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RESEARCH ARTICLE

YeATSAM analysis of the walnut and chickpea transcriptome
 reveals key genes undetected by current annotation tools

[version 1; referees: 2 approved, 1 not approved]
Sandeep Chakraborty,  Pedro J. Martínez-García, Abhaya M. Dandekar
Department of Plant Sciences, University of California, Davis, USA

Abstract
: The transcriptome, a treasure trove of gene space information,Background

remains severely under-used by current genome annotation methods. 
: Here, we present an annotation method in the YeATS suiteMethods

(YeATSAM), based on information encoded by the transcriptome, that
demonstrates artifacts of the assembler, which must be addressed to achieve
proper annotation. YeATSAM was applied to theResults and Discussion: 
transcriptome obtained from twenty walnut tissues and compared to MAKER-P
annotation of the recently published walnut genome sequence (WGS).
MAKER-P and YeATSAM both failed to annotate several hundred proteins
found by the other. Although many of these unannotated proteins have
repetitive sequences (possibly transposable elements), other crucial proteins
were excluded by each method. An egg cell-secreted protein and a homer
protein were undetected by YeATSAM, although these did not produce any
transcripts. Importantly, MAKER-P failed to classify key photosynthesis-related
proteins, which we show emanated from Trinity assembly artifacts potentially
not handled by MAKER-P. Also, no proteins from the large berberine bridge
enzyme (BBE) family were annotated by MAKER-P. BBE is implicated in
biosynthesis of several alkaloids metabolites, like anti-microbial berberine. As
further validation, YeATSAM identified ~1000 genes that are not annotated in
the NCBI database by Gnomon. YeATSAM used a RNA-seq derived chickpea (

 L.) transcriptome assembled using Newbler v2.3. Cicer arietinum
Since the current version of YeATSAM does not have an Conclusions: ab

 module, we suggest a combined annotation scheme using both MAKER-Pinitio
and YeATSAM to comprehensively and accurately annotate the WGS.
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Introduction
The genome of a particular organism is static in all cells, unlike 
the dynamic transcriptome, which is the transcription of the gene 
space into RNA molecules in a fashion responsive to a variety of 
factors, such as developmental stage, tissue, and external stimuli. 
RNA-seq, a high-throughput RNA sequencing method, has radi-
cally transformed the identification of transcripts and quantifica-
tion of transcriptional levels (Flintoft, 2008; Wang et al., 2009). It 
is supported by a diverse set of computational methods for ana-
lyzing the resulting data (Chakraborty et al., 2015; Chang et al., 
2015; Chu et al., 2013; Fu et al., 2012; Grabherr et al., 2011; Lohse 
et al., 2012; Mbandi et al., 2015; Schulz et al., 2012; Simpson  
et al., 2009; Trapnell et al., 2009; Trapnell et al., 2012; Wang et al., 
2010; Zerbino & Birney, 2008).

Rapid advances in genome sequencing technologies have  
generated sequences for a deluge of organisms and species. The  
task of annotating these sequences has been addressed by several 
flows. These pipelines are categorized in http://omictools.com/
genome-annotation-category and http://genometools.org/ and 
reviewed in (Yandell & Ence, 2012). Here, we focus specifically 
on MAKER-P (Campbell et al., 2014; Holt & Yandell, 2011;  
Law et al., 2015; Neale et al., 2014), which was used to  
annotate the recently published walnut genome sequence (WGS) 
(Martínez-García et al., 2016).

In the current study, the YeATS suite (Chakraborty et al., 2015)  
was enhanced to include genome annotation capabilities using 
RNA-seq-derived transcriptomes (YeATS annotation module - 
YeATSAM). First, the Trinity-assembled transcriptome obtained 
from twenty different tissues was compared to the WGS, excluding 
transcripts emanating from extraneous sources. This step inciden-
tally revealed both biodiversity and plant-microbe interactions in 
walnut tree(s) from Davis, California (Chakraborty et al., 2016a). 
The WGS-derived transcripts were split into three open reading 
frames (ORFs), which were subjected to BLAST analysis using 
a plant proteome database obtained from the Ensembl database  
(Kersey et al., 2016). Transcripts can contain more than one  
significant ORF and must be handled differently depending on 
whether they map to the same or a different protein. The resulting 
analysis provided the WGS annotation.

Both MAKER-P and YeATSAM failed to annotate several  
hundred proteins annotated by the other. Many of the proteins had 
repetitive sequences or domains that, although difficult to detect, 
do not represent critical proteins during annotation. An egg cell-
secreted protein (Sprunck et al., 2012), a copper chaperone (Shin 
et al., 2012), and a clavata3/ESR-Related protein (Kinoshita 
et al., 2007) were among the proteins not detected through the  
YeATSAM flow. Some proteins undetected in the MAKER-P 
flow are more significant in the context of a plant genome: several  
photosynthesis-related proteins encoded by the chloroplast  
(Nelson & Yocum, 2006) and the large family of FAD-binding  
berberine bridge enzymes (BBE) involved in biosynthesis of  
antimicrobial benzophenanthridines (Cheney, 1963; Winkler et al.,  
2008). We posited possible reasons for such exclusions and  
recommend incorporating both flows for comprehensive enumera-
tion of genes in the WGS.

As further validation, YeATSAM was applied to chickpea (Cicer 
arietinum L.), an important pulse crop with many nutritional and 
health benefits (Jukanti et al., 2012). The RNA-seq-derived tran-
scriptome of chickpea has also been sequenced (Garg et al., 2011) 
and was processed through the YeATSAM pipeline to identify 
~1000 proteins that are encoded by these transcripts, but are not 
annotated in the NCBI database, most of which were annotated 
using Gnomon (Souvorov et al., 2010).

Methods
The input to YeATSAM is a set of post-assembly transcripts  
(∅

TRS
) and the walnut genome sequence (WGS) (Figure 1). Tran-

scripts that do not align to the WGS were removed (Chakraborty 
et al., 2016a). A BLAST database of protein peptides (plantpep.
fasta: 1M seqeunces) using ~30 organisms (list.plants) from the 
Ensembl genome was created (Kersey et al., 2016). The three 
longest open reading frames (ORF), obtained using the ‘getorf’  
utility in the EMBOSS suite (Rice et al., 2000), for each transcript 
in (∅

TRS
) underwent BLAST analysis (Camacho et al., 2013) to 

the ‘plantpep.fasta’. For cutoff E-value=1E-8, depending on the 
number of matches, the transcripts were clustered as: 

1.    None - either a previously unknown gene or non-coding 
RNA.

2.   One - unique ORF.

3.    Multiple ORFs matching to the same gene - merge the ORFs 
if the Evalue of the combined ORF is significantly lower.

4.    Multiple ORFs matching to different genes - duplicate 
the transcripts, associating each transcript with a different 
ORF.

In vitro methods
Fifteen samples of walnut tissue were gathered from Chandler  
trees growing in the Stuke block at UC Davis between April 
and October 2008. Four additional samples were taken from  
Chandler plant material from the same orchard maintained in  
tissue culture. Several grams of leaf and root tissue from each 
plant were frozen in liquid nitrogen and then transferred to a -80 C 
freezer. RNA was isolated from each sample using the hot borate 
method (Wilkins & Smart, 1996) followed by purification and 
DNAse treatment using an RNA/DNA Mini Kit (Qiagen, Valencia, 
CA) per the manufacturer’s protocol. High-quality RNA was  
confirmed by running an aliquot of each sample on an Expe-
rion Automated Electrophoresis System (Bio-Rad Laboratories,  
Hercules, CA). The cDNA libraries were constructed follow-
ing the Illumina mRNA-sequencing sample preparation protocol  
(Illumina Inc., San Diego, CA). Final elution was performed with 
16µL RNase-free water. The quality of each library was deter-
mined using a BioRad Experion (BioRad, Hercules, CA). Each  
library was run as an independent lane on a Genome Analyzer II 
(Illumina, San Diego, CA) to generate 85bp paired-end sequences 
from each cDNA library. Over a billion reads were obtained. Prior 
to assembly, all reads underwent quality control for paired-end 
reads and trimming using Sickle v1.33 (Joshi & Fass, 2011). The 
minimum read length was 45bp with a minimum Sanger quality 
score of 35. The quality-controlled reads were de novo assembled 
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Figure 1. YeATSAM flow. First, transcripts from extraneous organisms are pruned. Next, the three longest open reading frames (ORFs) from 
each transcript undergo BLAST analysis to a database of plant peptides. Depending on the number of significant matches, the transcripts are 
clustered as: (a) None - either a previously unknown gene, or non-coding RNA. (b) One - Unique ORF (c) Multiple ORFs matching to the same 
gene - merge the ORFs if the Evalue of the combined ORF is significantly lower. (d) Multiple ORFs matching to different genes - duplicate the 
transcripts, associating each with a different ORF. Subsequently, the ORFs are merged based on overlapping amino acid sequences and 
exact substrings are removed.

with Trinity v2.0.6 (Grabherr et al., 2011). Standard parameters 
were used and the minimum contig length was 300bp. Individual 
assemblies for each library and a combined assembly of all tissues 
were performed.

The walnut genome sequence has been released to the public 
domain (http://ucanr.edu/sites/wgig/). The Illumina (Genome  
Analyzer II) for all 20 tissues can be accessed at http://www.ncbi.
nlm.nih.gov/sra/PRJNA232394.

The transcriptome of Cicer arietinum (transHybrid.fasta, ICC4958; 
Desi chickpea) was obtained from http://www.nipgr.res.in/ctdb.
html (Garg et al., 2011). The dataset ‘represents optimized de novo 
hybrid assembly of 454 and short-read sequence data.’ About two 

million 454 reads were assembled using Newbler v2.3 followed by 
hybrid assembly with 53409 transcripts generated by optimized 
short-read data assembly using TGICL, as reported previously 
(Garg et al., 2011). The set of annotated proteins from chick-
pea was obtained from the NCBI database (chickpea.pep.fasta,  
N=34198).

PHYML v3.0 was used to generate phylogenetic trees from  
alignments (Guindon et al., 2005). Multiple sequence alignment 
was done using ClustalW (Larkin et al., 2007) and figures were 
generated using the ENDscript server 2.0 (Robert & Gouet, 
2014). The source code written in Perl is provided as Dataset 1  
(YeATSAM.tgz). A README is provided inside the top-level 
directory for installation and running the programs.
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Results and discussion
The input to YeATSAM was ~111K Trinity-assembled transcripts 
(Combined TrinityFull.fasta) (Figure 1). Each transcript was  
aligned to the WGS (wgs.5d.scafSeq200+.trimmed) using BLAST 
(Camacho et al., 2013). Transcripts that did not align to the WGS 
(cutoff BLAST bitscore=75) were excluded (Chakraborty et al., 
2016a). Those transcripts that aligned to the WGS (list.transcrip-
tome.clean: 106K) were split into the three longest open reading 
frames (ORF) (list.transcriptome.clean.ORFS: 320K).

A BLAST database of protein peptides (plantpep.fasta:1M 
sequences) using ~30 organisms (list.plants) from the Ensembl 
genome was created (Kersey et al., 2016). The availability of 
proteomes from related organisms accelerates the annotation. 
The BLAST results of list.transcriptome.clean.ORFS: 320K on  
‘plantpep.fasta’ was processed using a cutoff: bitscore=60, 
Evalue~=1E-10.

Merging ORFs: broken transcripts
There are two instances in which ORFs can be merged to create a 
longer amino acid sequence. The first scenario occurs when a par-
ticular transcript has multiple ORFs that match to the same protein 
with high significance, indicating that a sequencing or assembly 
error has broken a contiguous ORF (Chakraborty et al., 2015). In 
total, 5% of the present transcripts (5,000 of 106,000) had two or 
more ORFs matching with high significance to the same protein, 
exactly mirroring the 5% error rates seen in transcripts restricted to 
the transcriptome from the tissue at the heartwood/sapwood transi-
tion zone in black walnut (Chakraborty et al., 2015). While most 
of these transcripts have repetitive elements, there were other non-
repetitive sequences with this particular problem. C20727_G1_I1 
is one example: it has two ORFS, ORF_15 and ORF_36, that 
match a DNA repair metallo-β-lactamase family protein (Acces-
sion number: XP007043420.1) with Evalues=9E-70 and 6E-96, 
respectively (Figure 2a). The two ORFs were merged (inserting 
the sequence ‘ZZZ’, although the length of the missing fragment 
is not known) since the Evalue of the combined ORF reduces to  
2E-175 and the merged sequence was chosen as representative 
for the transcript. ORFs are not merged when the combined ORF 
did not significantly decrease the Evalue and the longer ORF  
was selected to represent the transcript.

The other scenario occurs when the assembler fails to merge two 
transcripts into a single one. In this instance, two ORFs ema-
nating from different transcripts with significant overlaps were 
merged. While the merging of two ORFs was described previ-
ously (Chakraborty et al., 2015), we introduced an additional filter 
to select mergeable ORFs based on whether the E-value obtained 
by merging the two ORFs is significantly reduced. For example, 
transcripts C53209_G8_I1 and C53209_G6_I1 both map to the 
scaffold SUPER472 and their corresponding ORFs can be merged 
based on the sequence string ‘PNRSSLP’ (Figure 2b). The indi-
vidual ORFs and the combined ORFs align to an autophagy-related 
protein (TAIR ID: AT3G49590.2) with Evalues 2e-106, 8e-63, 
and 1e-180, respectively. The increased significance of the com-
bined ORF, in addition to other checks, like ensuring that mapping 
is to the same scaffold, adds further support to the fact that these 
transcripts should have been contiguous in the final assembled 
transcriptome.

Transcripts with multiple ORFs
About 3% of transcripts have ORFs that map to different proteins. 
Some transcripts should not have been merged. C1089_G1_I1 is 
an interesting example: a 4574 nt transcript that maps to the chlo-
roplast and encodes two genes. One is highly variable and the 
other is conserved. The two ORFS, ORF_64 (fwd: 1117-2631) 
and ORF_108 (fwd: 3195 - 4271), map to maturase K (TAIR ID: 
ATCG00040.1) and photosystem II reaction center protein (TAIR 
ID: ATCG00020.1) with very high significance. Maturase K is a 
good candidate for barcoding angiosperms because it has highly 
variable coding sequences (Yu et al., 2011), while the photosys-
tem II reaction center protein is completely conserved (100% 
similarity with Arabidopsis). Another example is C19241_G1_I1 
(4702 nt), split into ORF_68 (fwd: 176-3487) and ORF_115 
(reverse: 4509-4096) encoding a damaged DNA binding protein 
(TAIR ID: AT4G05420.1) and photosystem I subunit K (TAIR ID: 
AT1G30380.1) with high significance, respectively. These tran-
scripts are split in the YeATSAM flow, resulting in one ORF per 
transcript. Subsequently, this artifact of the Trinity assembly led to 
several unannotated proteins in the MAKER-P flow.

Identifying genes not detected by either YeATSAM or 
MAKER-P
We compared the annotations of walnut by MAKER-P (walnut.
wgs.5d.all.maker.proteins.fasta) and YeATSAM (DB.ORFBEST.60).  
MAKER-P and YeATSAM each failed to annotate sev-
eral proteins identified by the other (MAKER-P=~4000;  
YeATSAM=700). Although most of these unannotated proteins 
have repetitive sequences (transposable elements), some vital, 
non-repetitive proteins were excluded by each method. For exam-
ple, an egg cell-secreted protein (‘WALNUT 00001389-RA’)  
(Sprunck et al., 2012), a Clavata3/esr-related gene (‘WALNUT 
00023705-RA’) (Kinoshita et al., 2007) and a copper chaperone 
(‘WALNUT 00006344-RA’) (Shin et al., 2012) were not annotated 
in the YeATSAM flow. These genes do not have transcripts in the 
twenty tissues analyzed in the current study and are most likely 
pseudogenes.

Proteins unannotated by MAKER-P
MAKER-P fails to annotate many key photosystem-related  
proteins (Table 1). The transcript C59245_G1_I1 has ORF_43 
(fwd: 176-1714) and ORF_70 (fwd: 2212-2496) mapping to 
photosystem II reaction center protein B (PSBB) and photosys-
tem II reaction center protein H (PSBH), respectively. While  
MAKER-P does annotate PSBB, it failed to detect PSBH. These 
proteins map to transcripts encoding two significant ORFs  
(>1E-10), indicating that failure to handle this might have excluded 
these proteins. Also, these proteins are encoded by the chloroplast. 
However, this limitation of MAKER-P is not confined to tran-
scripts emanating from the chloroplast. For example, C48031_
G3_I1 encodes a leucine-rich repeat transmembrane protein 
kinase (AT5G48940.1) and a metallo-β-lactamase family protein 
(TAIR ID: AT4G33540.1) and is mapped to scaffold ‘SUPER374’. 
MAKER-P failed to annotate the β-lactamase family protein.

Furthermore, MAKER-P failed to annotate any FAD-binding 
berberine bridge enzymes (BBE) in the WGS (Kutchan &  
Dittrich, 1995). These enigmatic enzymes are implicated in  
the transformation of (S)-reticuline to (S)-scoulerine during  
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Figure 2. Open reading frames (ORF) that can be merged. (a) ORFs from the same transcript: C20727_G1_I1 has two ORFS (ORF 15 and 
ORF 36) matching to a DNA repair metallo-β-lactamase family protein (Accession number: XP007043420.1) with high significance. We merged 
the two ORFs (inserting ‘ZZZ’) since the Evalue of the combined ORF is significantly reduced. (b) ORFs from different transcripts: We merged 
ORFs from two different transcripts (C53209_G8_I1 and C53209_G6_I1), since both transcripts map to the same scaffold (SUPER472) can be 
overlapped based on the sequence string ‘PNRSSLP’, and the merged ORF has a significantly reduced Evalue.

(a)

(b)
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Table 1. Key photosystem-related proteins in the chloroplast not annotated by MAKER-P and YeATSAM. These transcripts 
have multiple open reading frames (ORFs) mapping to different proteins with high significance. For example, C59245_G1_I1 has 
another ORF (43) which maps to photosystem II reaction center protein B (PSBB). MAKER-P annotates PSBB, but not PSBH. These 
transcripts all emanate from the chloroplast, although not all genes that MAKER-P failed to annotate were from the chloroplast. 
Genes predicted by MAKER-P that are not identified by YeATSAM are listed with their homology to corresponding genes in the 
TAIR database.

TRS ORF Len TAIR Description E-value

C52274_G4_I1_B 189 231 ATCG00720.1 PETB photosynthetic electron transfer B 4.00e-155

C52274_G4_I1_C 231 177 ATCG00730.1 PETD photosynthetic electron transfer D 1.00e-108

C53854_G1_I1_A 45 98 ATCG00070.1 PSBK photosystem II reaction center protein K precursor 1.00E-27

C53854_G1_I1_B 62 62 ATCG00080.1 PSBI photosystem II reaction center protein I 3.00E-20

C54343_G2_I1_A 8 91 ATCG00580.1 PSBE photosystem II reaction center protein E 4.00E-54

C59245_G1_I1_B 70 95 ATCG00710.1 PSBH photosystem II reaction center protein H 4.00E-43

WALNUT_00014004-RA - 1117 AT5G16850.1 TERT Telomerase reverse transcriptase 0.0

WALNUT_00018632-RA - 295 ATMG00560.1 RPL2 Nucleic acid-binding, OB-fold-like protein 9e-152

WALNUT_00019747-RA - 326 AT1G24040.1 Acyl-CoA N-acyltransferases (NAT) superfamily protein 5e-121

WALNUT_00031866-RA - 311 AT5G07810.1 SNF2 domain-containing protein/helicase domain-
containing 9e-115

WALNUT_00020600-RA - 155 ATCG01240.1 RPS7.2 ribosomal protein S7 chrC:140704-141171 1e-108

WALNUT_00016414-RA - 231 AT5G41850.1 alpha/beta-Hydrolases superfamily protein | 
chr5:16756698-16757791 6e-96

WALNUT_00027509-RA - 289 AT2G43190.3 ribonuclease P family protein | chr2:17956220-17957833 2e-94

WALNUT_00022174-RA - 389 AT2G07707.1 Plant mitochondrial ATPase, F0 complex, subunit 5e-86

WALNUT_00018616-RA - 124 ATCG00890.1 NDHB.1 NADH-Ubiquinone/plastoquinone (complex I) 1e-79

WALNUT_00007302-RA - 924 AT5G14990.1 BEST Arabidopsis thaliana protein match is: myosin 2e-79

benzophenanthridine alkaloid biosynthesis in plants (Winkler  
et al., 2006). This pathway is over-expressed upon osmotic stress 
and pathogen attack (Attila et al., 2008; González-Candelas  
et al., 2010), provides resistance in lettuce, sunflower and trans-
genic tobacco by generating anti-microbial compounds (Custers  
et al., 2004), and has unknown functions at specific developmental 
stages in Arabidopsis (Irshad et al., 2008; Pagnussat et al., 2005). 
Moreover, it is expressed in floral nectar (Nectarin V, NtBBE) 
(Carter & Thornburg, 2004) and roots of tobacco (Kajikawa  
et al., 2011), and in xylem sap of cabbage (Ligat et al., 2011) 
and grapevine (Chakraborty et al., 2016b). NtBBE was constitu-
tively expressed in the Phytophthora infestans-resistant potato  
genotype SW93-1015 (Ali et al., 2012). Benzophenanthridines 
are antimicrobial; the California poppy (Eschscholzia californica) 
is used as a traditional medicine (Cheney, 1963; Oldham et al., 
2010). Oral administration of the alkaloid berberine isolated from a  
Chinese herb lowered cholesterol in 32 hypercholesterolemic 
patients over three months (Kong et al., 2004). Berberine has also 
been shown to possess antidiabetic properties (Lee et al., 2006).

The number of BBE genes in different plant species varies  
significantly from one in moss (Physcomitrella patens) to 64 in  
western poplar (Populus trichocarpa) (Daniel et al., 2015).  
A. thaliana has 27 TAIR IDs assigned to BBE enzymes, with two 
splice variants (Supplementary Table 1) (Daniel et al., 2015).  
Based on the current transcriptome, there are four full length 

BBE genes (JrBBE1 to 4) that map to different scaffolds in 
the WGS, in addition to other fragmented transcripts (Table 2 
and Table 3). JrBBE1 (C54052_G1_I1) maps to the scaffold 
JCF7180001213852 and encodes a 564 aa long ORF, which has 
significant matches to Uniprot:P30986. The closest match of  
Uniprot:P30986 (with a low significance of 1E-07) to the 
MAKER-P annotation is ‘WALNUT 00019959-RA’, a 476 aa long  
cytokinin dehydrogenase. The sequence alignment of JrBBE genes 
to Uniprot (P30986) is shown (Figure 3a).

As with the walnut transcriptome, the chickpea transcriptome 
(transHybrid.fasta: n=34760) (Garg et al., 2011) was split into 
three ORFs, each of which was BLAST’ed to the subset of plant 
proteins created from the Ensembl database. Subsequently, the 
ORFs with significant homology to this database (n=29263) were 
BLAST’ed to the set of annotated chickpea proteins in the NCBI 
database (n=34198). Most of these annotations were done using 
Gnomon (Souvorov et al., 2010) (http://www.ncbi.nlm.nih.gov/
bioproject/PRJNA190909), which analyzed ~35000 transcripts. 
There are ~1500 proteins identified by YeATSAM that are absent 
in the NCBI database (Evalue cutoff 1E-10). Some of these pro-
teins and their corresponding genes in the TAIR database are shown  
(Table 4). TC00902 is an interesting example with two merged 
genes: a hydrogen ion-transporting ATP synthase (TAIR ID: 
ATMG00640.1) and a cytochrome C biogenesis (TAIR ID: 
ATMG00900.1). While Gnomon identified the cytochrome C  
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Table 2. FAD-binding berberine bridge enzymes (BBE) are undetected in MAKER-P. These oxidases 
are involved in the benzophenanthridine alkaloid biosynthesis in plants. Arabidopsis has 27 loci for this 
family (and a splice variant) (Table 3). Here, there are four full length berberine bridge enzyme (BBE) genes 
(named JrBBE1-4) identified using the transcriptome. Some of the proteins are truncated (like C54286_
G1_I1), which might be an artifact of the Trinity assembler. Thus, this is not a complete enumeration of the 
JrBBE genes.

Id Transcript Length Scaffold ORF TAIR Id

JrBBE1 C54052_G1_I1 564 JCF7180001213852 34 AT1G26420.1

JrBBE2 C53871_G1_I1 564 JCF7180001217410 28 AT1G30700.1

JrBBE3 C55152_G1_I1 552 JCF7180001222284:2429142-2890931 37 AT4G20820.1

JrBBE4 C7952_G1_I1 559 JCF7180001218369 110 AT2G34790.1

C54286_G2_I1 307 JCF7180001217076 35 AT1G11770.1

C54286_G1_I1 128 JCF7180001217076 7 AT4G20830.1

C12765_G1_I1 114 JCF7180001218369 8 AT4G20840.1

C51815_G1_I4 168 JCF7180001218369 29 AT4G20860.1

Table 3. Expression counts (normalized) of transcripts from the FAD-binding berberine bridge enzyme (BBE) family. The genes have 
tissue-specific expression - JrBBE3 is highly expressed in the roots and transition zone. The tissue abbreviations are from Chakraborty et al., 
2016a.

id Transcript CE CI CK EM FL HC HL HP HU IF LE LM LY PK PL PT RT SE TZ

JrBBE1 C54052_G1_I1 44 4 136 197

JrBBE2 C53871_G1_I1 2 3 2 1 1 15 79 1

JrBBE3 C55152_G1_I1 43 34 25 62 1 2 35 1040 346

JrBBE4 C7952_G1_I1 32 85 8 55 11 711 15 8 241 137 37 123 315 420 160 217 5 18

C54286_G2_I1 33 20 30

C54286_G1_I1 19 7 24

C12765_G1_I1 26 77 2 39 4 42 8 23 23 19 5 22 9 2 8 6

C51815_G1_I4

biogenesis protein (Genbank: XP_004500083.1), it failed to  
identify the ATP synthase. Unlike MAKER-P, Gnomon generates 
transcripts through predictive algorithms and does not take the 
transcriptome as an input. Notwithstanding, these chickpea genes 
remain unannotated despite the presence of a straightforward 
method to detect them from available transcripts.

Future work
Among the ~700 genes not detected by YeATSAM, there are  
~500 genes with no matches in the complete ‘nr’ database. Of these, 
~300 have no transcripts (SetA), while the remaining ~200 have 
matches among the transcripts (SetB). Considering the sensitivity 
of RNA-seq and the wide coverage of twenty tissues, it is a definite 
possibility that SetA are pseudogenes. Future work in YeATSAM 
will focus on methods to distinguish these two classes of genes.

Conclusions
The availability of a RNA-seq-derived transcriptome from a  
newly sequenced organism like walnut, for which there are  
related annotated genomes (Arabidopsis, Vitis, etc), immensely 
simplifies annotation of the genome and influences the choice of 
annotation software. Here, we introduce a new annotation method 

in the YeATS suite (YeATS Annotation Module - YeATSAM), 
which was used to annotate the newly-sequenced walnut genome 
using a simple workstation. The key differentiating factor in  
YeATSAM is the splitting of the assembled transcriptome into 
multiple ORFs (Chakraborty et al., 2015). Transcripts often have 
more than one significant ORF that must be handled differently  
depending on whether they map to the same or different proteins. 
We show that YeATSAM failed to annotate ~700 genes identified by 
MAKER-P, while identifying ~4000 genes missed by MAKER-P.  
While most of these genes have repetitive stretches, both  
methods missed vital genes identified by the other. Since many 
of the additional genes identified by MAKER-P have no known 
transcripts, we posit that these were identified using ab initio  
methods. In the absence of such an ab initio module in  
YeATSAM, we propose a combined method using both MAKER-P 
and YeATSAM to annotate the WGS. YeATSAM was also applied 
to the chickpea transcriptome and identified ~1000 proteins that 
are not annotated in the NCBI database. This transcriptome was  
assembled using Newbler v2.3 (Garg et al., 2011) and most of the 
34198 chickpea proteins in the NCBI database were annotated 
using Gnomon, the standard annotation tool (http://www.ncbi.nlm.
nih.gov/genome/guide/gnomon.shtml).
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Figure 3. Multiple sequence alignment of BBE from walnut and other organisms. (a) The JrBBE sequences were aligned to berberine 
bridge enzyme (BBE) genes from Eschscholzia californica (EcBBE; California poppy), Arabidopsis thaliana (AtBBE15) and Nicotiana tabacum 
(Nectarin V). Secondary structure information from the structure PDBid:3D2D (E. californica) was used to annotate the sequences. The signal 
peptides are different in these proteins, suggesting different localization of these proteins in walnut. (b) Phylogenetic tree generated from the 
multiple sequence alignment.

(b)
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Table 4. Selected genes in chickpea that are not annotated in the NCBI database. Most of the NCBI genes were 
predicted using Gnomon. YeATSAM used the publicly available transcriptome from chickpea to identify these genes. 
The corresponding genes from the TAIR database are shown. Several transcripts (like TC20962) encode multiple genes, 
while others (like TC01181) have only one significant ORF. TRid, transcript id; TAIRid: Arabidopsis thaliana id.

TRid TAIRid Description Evalue

TC20962 A ATMG00070.1 NAD9 NADH dehydrogenase subunit 9 chrM:23663-24235 3e-116

TC20962 B AT2G07687.1 Cytochrome c oxidase, subunit III chr2:3311854-3312651 3e-107

TC20962 C AT2G07674.1 Unknown conserved protein chr2:3269151-3269906 6e-41

  TC01181 ATMG01360.1           COX1 cytochrome oxidase chrM:349830-351413 0.0

TC11063 AT3G30841.1 Cofactor-independent phosphoglycerate mutase chr3:12591595-12593401 0.0

TC06038 ATMG00090.1 Structural constituent of ribosome;protein binding chrM:25482-28733 3e-124

TC13206 AT3G13440.1 S-adenosyl-L-methionine-dependent methyltransferases superfamily 1e-118

TC07586 AT2G07725.1 Ribosomal L5P family protein chr2:3448402-3448959 2e-113

TC19047 ATMG00570.1 Sec-independent periplasmic protein translocase 8e-107

TC00902 B ATMG00640.1 Hydrogen ion transporting ATP synthases, rotational 3e-104

TC15163 AT4G28360.1 Ribosomal protein L22p/L17e family protein chr4:14029294-14030926 1e-100

TC13677 AT5G05210.1 Surfeit locus protein 6 chr5:1548198-1549534 9e-91

TC13780 A AT2G07707.1 Plant mitochondrial ATPase, F0 complex, subunit 8 protein 2e-90

TC18786 AT1G73440.1 Calmodulin-related chr1:27611418-27612182 5e-45

Software availability
Latest source code: https://github.com/sanchak/YeATSAM 

Archived source code at time of publication: DOI: 10.5281/ 
zenodo.165992 (Sanchak, 2016)
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The article presents an annotation method, YeATSAM, that leverages the information contained in
RNA-Seq derived transcriptomes. The method was compared with two other annotation methods using
two organisms: MAKER-P (a RNA evidence based and  hybrid method) with walnut, and NCBIab initio
Gnomon (a homology based and  hybrid method) with chickpea. Although YeATSAM andab initio
MAKER-P identified same genes, there were also genes that were identified by only one of them (about
4,000 by YeATSAM and about 700 by MAKER-P), as well as genes that both methods failed to identify.
Similarly, YeATSAM identified about 1,000 genes that Gnomon failed to identify.

The article is well written, the analysis is technically sound, the tables and figures present the results well,
and the conclusions are supported by the data. Nonetheless, I would suggest the following changes:

Address discrepancies in the numbers reported, e.g., 20 tissues (in abstract, introduction, results,
and future work) v. 19 tissues (in methods: 15 samples + four additional samples); 700 (in results)
v. ~700 (in future work, and coclusions); ~1,500 chickpea proteins (in results) v. ~1,000 (in
conclusions). Instead of approximate values report actual values.
 
As the tool is designed to be used with other organisms (besides walnut and chickpea), make the
method and workflow (Figure 1) independent of any organism (e.g., the input to YeATSAM is the
genome sequence rather than the walnut genome).
 
Figure 3 (b) can be resized without losing its readability.
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it is of an acceptable scientific standard.
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This work focuses on a current major challenge in improving genome and transcriptome automated
annotation. It also deals with difficulties derived from imperfect de novo assemblies, such as transcripts
representing fused and split genes. The increasing affordability to generate sequencing data enhances
the demand for more powerful annotation predicting tools and pipelines, although exact annotations will
still remain for wet-lab experimentation. This paper compares the YeATSAM tool to previously annotated
genomes, in which existing de novo assemblies are used as generated and analyzed with blast,
interproscan or similar tools for homology-based annotation. Even though the paper indicates novelty of
the method, there are critical points that need modification. 

The method reported here - YeATSAM - is not clearly different from the work already reported in a
previous paper . This method reported here (identify 3 longest ORFs, then blast to known proteins, then
merge or split if needed) looks identical to previously published in F1000 Research  - for instance, Figure
1 in the previously published paper is an almost identical replica of the Figure 1 in this paper. The current
work does appropriately cite this previous paper. However, if there is a novel algorithm to describe here, it
needs to be clearly delineated from this previous work. Otherwise, it should just be cited.

This previous publication also compares the annotation of the walnut genome by YeATS and Maker-P.
The previous paper and this paper both profile walnut transcripts where ORFs were merged and
transcripts that match multiple proteins; this paper does use different transcripts to demonstrate the
methodology and results. To emphasize the novelty of the present paper, the authors should clarify
exactly what this paper offers in addition to the previous paper. In this regard, the paper does go a bit
further than the previous one by detailing genes that were unannotated by MAKER-P but found via this
method; those genes were not reported previously. If the algorithm has not changed from the previous
work, a new focus for this paper is needed, possibly reporting these novel genes such as the BBEs.

The addition of the chickpea genome annotation is barely described - a single short results paragraph.
The author also has an existing F1000 research article describing the use of YeATS on chickpea
transcripts and describing the detection of missed genes and describing multiple ORFs mapping to
different proteins and fragmented ORFs of the same protein . How does this report differ from that one?
That one is not cited in this report

Data reproducibility and accessibility - the new annotations are not made available for either walnut or
chickpea (unless they are the same as the ones provided already in Chakraborty et al. 2015 ). It would be
very difficult to replicate this experiment. No parameters or commands are provided to determine how
PHYML, ClustalW or ENDscript server were utilized. I confirmed that YeATSAM.zip (listed as
YeATSAM.tgz in manuscript) with README is available for download and the links to data are functional.
I was unable to install YeATSAM; the installation and usage instructions are very vague. 

Specifics:

The joined results of MAKER-P and YeATSAM look promising for improving genome annotations.
However, a figure or table describing the total number of genes predicted by each software and the
overlap would be very helpful to visualize the results. The report commonly has words like “several” or
“many”  and the usage of “~” in front of numbers. Numbers should be reported exactly where they are
important to the method and results. Examples:

“A BLAST database of protein peptides (plantpep.fasta: 1M seqeunces) using ~30 organisms
(list.plants)” - also list.plants does not link to anything.
 

“About 3% of transcripts have ORFs that map to different proteins”

1
1

2
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“About 3% of transcripts have ORFs that map to different proteins”
 
“MAKER-P and YeATSAM each failed to annotate several proteins identified by the other
(MAKER-P=~4000; YeATSAM=700)”
 
“Among the ~700 genes not detected by YeATSAM, there are ~500 genes with no matches in the
complete ‘nr’ database. Of these, ~300 have no transcripts (SetA), while the remaining ~200 have
matches among the transcripts (SetB).”

Based on the content of the manuscript, the introduction focuses adequately on the explanation of the
problematic of annotating newly assembled genomes and transcriptomes. However, a deeper
introduction to the software utilized may be relevant for a better understanding of their choice and also of
their basic mechanics. In relation to the results commented on the introduction, the relevance of some of
the selected genes is not clear. Specifically, the relevance of the three “critical” proteins not detected by
YeATSAM, which are not transcribed and are thus considered pseudogenes, is confusing.

In relation to the generation of de novo assemblies, the authors are suggested to provide detail on how
the assemblies were combined, considering that the simple addition of libraries would lead to high
redundancy. For the walnut genome, were the MAKER-P and YeATSAM packages using the same set of
RNASeq reads? This would be an important point to emphasize - a true comparison of the two methods
would preferably use the same starting point. The original walnut paper reports using 19 libraries
(Martinez-Garcia et al. 2016); this paper reports 20 libraries. 

In the results and discussion section, the manipulation of ORFs is an interesting concept, although the
difference to the described methodology in Chakraborty et al. 2015  is not clear. The use of the term ORF
is confusing here since it appears that the merged sequences are the encoded peptides, while ORFs are
nucleotide sequences. Moreover, it seems likely the ORFs from the same gene might match different
proteins because they are being compared to 30 different organisms. The ORFs could match to the
orthologs of the gene in question from different organisms. (i.e. they have different matches to database
entries, both orthologs, but they are legitimately from the same gene). In this case, merging is the best
avenue, but the software would actually split the transcript apart. Was this seen in some transcripts? Also,
when referring to significance with similar proteins, values should be provided.

The authors mention that many genes unannotated by MAKER-P have repetitive stretches. What types of
repetitive stretches? There is no methodology given for this analysis? This needs to be
described/explained. In regards to the sentence “Although most of these unannotated proteins have
repetitive sequences (transposable elements)” - does that mean the unannotated proteins originate from
within transposable elements, or transposable elements have inserted into the gene itself? 

The authors do not address the overall differences in proteins detected by each annotation program - is a
pattern that may explain these? Pseudogenes are mentioned twice, but this idea is not fully explained.
While 20 tissues will capture many genes, it is probably not exhaustive – is there any additional evidence
these “genes” are actually pseudogenes such as premature stop codons or frameshift mutations?

Minor:

This sentence needs improved clarity:
“The BLAST results of list.transcriptome.clean.ORFS: 320K on ‘plantpep.fasta’ was processed using a
cutoff: bitscore=60, Evalue~=1E-10"

1
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Heading “Transcripts with multiple ORFs” - the section above also deals with transcripts with multiple
ORFs. This heading could be clarified.

Some revision on the writing would improve readability. Abbreviations are recommended to be properly
specified at first use in the manuscript and always in figures. Also, numbers and units should be spaced.
In relation to the language, the authors are advised to review the use of scientific English, as well as verb
tense consistency. 

In Table 1, the main line indicates proteins not annotated by either program while the last line indicates
listing of genes predicted by MAKER-P. These two sentences in the same caption lead to confusion. In
addition, sizing and description of other figures might be improved.
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In this paper the authors investigate a new annotation method in the YeATS suite (YeATS Annotation
Module - YeATSAM), which was used to annotate the newly-sequenced walnut genome using a simple
workstation. In YeATSAM the assembled transcriptome is splitting into multiple ORFs. They show that
YeATSAM failed to annotate ~700 genes identified by MAKER-P, while identifying ~4000 genes missed
by MAKER-P. While most of these genes have repetitive stretches, both methods missed important
genes identified by the other. Since many of the additional genes identified by MAKER-P have no known
transcripts, the authors suggest that these were identified using ab initio methods. In the absence of such
an ab initio module in YeATSAM, they propose a combined method using both MAKER-P and YeATSAM
to annotate the WGS. This work is very interesting because the results probe the adequacy of this new
annotation method. In general, the presentation is clear and the conclusions are adjusted to the results
obtained. The figures and tables are also clear.  Some comments are listed below:
 

In the abstract, please change the order in “Results and Conclusions” part, from lines 17 to 21.

1 2
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In the abstract, please change the order in “Results and Conclusions” part, from lines 17 to 21.
Consider to mention first “YeATSAM used a […] chickpea transcriptome assembled using Newbler
v2.3” and then that “1000 genes were identified, which were not previously annotated by Gnomon
annotation tool”.
 
Fourth and fifth paragraphs of Introduction could be changed to the discussion and in the
introduction leave some short sentences about this.
 
En fifth line of Methods section correct “seqeunces”.
 
Please consider to explain further section “future work”.

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard.
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