AD 206 (1.2%) 155 (2.1%) 51 (0.6%) 80.09, < 0.001
Self-reported dementia 272 (1.6%) 209 (2.7%) 63 (0.7%) 100.84, < 0.001
Self-reported any impairment 1550 (9.3%) 1270 (17.2%) 280 (3.0%) 983.47, < 0.001
Self-ECog 1.39 ± 0.42 (1–4) 1.76 ± 0.46 (1.31–4) 1.14 ± 0.10 (1–1.31) -114.22, < 0.001
SP-ECog 1.27 ± 0.37 (1–4) 1.44 ± 0.50 (1–3.75) 1.20 ± 0.29 (1–4) -16.22, < 0.001
PAL FAMS 11.71 ± 4.22 (0–20) 11.29 ± 4.33 (0–20) 12.05 ± 4.11 (0–20) 11.44, < 0.001
PAL TEA 44.83 ± 29.43 (0–113) 47.81 ± 29.86 (0–113) 42.47 ± 28.86 (0–113) -11.65, < 0.001
Data are mean ± standard deviation (min-max) or n (%)

Self-reported any impairment incorporates any report of MCI, AD, and dementia

ECog, Everyday cognition scale; GDS, geriatric depression scale; MCI, mild cognitive impairment; AD, Alzheimer’s disease; SP, study partner; PAL, paired associates 
learning; FAMS, first attempt memory score; TEA, total errors adjusted

Fig. 2 Participants’ observed follow-ups and mean PAL scores at each visit. PAL, paired associates learning; FAMS, first attempt memory score; TEA, total 
errors adjusted; ECog, Everyday cognition scale
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in performance on the PAL visual learning and memory 
test. Second, greater subjective decline, defined using 
both continuous and dichotomous ECog scoring out-
comes, was associated with higher probability of being 
a PAL decliner (those with PAL progression slopes in 
the fifth percentile). These results support our hypoth-
esis that online, self-administered measures of subjec-
tive cognitive change have the potential to identify older 
adults who are likely to have objective cognitive decline. 

Our findings demonstrate that this online assessment 
approach might be useful to identify older adults with or 
at risk for cognitive impairment and clinical progression.

The first major finding of this study is that greater self-
report of subjective cognitive and functional decline, 
measured using ECog, was associated with greater 
future longitudinal decline in visual learning and mem-
ory, assessed using the PAL test. Specifically, Self-ECog 
positive and Self-ECog consistent were associated with 

Table 2 Time interactions of ECog scores on longitudinal PAL scores in linear mixed effect model (n = 16,683)
Variable PAL FAMS PAL TEA score

Estimate (SE) p value R²m Estimate (SE) p value R²m
Model 1
Self-ECog positive*Time (month) -0.010 (0.003) < 0.001* 0.562 0.046 (0.017) 0.005* 0.661
Self-ECog consistent*Time -0.008 (0.003) 0.004* 0.562 0.038 (0.016) 0.020 0.660
Self-ECog total*Time -0.006 (0.003) 0.062 0.562 0.026 (0.020) 0.185 0.661
SP-ECog positive*Time -0.001 (0.007) 0.842 0.526 0.018 (0.041) 0.658 0.640
SP-ECog consistent*Time -0.004 (0.007) 0.581 0.526 0.019 (0.039) 0.627 0.640
SP-ECog total*Time -0.013 (0.008) 0.096 0.528 0.097 (0.048) 0.042 0.642
Model 2
Self-ECog positive*Time -0.011 (0.003) < 0.001* 0.559 0.046 (0.017) 0.006* 0.658
Self-ECog consistent*Time -0.009 (0.003) 0.002* 0.559 0.039 (0.017) 0.020 0.658
Self-ECog total*Time -0.006 (0.003) 0.073 0.559 0.024 (0.020) 0.235 0.658
SP-ECog positive*Time -0.003 (0.007) 0.620 0.525 0.031 (0.042) 0.465 0.639
SP-ECog consistent*Time -0.004 (0.007) 0.500 0.525 0.024 (0.040) 0.537 0.639
SP-ECog total*Time -0.015 (0.008) 0.061 0.526 0.105 (0.049) 0.030 0.640
Each variable was separately put in a multivariable linear mixed effect model

Model 1: adjusted for baseline PAL score

Model 2: adjusted for age, gender, years of education, race, geriatric depression scale, family history of AD, AD medication use, self-reported any impairment, and 
baseline PAL score

*p values that survived false discovery rate correction using Benjamini-Hochberg method

ECog, Everyday cognition scale; PAL, paired associates learning; FAMS, first attempt memory score; TEA, total errors adjusted; SE, standard error; R²m, marginal 
R-squared; Self-ECog, self-reported ECog; SP-ECog, study partner-reported ECog; AD, Alzheimer’s disease

Fig. 3 Predicted trajectory of PAL scores in groups stratified by Self-ECog positive. Trajectory of PAL scores in groups stratified by Self-ECog positive (total 
score ≥ 1.31) status: The regression lines and the 95% confidence intervals for the predicted scores in linear mixed model adjusted for age, gender, years 
of education, race, GDS, family history of AD, AD medication use, self-reported any impairment, and baseline PAL score. PAL, paired associates learning; 
FAMS, first attempt memory score; TEA, total errors adjusted; ECog, Everyday cognition scale; GDS, geriatric depression scale; AD, Alzheimer’s disease
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greater decline in PAL. The continuous ECog total score, 
on the other hand, showed a stronger association with 
PAL progression than the dichotomized ECog in par-
ticipants without self-reported any impairment. These 
results may highlight the utility of ECog dichotomization, 
which was previously established as an effective method 
for discriminating individuals with MCI or dementia 
from CU individuals. The fact that both dichotomized 
and continuous ECog scores from in-clinic cohorts 
were associated with PAL progression in an online reg-
istry suggests that a simple subjective cognitive change 
measure could be useful for predicting future objective 

cognitive decline in an online, unsupervised setting. This 
finding is different from the results of previous studies 
that investigated the predictive ability of ECog for diag-
nosis of MCI or AD [34, 35, 53], that investigated the 
association between the in-clinic and pen-and-paper 
ECog score and clinical diagnosis. Although online regis-
tries are efficient means to collect repeated measures per-
taining to cognitive function, there have been few studies 
of longitudinal cognitive assessment in online setting. 
Banh et al. previously reported longitudinal Cogstate 
brief battery in association with self-reported MCI and 
subjective memory concern in BHR [48], and Stricker 

Table 3 Odds ratios for predicting PAL decliner by ECog and other variables using logistic regression model (n = 10,065)
Variable Odds ratio (95% CI)

Decliner on PAL FAMS (n = 517) Decliner on PAL TEA (n = 505)
Self-ECog positive (≥ cut-off 1.31) 1.173 (0.977–1.407) 1.200 (1.000-1.439)*
Self-ECog consistent (any item ≥ 3) 1.262 (1.053–1.513)* 1.320 (1.102–1.583)*
Self-ECog total 1.390 (1.121–1.708)* 1.466 (1.194–1.783)*
SP-ECog positive (≥ cut-off 1.36) 2.128 (1.368–3.267)* 0.692 (0.385–1.172)
SP-ECog consistent 2.417 (1.591–3.655)* 1.195 (0.749–1.862)
SP-ECog total 1.832 (1.071–2.964)* 0.704 (0.326–1.346)
Subjective memory concern 1.597 (1.328–1.920)* 1.511 (1.256–1.818)*
GDS 1.062 (1.029–1.095)* 1.061 (1.029–1.094)*
AD medication use 0.984 (0.379–2.093) 0.763 (0.268–1.703)
Self-reported any impairment 1.502 (1.091–2.027)* 1.618 (1.196–2.150)*
For each variable, separate multivariable logistic regression models for predicting decliners were conducted, with age, gender, years of education, race, and the 
baseline PAL score included as additional predictors

The reference groups were the Non-decliner groups

Decliners were identified based on PAL FAMS slopes at or below the fifth percentile relative to the group mean slope, while PAL TEA decliner was defined as 95th 
percentile or higher

*significant

PAL, paired associates learning; ECog, Everyday cognition scale; CI, confidence interval; FAMS, first attempt memory score; TEA, total errors adjusted; Self-ECog, self-
reported ECog; SP-ECog, study partner-reported ECog; GDS, geriatric depression scale; AD, Alzheimer’s disease

Fig. 4 Predicted trajectory of PAL scores in decliner and non-decliner groups. Trajectory of PAL scores in decliner and non-decliner groups: Linear regres-
sion lines in each group are overlaid on individual spaghetti plots in groups stratified by decliner status. Decliners were identified based on PAL FAMS 
slopes over time at or below the fifth percentile relative to the group mean slope, while PAL TEA decliner was defined as 95th percentile or higher. The 
analysis was conducted using only participants who had at least two PAL scores available (n = 10,065). PAL, paired associates learning; FAMS, first attempt 
memory score; TEA, total errors adjusted; ECog, Everyday cognition scale; GDS, geriatric depression scale; AD, Alzheimer’s disease

 



Page 9 of 12Kang et al. Alzheimer's Research & Therapy           (2025) 17:10 

et al. reported longitudinal at-home Cogstate brief bat-
tery results in comparison with in-clinic results [54]. We 
analyzed longitudinal online PAL scores over an average 
duration of 11.49 months and found significant monthly 
changes in PAL scores in relation to ECog dichotomiza-
tions. While the large sample size may have contributed 
to the significance of the results, the initial differentiation 
with a good model fit suggests that these findings could 
become more pronounced in future longitudinal studies 
with longer follow-up periods.

However, SP-ECog scores were less associated with 
longitudinal PAL scores than Self-ECog scores in this 
study, which contrasts with previous studies that dem-
onstrated better predictive power of SP-ECog for diag-
nosing MCI or AD compared to Self-ECog [34, 35]. Two 
aspects of our study design likely contribute to this find-
ing. First, BHR has a selection bias for older adults who 
are CU or who have mild impairment with intact func-
tional abilities. We believe that this is because more 
impaired people are less likely to have the ability and 
motivation to join BHR themselves, compared to CU 
people. In fact, the demographics of our sample, which 
is overwhelmingly composed of CU people, support this 
bias. In this unimpaired or mildly impaired group, it is 
likely that changes in cognition and function would be 
subtle, and not observable by study partners. Second, 
BHR does not require a minimum amount of contact 
of familiarity between participants and study partners 
for the study partner to qualify for the study. Therefore, 
the lack of signal for SP-ECog may be, in part, driven by 
lower levels of familiarity between participant and study 
partner than in other studies. Still, previous BHR studies 
have shown that SP-ECog is cross-sectionally associated 
with objective learning and memory as well as with self-
report of a diagnosed cognitive impairment [45]. There-
fore, the role of SP-ECog in identifying cognitive decline 
warrants further study in this sample.

The second major finding of this study is that greater 
subjective cognitive change was associated with greater 
odds of being a PAL ‘decliner’, defined as those who 
exhibited the worst PAL progression slopes correspond-
ing to the fifth percentile and below. This is partly in 
line with the previous studies that showed significant 
association between ECog and diagnosis of MCI or AD. 
Although decliner status is not a diagnosis of cognitive 
impairment, definition by lowest fifth percentile was 
often used as an impaired status in online cognitive tests 
[48, 49] as well as traditional neuropsychological tests 
[55, 56]. Thus, this result supports the hypothesis that 
ECog may help identify those with cognitive impairment. 
However, there were differences between Self-ECog and 
SP-ECog in association with decliner status. Self-ECog 
outcomes demonstrated significant ORs for decliners 
based on both FAMS (memory scores) and TEA (error 

scores), whereas SP-ECog categorizations only showed 
significant OR for decliners based on FAMS, with higher 
OR values compared to Self-ECog outcomes. We believe 
this may be because individuals who exhibit decline 
based on memory score progressions are more likely to 
have impairments such as MCI or AD. These individuals 
might be more easily observed by study partners or may 
have impaired awareness of their illnesses [57].

This study also found that the ECog predicted cognitive 
decliner status as effectively as other clinical variables. 
Subjective memory concern, assessed with a simple yes/
no question about worries regarding cognitive change, 
showed a strong association with decliner status, sup-
porting previous findings that anxiety about SCD may 
be linked to future cognitive impairments [39, 58]. Simi-
larly, self-reported MCI or dementia increased the odds 
of being classified as a cognitive decliner, highlighting 
the reliability of online-collected diagnostic information 
in predicting future cognitive decline [48]. Depressive 
symptoms, measured by the GDS, were also associated 
with cognitive decliner status, with a small but signifi-
cant effect. This is consistent with the understanding that 
depressive symptoms can both be a risk factor and an 
early sign of neurodegenerative conditions like Alzheim-
er’s disease [59]. This study demonstrated that, similar 
to other clinical variables, the ECog scale was a strong 
predictor of cognitive decliner status. Specifically, sub-
jective memory concern, self-reported MCI or demen-
tia, and depressive symptoms all exhibited significant 
associations with decliner status, highlighting the ECog’s 
comparable predictive power in relation to established 
clinical measures.

An examination of ECog and PAL performance in our 
study supports the validity of the remote, online assess-
ment approach, and also highlights important selec-
tion biases. Compared to other clinical samples used to 
study ECog, our participants are younger, have higher 
education levels, a higher proportion are female, and 
lacks sufficient ethnocultural diversity [34, 35, 53]. Addi-
tionally, our sample lacks traditional baseline cognitive 
assessments. However, the mean Self-ECog score in CU 
group in this study (1.36 ± 0.37) was comparable with 
CU individuals in previous in-clinic cohorts (1.37 ± 0.46 
[33]; 1.34 ± 0.31 [34]; 1.2 (1.1–1.5) [35]; 1.46 ± 0.47 [53]). 
Self-ECog positivity also showed association with various 
clinical information such as subjective memory concern, 
depressive symptoms, and self-reported MCI, AD and 
dementia, and taking medications for AD in this study, 
which corresponds with previous in-clinic studies [34, 
35, 53, 60]. These results further support the validity of 
unsupervised online ECog, as first addressed in a previ-
ous head-to-head comparison with in-clinic version [36].

In our study, longitudinal PAL tests showed an 
improvement in scores over time. The practice effect is 
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a common phenomenon in repeated neuropsychologi-
cal tests [50] and this was also found in online longitu-
dinal cognitive assessments studies [48, 54]. The practice 
effect was prominent in the first two sessions [48] and 
lasted for three to four sessions [50] in previous studies. 
PAL test also showed practice effect even in cognitively 
impaired participants [61]. Our results are in line with 
these prior studies showing most improvement between 
first two sessions and begin to deteriorate from session 
six in PAL FAMS in Self-ECog positive group. Although 
caution is needed when interpreting the current online 
PAL scores in our sample, this study provides evidence of 
useful online measurement of cognitive change, in a large 
sample size (n = 16,638).

This study also has several limitations, with the most 
significant being selection biases resulting from the 
recruitment methods used in BHR. As a fully online 
study, participants are more likely to have higher inter-
net literacy and heightened concerns about their cog-
nitive health, which may not represent the broader 
population. Additionally, there is a skewed distribution 
in demographic factors, particularly race, ethnicity, and 
socioeconomic status, further limiting the generaliz-
ability of the findings. We have previously observed that 
certain groups, such as individuals from non-white racial 
backgrounds, Latino communities, and those with lower 
educational attainment, are more likely to drop out of fol-
low-up assessments [62]. These patterns introduce addi-
tional bias and reduce the representativeness of the data. 
A second limitation is that the large sample size likely 
contributed to statistically significant associations. The 
third limitation is that this study relies on self-reported 
information and lacks clinical diagnosis or AD biomarker 
data, which prevents us from distinguishing between 
individuals with AD dementia, MCI due to AD, and other 
forms of cognitive impairment. A fourth limitation is that 
the PAL FAMS and PAL TEA scores were analyzed using 
raw scores without excluding data from participants with 
extremely poor performance. However, participants who 
were unable to start the PAL test due to digital literacy 
issues were excluded. Additional analyses, which were 
limited to individuals without self-reported any impair-
ment, yielded similar results, supporting the robustness 
of our findings.

Conclusions
In the BHR’s unsupervised online setting, ECog dem-
onstrated feasibility in predicting longitudinal decline 
in PAL scores, both in terms of continuous changes and 
when dichotomized as decliners versus non-decliners. 
These findings underscore the value of subjective cog-
nitive change measures to identify those at risk for 
cognitive decline. Also, this study shows the utility of pre-
viously dichotomized ECog cut-off or categorizations in 

an online setting. Taken together, unsupervised, remotely 
collected SCD might have the potential to identify indi-
viduals with cognitive decline, who are likely to be at risk 
for or in the early stages of cognitive impairment.
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