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Starting Small in Project Choice: a Discrete-Time
Setting with a Continuum of Types

Xiameng Hua and Joel Watson∗

June 2022

Abstract

We add to the literature on long-term relationships with variable stakes
and incomplete information by analyzing a discrete-time trust game between a
principal and agent, with a continuum of types. In each period the principal
selects the level of a project and the agent then decides whether to cooperate
or betray; payoffs in the period scale with the level. The agent’s benefit of
betraying is privately known. The discrete-time framework allows for analysis
of renegotiation in terms of an internal consistency condition that compares
actual equilibria in the continuation of the game from any period, improving
on the prior literature. Our condition assumes the principal has full power
to alter the equilibrium selection. Our main result shows that the resulting
perfect Bayesian equilibria converge as the period length shrinks to zero, and
we provide a closed-form solution. In equilibrium, the relationship starts small
and the level gradually rises until it reaches its maximum; cooperation is viable
regardless of the type distribution.

∗UC San Diego. The authors thank the following colleagues for providing very helpful input:
Snehal Banerjee, Renee Bowen, Songzi Du, Matthias Fahn, Jack Fanning, Simone Galperti, David
Kreps, Mark Machina, Roberto Serrano, Joel Sobel, participants at 2021 North American Summer
Meeting of the Econometrics Society, and seminar participants at Brown University, New York
University, and the University of Arizona. The authors are especially grateful to the anonymous
referees and the editor. First version: November 2020.
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1 Introduction

Long-term relationships in business and greater society often begin with asymmetric
information, where the parties are unsure of each others’ incentives, and they have
choices regarding how to build their relationships. For instance, a manager may
not know to what extent a new employee will have the incentive to shirk on his
assignments, and the manager can decide what kinds of responsibilities to give this
worker over time. Should the manager assign the worker to important projects, where
effort would generate substantial profit for the firm but where shirking would translate
into great losses?

Conventional wisdom suggests that it is better to start a relationship cautiously
with small-stakes projects and then, conditional on good performance, increase the
stakes as time goes on. In this way, a manager may be able to induce “bad” types
of workers (those who inevitably will shirk at some point) to reveal themselves by
shirking when the stakes are low. But if the manager would increase the stakes quickly
over time, then a bad type worker would prefer to delay shirking until the stakes are
high. Thus, the manager faces a trade-off between the rate at which she increases the
worker’s responsibilities (conditional on good performance) and when the worker’s
type will be revealed. Complicating matters, the manager may wish to adjust her
plan mid-stream, based on what she learns about the worker.

We explore these dynamics by developing a new game-theoretic model of the in-
teraction between a principal and an agent with private information and a continuum
of types. The parties interact in discrete periods. In each period the principal selects
the level of a project, and the agent then chooses whether to cooperate or betray.
We characterize the model’s perfect Bayesian equilibria, and we propose a renegotia-
tion condition, which we call alteration-proofness, that narrows the set of equilibrium
outcomes. Alteration-proofness is a notion of internal consistency that assumes the
principal has full power to coordinate the players on an altered equilibrium.1 By
way of motivation, in line with the large literature on renegotiation in contractual
settings, we think it is natural to assume that the players can revisit and change their
equilibrium continuation. Also, it is useful to work with models that generate narrow
equilibrium predictions.

1. Internal consistency is the weakest version of Pareto-perfection that underlies definitions of
renegotiation-proof equilibrium in the repeated-game literature, specifically those of Rubinstein
(1980), Bernheim and Ray (1989), and Farrell and Maskin (1989).
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Although there are multiple alteration-proof equilibria, our main result establishes
that these equilibria converge as the period length shrinks to zero, meaning that the
model has a unique prediction in the limit.2 The limit outcome is characterized by
a differential initial-value problem. We provide an example for which the solution is
easily found in closed form, along with analysis of comparative statics.

Our modeling exercise is most closely related to Watson’s (1999, 2002) analysis of
relationships in continuous time with variable stakes and with two types of players:
a “good” type, for whom cooperation would be possible in a setting of complete
information, and a single bad type. In Watson’s model, an exogenously provided level
function gives the stakes of the relationship at every instant of time. The level function
is interpreted as jointly determined by the players, and thus the game is not fully
noncooperative. These articles show that, by starting small, long-term cooperation is
always viable between good types of players, regardless of the initial type probabilities.
Further, Watson (1999) puts forth renegotiation-proofness conditions that uniquely
select a level function and outcome of the game.

We contribute to the literature in three ways. First, because our model is fully
noncooperative and in discrete time, the alteration-proofness condition compares ac-
tual equilibria in the continuation of the game from any period. This setting provides
a better foundation for renegotiation than was possible in Watson (1999). Second,
we allow for a continuum of bad types, and we obtain a novel characterization of the
alteration-proof perfect Bayesian equilibria, along with comparative statics. Contrary
to the result in Watson (1999), we find a multiplicity of alteration-proof equilibria in
the discrete-time setting. This leads to our third contribution, which is to devise a
method of bounding the set of equilibria and to characterize the bounds as the period
length shrinks. Our method incorporates a new mathematical result on the limit of
solutions to discrete-time models defined by transition functions (Watson 2021).

The related literature on starting small in relationships includes both seminal
theoretical contributions and experimental evidence. Theoretical origins reside in
Sobel (1985), Ghosh and Ray (1996), and Watson (1999, 2002). Sobel (1985) focuses
on a “sender-receiver” model in which the level is determined by an exogenous random
draw in each period; this paper also describes a “loan model” in which one player

2. The convergence result pertains to nontrivial equilibria, in which the principal sets a positive
level in at least one period. For some parameter values, there may also exist a trivial no-trust
equilibrium, but we argue that it would be ruled out by a weak form of external consistency.
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chooses the level and the other, who could be a friend or enemy, chooses whether to
invest or default. The equilibrium of the loan model entails gradual increase in the
loan level over time. Our model has the same form of stage game, but the payoffs are
different for the player we call the good type of agent, and in our model incentives
relate to an infinite horizon. Ghosh and Ray (1996) examines a setting in which
players in a community randomly match to form long-term relationships. Players can
exit their relationships at any time and then rematch, and newly matched players
receive no information about the past behavior of their partners. A fraction of the
population is myopic. Players are motivated to weed out myopic types by reducing
the level of cooperation in the first period of new relationships, and this serves as a
punishment for non-myopic players who might otherwise cheat and rematch without
consequences.

On the empirical side, Andreoni, Kuhn, and Samuelson (2019) reports an ex-
periment in which subjects are able to choose the stakes in a two-period prisoners’
dilemma, finding that players utilize a starting-small strategy to achieve cooperation.
Likewise, Ye et al. (2020) studies a multi-period weakest-link game in the labora-
tory, where treatments differ in the exogenously set sequence of levels, finding that
cooperation is associated with gradualism (starting small and gradual increase of the
level). Kartal, Müller, and Tremewan (2019) provides experimental results on an
infinite-horizon partnership game, where treatments differ in the set of level options.
This paper finds in settings of severe information asymmetry that subjects are able
to build trust when they have the option of starting small and gradually raising the
stakes of their relationships, and the subjects act accordingly.

Rauch and Watson (2003) develops a model of relationships in which the players
have common information but are uncertain of their prospects as a partnership. The
article shows theoretically and empirically that it is sometimes optimal to start small.3

Bowen, Georgiadis, and Lambert (2019) examines starting small in a setting where
two heterogeneous agents contribute over time to a joint project and collectively
decide its level, finding that, in equilibrium, the effective control over the project scale

3. Horstmann and Markusen (1996) models the choice by a multinational firm seeking to enter a
new (foreign) market between direct investment and contracting with a local sales agent. Information
gained from the agency contract is useful in the decision of whether to pursue direct investment.
Hence, the agency contract is analogous to starting small in a variable-stakes games (though it may
be desirable to extend it indefinitely). Horstmann and Markusen (2018) analyzes a similar model
but relaxes the commitment assumption and studies both moral hazard and adverse selection.
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relates to the realized types of players. Atakan, Koçkesen, and Kubilay (2020) studies
repeated cheap talk and demonstrates that when the conflict of interest between
the receiver and the sender is large, starting-small to communicate is the unique
equilibrium arrangement.4

Also related is the model of Malcomson (2016, 2020), in which a principal and
agent with persistent private information have an ongoing relationship governed by
a relational contract (the principal makes voluntary payments to reward the agent’s
effort choice). Malcomson (2016) shows that if agent’s type is on a continuum, then
there does not exist a fully separating equilibrium, and Malcomson (2020) charac-
terizes the finest partition equilibria. Separation requires a low effort level at the
beginning of the relationship, so in this sense some equilibria exhibit a form of start-
ing small. Renegotiation-proofness in the form of external consistency (looking at the
frontier of the set of equilibrium payoffs) is also studied in the latter paper.

This paper is organized as follows. In Section 2 we formally describe the model and
equilibrium concept, and we analyze the agent’s incentive conditions. The renegotia-
tion condition is defined and analyzed in Section 3, where we report our main result
on the limit of equilibria. Section 4 presents the case of uniformly distributed bad
types. Section 5 provides additional technical notes, including on off-equilibrium-path
alterations and how our results extend to the “no-gap case” of agent types assumed
away earlier, and discusses additional connections with literature. Section 6 offers
concluding comments. The appendices contain details of the analysis and proofs.

2 Model

We examine a model of a relationship between a principal and agent in discrete
time and with one-sided incomplete information. In this section we first describe the
complete-information version of the game, followed by the incomplete-information
version. We then establish notation, review the equilibrium conditions, and provide
a partial characterization of “trusting equilibria” along with examples.

4. Other articles that model some manner of starting small in relationships and/or trust building
include Kranton (1996), Blonski and Probst (2001), Rob and Fishman (2005), and Chassang (2010).
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2.1 Trust game with complete information

The complete-information version of the model is a repeated game that terminates
under some conditions. There are two players, called player 1 (the principal) and
player 2 (the agent). The time period is denoted by k ∈ {1, 2, . . .}. We assume the
players have a common discount factor δ ≡ e−r∆, where r ∈ (0, 1) is the discount rate
and ∆ > 0 is the length of each period in real time.

In each period, as long as the game was not terminated earlier, players interact
in the stage game shown in Figure 1, where player 1 selects a trust level α ∈ [0, 1]
and then player 2 observes α and chooses whether to betray or cooperate. If player 2
cooperates then both players get the payoff α∆ in the current period and play con-
tinues in the next period. On the contrary, if player 2 betrays then the game ends
with terminal payoffs of −αc for player 1 and αx for player 2, where c > 0. Players
seek to maximize the discounted sum of their period payoffs.

cooperate

betray

1 2

0

1


c, x

, 

(game terminates)

Figure 1: Stage game

It is easy to verify that cooperation can be sustained if and only if x ≤ ∆/(1 − δ).
Under this condition there is a subgame-perfect equilibrium in which, in every period,
player 1 chooses α = 1 and player 2 cooperates. Player 2’s continuation value of
playing this way from the start of any period is ∆/(1−δ), which exceeds the payoff of
betraying. Furthermore, if 0 < x < ∆/(1 − δ), then there are many other equilibria.
In fact, for any sequence {αk} of feasible levels there is an equilibrium in which,
on the equilibrium path, this sequence of levels is chosen by player 1 and player 2
always cooperates, so long as the following condition holds for each period k: αkx ≤
αk∆ + δvk+1

2 , where vk+1
2 = ∑∞

τ=k+1 δτ−k−1ατ ∆ is player 2’s continuation value from
the start of period k + 1.5

5. Player 1 can be deterred from deviating by specifying that, following any deviation, the players
coordinate on α = 0 and betrayal from that point regardless of any further deviations (which is an
equilibrium in all future subgames).
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To summarize, there are a lot of equilibria featuring trust and cooperation if x is
not too large. The best equilibrium for both players is clearly that in which player 1
chooses α = 1 in every period. On the contrary, if x > ∆/(1 − δ) then there is no
equilibrium in which cooperation occurs at a positive level in any period.

2.2 Trust game with incomplete information

We are interested in the trust game with incomplete information regarding the payoff
parameter x. Specifically, suppose that before the relationship begins, Nature chooses
x according to a given probability distribution F that is common knowledge, with
support denoted by X ⊂ R. Player 2 privately observes x, which we therefore refer to
as player 2’s type. Let us label every x ≤ ∆/(1−δ) a good type and every x > ∆/(1−δ)
a bad type. We generally express F as a cumulative probability function, so that F (x′)
denotes the probability that x ≤ x′.

In this game, player 1 may be able to establish perpetual cooperation with a good
type, but every bad type must eventually betray. The level of the relationship affects
both player 2’s betrayal gain and the players’ flow payoff of cooperation, so by varying
the level over time, player 1 may be able to coax the bad types to betray in periods
when the level is small. However, there is a trade-off: A bad type of player 2 would
be willing to betray in a given period only if this player does not expect that player 1
would choose a much higher level in near future, contingent on player 2 cooperating
until then. That is, it may be optimal for a bad type to cooperate for some number
of periods and then betray later when α is large. Therefore, player 1 cannot screen
out the bad types at a low level and also expect to soon cooperate at a high level
with good types. Further, types with higher values of x are essentially less patient
than are those with lower values of x, so player 1’s choice of levels over time could
lead different types of player 2 to betray in different periods.

We assume that the types are bounded and there is a gap between the sets of good
types and bad types.6 We will later examine sequences of games for ∆ converging to
zero, and we want the type labels to hold for every ∆ close to zero. Because ∆/(1−δ)
decreases and converges to 1/r as ∆ → 0+, we therefore assume that the good types
are below 1/r and the lowest bad type is strictly above 1/r. Additional technical
assumptions are included in the following assumption.

6. This is analogous to the “gap” case of the durable-good-monopoly problem (Coase (1972), Gul,
Sonnenschein, and Wilson (1986)).
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Assumption 1. Distribution function F is continuous. There are numbers ∆̂, a, and b

satisfying 0 < ∆̂ < 1/r < a < b such that F (∆̂) = 0; F (a) = F (1/r) > 0; F (b) = 1;
and restricted to subdomain [a, b], F is twice continuously differentiable with a strictly
positive density function f . Finally, ∆ ≤ min{∆̂, ∆}, where

∆ ≡ a

(
1

a minx∈[a,b] f(x) + 1
)−1

.

Note that the set of bad types is the interval [a, b]. We define the derivative of
F at endpoint a as its right derivative, and at endpoint b as its left derivative, so
that f is well-defined and can have the assumed properties when restricted to [a, b].
We define the derivative of f similarly. Because f is strictly positive and continuous
on subdomain [a, b], it reaches a minimum that is strictly positive, and so ∆ is well-
defined. The assumption that the set of good types is bounded away from 0 ensures
the existence of a class of simple equilibria but is not needed for existence or used
in our characterization theorem. From here, “game” and “trust game” refer to our
incomplete-information, discrete-time game with parameters r, ∆, X, and F just now
described.

2.3 Strategies and equilibrium conditions

We analyze the game using the weak Perfect Bayesian Equilibrium (PBE) solution
concept. In this subsection, we define and provide notation for histories, strategies,
and beliefs. We then describe the equilibrium conditions and, noting the plethora of
equilibria, motivate the refinement developed in the next section.

For any k ∈ {1, 2, . . .}, a k-period history of level choices is given by (α1, α2, . . . , αk).
This sequence of levels can be interpreted as the public history to the beginning of
period k + 1 (specifying player 1’s information set), where player 2 cooperated in pe-
riods 1, 2, . . . , k. Likewise, this same sequence (α1, α2, . . . , αk) represents the public
history to player 2’s information set in period k, where the public history to the be-
ginning of period k was (α1, α2, . . . , αk−1) and then player 1 selected αk in period k.
Note that player 2’s personal history includes both (α1, α2, . . . , αk) and player 2’s
type x.

Let H = ∪∞
k=0[0, 1]k be the set of all finite public histories, where [0, 1]0 is taken

to be the null history at the beginning of period 1. Let H+ = ∪∞
k=1[0, 1]k be the set of
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non-null public histories. Also, for any k-period public history h and level α, denote
by h′ = hα ∈ H the (k + 1)-period public history realized when h is followed by level
α chosen in period k + 1.

We focus on pure strategies.7 Player 1’s strategy s1 : H → [0, 1] specifies the level
in each period as a function of the public history to this point. Player 2’s strategy
specifies whether to cooperate or betray in each period, as a function of history to
player 2’s information sets, including player 2’s type. Thus, player 2’s strategy is a
function s2 : H+ × X → {1, 0}, where s2(h′, x) = 1 indicates that player 2 cooperates
and s2(h′, x) = 0 indicates that player 2 betrays.

We describe player 1’s beliefs about player 2’s type using an assessment function
Q : H → P(X), where P(X) denotes the set of probability distributions over X. That
is, for any k-period public history h ∈ H, Q(h) is player 1’s belief at the beginning
of the following period k + 1.

Given the strategies s1 and s2, any public history h, and player 2’s type x, let
v1(h; s1, s2, x) and v2(h; s1, s2, x) denote the players’ continuation values from the
period after history h occurs, assuming that x is player 2’s actual type and that play
will continue according to s1 and s2. Because player 1’s assessment is Q(h), player 1’s
expected continuation value is

v1(h; s1, s2, Q(h)) ≡ EQ(h)[v1(h; s1, s2, x)],

where EQ(h) denotes expectation over x ∼ Q(h); this assumes that player 1 continues
to believe after history h that player 2’s strategy is s2.

We extend player 2’s strategy s2(h′, x) to the space of type distributions by taking
the expectation, so that for any h ∈ H+ and any type distribution F̂ ,

s2(h, F̂ ) ≡ EF̂ [s2(h, x)].

Note that if player 1 chooses level α in the period following public history h, then
player 1 expects player 2 to cooperate with probability s2(hα, Q(h)).

We next review the notion of sequential rationality, stated here in terms of single
deviations, and the equilibrium definition. The one-deviation principle applies.

7. Restricting attention to pure strategies for player 2 is without loss in our analysis. Because we
have a continuum of types, indifference conditions would occur for only a subset of measure zero.
Accounting for randomization by player 1 would complicate the statement of the alteration-proofness
conditions, we think with no effect on the main results, as discussed in Section 5.
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Definition 1. Given Q and s2, player 1’s strategy s1 is called sequentially rational
if for every public history h ∈ H, s1(h) maximizes

s2(hα, Q(h))(α∆ + δv1(hα; s1, s2, Q(hα))) + (1 − s2(hα, Q(h)))(−αc)

by choice of α ∈ [0, 1]. Given s1, player 2’s strategy s2 is called sequentially rational
if for every h ∈ H+ and x ∈ X, s2(h, x) = 1 only if

α∆ + δv2(h; s1, s2, x) ≥ αx

and s2(h, x) = 0 only if the reverse weak inequality holds.

Definition 2. A pure-strategy weak Perfect Bayesian Equilibrium (PBE) is a
strategy profile (s1, s2) and beliefs Q such that s1 and s2 are sequentially rational and Q

obeys Bayes’ Rule for all histories reached with positive probability given F , s1, and s2.

Note that in periods in which a positive mass of types is supposed to cooperate,
player 1 cannot detect a deviation by a type that was meant to betray, and so standard
Bayes updating applies. Weak PBE does not constrain belief updating following any
“public deviation,” where either player 1 deviated or player 2 cooperated in a contin-
gency in which all types were supposed to betray, because the conditional probability
formula does not apply in such a contingency. We could impose stronger consistency
conditions, such as Watson (2017) defines, but it would be of no consequence because
in the game studied here, we can modify any weak PBE to satisfy strong consistency
conditions off the equilibrium path where needed.

For any PBE, let {αk}K
k=1 denote the sequence of levels chosen by player 1 on the

equilibrium path, where there is no public deviation. In this expression, K denotes
the last period that occurs in equilibrium; K is finite if all types of player 2 betray in
bounded time, and K = ∞ if for every period k, a positive mass of types cooperate
through period k on the equilibrium path. We will show shortly that K = ∞ for any
PBE, but for now we must allow for the possibility of K finite.8

Let us characterize player 2’s incentive conditions on the equilibrium path. Type x

8. Equilibrium strategies must specify behavior after all histories, including ones in which a period
k > K is reached following a public deviation. We could describe, for instance, the infinite sequence of
levels that would result from player 1 never deviating and player 2 always cooperating; this sequence
would be on the equilibrium path through period K and off the equilibrium path thereafter. Such
a sequence will not be needed for our analysis.
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optimally betrays in some period in the set

β(x) ≡ arg max
k∈{1,2,...,K}

k−1∑
τ=1

δτ−1ατ ∆ + δk−1xαk.

Note that β is defined relative to a given PBE and it constrains player 2 to betray
at or before the equilibrium K. In the case of K = ∞, ∞ ∈ β(x) is allowed and
means that type x optimally cooperates forever.9 For each k ∈ {1, 2, . . . , K}, let hk =
(α1, α2, . . . , αk) denote the equilibrium-path public history to player 2’s information
set in period k. Player 2’s equilibrium strategy must have the property that, for
x ∈ X and for the lowest k for which s2(hk, x) = 0, it is the case that k ∈ β(x).

Regarding player 1’s incentives, observe that the following specification of beliefs
and behavior for off-path continuations achieves a continuation value of zero for both
players. After any deviation by player 1, all types of player 2 would immediately
betray, ending the game. If player 2 instead cooperates, which constitutes a further
public deviation, then player 1’s updated belief would assign probability 1 to a bad
type. Then in every period thereafter, regardless of the interim history, player 1
is supposed select α = 0 and all types of player 2 are supposed to betray. These
continuation strategies are sequentially rational.10 Because player 1 can guarantee
a payoff of zero by choosing α = 0 forever, player 1’s incentive conditions on the
equilibrium path amount to having a nonnegative continuation value.

2.4 Trusting PBE

We are particularly interested in PBE in which, on the equilibrium path, the level is
strictly positive in at least one period.

Definition 3. A perfect Bayesian equilibrium in the trust game is called a trusting
PBE if αk > 0 for some k ∈ {1, 2, . . . , K}.

A trusting equilibrium exhibits some degree of cooperation at positive levels of
trust, for otherwise player 1 would strictly prefer to set the level to zero in every

9. The set β(x) is nonempty even if K = ∞ due to discounting. Also, if β(x) contains an infinite
number of periods then it must also contain ∞. If K is finite, then it would be feasible for player 2 to
cooperate through period K and perhaps betray later, and we would need to check such a deviation
to determine whether player 2 best responds.

10. In fact, they are sequentially rational regardless of player 1’s beliefs about player 2’s type, but
the particular belief specified here will be helpful later for an extension of the model.
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period. We first characterize trusting PBE in terms of the relation between the
strategy of player 2 and the sequence of levels on the equilibrium path.

Lemma 1. Every trusting PBE has the following properties: K = ∞. There is an
integer L and a weakly decreasing sequence {xk}∞

k=0 such that (i) for every x ∈ X,
if player 2 of type x betrays on the equilibrium path then this betrayal occurs in a
period k that satisfies x ∈ [xk, xk−1], and (ii) type x = a betrays in period L.

Proof of Lemma 1. Consider any trusting PBE and let {αk}K
k=1 be the sequence of

levels chosen on the equilibrium path. Let us define ω(k, x) as the objective function
for the definition of β:

ω(k, x) ≡
k−1∑
τ=1

δτ−1ατ ∆ + δk−1xαk.

We first show that for any two types x′ and x′′ such that x′ > x′′, on the equilibrium
path type x′ betrays in a period weakly earlier than does type x′′.

To prove this claim, suppose there exist types x′ and x′′ and periods k′ and k′′ such
that x′ > x′′, k′ ∈ β(x′), k′′ ∈ β(x′′), and yet k′ > k′′, and we will find a contradiction.
Imagine that player 2 compares betraying in period k′ with betraying in period k′′,
ignoring other periods. By the definition of β, type x′ prefers betraying in period k′

whereas type x′′ prefers betraying in period k′′ only if

ω(k′, x′) − ω(k′′, x′) ≥ 0 and ω(k′′, x′′) − ω(k′, x′′) ≥ 0,

and the preference is strict if the relevant inequality holds strictly. Using the definition
of ω and simplifying terms, we obtain

(
αk′′ − δk′−k′′

αk′)
x′′ ≥ δ−k′′

k′−1∑
τ=k′′

δτ ατ ∆ ≥
(
αk′′ − δk′−k′′

αk′)
x′.

Because the level is strictly positive in at least one period on the equilibrium path,
player 2’s incentive condition implies that αk′′

> 0, which further implies that the
middle term in the above expression is strictly positive. Using the left inequality and
x′′ > 0, we obtain αk′′ − δk′−k′′

> 0. Combining the inequalities and dividing by
αk′′ − δk′−k′′ , we get x′′ ≥ x′, contradicting our presumption that x′ > x′′.

Next, we show that β(a) is bounded above. Define α = sup{α1, α2, . . .}. Then
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for any ε > 0, there exists a period κ such that ακ ≥ α − ε. If player 2 of type
a betrays in period κ, then the game ends and he gets terminal payoff aακ, which
weakly exceeds a(α − ε). If β(a) were unbounded then K = ∞ and ∞ ∈ β(a). By
cooperating forever, this type’s continuation value from period κ is ∑∞

k=κ δk−1αk∆,
which is bounded above by ∑∞

k=κ δk−1α∆ = α∆/(1 − δ). Because a > ∆/(1 − δ), we
know that a(α − ε) > α∆/(1 − δ) for sufficiently small values of ε, which contradicts
that it is rational for type a to cooperate forever. We conclude that the lowest bad
type betrays in some period L on the equilibrium path.

Finally, we show that K = ∞. Assume otherwise, meaning that on the equilibrium
path all types of player 2 betray at or before period K and some types wait until K to
do so. It must be that αK > 0, for otherwise the types that are supposed to betray in
period K would strictly prefer to betray in an earlier period where the level is strictly
positive (a time which must exist in a trusting equilibrium). But then in period K

player 1’s continuation value must be strictly negative because he expects player 2 to
betray with probability one. This contradicts player 1’s rationality because he would
strictly gain by selecting αk = 0 for all k ≥ K.

Lemma 1 does not pin down the periods of betrayal for the countable number of
types of player 2 that may be indifferent between betraying in one period and the
next. Because this is a set of measure zero, equilibria that differ in this regard are
essentially equivalent.

To summarize the analysis so far, every trusting PBE has an infinite equilibrium
path and is partially characterized by its sequence of levels {αk}∞

k=1 and its sequence
of cutoff types {xk}∞

k=0. On the equilibrium path, for any integer k, all types below
xk−1 cooperate through period k −1 and then types in the subinterval (xk, xk−1), and
possibly one or both endpoints, will betray in period k at level αk. The monotonicity
of betrayal dates established by Lemma 1 applies to all types, good types included.
All bad types betray in or before period L. Note that the lemma does not indicate
whether any good types betray in equilibrium.

As the analysis continues, we will need to keep track of continuation values. Given
any trusting PBE and any period k, we let vk

1 denote the expected continuation value
for player 1 from the start of period k on the equilibrium path. Likewise, we let
vk

2(x) denote the continuation value of player 2 of type x from the start of period k

conditional on player 2 having always cooperated in the past and player 1 not having
deviated from the equilibrium level sequence.
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We conclude this subsection with an existence result for trusting PBE, which is a
corollary of our main existence result in the next section.

Theorem 1. Under Assumption 1, a trusting PBE exists in the trust game.

This result extends what was found by previous papers in the literature, in partic-
ular Watson (1999, 2002), so it is not surprising. It is worth noting what this means
in economic terms. First, an ongoing cooperative relationship between player 1 and
good types of player 2 is viable, and value is created regardless of the type distribu-
tion. Second, this conclusion relies on the ability of the players to start small in their
relationship. That is, if player 1 had only the choice of, say, α = 0 or α = 1 then
there would be no trusting PBE for a sufficiently small mass of good types.

2.5 Intuition and Illustrations

To get a flavor of the relation between the level sequence and player 2’s optimal
choices, let us examine the trade-off that player 2 faces locally in time. Because in
equilibrium type xk weakly prefers to cooperate through period k, and is in fact the
highest type to do so, we have

αkxk ≤ ∆αk + δvk+1
2 (xk).

In some equilibria, type xk is indifferent between cooperating and betraying in pe-
riod k, so that the above inequality holds as an equation. In the event that the
indifference condition holds until this type actually betrays, an implication is that
vk+1

2 (xk) = αk+1xk. Using this expression to substitute for vk+1
2 (xk), we obtain:

αkxk = ∆αk + δαk+1xk. (1)

The refinement developed in the next section will be shown to imply that Equation (1)
holds in every period k for which xk > a; that is, this indifference condition holds
until all bad types have betrayed.

Before proceeding to the equilibrium refinement in the next section, we illustrate
the multiplicity of trusting equilibria, which differ in terms of when bad types betray,
how the level changes over time, and players 1’s payoff. Figures 2–4 depict three
equilibria that we constructed for the same specification of parameters: ∆ = 1,
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r = 0.1 (so that δ = e−r∆ = 0.9048), a = 11.5083, and b = 30. The distribution
F of player 2’s type has a mass of 0.3836 of good types and specifies a uniform
distribution of bad types. The value of c matters only for player 1’s incentives, and
the equilibria pictured exist as long as c is not too large. In each of these equilibria,
on the equilibrium path all good types cooperate in every period.

For the equilibrium in Figure 2, Equation (1) does not hold in some periods. Every
type of player 2 strictly prefers to cooperate in early periods when the level is low,
looking forward to betraying in later periods when the level is high. Figures 3 and 4
illustrate equilibria for which Equation (1) holds for all periods. In the equilibrium
shown in Figure 3, all bad types betray in period 1 at the beginning of the game,
so L = 1. In the equilibrium shown in Figure 4, no bad type betrays until the level
reaches 1 in period L = 30.11

It turns out that none of the equilibria pictured satisfy the renegotiation-proofness
condition developed in the next section. In the first equilibrium, there are periods
in which the level can be increased without affecting player 2’s incentives, and this
increases player 1’s payoff.12 In the second equilibrium, after observing cooperation
in the first period, player 1 would be sure that player 2 is a good type that will never
betray. Therefore, in the second period player 1 has the incentive to “jump ahead” to
the continuation of the equilibrium from period L = 30 where the level is maximal.
In the third equilibrium, player 1’s payoff decreases as period L = 30 approaches and
so, in any period before L, player 1 would have the incentive to “stall” as though
restarting from the previous period.

3 Alteration Proofness

In this section, we define and analyze a minimal notion of renegotiation that we call
alteration proofness, where player 1 has the power to dictate an alteration of current

11. We can show that if c > b then player 1’s favorite equilibrium is as pictured in Figure 3,
where all bad types of player 2 betray in the first period, whereas if c < a then player 1’s favorite
equilibrium is as pictured in Figure 4, where all bad types of player 2 wait until period L − 1 to
betray. These findings match with what Watson (2002) demonstrates in a continuous-time model
with a single bad type.

12. This feature of the first illustration is familiar, for many signaling models have separating
equilibria with nonbinding incentive constraints. Consider, for instance, the standard labor-market
signaling game and a separating equilibrium in which the high-ability type chooses an education
level that is higher than needed for separation. In our model, renegotiation-proofness forces some
constraints to bind.
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Figure 2: First equilibrium illustration
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Figure 3: Second equilibrium illustration
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Figure 4: Third equilibrium illustration

equilibrium in the continuation of the game from any period.13 The concept imposes
a form of internal consistency: In a given period k the equilibrium continuation may
be altered in any way, so long as in period k + 1 it returns to a path consistent with
the current equilibrium. The new path from period k + 1 can pick up the current
equilibrium as though in any other period k′ ∈ {k, k + 1, k + 2, . . . , K}.

For instance, if k′ = k then the players are stalling, essentially postponing the
equilibrium path by one period. Any k′ > k + 1 amounts to “jumping ahead” by
k′ − k − 1 periods, and k′ = k + 1 means that the alteration affects only the current
period k. Restrictions are inherent in how an equilibrium can be altered in this way.
In particular, to pick up on the current equilibrium as though in period k′, player 1’s
belief must be exactly as it would be at the start of period k′, so the alteration must
specify for the current period k behavior that would lead to such a belief at the end
of this period.14

13. That is, we assume that player 1 is the organizational leader; in terms of mechanics, we could
imagine that there is pre-play communication at the beginning of each period, players use these
messages to coordinate on a continuation path, and only player 1 can speak.

14. We could allow alterations with k′ < k, but it would not change the implications of our theory.
In this case, Lemma 1 implies xk′ ≥ xk−1. If this inequality is strict then the alteration is not
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To focus on what drives our main characterization result and to avoid complicated
notation, we shall define alteration-proofness in reference only to continuations of the
game on the equilibrium path. It is appropriate to also apply alteration-proofness to
continuations of the game following public deviations, so that the conditions are im-
posed both on and off the equilibrium path. In fact, our results extend to this wider
application of alteration-proofness, as explained in Section 5 and in the Appendix.
The wider imposition of alteration-proofness turns out to not further constrain equi-
librium outcomes.

Our alteration-proofness condition is along the lines of the condition developed in
Watson (1999) but has two significant advantages. First, Watson (1999) imposes two
separate conditions for a stall and a jump, and these are local in nature; our definition
here is a single global condition. Second, because Watson (1999) studies a continuous-
time model with a jointly selected level, the conditions there are described as limit
conditions that go outside the game being analyzed. In the discrete-time framework
here, every feasible alteration is an equilibrium in the continuation game.

3.1 The alteration-proofness condition

Consider any trusting PBE, partly characterized by {αk}∞
k=1 and {xk}∞

k=0, and suppose
that period k is reached on the equilibrium path. We imagine that player 1 may
dictate that the equilibrium is to be altered in the continuation of the game, in such
a way as to have the path of play from period k + 1 be as though in the original
equilibrium from period k + 1 + m, where m ∈ {−1, 0, 1, . . . , K − k − 1} denotes
by how many periods the altered equilibrium skips ahead in relation to the original
equilibrium from period k + 1. In the altered equilibrium, play from period k will be
described by level and cutoff sequences {α̃τ }∞

τ=k and {x̃τ }∞
τ=k−1 where α̃τ = ατ+m for

all τ > k and x̃τ = xτ+m for all τ ≥ k. Note that the α̃k is not nailed down here and
so it and m define the alteration.

The level α̃k is constrained by the requirement that the original and altered equi-
librium continuations fit together in terms of player 2’s incentives in period τ . To
understand the constraint, observe that the alteration is feasible only if, at the be-
ginning of period k + 1, player 1’s belief is exactly what it would have been at the
beginning of period k + 1 + m in the original equilibrium (on the equilibrium path).

feasible; otherwise, player 1 would strictly prefer the alteration only if an alteration with k′ ≥ k is
strictly preferred.
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That is, the continuation game in the altered equilibrium from period k + 1 must be
identical to the continuation game in the original equilibrium from period k + 1 + m.
In the latter continuation, player 1’s belief about player 2’s type is exactly the up-
dated version of F conditional on x ≤ xk+m because only these types remain in the
game at this point.

Therefore, α̃k must be set so that types less than or equal to xk+m prefer to
cooperate in period k given the altered level sequence, and types in the interval
(xk+m, xk−1] prefer to betray in period k. The first condition is

α̃kx ≤ ∆α̃k + δvk+1+m
2 (x) for all x ∈ X such that x ≤ xk+m, (2)

and the second is

α̃kx ≥ ∆α̃k + δvk+1+m
2 (x) for all x ∈ X such that x ∈ (xk+m, xk−1], (3)

where vk+1+m
2 refers to player 2’s continuation value in the original equilibrium.

Note that the constraints can be vacuous depending on how values xk−1 and xk+m

relate to X. For instance, if no types are scheduled to betray between periods k

and k + m, which would be the case if xk+m = xk−1 or if these values are both
between 1/r and a, then the second constraint is trivially satisfied.

Definition 4. Take as given a trusting PBE, with player 2’s equilibrium continuation
values denoted by {vk

2(·)}∞
k=1. For any period k, integer m ∈ {−1, 0, 1, . . .}, and level

α̃k, call the triple (k, m, α̃k) an alteration of the equilibrium. Call (k, m, α̃k) a
feasible alteration if Inequalities (2) and (3) are satisfied.

Two beneficial alterations were illustrated at the end of Section 2.5. In Figure 3,
because all bad types betray in the first period in equilibrium, cooperation in this
period would lead player 1 in period 2 to desire the alteration (2, 28, 1); that is,
player 1 would jump ahead from period 2 to period 30. In Figure 4, because all bad
types betray in period 30 in equilibrium, when period 30 is reached, player 1 would
desire an alteration (30, −1, α29), effectively going back to period 29 where all types
cooperate.

Recall that, for a given trusting PBE and any period k, vk
1 denotes the expected

continuation value for player 1 from the start of period k on the equilibrium path,
and at the beginning of this period, player 1 believes that player 2’s type is weakly
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below xk−1. Further, after selecting the level αk that the equilibrium prescribes for
period k, player 1 expects player 2 to cooperate with probability F (xk)/F (xk−1) and
to betray with complementary probability. We can thus express player 1’s expected
continuation value recursively as

vk
1 =

(
1 − F (xk)

F (xk−1)

)(
−cαk

)
+ F (xk)

F (xk−1)
(
αk∆ + δvk+1

1

)
. (4)

If at period k player 1 demands that the players coordinate on a feasible alteration
(k, m, α̃k), then player 1’s continuation value would instead be

(
1 − F (xk+m)

F (xk−1)

)(
−cα̃k

)
+ F (xk+m)

F (xk−1)
(
α̃k∆ + δvk+1+m

1

)
.

Definition 5. Call a PBE alteration proof if it is trusting and no feasible alter-
ation improves player 1’s continuation value. That is, for every feasible alteration
(k, m, α̃k),

vk
1 ≥

(
1 − F (xk+m)

F (xk−1)

)(
−cα̃k

)
+ F (xk+m)

F (xk−1)
(
α̃k∆ + δvk+1+m

1

)
. (5)

We refer to these as alteration-proof equilibria.

3.2 Partial characterization

We next partially characterize alteration-proof equilibria. Recall that L denotes the
last period in which bad types betray on the equilibrium path, so that xL−1 ≥ a ≥ xL.

Lemma 2. In every alteration-proof equilibrium, good types never betray and the level
is maximal after all bad types have betrayed. That is, αk = 1 for every k > L, and it
can be assumed that xk = a for every k ≥ L.

Proof. Consider any alteration-proof PBE and let η ≡ sup{αk | k > L}. We first
prove that η = 1 by assuming otherwise and finding a contradiction. Presuming
η < 1, let ε > 0 be small enough to satisfy η + ε ≤ 1 and

1
r

<
∆

1 − δ
+ ε · ∆ − (1 + δ)(1/r)

η(1 − δ) . (6)

There is such a value of ε because 1/r < ∆/(1 − δ). Let τ > L be a period at which
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ατ > η − ε, and note that player 1’s belief at the beginning of period τ puts positive
probability on only good types, which are weakly below 1/r. By definition of η, we
know that vτ

1 ≤ η∆/(1 − δ).
Then consider alteration (τ, −1, η+ε). Observe that (η+ε)x < (η+ε)∆+δ(η−ε)x

follows from Inequality (6) and x < 1/r. Further, the left side is type x’s value of
betraying immediately in the alteration, whereas the right side is weakly less than
the value of waiting until period τ + 1 to betray. This implies that all types weakly
below 1/r strictly prefer to cooperate in period τ given the altered sequence of levels,
and so the alteration is feasible. The alteration gives player 1 the continuation value
(η + ε)∆ + δvτ

1 , which strictly exceeds vτ
1 , contradicting alteration-proofness.

Having established that η = 1, we can use a similar argument to show that there
is a period ℓ > L at which αℓ = 1. If there were no such period, then for any ε > 0
we could find a period τ > L such that ατ ∈ (1 − ε, 1) where it would have to be the
case that vτ

1 < ∆/(1 − δ). For sufficiently small ε, the alteration given by (τ, −1, 1) is
feasible and yields player 1 a strictly higher continuation value than vτ

1 . Thus there
is a period ℓ > L where αℓ = 1. The same logic implies also that vℓ

1 = ∆/(1 − δ), and
so αk = 1 for all k ≥ ℓ.

The penultimate step is to realize that, in the case of ℓ > L + 1, it must also
be true that αℓ−1 = 1 and vℓ−1 = ∆/(1 − δ). This follows from the fact that good
types strictly prefer to cooperate in period ℓ − 1 regardless of the level, given that
their continuation value is ∆/(1 − δ) from period ℓ. If αℓ−1 < 1 then alteration
(ℓ − 1, 0, 1) is trivially feasible and strictly increases player 1’s continuation payoff
from period ℓ − 1. It follows by induction that αk = 1 for all k > L. Finally, note
that, because αL ≤ 1, all good types strictly prefer to cooperate forever rather than
betray in period L or any later period. No good type betrays prior to period L in
equilibrium, and therefore the good types never betray.

Lemma 2 establishes that the cutoff sequence {xk}∞
k=0 never falls below 1/r, and

without loss of generality we can assume that x0 = b and xk = ∆/(1 − δ) for every
k ≥ L. That is, the sequence starts at x0 = b and no bad types betray until the first
period k at which xk < b. The last period in which bad types betray is L, where the
value of the sequence drops to ∆/(1 − δ), which is below a, and is then constant.

Lemma 3. In every alteration-proof equilibrium, αkxk = ∆αk + δαk+1xk for all
k < L.
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Recall that this relation between the level sequence and cutoff types was discussed
and appears as Equation (1) in the previous section. It means type xk is indifferent
between betraying in period k and betraying in period k + 1. Rearranging a bit gives
an expression for the rate of increase in the level over time, relative to the cutoff type:

αk+1

αk
= xk − ∆

xkδ
. (7)

The right side strictly exceeds 1, implying that the equilibrium level sequence is
strictly increasing. The rate of increase from period to period is itself increasing in
the cutoff type and therefore decreasing in k.

Proof of Lemma 3. For convenience in this proof, let us extend vL+1
2 to be defined

for x = ∆/(1 − δ) by specifying vL+1
2 (∆/(1 − δ)) = ∆/(1 − δ), which would be the

continuation value of type ∆/(1− δ) in the continuation from period L+1 given that
the level is 1 thereafter. Of course, there is no type ∆/(1 − δ) in the model. The
extension gives us the starting point for an induction argument.

We begin by proving that, in any alteration-proof equilibrium,

vk+1
2 (xk) = αk+1xk (8)

for all k ≤ L. Note first that this equation holds for k = L because xL = ∆/(1 − δ)
and αL+1 = 1. We proceed with an inductive argument.

Suppose that, for a given period k > 1, Equation (8) holds. We shall demonstrate
that vk

2(xk−1) = αkxk−1. If xk−1 > xk, meaning that type xk−1 betrays in period k,
we immediately obtain vk

2(xk−1) = αkxk−1. So let us assume that xk−1 = xk, whereby
in equilibrium no types betray in period k. Because type xk−1 betrays in a future
period, it must be that

αkxk−1 ≤ ∆αk + δvk+1
2 (xk−1) = ∆αk + δαk+1xk−1. (9)

The equality holds because of xk−1 = xk and Equation (8).
Suppose that Inequality (9) is strict. We can find a level α̃k ∈ (αk, 1) for which,

uniquely,
α̃kxk−1 = ∆α̃ + δvk+1

2 (xk−1) = ∆α̃k + δαk+1xk−1. (10)

The existence of this level is implied by the fact that xk−1 > ∆/(1 − δ) > ∆. In fact
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(k, 0, α̃k) is a feasible alteration. Demonstrating feasibility just requires checking that
types below xk−1 strictly prefer to cooperate in period k in the alteration, which is
straightforward.15 Because no types betray in period k in the original equilibrium and
in the alteration, and because the level in period k is higher in the altered equilibrium,
player 1’s continuation payoff strictly increases.

Therefore it must be that Inequality (9) holds as an equality. That is, in pe-
riod k type xk−1 is indifferent between betraying and cooperating. This implies that
vk

2(xk−1) = αkxk−1, completing the inductive argument.
Next, using Identity (8) we prove the claim of the lemma. Consider any k < L

and let us look at two cases. First, if xk−1 = xk then, by the above argument, weak
Inequality (9) binds and we have αkxk−1 = ∆αk + δαk+1xk−1. Replacing xk−1 with
xk yields αkxk = ∆αk + δαk+1xk. In the second case, we have xk−1 > xk. Then
types in the nonempty interval (xk, xk−1] prefer to betray in period k, whereas types
in the nonempty interval [a, xk] prefer to cooperate. Type xk must be indifferent
between cooperation and betrayal in period k, because player 2’s continuation value
is continuous in player 2’s type for any given level sequence.16 Hence, αkxk = ∆αk +
δvk+1

2 (xk). Using Equation (8) to substitute for vk+1
2 (xk) once again yields αkxk =

∆αk + δαk+1xk.

Together Lemmas 2 and 3 imply that, in an alteration-proof equilibrium, the level
increases gradually until it reaches 1, and then remains at 1 thereafter. The level
increases in relation to the rate at which the bad types betray, so that in a given
period the cutoff bad type is indifferent between betraying in the current period and
betraying in the next period. Good types cooperate forever.

Note that Equation (7) and monontonicity of the sequences {αk}∞
k=1 and {xk}∞

k=0

are necessary but not sufficient conditions for alteration-proofness. The set of equilib-
ria that satisfy these properties is quite large and varied. For example, Equation (7)
holds in the equilibria illustrated in Figures 3 and 4, but these equilibria fail to be
alteration-proof.17

15. For x < xk−1, α̃kx < ∆α̃k + δαk+1x < ∆α̃ + δvk+1
2 (x) because (α̃k − δαk+1)x < (α̃k −

δαk+1)xk−1 = ∆α̃k.
16. It is easy to verify that ω(k, x) is continuous in x for fixed k.
17. Incidentally, Lemmas 2 and 3 do not indicate exactly the equilibrium level in period L. It is

not difficult to show that αL must be in the interval (aδ/(a − ∆), 1]. The lower endpoint of this
interval would make type a indifferent between betraying at L and waiting to do so at L+1, whereas
the upper endpoint would make an artificial type ∆/(1 − δ) indifferent.
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As a step toward our main result, we next derive bounds on equilibrium continu-
ation values for every period k < L, by considering alterations in which m = −1 or
m = 1. Our first observation is that in a given period k < L and for m ∈ {−1, 1},
the only feasible alteration (k, m, α̃k) that player 1 could possibly find attractive is
that for which α̃k satisfies

α̃kxk+m = ∆α̃k + δαk+1+mxk+m.

That is, the alteration is supposed to make type xk+m indifferent, so that any higher
types betray in period k and bad types in [a, xk+m] remain into the next period.

We’ll use this equation, Identity (4), Equation (7), and Inequality (5). In the case
of m = −1, we obtain

vk
1 ≥ ∆

1 − δ
αk−1. (11)

In the case of m = 1, we get

vk
1 ≤ ∆

1 − δ
αk

(
F (xk) − F (xk−1)

F (xk−1) · c

xk
+ F (xk)

F (xk−1)

)
. (12)

We thus have upper and lower bounds on player 1’s continuation value, which con-
strain how fast the level increases and bad types betray. For these two conditions to
hold, the equilibrium must satisfy

F (xk−1) − F (xk)
∆F (xk−1) ≤ αk − αk−1

(c + ∆)αk − δcαk+1 . (13)

The derivation of Inequalities (11), (12), and (13) is shown in Appendix A.

3.3 Existence and multiplicity

We pointed out earlier that the set of trusting PBE is large. There are even multiple
alteration-proof equilibria. The following definition describes a class of equilibria in
which vk

1/αk−1 is constant over time:

Definition 6. Call an alteration-proof equilibrium a constant-proportion equi-
librium (CPE) if there exists a number γ ≥ 1 such that

vk
1 = γ · ∆

1 − δ
αk−1 (14)
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Figure 5: constant-proportion equilibrium with γ = 1

for all k ∈ {2, 3, . . . , L}.

Note that γ = 1 is the case in which Inequality (11) binds in each period. The
next theorem, proved by construction in Appendix B, establishes existence of CPE.

Theorem 2. Under Assumption 1, there is a number γ̄ > 1 such that for all γ ∈ [1, γ̄],
the trust game has a constant-proportion equilibrium with parameter γ.

Let make three remarks on Theorem 2. First, γ̄ depends on the parameters of
the game including ∆. Fixing the other parameters, as ∆ decreases toward zero, the
value of γ̄ derived in the proof decreases. Second, a constant-proportion equilibrium
with γ = 1 always exists, regardless of ∆ and the other parameters of the game.
Substituting vk

1/αk−1 = vk+1
1 /αk = ∆/(1 − δ) into the equilibrium Identity (4) and

rearranging terms yields

αk − αk−1

αk
= −

(
c
1 − δ

∆ + 1
)

F (xk) − F (xk−1)
F (xk−1) . (15)

This equation, together with indifference Condition (7), characterizes the γ = 1
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constant-proportion equilibrium. Figure 5 illustrates this equilibrium for the same
set of parameters used in Section 2.5.

Third, Theorem 2 says nothing about alteration-proof equilibria that are outside
the constant-proportion class. We have been able to calculate some other equilibria,
but we have been unable to show that they are bounded in some way by constant-
proportion equilibria. Thus, although the constant-proportion class provides a useful
illustration of alteration-proof equilibria and demonstrates multiplicity, we cannot
restrict attention to this class in the next stage of our analysis.

3.4 Characterization theorem

Our main theorem characterizes alteration-proof equilibria as the period length ∆
shrinks to zero. Fix a, b, r, and F . We shall consider any sequence of games indexed
by positive integer j, where the period length of game j is denoted by ∆(j), such
that ∆(j) converges to zero as j → ∞. For each game j, we consider an arbitrary
alteration-proof equilibrium, described by a level sequence {αk(j)}∞

k=1, a sequence of
type cutoffs {xk(j)}∞

k=0, and a sequence of player 1’s continuation values {vk(j)}∞
k=1.

By Theorem 2, we know that there exists an alteration-proof PBE for each ∆(j).
To describe what happens as j → ∞, for every j we need to translate the

discrete-time equilibrium sequences (levels, type cutoffs, and continuation values)
into functions of continuous time. Letting t denote time on the continuum, define
M(t, j) = min{k | k∆(j) ≥ t} to be the period in discrete-time game j that contains
time t. Then define step functions α̂(·; j) : [0, ∞] → [0, 1], x̂(·; j) : [0, ∞] → [0, b], and
v̂1(·; j) : [0, ∞] → [0, ∞) by

α̂(t; j) = αM(t,j)(j), x̂(t; j) = xM(t,j)(j), v̂1(t; j) = v
M(t,j)
1 (j).

The theorem establishes that each of these functions converges to a continuous-
time limit that is independent of the exact sequence of period lengths and the selection
of alteration-proof equilibria. That is, alteration-proofness uniquely pins down the
equilibrium when the period length is small. We will denote the limit functions
by α(·), x(·), and v1(·), which alters notation in a way that will hopefully not be
confusing. Our theorem also shows that these functions uniquely solve a specific
initial-value problem (differential equation) that depends on the parameters.

26



Theorem 3. Fix the parameters of a trust game, with the exception of ∆, satisfying
Assumption 1. There exist functions α : [0, ∞) → [0, 1], x : [0, ∞) → [0, b], and
v1 : [0, ∞) → [0, ∞), and a positive number T such that the following hold. For
any sequence of games given by {∆(j)}∞

j=1, such that limj→∞ ∆(j) = 0, and for any
sequence of alteration-proof equilibria given by {α̂(·; j), x̂(·; j), v̂1(·; j)}∞

j=1, it is the
case that (α̂(·; j), x̂(·; j), v̂1(·; j)) converges uniformly to (α(·), x(·), v1(·)). The limit
functions and T are uniquely characterized by:

(a) Level function α(·) is strictly increasing and differentiable on (0, T ), α(0) > 0,
lim

t→T −
α(t) = 1, and α(t) = 1 for every t ≥ T ;

(b) The cutoff-type function x(·) is strictly decreasing and differentiable on (0, T ),
x(0) = b, lim

t→T −
x(t) = a, and x(t) = 1/r for every t ≥ T ; and

(c) On interval (0, T ), α(·) and x(·) solve the following system of differential equa-
tions:

α′

α
= −(rc + 1) f(x)

F (x)x′, (16)

α′

α
= r − 1

x
. (17)

Further, for every t ≥ 0, player 1’s continuation value satisfies v1(t) = α(t)/r.

The existence of multiple and varied alteration-proof equilibria in the discrete-
time setting presents a substantial challenge for the limit characterization. Our proof
of Theorem 3, provided in Appendix C, uses novel techniques in two steps. First,
we use equilibrium identities and alteration-proofness conditions to find bounds on
{xk}L

k=1, working backward from period L and using a calculation that maximizes
and minimizes the cutoff type in a given period by making adjustments to the cutoff
type in the next period, along with other variables in these periods. We discover
a monotone relation on these bounds for successive periods, which allows us to use
an inductive argument to construct bounds. Second, we apply the new convergence
result proved by Watson (2021) to show that these two sequences of bounds converge
uniformly to the same continuous time limit initial-value problem. The corresponding
bounds of sequences {αk, vk+1

1 }L
k=1 are constructed similarly. The proof that T is finite

depends on the assumption a > ∆/(1 − δ), which becomes a > 1/r when ∆ → 0.
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Here is a heuristic argument. The implications of alteration-proofness expressed
above as Inequalities (11) and (12) provide upper and lower bounds on player 1’s
continuation values on the equilibrium path. Assuming well-behaved convergence, we
have

lim
j→∞

[
F (x̂(t; j)) − F (x̂(t − ∆(j); j))

F (x̂(t − ∆(j); j)) · c

x̂(t; j) + F (x̂(t; j))
F (x̂(t − ∆(j); j))

]
= 1, (18)

and αk and αk−1 converge, so the lower and upper bounds of player 1’s continuation
value have the same continuous-time limit,

lim
j→∞

∆(j)
1 − e−r∆(j) α̂(t − ∆(j); j) = α(t)

r
.

This expression uniquely determines the player 1’s continuation value in equilibrium,
in relation to the level function. Furthermore, the continuous-time limits of Equa-
tion (15) and player 2’s indifference Condition (7) lead to Equations (16) and (17),
respectively.

The system of equations shown in Theorem 3 can be solved as follows. First, use
Equation (17) to substitute for α′/α in Equation (16) to get the following univariate
initial-value problem:

dx

dt
= (1 − rx)F (x)

x(rc + 1)f(x) , x(0) = b. (19)

Denote
Ix(x) =

∫ x(rc + 1)f(x)
(1 − rx)F (x) dx. (20)

Then we solve Equation (19) to obtain x(t) = I−1
x (Ix (b) + t) . Second, to calculate T ,

we use the terminal condition a = I−1
x (Ix (b) + T ). Third, we substitute the solution

x(t) into Equation (17) to obtain the following univariate initial-value problem:

dα

α
=
(

r − 1
x(t)

)
dt, α(T ) = 1, (21)

which yields α(t) = exp (Iα(t) − Iα(T )) , where

Iα(t) =
∫ (

r − 1
I−1

x (Ix (b) + t)

)
dt.

Last, we evaluate the level function at time 0 to obtain α(0) = exp (Iα(0) − Iα(T )).
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Note that for any distribution F satisfying Assumption 1, the system of dif-
ferential equations in Theorem 3 can be easily solved numerically. Furthermore,
if the distribution function F is in polynomial form on the interval [a, b], so that
F (x) = a1x + a2x

2 + . . . + anxn for real numbers a1, a2, ..., a3, a closed-form analytical
solution can be derived from a potentially complicated integration.

4 Uniformly Distributed Bad Types

In this section, we provide an example of the limit of alteration-proof equilibria when
the bad types of player 2 are uniformly distributed. Fix c = 1 and denote the
probability of the good types as q ≡ F (1/r). For any bad type x ∈ [a, b], we have
F (x) = q + (1 − q)(x − a)/(b − a) and the density function is f(x) = (1 − q)/(b − a).
In this special case, we can use the algorithm to solve the equilibrium analytically.

In this example, Initial-Value Problems (19) and (21) become

dx

dt
= 1 − rx

r + 1 · (b − a)q + (x − a)(1 − q)
(1 − q)x , x(0) = b (22)

dα

α
=
(

r − 1
x

)
dt, α(T ) = 1. (23)

Solving the equations, we have the explicit characterization of the equilibrium:

t = (1 − q)(1 + r)
1 − q + r(bq − a)

(
−1

r
ln 1 − rx

1 − rb
+ a − bq

1 − q
ln (1 − q)x + bq − a

b − a

)
, (24)

α(t) =
(

q(b − a)
(1 − q)x(t) + bq − a

)r+1

, (25)

T = (1 − q)(1 + r)
1 − q + r(bq − a)

(
−1

r
ln 1 − ra

1 − rb
+ a − bq

1 − q
ln q

)
, α(0) = qr+1. (26)

Figure 6 graphs the limit level and cutoff-type functions for three cases of param-
eter values where r, a, and c are fixed. The figure illustrates comparative statics with
respect to q and b: Starting with the solid curve, the dashed curve shows the effect of
decreasing q while the dotted curve shows the effect of increasing b. Straightforward
calculations in Appendix D produce the following comparative statics conclusions.
Regarding the last two statements, for any type χ ∈ [a, b] we define Γ(χ) to be the
time at which the cutoff type is χ; that is, x(Γ(χ)) = χ.
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Figure 6: The limit of alteration-proof equilibria.

Proposition 1. Consider the case of uniformly distributed bad types and let q denote
the probability of the good type. The equilibrium limit has the following properties,
where T denotes the time when the level first reaches 1.

• ∂T/∂q < 0, ∂T/∂b < 0, ∂α(0)/∂q > 0, and ∂α(0)/∂b = 0.

• For a fixed type χ ∈ [a, b], the slope of x(·) at time Γ(χ) is decreasing in q and
b, and the same is true for the slope of ln α(t) at time Γ(χ).
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Player 1’s equilibrium payoff is increasing in the quality of player 2’s type distri-
bution. Lowering the probability of the good type causes player 1 needs to start the
relationship at a smaller level and gradualism slows, so it takes longer to build trust.
Increasing b, the worst possible type of player 2, has the same implications.

This result may have empirical implications. For example, consider the interac-
tion between a venture capitalist (player 1) and an entrepreneur (player 2). The
venture capitalist controls the investment in a project in successive periods, which is
like selecting α in our model. The entrepreneur chooses how to allocate the funds,
either to productive use (cooperate) or skewed to private benefit (betray). Based on
the model, we would expect that the venture capitalist starts small and gradually
increases funding before taking the concern public. If the project is in an industry
with higher informational barriers, due for instance to sophisticated technologies or
geographic distance, then we predict a low initial investment and long period before
a public offering. These implications of Proposition 1 are consistent with empirical
studies of venture-capital staged financing by Gompers (1995) and Tian (2011).

5 Technical Notes and Extensions

In this section, we elaborate on the foundations of the model, we discuss extensions
of the modeling exercise related to both the alteration-proofness concept and the
parameters, and we comment on connections with literature.

5.1 Further selection and foundations

In this subsection, we elaborate on the scope and foundation of alteration-proofness.
First, recall that our definitions in Section 3 impose alteration-proofness only on the
equilibrium path. To the extent that renegotiation is also plausible in off-equilibrium
contingencies, we should further require alteration-proofness after histories in which
player 1 deviated (the only histories entailing a public deviation in a trusting PBE).

In fact, the equilibria that we construct to prove Theorem 2 satisfy the extended
version of alteration-proofness. In a period in which player 1 deviates, every type of
player 2 is supposed to betray, ending the game. If player 2 deviates by cooperating,
then player 1 subsequently believes with certainty that player 2 is a bad type, and
the strategies specify that player 1 set α = 0 and player 2 betray in all future periods
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regardless of the interim history. From every period following player 1’s deviation,
there are no trusting equilibria in the continuation game due to player 1’s posterior
belief, and therefore no feasible alteration can give player 1 a positive payoff.

Second, recall that we defined alteration-proofness for trusting equilibria, and this
is the class of equilibria to which our convergence result applies. There are also non-
trusting equilibria in which player 1 always chooses level 0. Further, using the logic
noted in the previous paragraph, we can find a non-trusting equilibrium that satisfies
the alteration-proofness conditions. This leads to the question of whether there is
an argument along the lines of alteration-proofness that would rule out non-trusting
equilibria, so that our convergence implies a unique selection.

Non-trusting equilibria would not survive a reasonable notion of external con-
sistency imposed on top of our alteration-proofness concept, because player 1 and
every type of player 2 strictly prefer the alteration-proof PBE that we construct for
Theorem 2 to every non-trusting equilibrium (which gives a payoff of zero to both
players), both at the beginning of the relationship and in later periods. For instance,
suppose in addition to the alterations studied in Section 3, the players view as viable
a suggestion to switch to another alteration-proof equilibrium that would improve the
payoff of every player-type by at least ε for some fixed ε > 0. Then for sufficiently
small ∆, none of the alteration-proof equilibria could dominate others in this way
(due to Theorem 3) but they all dominate every non-trusting equilibrium.18

Continuing with the topic of non-trusting equilibria, it is worth noting that the
existence of such equilibria depends on good types having positive betrayal benefits
(x > 0), so that they have an incentive to betray at positive levels if they expect that
the level would be zero in future periods. We conjecture that inclusion of good types
with x ≤ 0 would narrow the set of PBE in interesting ways without even impos-
ing alteration-proofness. This may be a good topic for future work. We have been
able to show that, in this setting, there is no non-trusting equilibrium, and all good
types cooperate forever in every PBE.19 This is also true for continuations following
a deviation of player 1. Therefore, in any equilibrium construction, we cannot spec-

18. This comparison is similar to the “Pareto external agreement consistency” condition of Miller
and Watson (2013). We utilize the bound ε because we have not determined whether and how
alteration-proof equilibria are ranked for fixed ∆.

19. From a non-trusting strategy profile, if player 1 deviates to a positive level, good types with
x ≤ 0 optimally must cooperate regardless of the anticipated future play. If player 1 deviates in this
way and player 2 then cooperates, the probability that player 1 puts on the good types must weakly
increase.
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ify reversion to a non-trusting path to punish player 1, complicating the argument
for existence. As a bridge to further research, in the Supplementary Appendix, we
provide a new existence result that does not rely on non-trusting equilibria following
deviations.

Finally, it would not be difficult to provide non-cooperative foundations for the
alteration-proofness condition, along the lines of Watson (2013) and Miller and Wat-
son (2013). We could model renegotiation at the beginning of each period as a simple
dictator game, whereby player 1 has the option to declare an alteration, which the
players then coordinate on if feasible. In fact, since, in the construction behind Theo-
rem 4, deviations in the level chosen for the current period are associated with feasible
alterations, one could imagine that player 1 triggers an alteration by simply deviating
from the level that the equilibrium specifies for the current period.

5.2 No-gap case

Recall that we assumed distribution F is constant in an open interval containing
∆/(1 − δ); that is, there is a gap at the value where player 2 would be indifferent
between betraying and cooperating if the level were constant. Our analysis can be
extended to the “no-gap” case, which we can describe by setting a = 1/r and where
bad types are those above ∆/(1 − δ). Without going into details, here is a summary
of our findings in this case.

The PBE characterization developed in Section 2 carries over to the no-gap case
except that Lemma 1 must be modified to allow L = ∞. The intuition is that bad
types with x close to ∆/(1−δ) are willing to cooperate in periods where α rises slowly,
so a strictly increasing sequence {αk} that converges to a number in the interval (0, 1]
is associated with a strictly decreasing sequence of cutoff types {xk} that converges
to ∆/(1 − δ). Thus, every bad type betrays at some point, but there are PBE in
which, in every period, some bad types have yet to betray.20

Likewise, the analysis of alteration-proofness extends to the no-gap case. Lem-
mas 2 and 3 hold, allowing for L = ∞. Calculations underlying our convergence
theorem are valid, but in the limit T becomes infinite and Expression (20) becomes
an improper integral, with terminal condition xL = a = ∆/(1 − δ) at L = ∞. The
convergence result now identifies a class of solutions that is unique up to a constant

20. The no gap case here is similar to the no-gap case of the durable-good-monopoly model; see
Ausubel and Deneckere (1989).
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α∗ ∈ (0, 1]. Specifically, in the limit as ∆ → 0, alteration-proof equilibria all share the
same path of cutoff types. For every α∗ ∈ (0, 1] there is a sequence of alteration-proof
equilibria whose level sequences converge to a function that approaches α∗ as t → ∞.

This conclusion is in contrast to alteration-proofness in the gap case, where the
level converges to 1 (meaning α∗ = 1 for every alteration-proof equilibrium) and
does so in finite time. But the equilibria are Pareto-ranked in α∗, so an appeal to
external consistency would justify selection of the equilibria that entail α∗ = 1 as a
unique limit prediction. Another way to restore our unique prediction is to expand
the definition of “feasible alteration” to include player 1 setting α = 1 in every period
of the continuation, with good types cooperating perpetually and bad types betraying
immediately.21 In an equilibrium with α∗ < 1, player 1 would strictly prefer such an
alteration once only a small fraction of bad types remain. Further, in line with the
various notes made here about including good types with x ≤ 0, we conjecture that
in settings with such types, there would be no substantive difference between the
analysis of the gap case and the no-gap case.

5.3 More on related literature

Let us expand a bit on our discussion of related literature in the Introduction. As
noted, the most closely related paper is Watson (1999). While our modeling exercise
shares heuristic logic with Watson’s modeling exercise, they have distinct structures
and very different analytical approaches.

Watson’s model has an exogenously provided level function and therefore is not a
noncooperative game, whereas we develop a fully noncooperative model of a principal-
agent setting in which the principal selects the level in each period. We define
alteration-proofness with respect to actual alternative equilibria in the continuation
of the game from any period, and we are able also to study alteration-proofness at
contingencies off the equilibrium path. Further, we study a discrete-time setting with
a continuum of types, whereas Watson (1999) looked at a continuous-time setting
with just two types. The analytical methods developed herein are novel and unique
to our setting, with particular challenges owing to discrete time. The analysis of
convergence (as well as the existence of multiple alteration-proof equilibria) has no

21. Such an alteration is not included in the definition of “feasible” given in Section 3 because
the continuation from the next period does not coincide with any continuation on the path of the
current equilibrium.
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counterpart in Watson (1999). Our work in this regard involves a new method of
characterizing bounds on the set of equilibria and the first application of a result on
the limit of solutions to discrete-time models.

A number of past game theoretic modeling exercises have delivered notable results
on the convergence of equilibrium outcomes as the frequency of interaction increases.
For instance, Gul, Sonnenschein, and Wilson (1986) substantiate the Coase conjec-
ture on dynamic pricing by a durable-good monopolist (similarly bargaining under
incomplete information with one-sided offers by the uninformed-party). The seller
in a given period evaluates the rate at which sales increase as the price is lowered
(attracting additional lower-valuation buyers) and this interacts with the relative pa-
tience of different buyer types. As the period length shrinks, the balance tilts in favor
of the seller’s interest in lowering the price to increase present-period sales, and in
the limit the seller sets a low price from the beginning.

There is a similar trade-off in our model. By raising the level in an equilibrium
alteration, the principal can induce more bad types to betray, hastening the time
when the principal enjoys cooperation with the good types. One might expect, in
line with the Coase conjecture, that as the period length shrinks, the principal would
be resigned to start with a high level and suffer the consequences in the event of a bad
type of player 2. This is not the case, however, because the relative intertemporal
trade-offs for the principal and agent in the trust game are different than for the
seller and buyer in the dynamic pricing game. The principal’s choice of project
level scales the payoffs of both players rather than splitting the the surplus for the
seller and buyer, and the agent’s action is a choice of whether to divert gains at
the principal’s expense. Importantly, betrayal by the bad types imposes a loss on
the principal, whereas selling to a high-valuation buyer at a low price still generates
value to a monopolist. Further, in periods when the level is low, the principal still
earns a cooperative flow payoff from the good types, whereas for the durable-good
monopolist, pricing high earns no flow benefit from low-valuation buyers. For these
reasons, the principal’s incentive to increase the level is tempered as the period length
shrinks, and the result is gradualism.

Also relevant to the theme of frequent play is the topic of “repeated games with
incomplete information” (though technically not repeated games), such as analyzed by
Hart (1985) and Shalev (1994). One strand of this literature looks at how incomplete
information about stage-game payoffs leads to a “reputation-based refinement” of
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equilibrium predictions relative to a complete-information benchmark in settings with
sufficiently patient players.22 In the typical setting, a long-run player with private
information is, in the limit, infinitely more patient than the other players (a special
case being a sequence of short-run players). Any type of long-run player can patiently
pretend to be any other type, and the short-run players must either best respond to
the mimicked type’s strategy in the short run or “learn” that the long-run player
is this type, which implies bounds on the long-run player’s payoffs. Our setting is
quite different because the flow payoff of cooperation is scaled by the period length,
whereas the terminal payoff of betrayal is not scaled. The intertemporal incentives
are fixed (the discount rate is held constant) while we shrink the period length. This
smooths the equilibrium behavior, but neither player becomes infinitely more patient
than the other, and so there is no extreme reputation effect.23

5.4 Other extensions

Our analysis took place under the assumption that c > 0, but it easily extends
to the case of c = 0, and curiously it still has interesting things to say. With no
cost of betrayal, player 1’s evaluation of alterations trades off discounting with the
probability of cooperation. Player 1 prefers that bad types not betray immediately
and so starts small. Alteration-proofness implies a unique equilibrium in discrete
time, where player 1 is always indifferent between continuing on the equilibrium path
and altering with m = −1 and m = 1. The limit differential equations can be derived
from the expressions shown in Theorem 3 by setting c = 0.

The assumption that player 1 can dictate the selection of an equilibrium alteration
makes alteration-proofness a tight condition. A renegotiation-proofness condition
requiring agreement between the players would be weaker, because there are stall
alterations that appeal to player 1 but would not appeal to any type of player 2. Any
alteration with m > 0 that is desired by player 1 would also be desired by all types
of player 2. If we were to assume that player 2 dictates the terms of alterations, then
in an alteration-proof equilibrium, the level would start higher and rise at a rate that

22. Prominent entries include Fudenberg and Levine (1989), Cripps, Schmidt, and Thomas (1996),
and Cripps and Thomas (2003). Watson (1993) and Battigalli and Watson (1997) examine im-
plications for rationalizable beliefs. Pei (2021) explores reputations based on randomization that
straddles multiple types.

23. Another line in the literature on incomplete information examines the effect of “behavioral
types,” but this is farther afield from our project.
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holds player 1’s continuation value to 0 until all bad types have betrayed.
That the game ends after betrayal is an assumption made for convenience. We

think that our results would not be different in a model in which play continues
following betrayal. For instance, to extend the trusting equilibria we have studied, we
need to deal with histories in which betrayal has occurred in the past. If the betrayal
occurred on the equilibrium path, player 1’s updated belief would be that player 2 is a
bad type and player 1 would choose α = 0 thereafter. For a public-deviation betrayal,
such as in a period in which all types were supposed to cooperate at the equilibrium
level, then we could specify that player 1’s posterior belief is concentrated on bad
types and player 1 selects α = 0 thereafter. Further, if player 1 were to deviate, we
could prescribe that all types of player 2 betray in the current period, so player 1’s
belief is unchanged after this betrayal, and continuation play from the next period
is exactly what the players were supposed to do from the current period (a stall of
sorts). These provisions would not complicate alteration-proofness.

6 Conclusion

We have added to the literature on relationship building by characterizing alteration-
proof equilibria in a discrete-time principal-agent setting with a continuum of bad
types. We hope that our closed-form characterization of equilibrium will moti-
vate further analysis of the dynamics of relationships under asymmetric information,
in particular in more applied settings where multidimensional realistic ingredients
are modeled (such as production technology and monitoring). We think the our
alteration-proofness condition may be usefully applied to other settings with incom-
plete information where a notion of internal consistency is desired (further expanding
beyond the standard application of repeated games). A key to its applicability is that
posterior beliefs have a threshold form and are monotone over time in equilibrium. In
dynamic games with this property, it may be possible to describe an altered equilib-
rium path in terms of an adjustment in one period and a continuation that essentially
jumps ahead or stalls relative to the original equilibrium.
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Appendix A Derivation of (11), (12) and (13)

In the original equilibrium, player 1’s continuation value from period k satisfies

vk
1 =

(
1 − F (xk)

F (xk−1)

)(
−cαk

)
+ F (xk)

F (xk−1)
(
αk∆ + δvk+1

1

)
.

In the main text, we argue that if player 1 demands an alteration m ∈ {−1.1} in
period k, then it suffices to consider alteration (k, m, αk+m).

First consider the case in which m = −1. If at period k player 1 demands that the
players coordinate on a feasible alteration (k, −1, αk−1), then player 1’s continuation
value would instead be(

1 − F (xk−1)
F (xk−1)

)(
−cαk−1

)
+ F (xk−1)

F (xk−1)
(
αk−1∆ + δvk

1

)
= αk−1∆ + δvk

1 .

Therefore, alteration-proofness Condition (5) in this case simplifies to

vk
1 ≥ αk−1∆ + δvk

1 ,

which yields Inequality (11).
Second consider the case of m = 1. If at period k player 1 demands that the players

coordinate on a feasible alteration (k, 1, αk+1), then player 2 with type x ∈ (xk, xk−1)
betrays at level αk+1, while player 1 and player 2 with type x ≤ xk continue in period
k as if they were in period k + 1 of the original equilibrium. Therefore, player 1’s
continuation value is

vk+1
1

F (xk)
F (xk−1) −

(
1 − F (xk)

F (xk−1)

)
cαk+1, (27)

and we need this continuation value to be no greater than the continuation value
without alteration, vk

1 .
To apply the Condition (5), we need to express xk+1

1 in terms vk+1
1 . From Equa-

tion (4), we can solve for vk+1
1 and get

vk+1
1 = 1

δ

(
vk

1 +
(

1 − F (xk)
F (xk−1)

)
cαk − F (xk)

F (xk−1)∆αk

)
F (xk−1)
F (xk) .

Using this to substitute for vk+1
1 in Expression (27) and comparing it with vk

1 , we
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obtain the following alteration-proofness condition:

vk
1 ≥ 1

δ

(
vk

1 +
(

1 − F (xk)
F (xk−1)

)
cαk − F (xk)

F (xk−1)∆αk

)
−
(

1 − F (xk)
F (xk−1)

)
cαk+1.

Then we multiply both sides by −δ and add vk
1 to get

−(1 − δ)vk
1 ≥

(
1 − F (xk)

F (xk−1)

)
cαk − F (xk)

F (xk−1)∆αk − δ

(
1 − F (xk)

F (xk−1)

)
cαk+1,

which simplifies to

vk
1 ≤ 1

1 − δ

[
−(αk − δαk+1)c + F (xk)

F (xk−1)
(
αk − δαk+1

)
c + F (xk)

F (xk−1)αk∆
]

.

Notice that Equation (7) can be written αk − δαk+1 = ∆αk/xk. This substitution
yields Inequality (12).

Last, we combine Inequalities (11) and (12). Note that player 1’s continuation
value satisfying both conditions only if

∆
1 − δ

αk−1 ≤ ∆
1 − δ

αk

(
F (xk) − F (xk−1)

F (xk−1)
c

xk
+ F (xk)

F (xk−1)

)
.

Using player 2’s indifference Condition (7) and rearranging terms, we obtain Inequal-
ity (13).

Appendix B Proof of Theorem 2

Local and global alteration-proofness

We start with a useful lemma on the sufficiency of local alteration-proofness, which
refers to values m ∈ {−1, 0, 1}.

Lemma 4. If a trusting equilibrium is “locally alteration-proof,” defined as applying
the conditions for m ∈ {−1, 0, 1} only, then it is alteration-proof.

Proof. For any integer m ≥ 0, we first write player 1’s continuation value vk
1 in the
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original equilibrium as

vk
1 =

m∑
n=0

(
(c + ∆)F (xk+n)

F (xk−1) − c
F (xk+n−1)
F (xk−1)

)
δnαk+n + δm+1 F (xk+m)

F (xk−1) vk+m+1
1 .

Denote player 1’s continuation value in a (τ, m, ατ+m) alteration as ṽτ
1 (m):

ṽk
1(m) =

(
(c + ∆)F (xk+m)

F (xk−1) − c

)
αk+m + δ

F (xk+m)
F (xk−1) vk+m+1

1 .

We will show that if player 1 has no incentive to alter the equilibrium from period
k by jumping to period k +m−1 and also no incentive to alter from period k +m−1
by jumping to period k +m, then player 1 also has no incentive to alter from period k

by jumping to period k+m. We prove this by contradiction: assuming vk
1 ≥ ṽk

1(m−1)
and vk

1 < ṽk
1(m), we will derive vk+m−1

1 < ṽk+m−1
1 (1) meaning that, in the original

equilibrium, a local alteration-proofness condition in period k + m − 1 is violated.
Alteration-proofness condition vk

1 ≥ ṽk
1(m − 1) can be simplified to

(1 − δm−1)δF (xk+m−1)
F (xk−1) vk+m

1 ≤
m−1∑
n=0

(
(c + ∆)F (xk+n)

F (xk−1) − c
F (xk+n−1)
F (xk−1)

)
δnαk+n

−
(

(c + ∆)F (xk+m−1)
F (xk−1) − c

)
αk+m−1. (28)

Likewise, alteration-proofness condition vk
1 < ṽk

1(m) can be simplified to

(1 − δm)δF (xk+m)
F (xk−1) vk+m+1

1 >
m∑

n=0

(
(c + ∆)F (xk+n)

F (xk−1) − c
F (xk+n−1)
F (xk−1)

)
δnαk+n

−
(

(c + ∆)F (xk+m)
F (xk−1) − c

)
αk+m. (29)

Next we rewrite the equilibrium Identity (4) for period k + m,

vk+m
1 =

(
(c + ∆) F (xk+m)

F (xk+m−1) − c

)
αk+m + F (xk+m)

F (xk+m−1)δvk+m+1
1 ,

and then multiply both sides by (1−δm)F (xk+m−1)/F (xk−1), allowing us to substitute
the lower bound of (1 − δm)δvk+m+1

1 F (xk+m)/F (xk−1) using Inequality (29). After
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collecting terms, we get a lower bound of vk+m
1 :

vk+m
1 (1 − δm)F (xk+m−1)

F (xk−1) >

(
c − c

F (xk+m−1)
F (xk−1)

)
αk+m

+
m−1∑
n=0

(
(c + ∆)F (xk+n)

F (xk−1) − c
F (xk+n−1)
F (xk−1)

)
δnαk+n. (30)

Note that the summation term on the right here also appears in Inequality (28).
Using Inequality (28) to substitute for the summation term in Inequality (30) yields
the following:

vk+m
1 (1 − δm)F (xk+m−1)

F (xk−1) >

(
c − c

F (xk+m−1)
F (xk−1)

)
αk+m

+ (δ − δm)F (xk+m−1)
F (xk−1) vk+m

1 +
(

(c + ∆)F (xk+m−1)
F (xk−1) − c

)
αk+m−1.

Applying Condition (7) to substitute αk+m−1(xk+m−1 − ∆)/(xk+m−1δ) for αk+m, this
inequality simplifies to

vk+m
1 > αk+m−1

(
∆

1 − δ
+ F (xk−1) − F (xk+m−1)

F (xk+m−1) · xk+m−1 − ∆/(1 − δ)
xk+m−1δ

c

)
. (31)

On the other hand, by Inequality (12), local alteration-proofness in period k+m−1
requires

vk+m−1
1 ≤ ∆

1 − δ
αk+m−1

(
F (xk+m−1) − F (xk+m−2)

F (xk+m−2) · c

xk+m−1 + F (xk+m−1)
F (xk+m−2)

)
,

which translates into an upper bound on vk+m
1 using the period k +m−1 equilibrium

Identity

vk+m−1
1 =

(
(c + ∆)F (xk+m−1)

F (xk+m) − c

)
αk+m−1 + F (xk+m−1)

F (xk+m−2)δvk+m
1 .

Therefore, local alteration-proofness requires

vk+m
1 ≤ αk+m−1

(
∆

1 − δ
+ F (xk+m−2) − F (xk+m−1)

F (xk+m−1) · xk+m−1 − ∆/(1 − δ)
δxk+m−1 c

)
. (32)
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Recall Inequalities (28) and (29), together with equilibrium Conditions (4) and (7),
imply that vk+m

1 is bounded below by the right side of Inequality (31). We also showed
that the local alteration-proofness Condition (12) and equilibrium Identity (4) imply
that vk+m

1 is bounded above by the right side of Inequality (32).
However, for all m ≥ 1, we have xk+m−2 ≤ xk−1, so the upper bound of vk+m

1

(the right side of Inequality (32)) is weakly lower than the lower bound of vk+m
1 (the

right side of Inequality (31)), which is a contradiction. Therefore, we conclude that if
player 1 has no incentive to jump from period k to period k+m−1, and player 1’s local
alteration-proof conditions are satisfied, then player 1 must have no incentive to jump
from period k to period k + m. Applying this argument recursively for m ∈ {1, 2, ...},
we have proved that if player 1’s alteration-proof conditions for m ∈ {−1, 0, 1} are
satisfied, then the global conditions for m > 1 are also satisfied.

PBE construction: equilibrium sequence

Fix any trust game with period length ∆ < ∆. Define

γ̃ ≡ a − ∆
aδ

, (33)

and consider any γ ∈ [1, γ̃]. We will construct a constant-proportion (alteration-
proof) equilibrium with constant of proportion γ.

We begin by defining a sequence {xk, αk, vk+1
1 }L

k=0, where L will be determined in
the construction. For k > 0 the meaning of xk, αk, and vk

1 is the same as in the text;
αk is the level chosen in period k on the equilibrium path, xk is the type cutoff, and
vk

1 is player 1’s continuation value. The sequence gives these values from period 1 up
to the last period L in which bad types betray in equilibrium. The initial cutoff type
x0 will equal b as with every PBE, whereas α0 will be an artificial value that aids
in the equilibrium construction. The sequence is defined by induction, starting with
k = L and working backward in time. The period offset for v1 helps to organize the
variables in the recursive step.

The inductive procedure uses Equations (4), (7) and (14), which we restate here:

vk
1 =

(
1 − F (xk)

F (xk−1)

)(
−cαk

)
+ F (xk)

F (xk−1)
(
αk∆ + δvk+1

1

)
, (34)
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αk

αk−1 = xk−1 − ∆
xk−1δ

, (35)

vk
1 = γ · ∆

1 − δ
αk−1, (36)

for k ∈ {1, 2, ..., L}. Recall that the first equation is the identity relating player 1’s
continuation values in adjacent periods, the second equation is the indifference con-
dition for the cutoff type (here stated for periods k − 1 and k), and the third is the
constant-proportion condition that defines the equilibrium we are working to form.

We next describe the induction procedure to construct the sequence. Letting L

be an arbitrary positive integer, set xL = a, αL = 1, and vL+1
1 = ∆/(1− δ). Then, for

any k for which (xk, αk, vk+1
1 ) has been set and if the procedure has not yet terminated,

derive (xk−1, αk−1, vk
1) as follows. If for the given (xk, αk, vk+1

1 ), there is a vector
(xk−1, αk−1, vk

1) that solves the system of Equations (34)-(36), then (xk−1, αk−1, vk
1) is

taken to be this vector; further, if xk−1 < b then the procedure continues by lowering
the value of k by one unit and restarting the calculations. Otherwise (if there is no
solution or if the solution has xk−1 = b), set xk−1 = b, set αk−1 = δαkb/(b − ∆),
redefine L so that the current value of k is 1, and terminate the procedure.24

The construction can be put in terms of the type cutoffs only, where a transition
function relates xk to xk−1, without reference to the other variables α and v1. Here
are the calculations that yield the transition function:

For k = L, we plug in the terminal values αL = 1, xL = a, and vL+1
1 = ∆/(1 − δ)

into Equations (34)-(36), use Equation (35) to substitute for αk−1 in Equation (36),
and then use the resulting equation to substitute for vk

1 in Equation (34). This yields
the following equation that implicitly identifies xL−1:

∆
1−γδ
1−δ

− γδ
xL−1−∆

∆
1−δ

c + ∆ + δ ∆
1−δ

= F (xL−1) − F (a)
F (xL−1) . (37)

For k ∈ {1, 2, ..., L − 1}, we can use Equation (36) to substitute for both vk
1 and vk+1

1

in Equation (34), which yields

γαk−1 ∆
1 − δ

=
(

1 − F (xk)
F (xk−1)

)(
−cαk

)
+ F (xk)

F (xk−1)

(
αk∆ + δγαk ∆

1 − δ

)
.

24. By definition, type b would be indifferent between betraying in a given period at level α0 and
waiting until the next period to betray at level α1.
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Dividing both sides by αk, using Equation (35) to substitute for αk−1/αk, and rear-
ranging terms yields

∆
1 − γδ

xk−1−∆
∆

1−δ

c + ∆ + δγ ∆
1−δ

= F (xk−1) − F (xk)
F (xk−1) . (38)

Thus, the sequence {xk}L
k=0 is formed by first letting L be an arbitrary number to

be defined later, setting xL = a, and finding xL−1 to solve Equation (37). For k < L,
xk−1 is defined inductively by Equation (38). At the point where there is no solution
to the transition function or where the solution is exactly b, the procedure terminates,
L is set to the number of rounds that occurred, and x0 is set to b. Once {xk}L

k=0 has
been determined, the corresponding values of αk and vk+1

1 are easily calculated using
Equations (35) and (36) and the initial value αL = 1.

We next show that the procedure to construct {xk}L
k=0 is well defined in that the

solution to the system of equations, when it exists, is unique. For values of ∆, γ, and
xk for which Equation (38) has an interior unique solution, denote this solution by
xk−1 = µ(xk; γ, ∆).

Lemma 5. Under Assumption 1, for any γ ∈ [1, γ̃] and xk ∈ [a, b], Equation (38)
has at most one solution. At such a point where µ(xk; γ, ∆) ∈ (a, b), the solution is
uniquely defined on a neighborhood of γ and xk, the conditions of the implicit function
theorem hold, and dµ(xk; γ, ∆)/dxk ≥ 0 and dµ(xk; γ, ∆)/dγ ≤ 0. Equations (37) has
the same properties.

Proof. We first show that, under Assumption 1, the solution to Equation (38) is
unique if it exists. Denote

F(xk−1; xk, γ) ≡ ∆
1 − γδ

xk−1−∆
∆

1−δ

c + ∆ + δγ ∆
1−δ

− F (xk−1) − F (xk)
F (xk−1) ,

so that F(xk−1; xk, γ) = 0 at a solution point xk−1. Observe that for all xk ∈ (a, b)
and γ ∈ [1, γ̃],

F(xk; xk, γ) = ∆
1 − γδ

xk−∆
∆

1−δ

c + ∆ + δγ ∆
1−δ

> ∆
1 − γ̃δ

xk−∆
∆

1−δ

c + ∆ + δγ̃ ∆
1−δ

= ∆
1 − a−∆

xk−∆
∆/(1−δ)

a

c + ∆ + (a − ∆)∆/(1−δ)
a

> 0.
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The derivative of F with respect to xk−1 exists for every xk−1 ∈ (a, b) and is equal to

∂F
∂xk−1 =

∆ γδ
(xk−1−∆)2

∆
1−δ

c + ∆ + δγ ∆
1−δ

−F (xk)f(xk−1)
(F (xk−1))2 =

∆ γδ
(xk−1−∆)2

∆
1−δ

c + ∆ + δγ ∆
1−δ

− f(xk−1)
F (xk−1)

c + γδ xk−1

xk−1−∆
∆

1−δ

c + ∆ + δγ ∆
1−δ

,

which is strictly negative under the assumption ∆ ≤ ∆. This implies that at most
one value of xk−1 solves Equation (38).

Function F is continuously differentiable on the set of xk, xk−1 ∈ (a, b) and γ ∈
(0, γ̃), and the derivative with respect to xk−1 is nonzero. Applying the implicit
function theorem to the identity F = 0 yields

dxk−1

dxk
= f(xk)

F (xk−1) ·

F (xk)f(xk−1)
(F (xk−1))2 − ∆

γδ
(xk−1−∆)2

∆
1−δ

c + ∆ + δγ ∆
1−δ

−1

and

dxk−1

dγ
=
(

∆
xk−1 − ∆ + F (xk−1) − F (xk)

F (xk−1)

)
· ∆γ

(xk−1 − ∆)2 − F (xk)f(xk−1)
F 2(xk−1)

c + ∆ + δγ ∆
1−δ

δ ∆
1−δ

−1

.

Because

F (xk)f(xk−1)
(F (xk−1))2 > ∆

γδ
(xk−1−∆)2

∆
1−δ

c + ∆ + δγ ∆
1−δ

, and ∆γ

(xk−1 − ∆)2 ≤ F (xk)f(xk−1)
F 2(xk−1)

c + ∆ + δγ ∆
1−δ

δ ∆
1−δ

for ∆ < ∆, we have dµ(xk; γ, ∆)/dxk ≥ 0 and dµ(xk; γ, ∆)/dγ ≤ 0.
The calculations for Equation (37) are similar to those above for Equation (38).

We conclude the constructive step by showing that L is finite. Because γ ≤ γ̃ ≤
(xk−1 − ∆)/(xk−1δ), the left side of Equation (38) is positive and bounded away from
zero. Assumption 1 guarantees that the slope of F is bounded away from zero. This
implies that there is a number ε > 0 such that xk−1 − xk > ε for each k, proving
that the inductive step terminates in a finite number of rounds, and this number of
rounds is defined to be L so that the resulting sequence runs from k = 1 to k = L.
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PBE construction: strategies

We next specify the strategy profile and verify that it is a PBE. On the equilibrium
path through period L, the sequence of levels chosen by player 1 and the cutoff types
for player 2 will be {αk, xk}L

k=1 as constructed above, and then αk = 1 and xk = a for
every k > L. For any history to period k on this path, player 1’s strategy prescribes
level αk in period k. Likewise, on this path through the middle of any period k, every
type x ≥ xk is supposed to betray and types below xk cooperate. Player 1’s updated
belief at the beginning of each period k + 1 is then given by F conditional on x < xk.

For every history of play in which player 1 had at some point deviated from the
prescribed sequence of levels, all types of player 2 are prescribed to immediately
betray. For every history of play in which player 1 had at some point deviated from
the prescribed sequence of levels and yet player 2 continued to cooperate (a further
public deviation), player 1’s updated belief assigns probability 1 to the bad type x = a

and player 1 is supposed to select α = 0.
The specifications just described cover all histories. Beliefs accord to the condi-

tional probability formula on the equilibrium path. It is easy to see that the strategies
are sequentially rational. By the construction of {αk, xk}∞

k=1, on the equilibrium path
every type of player 2 optimally behaves as prescribed, with bad types betraying
at the appointed periods and good types cooperating forever, and player 1 cannot
gain by deviating (player 1’s continuation value is strictly positive, whereas deviat-
ing would lead to a continuation value of zero). Clearly the prescribed behavior is
rational off the equilibrium path.

Alteration-proofness of the constructed PBE

We next show that, for γ close to 1, the PBE constructed above is alteration-proof.
We do this by proving that it is locally alteration-proof and then applying Lemma 4.

Lemma 6. For any ∆ > 0, there exists γ̄ > 1, such that for all γ ∈ [1, γ̄], the
constructed sequences {αk, xk, vk+1

1 }L
k=0 constitute a locally alteration-proof PBE.

Proof. To verify the local alteration-proof Conditions (11) and (12), we first show the
constructed {xk, αk, vk+1

1 }L
k=0 satisfies

∆
1 − δ

αk−1 ≤ vk
1 ≤ ∆

1 − δ
αk

(
F (xk) − F (xk−1)

F (xk−1) · c

xk
+ F (xk)

F (xk−1)

)
, (39)
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for k ∈ {1, 2, ..., L + 1}.
First, Inequality (39) holds for k = L+1, given vL+1

1 = ∆/(1−δ), αL = αL+1 = 1,
and xL = xL+1 = a. For k = L, substituting in αL = 1, xL = a, vL

1 = γαL−1∆/(1−δ),
and αL−1 = δxL−1/(xL−1 − ∆), Inequality (39) becomes

∆
1 − δ

δxL−1

xL−1 − ∆ ≤ γ
∆

1 − δ

δxL−1

xL−1 − ∆ ≤ ∆
1 − δ

(
F (a) − F (xL−1)

F (xL−1) · c

a
+ F (a)

F (xL−1)

)
.

The left side of this condition is satisfied with γ ≥ 1, and the right side of this
condition can be simplified to

a

c + a

(
1 − γ

δxL−1

xL−1 − ∆

)
≥ F (xL−1) − F (a)

F (xL−1)

Note that the right side of this inequality is the same as the right side of Equation (37),
so a sufficient condition is

a

c + a

(
1 − γ

δxL−1

xL−1 − ∆

)
≥ ∆

1−γδ
1−δ

− γδ
xL−1−∆

∆
1−δ

c + ∆ + δ ∆
1−δ

.

For γ ≤ γ̃, this condition can be simplified to

a

c + a
≥

∆
1−δ

c + ∆
1−δ

,

which is satisfied for all a > ∆/(1−δ). Hence, we conclude that Inequality (39) holds
for k = L.

Next, we verify Inequality (39) for k ∈ {2, 3, ..., L − 1}. The left inequality of
this condition is trivially satisfied with γ ≥ 1. Simplifying the right inequality of this
condition using Equation (35), we have

xk

c + xk

(
1 − xk−1γδ

xk−1 − ∆

)
≥ F (xk−1) − F (xk)

F (xk−1) .

We use the right side of Equation (38) to substitute for the right side of this inequality
to get

xk

c + xk

(
1 − xk−1γδ

xk−1 − ∆

)
≥ ∆

1 − γδ
xk−1−∆

∆
1−δ

c + ∆ + δγ ∆
1−δ

,
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which simplifies to

0 ≥ (δγ)2 − δγ

(
δ + ∆

xk−1
c

xk
− 1 − δ

∆ c

)
− c

1 − δ

∆

(
1 − ∆

xk

)(
1 − ∆

xk−1

)
. (40)

Denote the right side of this inequality as G(γ, xk−1; xk, ∆). Recall that xk−1

relates to γ and xk according to µ(xk; γ, ∆), so we can write G(γ, µ(xk; γ, ∆); xk, ∆)
to substitute for xk−1. We will show that G(γ, µ(xk; γ, ∆); xk, ∆) ≤ 0 for all xk ∈ [a, b]
and for all γ ∈ [1, min{γ̃, γ̂}], where

γ̂ ≡ 1
2δ

(δ + ∆ c

a2 − 1 − δ

∆ c

)
+

√√√√(δ + ∆ c

a2 − 1 − δ

∆ c

)2

+ 4c
1 − δ

∆

(
1 − ∆

a

)2
 .

When γ = 1, G(1, µ(xk; 1, ∆); xk, ∆) is strictly negative. For γ ∈ [1, γ̃], we apply
the chain rule to obtain

dG
dγ

= δ

(
2δγ − δ + 1 − δ

∆ c − ∆
xk−1

c

xk

)
− ∆

(
1 − δ

∆ − 1 − δ

xk
− δγ

xk

)
c

(xk−1)2
dxk−1

dγ
,

which is positive when ∆ < ∆. Note G(γ, µ(xk; γ, ∆); xk, ∆) is continuous in γ, so
there exists γ̂(xk), such that G(γ, µ(xk; γ, ∆); xk, ∆) ≤ 0 for all γ ∈ [1, γ̂(xk)].

In fact, it suffices to set γ̂(xk) = γ̂, so that this upper bound on γ implies
G(γ, µ(xk; γ, ∆); xk, ∆) ≤ 0 for all xk. To see this, let us apply the chain rule to
calculate the derivative of G with respect to xk:

dG
dxk

= (1−δ) c

(xk)2

(
1 − δ + δγ

1 − δ

∆
xk−1 − 1

)
+(1−δ) c

(xk−1)2

(
1 − δ + δγ

1 − δ

∆
xk

− 1
)

dxk−1

dxk
.

This value is negative when ∆ < ∆. The same conclusion holds for xk−1 because it
enters the expression in a way that is symmetric to xk. Thus G is decreasing in both
xk and xk−1, and so plugging in a for these variables yields the highest value of G for
a given γ. Because γ̂ is the root of G(γ, a; a, ∆) = 0, we conclude that Inequality (40)
is satisfied for all γ ∈ [1, min{γ̂, γ̃}].

Finally, to complete the proof, we verify Inequality (39) for k = 1. We define α0

as the artificial level such that type x0 = b is indifferent between betraying in period
0 with level α0 and in period 1 with level α1, that is α0 ≡ α1δb/(b − ∆). Together
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with x0 = b and Equation (34), Inequality (39) evaluated at k = 1 becomes

δb

b − ∆ ≤ −c
1 − δ

∆ + F (x1)
(

c
1 − δ

∆ + 1 − δ + δγ

)
≤ F (x1)c + x1

x1 − c

x1 ,

which rearranges to

(1−δ)b−∆
b−∆ + δ(γ − 1)

c1−δ
∆ + 1 + δ(γ − 1)

≥ 1 − F (x1) ≥ δ(γ − 1)
c
(

1−δ
∆ − 1

x1

)
+ δ(γ − 1)

. (41)

Recall that the sequence is constructed backward in k and terminates at x0 = b if the
remaining mass of bad types is too small for Equation (38) to hold—that is

∆
1 − γδ

b−∆
∆

1−δ

c + ∆ + δγ ∆
1−δ

≥ 1 − F (x1). (42)

The left inequality of Expression (41) is implied by Inequality (42), as the following
is easily verified:

(1−δ)b−∆
b−∆ + δ(γ − 1)

c1−δ
∆ + 1 + δ(γ − 1)

≥ ∆
1 − γδ

b−∆
∆

1−δ

c + ∆ + δγ ∆
1−δ

.

The right inequality of Expression (41) is satisfied if

γ ≤ 1 + 1 − F (x1)
F (x1)

c

δ

(
1 − δ

∆ − 1
x1

)
.

The right side of this inequality is always greater than 1 because a ≤ x1 <

x0 = b by construction. For γ = 1, this condition is satisfied as a strict inequality.
Because µ is continuous in γ and x1 results from a finite number of applications of
µ, x1 is continuous in γ except possibly at discrete values where L changes in the
sequence construction. Therefore, there is a bound γ̌ such that the right inequality
of Expression (41) is satisfied for all γ ∈ [1, min{γ̌, γ̃}]. So we can define

γ ≡ min{γ̃, γ̂, γ̌}.

and then for all γ ∈ [1, γ], the constructed sequence {xk, αk, vk+1
1 }L

k=0 satisfies the
local alteration-proof Condition (39).
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Appendix C Proof of Theorem 3

Two lemmas

We start with a couple of lemmas that will be used at a few points in the main
analysis.

Lemma 7. For any alteration-proof PBE and for all k ∈ {2, ..., L},

vk
1

αk−1 ∈
[

∆
1 − δ

,
∆

1 − δ
· xk−1 − ∆

xk−1δ

]
.

Further, vk
1/αk−1 − ∆/(1 − δ) is on the order of ∆.

Proof. From Inequality (11), we have vk
1/αk−1 ≥ ∆/(1 − δ). From Inequality (12)

and Condition (35), we have

vk
1

αk−1 ≤ ∆
1 − δ

· xk−1 − ∆
xk−1δ

(
1 − F (xk−1) − F (xk)

F (xk−1) · c + xk

xk

)
≤ ∆

1 − δ
· xk−1 − ∆

xk−1δ
,

which proves the uniform upper bound of vk
1/αk−1. On the second claim, note that

the difference between the upper and lower bounds on vk
1/αk−1 can be rewritten by

rearranging terms as follows:

∆
1 − δ

xk−1 − ∆
xk−1δ

− ∆
1 − δ

= ∆
δ

· ∆
1 − δ

·
(

1 − δ

∆ − 1
xk−1

)
.

The term in parentheses is bounded away from zero for xk−1 ∈ [a, b] and ∆/(1 − δ)
converges to 1/r as ∆ approaches zero, and so the entire expression is on the order
of ∆.

Lemma 8. For any alteration-proof PBE, xk+1 − xk and αk+1 − αk are both on the
order of ∆.

Proof. From player 2’s indifference Condition (7), rearranging terms gives us

xk = ∆αk

αk − δαk+1 = ∆
1 − δαk+1/αk

.
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Because xk is in [a, b] for all ∆ > 0, so is the right most term, which simplifies to

∆
δ

(
1 − δ

∆ − 1
a

)
≤ αk+1 − αk

αk
≤ ∆

δ

(
1 − δ

∆ − 1
b

)
. (43)

Note the left and right most terms are on the order of ∆, and when we have αk strictly
positive, then αk+1 − αk must be on the order of ∆.

Second, rewrite Inequality (13) to get

0 ≥ F (xk) − F (xk−1)
F (xk−1) ≥ c(αk − δαk+1) + ∆αk−1

(c + ∆)αk − δcαk+1 − 1 = αk−1 − αk

αk(c/xk + 1) , (44)

where the left-most term is 0 and right-most term is on the order of ∆, so F (xk) −
F (xk−1) is also on the order of ∆. By Assumption 1 (in particular that F ′ is bounded
away from 0) and because F (xk−1) is bounded away from zero owing to the probability
of the good type, we conclude that xk − xk−1 is on the order of ∆.

Change of variables and adjacent periods

We next move on to the main analysis for the proof of Theorem 3. Our calculations
are simplified by introducing a new variable wk ≡ vk

1/αk−1, for all k ∈ {2, ..., L +
1}, which reduces the number of dimensions by alleviating vk

1 and αk−1 as separate
variables. Note that, with the new notation, any alteration-proof PBE sequence
{xk, αk, vk+1

1 }L
k=1 has a corresponding sequence {xk, wk+1}L

k=1.
In fact, the PBE and alteration-proofness Conditions (4), (7), (11) and (12) can

be expressed in terms of only the sequence {xk, wk+1}L
k=1 as follows:

wk = xk−1 − ∆
δxk−1

(
−c + F (xk)

F (xk−1)(∆ + c + δwk+1)
)

(45)

∆
1 − δ

≤ wk ≤ ∆
1 − δ

xk−1 − ∆
δxk−1

(
F (xk) − F (xk−1)

F (xk−1) · c

xk
+ F (xk)

F (xk−1)

)
. (46)

Equation (45) is derived by starting from Equation (4), substituting for vk
1 and vk+1

1

using wk = vk
1/αk−1 and wk+1 = vk+1

1 /αk, dividing by αk, and using Equation (7)
to substitute for αk−1/αk. The inequalities in Expression (46) are Inequalities (11)
and (12) after substituting in wk.

We define function g : [a, b] × [a, b] × [0, ∞) → [0, ∞) to give wk as a function of
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xk, xk−1, and wk+1 according to Equation (45). That is,

wk = g(xk, xk−1, wk+1) ≡ xk−1 − ∆
δxk−1

(
−c + F (xk)

F (xk−1)(∆ + c + δwk+1)
)

.

By next studying the properties of g, we will be able to construct bounds on equilib-
rium sequences. In particular, we need to look at how the values of wk+1 and xk−1

relate over the two adjacent periods k and k +1, while fixing wk, wk+1, and xk+1, and
allowing xk to vary.

Lemma 9. Fix numbers wk, xk+1 ∈ [a, b] and wk+2. Under Assumption 1, suppose
that the following equations hold for some values x̂k, x̂k−1 ∈ (a, b) and ŵk+1 ∈ R:

wk = g(xk, xk−1, g(xk+1, xk, wk+2)) and wk+1 = g(xk+1, xk, wk+2). (47)

These equations implicitly define xk−1 and wk+1 as functions of xk on a neighborhood
of (x̂k, x̂k−1, ŵk+1). The implicit function theorem applies and dwk+1/dxk < 0 and
dxk−1/dxk > 0.

Proof. The first part of the lemma follows directly from equilibrium Identity (45) and
Assumption 1. To show that wk+1 decreases in xk, we differentiate

g(xk+1, xk, wk+2) = xk − ∆
δxk

(
−c + F (xk+1)

F (xk) (∆ + c + δwk+2)
)

with respect to xk to get

dwk+1

dxk
= −c

∆
δ(xk)2 + F (xk+1)

F (xk)

(
∆
xk

− f(xk)
F (xk)(xk − ∆)

)
∆ + c + δwk+2

δxk
.

Under Assumption 1 and ∆ ≤ ∆, it is easy to verify that dwk+1/dxk < 0.
Next, we show that xk−1 increases in xk. Denote by gj the partial derivative of

function g with respect to its jth argument. Applying the implicit function theorem
to condition wk = g(xk, xk−1, g(xk+1, xk, wk+2)) and rearranging terms, we get

dxk−1

dxk
= −g1(xk, xk−1, wk+1) + g3(xk, xk−1, wk+1)g2(xk+1, xk, wk+2)

g2(xk, xk−1, wk+1) , (48)
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where

g1(xk, xk−1, wk+1) = xk−1 − ∆
δxk−1

f(xk)
F (xk−1)(∆ + c + δwk+1),

g2(xk, xk−1, wk+1) = ∆
δ(xk−1)2

(
−c + F (xk)

F (xk−1)(∆ + c + δwk+1)
)

−xk−1 − ∆
δxk−1

F (xk)f(xk−1)
F 2(xk−1) (∆ + c + δwk+1),

g3(xk, xk−1, wk+1) = xk−1 − ∆
xk−1

F (xk)
F (xk−1) , and

g2(xk+1, xk, wk+2) = ∆
δ(xk)2

(
−c + F (xk+1)

F (xk) (∆ + c + δwk+2)
)

−xk − ∆
δxk

F (xk+1)f(xk)
F 2(xk) (∆ + c + δwk+2).

Note that Identity (45) can be rearranged to form

c + wk δxk−1

xk−1 − ∆ = F (xk)
F (xk−1)(∆ + c + δwk+1),

which we use to simplify g2 and get

g2(xk, xk−1, wk+1) = ∆
xk−1

wk

xk−1 − ∆ − f(xk−1)
F (xk−1)

(
c
xk−1 − ∆

δxk−1 + wk

)

and
g2(xk+1, xk, wk+2) = ∆

xk

wk+1

xk − ∆ − f(xk)
F (xk)

(
c
xk − ∆

δxk
+ wk+1

)
.

Finally, we substitute the partial derivatives into Equation (48) and collect terms
to obtain

dxk−1

dxk
= −

xk−1−∆
δxk−1

∆
xk

1
F (xk−1)

(
f(xk)(xk + c) + δwk+1

xk−∆ F (xk)
)

∆
xk−1

wk

xk−1−∆ − f(xk−1)
F (xk−1)

(
cxk−1−∆

δxk−1 + wk
) .

The numerator is always positive and the denominator is negative when ∆ ≤ ∆, so
we have found that xk−1 increases in xk.

Lemma 10. Under Assumption 1 and assuming that the values of function g’s first
and second arguments satisfy xk ∈ (a, b) and xk−1 ∈ (a, b), g is strictly increasing in
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its first and third arguments and strictly decreasing in its second argument.

Proof. Clearly g is increasing in its third argument, wk+1, given that xk−1 > a > ∆.
In the proof of Lemma 9 we calculated g1 and g2. The first of these is strictly positive
and the second, under Assumption 1, is strictly negative.

Construction of bounds

We will construct two sequences, {xℓ}∞
ℓ=0 and {xℓ}∞

ℓ=0, that bound the type cutoffs
of all alteration-proof equilibria. These sequences will be indexed in reverse time by
integer ℓ, which counts the number of periods before period L − 1 in any alteration-
proof equilibrium.25 The construction incorporates bounds on the wk values. By
construction, for any given alteration-proof equilibrium and its associated sequence
{xk, wk+1}L

k=1, it will be the case that xk ∈ [xL−1−k, xL−1−k] for each k ∈ {1, 2, ..., L −
1}. There are two parts of the construction. The first constructs {xℓ}∞

ℓ=0 and the
second in similar fashion constructs {xℓ}∞

ℓ=0.
Each of the two bounding sequences will be derived starting from an arbitrary

alteration-proof equilibrium sequence {xτ , wτ+1}L
τ=1 under Assumption 1. We will ad-

just the sequence in recursive steps and then reverse the time index. So as not to overly
complicate the presentation, we continue to call the adjusted sequence {xτ , wτ+1}L

τ=1

after every modification (that is, we redefine the sequence as the result of each ad-
justment), rather than create new notation to track the adjustments. It will turn out
that the resulting bounds do not depend on the equilibrium that we started with.

The adjustments needed to construct {xℓ}∞
ℓ=0 will utilize the following two oper-

ations, indexed by a given period k:

Operation 1: For a given sequence {xτ , wτ+1}L
τ=1 and integer k ≤ L satisfying

wk ≤ g(xk, xk−1, wk+1), hold fixed all values in the sequence except xk−1. Raise
the value of xk−1 to the point x′ at which wk = g(xk, x′, wk+1), and then redefine
xk−1 ≡ x′. If no such x′ ∈ [a, b] exists, then stop the procedure and set xk−1 ≡ b.
Note that Lemma 10 ensures that x′ is uniquely determined and weakly exceeds the
starting value xk−1.

Operation 2: For a given sequence {xτ , wτ+1}L
τ=1 and integer k ≤ L − 1 satisfying

wτ = g(xτ , xτ−1, wτ+1) for every τ ∈ {k, k + 1, . . . , L}, hold fixed all values in the

25. From Lemma 2 we know that every alteration-proof equilibrium has xL = a, so the bounding
sequences will be for the periods L − 1 and earlier.
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sequence except xk−1, xk, and wk+1. Raise the value of xk to x′ and simultaneously
raise xk−1 to x′′ and lower wk+1 to w′, such that the system of Equations (47) is
maintained, to the point at which w′ = ∆/(1 − δ). Then redefine xk ≡ x′, xk−1 ≡ x′′,
and wk+1 ≡ w′. If no such point exists (because x′′ goes above b), then stop the
procedure and set xk−1 ≡ b and set xk and wk+1 to the values that satisfy (47).
Note that Lemma 9 ensures (x′, x′′, w′) is uniquely determined, with x′ and x′′ weakly
exceeding their starting values of xk and xk−1.

Here are the steps to construct {xℓ}∞
ℓ=0. Take any alteration-proof equilibrium

and let {xτ , wτ+1}L
τ=1 be its sequence of levels and w values. From Equation (45),

we know that wτ = g(xτ , xτ−1, wτ+1) for every τ ≤ L. From Lemmas 2 and 7,
and because (x − ∆)/δx is increasing in x > ∆, we know that xL = a, wL+1 ≤
(∆/(1 − δ)) · ((a − ∆)/δa), and wτ ≥ ∆/(1 − δ) for every τ . Our adjustments will
eventually push wτ down to exactly this lower bound, for each τ ≤ L.

The first step in the construction is to reset wL+1 to equal (∆/(1 − δ)) · ((a −
∆)/δa), which causes g(xL, xL−1, wL+1) to rise. Then perform Operation 1 for k = L,
which restores wL = g(xL, xL−1, wL+1) but in raising xL−1 causes g(xL−1, xL−2, wL)
to increase. Perform Operation 1 for k = L − 1, restoring wL−1 = g(xL−1, xL−2, wL).

The second step is to apply Operations 1 and 2 recursively as follows, starting
with k′ = L − 1. For any integer k′ ≤ L − 1 satisfying wτ = g(xτ , xτ−1, wτ+1)
for every τ ∈ {k′, k′ + 1, . . . , L}, perform Operation 2 for k = k′, which results in
wk′+1 = ∆/(1 − δ) and wk′−1 < g(xk′−1, xk′−2, wk′), and then perform Operation 1 for
k = k′ − 1, which restores wk′−1 = g(xk′−1, xk′−2, wk′). Decrease k by one and repeat
this function until either operation triggers the process to stop. Let N denote the
period at which the procedure stops, where xM = b.

Note that Operations 1 and 2 adjust the cutoff-type sequence only by raising values
of xτ , so we have constructed upper bounds on the type cutoffs in any alteration-proof
equilibrium. The procedure also results in wτ = g(xτ , xτ−1, wτ+1) and wτ = ∆/(1−δ)
for each τ ∈ {N, N + 1, . . . , L}. Letting ℓ = L − 1 − τ , so we count backward in time,
we thus have found a bounding sequence {xℓ}∞

ℓ=0 defined recursively by x0 = xL−1,

∆
1 − δ

= xℓ+1 − ∆
δxℓ+1

(
−c + F (xℓ)

F (xℓ+1)

(
∆ + c + δ

∆
1 − δ

))
(49)

for each ℓ ∈ {0, 1, . . . , L−N−2}, and xℓ = b for ℓ ≥ L−N−1. Note that Equation (49)
comes from plugging wτ = wτ+1 = ∆/(1−δ) into wτ = g(xτ , xτ−1, wτ+1) and replacing

55



τ with ℓ and replacing τ − 1 with ℓ + 1 to reverse the index direction. This equation
gives xℓ+1 implicitly as a function of xℓ.

We construct {xℓ}∞
ℓ=0 using the same steps but working in the opposite direction

for the adjustments. Note that from Lemmas 2 and 7, we know that xL = a and
∆/(1 − δ) ≤ wτ < (∆/(1 − δ)) · ((xτ−1 − ∆)/δxτ−1) for every τ . Let us define
Operations 1R and 2R just as we did Operations 1 and 2 except with adjustments
in the opposite direction. That is, Operation 1R begins with a sequence satisfying
wk ≥ g(xk, xk−1, wk+1) and lowers xk−1 to the point x′ at which wk = g(xk, x′, wk+1).
Operation 2R lowers xk to x′ and simultaneously lowers xk−1 to x′′ and raises wk+1

to w′, such that the system of Equations (47) is maintained, to the point at which
w′ = (∆/(1−δ)) · ((xk−1 −∆)/δxk−1). It is not difficult to verify that both operations
are well defined, yielding cutoff-type values satisfying xk−1 ≥ xk.

Starting with an arbitrary alteration-proof equilibrium sequence {xτ , wτ+1}L
τ=1,

we first reset wL+1 down to equal (∆/(1 − δ)), which causes g(xL, xL−1, wL+1) to fall.
Then we perform Operation 1R for k = L to restore wL = g(xL, xL−1, wL+1), and
again for k = L − 1 to restore wL−1 = g(xL−1, xL−2, wL). We proceed to the recursive
step, applying Operations 1R and 2R, starting with k′ = L − 1 and ending when
the boundary b is reached for xτ−1, at a period denoted by N . All operations adjust
the cutoff-type sequence only by lowering values of xτ , so we have constructed lower
bounds on the type cutoffs in any alteration-proof equilibrium. The procedure also
results in wτ = g(xτ , xτ−1, wτ+1) and wτ = (∆/(1 − δ)) · ((xτ−1 − ∆)/δxτ−1) for each
τ ∈ {N, N +1, . . . , L}. Letting ℓ = L−1−τ , we thus have found a bounding sequence
{xℓ}∞

ℓ=0 defined recursively by x0 = xL−1,

∆
1 − δ

= −c + F (xℓ)
F (xℓ+1)

(
∆ + c + δ

∆
1 − δ

· xℓ − ∆
δxℓ

)
(50)

for each ℓ ∈ {0, 1, . . . , L−N −2}, and xℓ = b for ℓ ≥ L−N −1. Equation (50) comes
from plugging wτ = (∆/(1 − δ)) · ((xτ−1 − ∆)/δxτ−1) and wτ+1 = ∆/(1 − δ) · ((xτ −
∆)/δxτ ) into wτ = g(xτ , xτ−1, wτ+1) and replacing τ with ℓ and replacing τ − 1 with
ℓ + 1. This equation gives xℓ+1 as a function of xℓ.
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Convergence of bounding sequences

In summary, we have constructed sequences {xℓ}∞
ℓ=0 and {xℓ}∞

ℓ=0 that bound all
alteration-proof equilibrium type-cutoff sequences. The final step of the proof is
to apply a convergence result of Watson (2021) to show that as ∆ → 0+, the upper
and lower bounds converge uniformly to the same continuous-time function defined
by a differential equation. To be precise, let us make explicit the dependence of the
bounding sequences on ∆ by writing {xℓ(∆)}∞

ℓ=0 and {xℓ(∆)}∞
ℓ=0, and define step func-

tions x̂ : [0, ∞) × (0, ∞) → [a, b] and x̂ : [0, ∞) × (0, ∞) → [a, b] by x̂(t; ∆) = x[t/∆]

and x̂(t; ∆) = x[t/∆], where [t/∆] denotes the largest integer that is weakly below
t/∆. As shown below, x̂(·; ∆) and x̂(·; ∆) converge, which implies the convergence of
equilibrium type cutoffs stated in Theorem 3.

Lemma 11. As ∆ → 0, step functions x̂(·; ∆) and x̂(·; ∆) uniformly converge to the
same function z : [0, ∞) → [0, b] that solves this initial-value problem:

dz

dt
= F (z)

f(z)
rz − 1

z(1 + cr) , z(0) = a. (51)

Proof. We simplify Equations (49) and (50) by rearranging terms to obtain, respec-
tively,

∆
1 − δ

δxℓ+1

xℓ+1 − ∆ + c = F (xℓ)
F (xℓ+1)

(
c + ∆

1 − δ

)
, (52)

and

F (xℓ+1) = F (xℓ)
∆ + c + ∆

1−δ
· xℓ−∆

xℓ

∆
1−δ

+ c
. (53)

Define the transition function σ : [a, b] × (0, ∆) → [a, b] so that, for every xℓ ∈ [a, b]
and ∆ ∈ (0, ∆), σ(xℓ, ∆) is the value of xℓ+1 that solves (52). Likewise, define
σ : [a, b] × (0, ∆) so that xℓ+1 = σ(xℓ, ∆) solves (53).

We next extend the domain of functions σ and σ to R×R. Regarding ∆, Expres-
sions (52) and (53) are already well-defined for ∆ ∈ R \{0} and the limits as ∆ → 0
exist because lim∆→0 ∆/(1 − δ) = 1/r. So for ∆ = 0 we simply replace ∆/(1 − δ)
with 1/r in (52) and (53), which extends σ and σ to ∆ ∈ R. The extension to xℓ ∈ R
can be done arbitrarily.

Under Assumption 1, the extended functions σ and σ are twice continuously dif-
ferentiable on (a, b) × R. Clearly, the initial states x0(∆) and x0(∆) converge to a.

57



Note as well that σ(x, 0) = x and σ(x, 0) = x for all x ∈ [a, b]. Finally, the implicit
function theorem applies to calculate dσ/d∆ and dσ/d∆, and these derivatives are
bounded on a neighborhood of ∆ = 0 and for all xℓ ∈ [a, b]. The properties just
stated allow us to apply Theorem 2 of Watson (2021), which establishes that x̂(·; ∆)
and x̂(·; ∆) uniformly converge to, respectively, functions z : [0, ∞) → [a, b] and
z : [0, ∞) → [a, b] that solve initial-value problems given by

dz

dt
= dσ

d∆(z, 0), dx

dt
= dσ

d∆(z, 0), and z(0) = z(0) = a.

To complete the proof, we evaluate dσ(z, 0)/d∆ and dσ(z, 0)/d∆.
To derive dσ/d∆, we apply implicit function theorem by differentiating both sides

of Equation (52) with respect to ∆, which yields

1 − ∆
1−δ

rδ

1 − δ

δxℓ+1

xℓ+1 − ∆ + ∆
1 − δ

(−rδxℓ+1 + δ dσ
d∆)(xℓ+1 − ∆) − δxℓ+1( dσ

d∆ − 1)
(xℓ+1 − ∆)2

= −F (xℓ)f(xℓ+1)
F 2(xℓ+1)

(
c + ∆

1 − δ

)
dσ

d∆ + F (xℓ)
F (xℓ+1)

1 − ∆
1−δ

rδ

1 − δ
.

We solve for dσ/d∆ and evaluate it at ∆ = 0, replacing ∆/(1−δ) with 1/r as required
by the extension, and setting xℓ = z and xℓ+1 = σ(z, 0) = z. This yields

dz

dt
= dσ

d∆(z, 0) = F (z)
f(z)

rz − 1
z (cr + 1) .

Similarly, we differentiate both sides of Equation (53) with respect to ∆,

dσ

d∆ = F (xℓ)
f(xℓ+1)

( ∆
1−δ

+ c)
(

1 + 1− ∆
1−δ

rδ

1−δ
xℓ+1−∆

xℓ+1 − ∆
1−δ

1
xℓ+1

)
−
(
∆ + c + ∆

1−δ
· xℓ−∆

xℓ

) 1− ∆
1−δ

rδ

1−δ

( ∆
1−δ

+ c)2 ,

and evaluate it at ∆ = 0, xℓ = z, and xℓ+1 = σ(z, 0) = z. This yields

dz

dt
= dσ

d∆(z, 0) = F (z)
f(z)

rz − 1
z(1 + cr) .

Clearly functions z and z are the same, identical to the function z described in the
statement of the lemma.

Note that the initial-value problem described in Lemma 11 is identical to that
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described for x in Theorem 3,

dx

dt
= −F (x)

f(x)
rx − 1

x(1 + cr) ,

except with the direction of time reversed, so we have proved the result with respect to
the cutoff-type sequences. As shown in the text, the value T is derived by integrating
the differential equation and solving for the time at which x = b.

To show that the equilibrium level sequences and continuation values for player 1
are also characterized as the theorem states, it is enough to observe that we can
trivially rewrite the transition functions that define sequences {xℓ}∞

ℓ=0 and {xℓ}∞
ℓ=0 as

vector-valued functions that include the level and player 1’s continuation value. In any
alteration-proof equilibrium, the transitions of the level and player 1’s continuation
value obey

αk+1 = xk − ∆
δxk

αk and vk+1
1 = wk+1αk,

αL+1 = 1, and vL+1
1 = 1/r. Corresponding to the lower-bound sequence {xℓ}∞

ℓ=0

is a lower-bound sequence for α and an upper-bound sequence for w; likewise, the
upper-bound sequence {xℓ}∞

ℓ=0 corresponds to an upper-bound sequence for α and
a lower-bound sequence for w. The convergence theorem of Watson (2021) applies
to vector sequences. Thus, the characterization of the limit of level sequences and
player 1’s continuation values then follows from the characterization of the limit of
type-cutoff sequences derived above.

Appendix D Proof of Proposition 1

We first derive comparative statics of T . From Equation (26), we use the fact ln(z) ≤
z − 1 and get

dT

dq
= (b − a)(1 + r)

(1 − q + r(bq − a))2

(
ln 1 − ra

q(1 − rb) − 1 − q + r(bq − a)
q

bq − a

b − a

)

≤ (b − a)(1 + r)
(1 − q + r(bq − a))2

(
1 − ra

q(1 − rb) − 1 − 1 − q + r(bq − a)
q

bq − a

b − a

)

= (b − a)(1 + r)
1 − q + r(bq − a)

(
1

1 − rb
− bq − a

b − a

)
1
q

= b(1 + r)
q(1 − rb) < 0,
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and

dT

db
= − (1 − q)(1 + r)

1 − q + r(bq − a)

rq
(
−1

r
ln 1−ra

1−rb
+ a−bq

1−q
ln q

)
1 − q + r(bq − a) +

(
1

1 − rb
+ q

1 − q
ln q

)
= q(1 − q)(1 + r)

(1 − q + r(bq − a))2

(
ln 1 − ra

q(1 − rb) − 1 − ra

q(1 − rb) + 1
)

≤ 0.

Second, from Equation (26), comparative statics of α(0) is

dα(0)
dq

= (r + 1)qr > 0,
dα(0)

db
= 0.

Third, for the comparative statics of the slope of x for fixed χ ∈ [a, b] at time
Γ(χ), we use Equation (22)

dΓ
dχ

= (1 + r)χ
1 − rχ

· 1 − q

(b − a)q + (χ − a)(1 − q) ≡ g(b, q; χ),

and take partial derivatives of g, we get

dg(b, q; χ)
dq

= (1 + r)χ
rχ − 1 · b − a

((b − a)q + (χ − a)(1 − q))2 > 0,

dg(b, q; χ)
db

= (1 + r)χ
rχ − 1 · q(1 − q)

((b − a)q + (χ − a)(1 − q))2 > 0.

Last, we consider the comparative statics of the slope of ln α for fixed χ ∈ [a, b]
at time Γ(χ). Similarly, with Equation (25), we have

d ln α

dχ
= − (1 − q)(1 + r)

(b − a)q + (χ − a)(1 − q) ≡ h(b, q; χ).

Therefore,

dh(b, q; χ)
dq

= (1 + r)(b − a)
((b − a)q + (χ − a)(1 − q))2 > 0,

dh(b, q; χ)
db

= q(1 − q)(1 + r)
((b − a)q + (χ − a)(1 − q))2 > 0.
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Supplementary Appendix

In this appendix, we provide an additional existence result: an alteration-proof equi-
librium that exhibits gradualism, trust, and cooperation by good types in every con-
tinuation (including after a deviation by player 1).

Theorem 4. Under Assumption 1, the trust game has a constant-proportion equilib-
rium with parameter γ = 1 that specifies a trusting equilibrium in the continuation
game following any history. In fact, after a deviation by player 1, within two periods
equilibrium play coincides with a continuation on the original equilibrium path.

Incidentally, in this equilibrium, when considering an alteration the players antic-
ipate no further alterations in the future.

Proof of Theorem 4:
In reference to the constant-proportion equilibrium definition, consider the case

of γ = 1. We use the same on equilibrium path sequence as in Appendix B, but
different off-equilibrium-path specifications.

In the equilibrium we now construct, for every history of play to the beginning
of any period, player 1’s updated belief about player 2’s type will be given by the
posterior of F conditioned on x ≤ x for some number x ≥ ∆/(1 − δ). In other words,
every continuation game from the start of any period will be defined by an upper-
truncated type space. For a given number x, let us call this continuation game the
x-truncation continuation game. Thus, we can fully describe player 1’s equilibrium
strategy by stating the level player 1 is prescribed to choose in the first period of the
x-truncation game, for every x ≥ ∆/(1− δ). Likewise, player 2’s equilibrium strategy
will be fully described by stating the set of types that betray in the first period of the
x-truncation game after player 1’s choice α in this period, for every x ≥ ∆/(1 − δ)
and for every α ∈ [0, 1].

Before describing the strategies, let us make a few notes. Recall that indifference
Condition (35) means that type xk−1 is indifferent between betraying at level αk−1

in one period and waiting to betray at level αk in the next period. Rearranging this
equation yields

αk−1 = αk · xk−1δ

xk−1 − ∆ .

Now think about the level ᾰk such that type xk of player 2 would be indifferent
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between betraying at level ᾰk in one period and waiting to betray at level αk in the
next period. This level is given by

ᾰk = αk · xkδ

xk − ∆ ,

and clearly ᾰk ∈ (αk−1, αk). Observe that ᾰk is increasing in k.
Here is the specification of strategies. Consider any x-truncation continuation

game and let ℓ be such that x ∈ (xℓ, xℓ−1]. If x < xℓ−1 then player 1 is prescribed to
choose α = αℓ in the current period. If x = xℓ−1 then player 1’s specified behavior
depends on whether player 1 deviated in the previous period. If player 1 did not
deviate in the previous period then player 1 is supposed to choose α = αℓ. If player 1
deviated in the previous period then player 1 is supposed to randomize between
α = αℓ and α = αℓ−1, with the probabilities described below.

For whatever level α′ that is actually chosen by player 1, player 2’s prescribed
behavior is determined as follows. If α′ ≤ αℓ−1 then all types above ∆αℓ−1/(αℓ−1−δαℓ)
cooperate and types below betray. If α′ > αℓ−1 then find the integer ℓ′ such that
α′ ∈ [ᾰℓ′−1, ᾰℓ′) and α′ ≥ αℓ−1. Player 2’s action is then specified as follows:

If α′ ∈ [ᾰℓ′−1, αℓ′−1) then all types strictly greater than xℓ′−1 betray and all types
weakly below xℓ′−1 cooperate. This is rational because player 1 in the following
period will randomize between αℓ′ and αℓ′−1 with exactly the probabilities that make
type xℓ′−1 indifferent between betraying at level α′ in the current period and waiting
to betray in the next period. Note that in this case the continuation game from the
next period is a truncation with cutoff x′ ≡ xℓ′−1.

Let us calculate the probability p that player 1 must put on level αℓ′−1 in the
next period to make type xℓ′−1 indifferent. That α′ ∈ [ᾰℓ′−1, αℓ′−1) ensures that such
a probability exists because, given the definition of ᾰℓ′−1, type xℓ′−1 would strictly
prefer to betray immediately if player 1 would choose αℓ′−1 in the next period, and
would strictly prefer to wait if player 1 would choose αℓ′ in the next period. Type
xℓ′−1’s indifference condition is:

xℓ′−1α′ = ∆α′ + δxℓ′−1(pαℓ′−1 + (1 − p)αℓ′),

which yields

p =
xℓ′−1−∆

δxℓ′−1 α′ − αℓ′

αℓ′−1 − αℓ′ . (54)
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If α′ ∈ [αℓ′−1, ᾰℓ′) then all types strictly greater than x′ ≡ α′∆/(α′ − δαℓ′) betray
and all types weakly below x′ cooperate. This is rational because player 1 in the
following period will choose αℓ′ for sure, making type x′ indifferent between betraying
at level α′ in the current period and waiting to betray at level αℓ′ in the next period.
Note that in this case the continuation game from the next period is a truncation
with cutoff x′ ∈ (xℓ, xℓ−1].

Denote v̂1(x; α′) as player 1’s continuation value in x−truncation game, when
player 1 chooses α′, assuming players follow prescribed strategies after player 1 devi-
ates. Therefore, player 1’s continuation value is

v̂1(x; α′) =
(

1 − F (x′)
F (x)

)
(−cα′) + F (x′)

F (x) ∆α′

+ δ
F (x′)
F (x)

((
1 − F (xℓ′)

F (x′)

)
(−cαℓ′) + F (xℓ′)

F (x′)
(
∆αℓ′ + δvℓ′+1

1

))
, (55)

for α′ ∈ [αℓ′−1, ᾰℓ′), and

v̂1(x; α′) =
(

1 − F (xℓ′−1)
F (x)

)
(−cα′) + F (xℓ′−1)

F (x)

(
∆α′ + δ

∆
1 − δ

αℓ′−1
)

, (56)

for α′ ∈ [ᾰℓ′−1, αℓ′−1).

Lemma 12. In an x-truncation continuation game and given the strategy, player 1’s
continuation value from any deviation α′ will be weakly lower than some alteration.

Proof. We define ℓ such that x ∈ (xℓ, xℓ−1]. Suppose player 1 deviates to α′ ≥ αℓ−1,
we first find the ℓ′ ≥ ℓ such that α′ ∈ [ᾰℓ′−1, ᾰℓ′). Next according to the strategy, we
discuss the following two cases: α′ ≥ αℓ′−1 and α′ < αℓ′−1.

In the case of α′ ∈ [αℓ′−1, ᾰℓ′), all types strictly greater than x′ = α′∆/(α′ − δαℓ′)
betray and all types weakly below x′ cooperate. By choosing α′ in current period
and αℓ′ in the following period, player 1’s continuation value becomes Equation (55).
We substitute vℓ′+1

1 = αℓ′∆/(1 − δ), and α′/αℓ′ = δx′/(x′ − ∆) into Equation (55)
rearrange terms and get

v̂1(x; α′) = δαℓ′
(

c + ∆
1 − δ

)
F (xℓ′)
F (x) +

((
−c + (c + ∆)F (x′)

F (x)

)
δx′

x′ − ∆ − cδ
F (x′)
F (x)

)
αℓ′

.

To find player 1’s best deviation in this case, we differentiate v̂1(x; α′) with respect
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to x′ and get

αℓ′ δ∆
(x′ − ∆)2

(
c
F (x) − F (x′)

F (x) + f(x′)
F (x) (x′ + c)(x′ − ∆) − F (x′)

F (x) ∆
)

,

which is positive for ∆ ≤ ∆. Hence, we conclude that v̂1(x; α′) increases in x′.
Further, because of x′ = α′∆/(α′ − δαℓ′), this implies that v̂1(x; α′) decreases in α′

and the optimal deviation for α′ ∈ [αℓ′−1, ᾰℓ′) is α′ = αℓ′−1.
In the case of α′ ∈ [ᾰℓ′−1, αℓ′−1), all types weakly below xℓ′−1 cooperate, and

player 1 randomizes in the following period by putting probability 1 − p on αℓ′ and
probability p on αℓ′−1, with p given by Equation (54). One can verify that α′ ∈
[ᾰℓ′−1, αℓ′−1) implies p ∈ (0, 1]. Player 1 ’s continuation value from the α′ deviation,
Equation (56), simplifies to

v̂1(x; α′) = α′
(

−c + F (xℓ′−1)
F (x) (c + ∆)

)
+ δ

F (xℓ′−1)
F (x)

∆
1 − δ

αℓ′−1.

Note that v̂1(x; α′) is linear in α′, allowing us to conclude that the best way to
deviate within the interval [ᾰℓ′−1, αℓ′−1] is to set α′ equal to one of the boundaries.
Since the interval is open at the upper boundary, we are using the fact that player 1’s
continuation value is continuous there. To see this, let us look at the lower boundary
and the interval below it. At α′ = ᾰℓ′−1, the continuation value is

v̂1(x; αℓ′−1) = αℓ′−1 xℓ′−1δ

xℓ′−1 − ∆

(
−c + F (xℓ′−1)

F (x)

(
c + ∆ + ∆

1 − δ

xℓ′−1 − ∆
xℓ′−1

))
,

which is the same as
lim

α′→ᾰℓ′−1
v̂1(x; α′ ∈ [αℓ′−2, ᾰℓ′−1)).

Recall in the case of α′ ∈ [αℓ′−2, ᾰℓ′−1), we have proved that v̂1(x; α′) monotonically
decreases in α′, so we conclude that comparing to α′ = ᾰℓ′−1, player 1 is able to
obtain a higher payoff by choosing α′ = αℓ′−2. Therefore, combing the two cases,
we have that player 1’s optimal deviation in the interval [αℓ′−1, αℓ′−2] is one of the
endpoints {αℓ′−1 and αℓ′−2}. Finally, because deviations with α′ = αℓ′−1 and αℓ′−2 are
equivalent to alterations with (ℓ, ℓ′ − ℓ − 1, αℓ′−1) and (ℓ, ℓ′ − ℓ − 2, αℓ′−2) respectively,
we conclude that player 1 has no incentive to deviate in an alteration-proof PBE.

Lemma 12 implies that if player 1 has no incentive to alter the game, then she
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also has no incentive to deviate. It remains to show that the PBE with the specified
strategy is alteration-proof. However, as the on equilibrium path outcome for the this
equilibrium is a special case of the alteration-proof PBE in Appendix B, we apply
Lemma 4 and 6 with γ = 1 to conclude that the prescribed strategy constitutes an
alteration-proof PBE.
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