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“To reach a port we must set sail –

Sail, not tie at anchor

Sail, not drift.”

Franklin D. Roosevelt
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Abstract
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Doctor of Philosophy

by Rohit Gupta

Underpinning genomic principles are defining feature in every physiologic and

pathologic process. Through advances in metabolomics, systems biologists can

now track the dynamic interactions of the metabolome with the epigenome, genome,

transcriptome and proteome. Understanding of cross talk between genomic, epige-

nomic and structural changes at biophysical scale on cellular metabolism is still

in its infancy. Using Next-Gen Sequencing data in tandem with biophysical

approaches, metabolism was found to play an important role in cellular prolif-

eration, differentiation, metastasis. Mutation, methylation and gene expression

level changes at genomic and epigenomic scale orchestrate pathway perturbations

crucial for oncogenesis and metastasis. These results show understanding genomic

and epigenomic machinery can provide important insights into cellular processes

vital for growth and development in tumor cells. Increased attention to how

genomic processes support transformational changes necessary for a cancer cell

will allow for more precise engineering of biological function and the identification

of targeted therapies.. . .
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Chapter 1

Introduction

1.1 Overview

Cancer is a complex genetic disease spanning several molecular events. However,

over the last few decades, researchers have begun to recognize the multifaceted

complexity which masks the genetic basis of cancer. Advent of high-performance

computing and high-precision DNA sequencing technologies confers researchers

the capability to obtain an exact readout of a tumor cell environment and factors

governing cellular metabolism thereby paving way for an unprecedented expansion

of our understanding about what makes cancer cells unique.The advent of genomic

technologies have paved way to study regulatory switches, oncogenic mutations,

pathway perturbations, chromatin accessibility and gene regulation. What follow

in subsequent chapters of this dissertation are a reflection of my published, under-

preparation and submitted work applying cancer systems biology strategies and

implementing methods to investigate the contribution of genomic processes to

diverse tumor factors. Aspects of cancer biology covered in this dissertation include

mutation burden[1], hyper mutation driven metastasis[2], epigenomic regulation of

tumor suppressors and transcription factors[3], validating structural changes and

modeling pathways in cancer metabolism [1,2].

1
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1.2 Background

1.2.1 Overview of Cancer Systems Biology

The genetic composition of a cell is subject to changes from multiple extrinsic

and intrinsic factors. Events such as DNA mutations, structural variations, and

regulation of epigenetic and transcriptional signatures often manifest into series

of transformational changes in a cell that may result in cancer. Even if multi-

ple tumors share similar recurrent genomic events, their relationships with the

observed phenotype may vary, and in most cases remains to be studied. Cancer

encompasses more than 100 distinct diseases, each with a unique epidemiology

and diverse set of risk factors which originate from different cell types and organs

of the human body. Furthermore, even within cancers of similar etiology and

tissue of origin, heterogeneity at the molecular level and with genetic and genomic

factors is prevalent. Generally, tumors arise due to the accumulation of mutations

that aid in promoting a cancer phenotype in genes of critical importance with the

capability to alter the cell machinery of proliferation, differentiation and death.

One approach to the widely expanding understanding of tumors is through the use

of Next-Generation Sequencing (NGS) data obtained from cancer cells and tissues

from patients.
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Genomic techniques are widely regarded as one of the most reliable ways to gain

insight into the biology of tumors, with experimental data aimed at integrating

multiple molecular events. Cancer Systems Biology refers to the use of relevant

genomic and modeling methods for analysis, interpretation and visualization of

datasets obtained from cancer cells and cancer tissue sequencing. In cancer, NGS

produces a wide array of genomic datasets spanning from gene expression and

mutation to epigenetic regulation through methylation. Generally, the sequencing

data obtained from NGS spans several molecular events, providing a snapshot

of a tumor cell at a specific instance in its growth and development cycle. For

melanoma patients, the applicability of genomic data has already produced tangi-

ble revolutionary advances. The discovery of cancer-causing genetic and epigenetic

factors in tumors has enabled the development of therapies that target such factors

and diagnostic tests that aid identification of patients that might benefit from such

therapies. For example, genomic analysis of mutation data in Melanoma patients

led to the identification of an activating point mutation in BRAF kinase (B-Raf

proto-oncogene, serine/threonine kinase) that not only established revolutionary

treatment options, but also an era of personalized medicine in Melanoma treat-

ment. Personalized therapies with kinase inhibitors of mutated BRAF are often

considered for the first line of treatment in Melanoma patients.

In recent years, the use of NGS data, including gene expression, analysis of

mutation burden, and a greater understanding of immunoregulatory mechanisms

has led to the development of a novel class of treatment options collectively

termed immunotherapy. Immunotherapies block immune checkpoints that are

otherwise targeted by tumor cells to protect themselves from immune system

attacks. Genomic analysis is crucial for identification of the patient subset that

responds to immune therapy. Moreover, similar to most therapies and partly

attributed to the robustness of a tumor cell, resistance mechanisms quickly evolve,

and genomic analysis provides a viable option to understand the underpinning

mechanisms that foster resistance to treatment therapies and provide an incredibly

detailed snapshot of a tumor cell at a given time.

Most common genomic events studied in cancer include mutations since tumors

often arise due to aggregation of mutations and copy number alterations (CNA),
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which are DNA mutations on a much larger scale and can vary in size from

1 basepair to an entire chromosome arm. Somatic Copy Number Alterations

(SCNAs) serve critical roles in activating oncogenes [1–3]. Regulation of gene

expression is often exploited by tumor cells to constitutively activate and repress

genes of significance [4, 5]. Quantification of gene expression therefore allows for an

understanding of genes and cellular pathways used by tumor cells to remap normal

cell machinery in favor of cancer metabolism. Epigenetic mechanisms are required

by cells and tissues for maintenance of tissue specific gene expression patterns

that serve vital roles in the development, growth and maintenance of a cell [6].

Tumor cells routinely disrupt the epigenetic landscape to alter gene functions [7]

and expression [8]. Changes in the methylome are very commonly observed in

tumor cells and alterations in gene-wise methylation levels are widely interpreted

as one of the prominent mechanisms used to promote the tumor phenotype.

Despite an abundance of rich genomic datasets, comprehensive investigation to

discern and analyze interwoven dynamic systems involved in tumor growth, de-

velopment and metastasis still needs to be identified. Furthermore, most genomic

datasets provide a snapshot, while tumor systems are highly complex dynamic

systems [9, 10]. Single cell sequencing is an emerging modality that examines

sequence information in a cell by optimized NGS technologies. Data produced

with single cell sequencing is of higher resolution and helps explore the tumor

micro-environment, as clonal differences and heterogeneity is one of the many

approaches tumor cells employ to sustain growth and evade immune response

[11]. Methodological advances have now enabled clinical applications of large-scale

transcriptome profiling and translational therapies [12]. The decreasing cost of

NGS coupled with advancements and ease of high performance computing (HPC)

has made it possible to analyze and obtain more genomic data than ever before,

providing insights into novel mechanisms and therapeutic targets. Cancer Systems

Biology facilitates a way to gain insight into the biology of tumors, allowing

targeted therapeutics in cancer by providing a host of methods that are used

in this dissertation.
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1.2.2 Genomic factors in Cancer

Sources of genetic information include biological samples of DNA, information

derived from a person's family history of disease, findings from physical examina-

tions, and medical records. DNA-based information captured in cancer patients

through NGS technologies can be gathered, stored, and analyzed at any time

during an individuals life span, from before conception to after death. All cancers

arise as a result of changes that have occurred in the DNA sequence of a cancer cell.

In general, cancer cells have more genetic changes than normal cells, attributed

mostly due to accumulation of mutations and genetic alterations that promote

tumors. But each cancer has a unique combination of genetic alterations that

varies from person to person and cancer tissue to cancer tissue. Some of these

changes may be the result of cancer, rather than the cause. Even within the

same cancer, cancer cells may have different genetic changes attributed to the

widespread heterogeneity that occurs in cancer as intra-tumor heterogeneity (ITH)

is prevalent in cancers.

Molecular and metabolic profiling includes the evaluation of genomic, proteomic,

metabolomic, and epigenomic expression factors, alone or in combination, for

cancer diagnosis, prognosis, and therapeutics [13]. A wide array of genomic

changes contribute towards genomic and metabolic reprogramming in cancer. The

effects and scope of genomic events varies and is often facilitated through multiple

factors and signaling pathways. Common genomic variations associated with

tumors often manifest through changes to the DNA sequence which alter a genes

ability to be transcribed and often profoundly impact its expression; such changes

include structural variations to the DNA, mutations, and copy number alterations.

However, factors other than DNA sequence variations may also influence gene

functioning; most notably, epigenomic regulation has been widely established as

a prominent mechanism used by tumor cells and is now considered an emerging

hallmark of cancer. Instead of inducing DNA variation, epigenomic regulation

includes slightly changing chemical composition of the DNA [14].

Through targeted regulation of the methylome, tumor cells can selectively limit

or enhance chromatic accessibility of gene which affects transcription, thereby
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altering expression. Much of these data-sets are housed across multiple databases.

For example, Catalogue of Somatic Mutations in Cancer (COSMIC) [15] contains

a curated list of cancer-associated somatic mutations, whereas NIH Roadmap

Epigenomics Mapping Consortium contains epigenomic data associated with nor-

mal tissues. Compiling these types of databases across several cancer tissues from

multiple patients is the primary objective of consortia such as The Cancer Genome

Atlas (TCGA).

The following sections highlight how cells engage the diverse genomic mechanisms

listed above to support distinct cellular processes and the methods employed by

systems biologists to understand the confluence of genomic factors and metabolism

in tumor cells.

1.2.2.1 Mutations and Somatic Variants

Somatic mutation in a cancer cell may encompass several classes of DNA sequence

changes, but all cancers carry somatic mutations at varying rates. Mutations are

single basepair changes or large-scale changes in the DNA caused by a myriad

of intrinsic or extrinsic factors. Changes in DNA sequence, either in germline

or somatic mutations, are not limited to substitutions of one base for another,

but can also undergo insertion or deletion of small or large segments of DNA,

rearrangements, or copy number increase (amplification) or decrease (deletion) of

the normal diploid genome. Progressive accumulation of mutations throughout

life during cell division or triggered due to an extrinsic event such as prolonged

UV exposure can lead to cancer.

Somatic mutations in a cancer genome are classified by their consequence for

cancer development. Genomic analysis of somatic mutations in cancer to study

alteration in gene expression and pathway dysregulation may serve to identify

driver events; therefore, genes harboring aforementioned events may be identified

as driver oncogenes. Somatic mutations that confer upon tumor cells a preferential

advantage in growth or survival through significantly rewiring cellular machinery

to promote disease progression are driver oncogenic mutations. Passenger muta-

tions, on the other hand, provide no distinct phenotypic consequence or selective
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growth advantage to the cell harboring them. Passenger mutations are still found

in cancer genomes, as they are acquired during cell division. Generally the location

of the mutation (intron vs exon), in addition to the kind of substitution (transition

vs transversion), as well as its scope (activating vs inactivating), all contribute

towards positive selection in a tumor.

Single nucleotide polymorphisms (SNP) are genetic variations resulting from a

single nucleotide base (A, C, T, or G) change in the DNA sequence. SNPs account

for approximately 90% of the genetic variation in humans. It is estimated that the

human genome has more than 30 million SNPs [16, 17]. Subsequent studies have

contributed to understanding the role of specific SNPs in genetic predisposition

to cancer, heart disease, diabetes, and other chronic diseases. In addition, SNP

profiles are useful for identifying cancer genes, risk, prognosis, and comorbidities,

as well as drug responses and interactions by using techniques like genome-wide-

association studies (GWAS)[18]. Inherited genetic mutations play a significant role

in 5 to 10% of cancers, but by and large, somatic structural variations or somatic

mutations account for most oncogenic mutations. While SNPs are commonly

classified as nucleotide substitutions associated with germ-line cells, mutations of

somatic cells are referred as SNVs.

The rate of point mutation varies along the genome, and is typically higher

in regions of higher expression levels, repressed chromatin, and late replication

times[19, 20]. The rate of mutation varies greatly among tumors and cancer

types. A significant increase in the rate of somatic mutations in tumors induced

by exogenous mutagens such as UV radiation for Melanoma and tobacco for Lung

Cancer is commonly observed. The somatic mutation rate in Skin Cutaneous

Melanoma (SKCM) can be up to 17 mutations/mB, followed by Lung Squamous

Cell Carcinoma with about 10 mutations/mB [21]. The cause of high mutation

rates also varies, and in cancers where loss of repair pathways or integrity check-

points are affected, a dramatically high number of mutations can be observed.

Thus, both intrinsic and extrinsic events are potential causal factors for high

number of somatic mutations. Despite the high number of somatic mutations,

only a small fraction show positive selection in cancer, while most mutations are

of neutral or mildly deleterious effect to the genome at large. These passenger
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Figure 1.1: Distribution of mutation in TCGA SKCM dataset (n=471). The
mutation signature of Melanoma is unique and domintated by UV damage

induced mutations.

mutation events are found in high numbers due to rapid clonal expansion caused

by driver mutations.

The prevailing pattern of mutations is termed the ’mutational signature’. Mu-

tational signatures can be indicative of the processes that promote rewiring of

cell metabolism. These signatures are much more profound in Melanoma, as

oncogenesis largely occurs due to UV-induced mutation damage. UV light induces

pyrimidine dimers, whose erroneous repair leads to C>T mutations at CpC or TpC

nucleotides. The majority of mutations in Melanoma can be attributed to UV-

induced damage signature. Based on genomic signatures, it is established that UV

damage drives genomic instability, mutagenesis, and carcinogenesis. UV damage

in particular fuels the malignant transformation of melanocytes into melanoma.
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Figure 1.2: Signature of UV mutagenesis across driver mutations in
melanoma. UV-induced DNA damage in conjunction with DNA mismatch
repair are a common cause of somatic mutations in Melanoma, raising the
frequency of UVA and UVB associated mutations about four-fold to 83% in

comparison to other TCGA cancers [21].

While C>T mutations dominate the landscape of mutations in Melanoma, there

exist mutations due to enzymatic damage. BRAF mutations are quite frequent

in Melanomas where tumors arise on skin without chronic sun-induced damage

[22]. In fact, approximately 50% of Melanomas harbor activating BRAF muta-

tions. BRAF mutations in Melanoma also display a distinct signature with over

90% being at codon 600, and most of these are single nucleotide substitutions

from a transversion of T to A at nucleotide 1799 (T1799A) which results in a

substitution of valine (V) for glutamic acid (E) (BRAF V600E). The second most

commonly mutated gene in Melanomas is NRAS observed in approximately 30% of

cases. Mutation signatures are a blunt instrument because most mutagens create

mutations similar to those from other mutagens.

Mutations that lead to inhibition/inactivation of a pathway are loss-of-function

mutations (inactivating mutations). Loss-of-function mutations induce disruption

in the promoter region of a tumor suppressor, which results in a loss of or severely

reduced expression. More commonly, loss-of-function mutations can also lead to a

functionally inactive gene-encoded protein which results in deletion or inactivation

of their functions. Mutations in proto-oncogenes and pathways that transform

them into hyperactive forms by a gene amplification event which translates to

more copies for an oncogene and increased expression levels are gain-of-function

mutations (activating mutations).
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Mutations in BRAF are critical to the malignant process in Melanoma and lead

to constitutive activation of mitogen-activating protein kinase (MAPK), an im-

portant signal transduction pathway involved in cell growth, proliferation and

survival[23]. Mutations that lead to enrichment of a pathway (e.g. MAPK in

Melanoma), are classified as activating mutations. An enrichment of about 1.34%

is observed in the MAPK pathway in BRAF mutated cases[24]. Mutations in

Bad gene are known to drive inactivation of pro-apoptotic pathways in colon

cancer[25]. Similar examples of activating and inactivating mutations are found

across most cancer tissues. APOBEC is a widespread mutational signature across

several cancer tissues[26]. APOBEC mutation signature is characterized by C>T

or C>G substitutions at sites preceded by thymine nucleobase and is caused by

off-target modification of DNA by the APOBEC family of proteins. By studying

the pattern of mutations and mutational signatures in cancer it is now possible

to understand the mechanism of action for many novel mutational processes in

cancer.

Figure 1.3: Assessing function impact of a variant. Driver mutations would
have higher rate of functional manifestation and are more likely to occur in an

exon while a passenger mutation would occur in an intron.

Accessing the functional impact of mutation is important to define the scope of a

mutation and to infer the degree of positive selection exhibited in cancer. Of the

several thousands of mutations typically found in Melanoma only a small subset

are positively selected; this subset of mutations represents driver mutations, while

passenger mutations do not exhibit strong evidence of positive selection and are

passed on due to clonal expansion brought by driver mutations[1]. Typically, driver
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mutations in tumors manifest with a higher rate of mutation (several magnitudes

higher than background rate) in a gene or region of the genome that is other-

wise expected to have neutral/functionally insignificant mutation accumulation.

In Melanoma, deviation from exome-wide median of the signature of nucleotide

replacement can be indicative for positive selection of cancer genes. As data-sets

and exhaustive somatic mutation catalogues across multiple tumor tissues have

grown, it has become increasingly important to develop pipelines and models that

accurately and efficiently detect background mutation rate and rank mutations

with high probability of positive selection. A workflow for discovery of enriched

driver mutation in Melanoma oncogenes will be covered in Chapter2 &3 of this

thesis.

The mutator hypothesis serves to explain the temporal evolution of cancer and the

processes that are undertaken by a cell starting with acquisition of hypermutation

and/or early driver mutations that trigger clonal expansion[27, 28]. Mutations

in one or more pathways of key significance such as chromosome segregation,

checkpoint control and cellular responses (e.g. apoptosis) can all lead to mutator

phenotype with diverse manifestations ranging from point mutations and copy

number alterations to microsatellite instability. Large-scale studies across 41

cancer types with sequencing data from over 5000 patients have shown a distinct

relationship between mutation frequency and cancer risk[29]. This strong correla-

tion implies that variation in cancer risk across tissues can be mainly attributed to

distinct mutation accumulation rates. It is therefore substantially more important

to a) efficiently identify all somatic mutation above background mutations, and

b) rank mutation hotspots and regions of hypermutation and narrow down driver

mutations only.

Typically, driver mutations that undergo clonal expansion must occur in stem or

proliferating cells. In the case of Melanoma, these are the stem cells in the epithelia

of the skin. Driver mutations that are harbored in epithelial skin cells are then

selected for clonal expansion, resulting in malignant disease[30, 31]. Selection of

the aforementioned driver mutations acts in different ways in different tissues.

The processes that aid in selection include increasing the relative rate of cell

proliferation over differentiation and eluding quiescence, senescence, or cell death.
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Most notably, eluding checkpoint and senescence has been at the forefront of the

recent breakthrough therapy in cancer, immunotherapy.

As part of this thesis work, methods and a pipeline to efficiently detect mutation

hotspots and accurately identify driver mutations in Melanoma are presented. A

permutation-based model which takes into consideration the location of a mutation

in relation to the genome to deduce the level of positive selection in cancer has

been formulated and included in this thesis work. Methods and pipelines for

analysis and identification of driver oncogenes in Melanoma were complemented

with tools to access the pathways impacted and their manifestations as it relates

to oncogenesis and disease progression.

1.2.2.2 Gene Expression Regulation& Transcriptional Activity

Patterns of gene expression underlie fundamental differences that define cell type

and function and also govern the flow of countless cellular processes. Analyzing

genes that are differently expressed in tumors and comparing with their normal

counterparts to gain mechanistic insights into remodeling of cellular machinery in

cancer cells has been focus of many studies. Gene expression analysis provides

a static image of cell machinery at a given instance in time. Gene expression is

mostly controlled at the level of transcription initiation and therefore transcription

factors and epigenetic factors that influence transcription initiation also contribute

in modulating gene expression. Gene expression profiling using high throughput

techniques that allow for genome-wide analysis have opened new avenues in un-

derstanding of the tumor micro-environment and facilitate comprehensive, high-

resolution studies that produce gene expression networks pertaining a disease or

cell condition.

Gene regulation is a label for the cellular processes that are undertaken to control

the manner and level of gene expression and the functional products of a gene.

Only a small fraction of genes in a cell are expressed at a given time, and a

distinct set of regulators through the process of gene expression regulation work

to actively promote or suppress transcription. A series of interactions between

RNA molecules, proteins, transcription factors and several other components play
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an active role as part of a gene expression system to determine what gene, when,

and where gets activated or expressed and the amount of RNA or protein product

produced as a result. It must be noted that gene expression modulation is fairly

commonplace and essential for the functioning of a normal cell. One of several

mechanisms, such as regulating the rate of transcription or translation or regu-

lating the stability of the mRNA molecule, can be employed for gene expression

regulation. Gene expression modulation gives the cell the ability to control struc-

ture and function and is required in housekeeping tasks like differentiation and

morphogenesis. Cancer cells posses the ability to alter the signals and underlying

mechanisms in order to selectively target molecules that facilitate oncogenesis and

promote disease progression and metastasis.

Figure 1.4: The gene-expression signature of DPYD in TCGA SKCM dataset
shows a clear bifurcation. The blue bars depict normalized gene expression in
primary Melanoma, while red bars show normalized expression in metastasized
Melanoma. The normalization was performed in relation to gene-expression of
metabolic genes in pyrimidine pathway [32]. DPYD signature and mutations

are discussed in Chapter4.

Gene expression signatures are combined or single gene expression alterations that

demonstrate validated correlation specificity in terms of diagnosis, prognosis or

prediction of therapeutic response. Before the advent and wide adoption of NGS
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technologies, gathering basic mechanistic, therapeutic, and functional insights of

a cancer cell required long and generally expensive procedures such as clinical

analysis, histological and immunohistochemical tests. The Serial Analysis of Gene

Expression (SAGE) technique, based on the sequencing and quantification of

mRNA in a sample as a direct measure of number of copies sequenced, was one

of the first methods that enabled measurement of expression in all genes in a

sample [33]. The microarray procedure, based on comparative hybridization of

two cDNA strands, enabled relative quantification of the transcriptional program

in a sample and gained prominence, facilitating fast and large-scale gene expression

analysis[34]. The microarray technique, when used to study gene expression, was

crucial in answering fundamental questions related to tumor biology, understand-

ing disease progression, metastasis, and viable therapeutic targets.

Gene expression signatures have shown prognostic values and can serve a critical

role for identification of therapeutic strategies. Enrichment Analysis (EA) reveals

features of genes and pathways, whereas other techniques, such as co-expression

networks and integrative clustering, reveal features of the patient subgroup. The

aforementioned tools serve an exploratory analysis need when determining the

cause and kind of cancer and also help narrow down the next steps in relation to

identification of the most effective targeted therapy regime to prescribe based on

a personalized medicine approach. Gene Set Enrichment Analysis (GSEA) serves

to identify a set of genes that share common biological function, location and

regulation[35]. GSEA is an analytical tool that, by interpreting gene expression

data, yields indispensable insights, e.g. if a set of enriched genes are connected

by a common theme, or if a pathway is over-represented. Co-expression and

clustering analysis show functional relatedness and reveal functionally coherent

sets of patient subclass that responds to a therapy[36]. In chapters 2,4 and 5 of this

thesis, methods for performing clustering and enrichment analysis in Melanoma

are outlined.

Expression profiling analysis aimed at mapping the changes a normal human

melanocyte undergoes during the transformation to Melanoma have identified

activation of NOTCH pathways, activation of cancer/testis antigens and down-

regulation of immune modulation genes[37, 38]. Analyses aimed at studying the
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molecular mechanisms that fuel the progression of Melanoma and its transforma-

tion into a malignant metastatic form with the use of expression data from DNA

microarray techniques have identified enhanced expression of genes involved in

extracellular assembly and genes that regulate the actin-based cytoskeleton[39].

These findings further corroborate the hypothesis that a specific subset of gene

products can regulate metastasis without altering the growth properties of the

tumor. Due to the heightened proliferation rate of metastasized tumor cells,

re-purposing pathways to support increased demand of raw materials will be

necessary without compromising growth[40].

Figure 1.5: Gene expression profiling across 21 cancer tissues from the TCGA
project. Mapping overlap of differential expression for all genes in TP, TM and
NT (primary, metastatic, and normal matched tumor, respectively) cohort class

(n>10000).

Subtypes based on gene expression profiling also share clinical outcomes. In a

study of 57 stage IV Melanoma patients, the subtypes with shared features of

low expression in immune signalling pathways had the lowest survival rate[41].
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Different subtypes were also associated with distinct biological parameters such

as pigmentation. In Metastatic Melanoma, expression-based subtyping through

unsupervised hierarchical clustering produced two distinct groups that had distinct

and statistically significant differences in survival and lesion thickness[42, 43].

Gene expression based signatures have also been validated to accurately differ-

entiate benign nevi from Melanoma[44, 45]. One of the first prognostic expression

signatures identified in cancer detailed a subset of genes in breast cancer [46,

47]. A distinct association was observed in the expression level of the gene-set

with tumoral progression. More recently, predictive gene signatures are used in

immunotherapy-based treatments to predict the response to therapy[48–50].

The systemic approach for identification of optimal drugs for a disease starts with

computing a disease-related gene expression signature followed by comparative

analysis between disease and control sample. The next step is then to identify

drugs/chemical compounds that have a reverse relationship with the disease sig-

nature. This technique is widely used in the case of cancer as well, although

the majority of drug-induced gene expression experiments have been conducted

in cancer cell lines. This approach has led to the discovery of a number of drug

candidates for various cancers; for example, in the case of lung cancer subtype

Small Cell Lung Cancer (SCLC), the use of similar systemic approaches using

gene expression signature profile led to the discovery of tricyclic antidepressant

as a potent drug[51]. In metastatic colorectal cancer, similar analysis led to the

discovery of three novel drugs, citalopram, troglitazone, and enilconazole, as viable

antimetastatic compounds[52]. In the case of renal cell cancer, drug repositioning

analysis has identified pentamidine as an effective anticancer agent[53]. In the case

of Melanoma, drug repositioning analysis has identified HIV1-protease inhibitor

nelfavir as a potent suppressor of PAX3 and MITF expression. Since acquired

resistance to BRAF and MEK inhibitors is very prevalent in Melanoma [54, 55],

nelfavir, which inhibits MITF, serves as an enhancer of BRAF inhibitor and can

be clinically relevant in subset of Melanoma cases[56].

Major themes that have emerged from gene expression and gene signature analysis

are: a) Metastatic potential is contained in the primary tumor and not acquired

over time; and b) Proliferation, mitosis control, and chromosome integrity mech-
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anisms play an outsized role in the development of aggressiveness as it pertains

to the tumor. It must also be noted that gene expression is only a reflection

of the phenotype associated with genetic alteration present in the tumor, and it

is therefore vital to understand the basis of genetic alterations to design robust

therapeutic strategies. Gene expression analysis based signatures, however, have

a limited scope in cancer, since a surmounting body of evidence shows that the

defining characteristic of most human cancers is intratumoral heterogeneity, and an

expression-based signature typically accounts for macro trends and generally fails

to resolve sub-clonal minutiae. A developing modality to curtail the shortcoming

presented in bulk cell population analysis such as gene expression signature is

single-cell sequencing analysis[57].

1.2.2.3 Somatic Copy Number Alterations

It is widely established that cancer is driven by acquisition of somatic genetic

alterations that range from point substitutions to large-scale structural variations.

Copy number alterations can have germline or somatic origins and are referred

as copy-number alterations (CNAs) or somatic copy number alterations (SCNAs),

respectively. Duplication or deletion events in the DNA that affect several base-

pairs at the same time are classified as copy number alterations. SCNAs affect a

larger fraction of the genome in cancers than do any other type of somatic genetic

alteration and are extremely common in cancer [1, 58–61]. DNA copy number

amplifications that activate oncogenes are hallmarks of nearly all advanced tu-

mors, whereas deletion of tumor suppressors provides unencumbered proliferation

potential to tumor cells[62]. Substantial evidence in support of direct and global

changes in gene expression patterns as a result of DNA copy number alterations

exists across several cancer tissues[63–66]. Greater understanding of the biological

and phenotypic effects of SCNAs is of critical importance and has allowed for

substantial advances in cancer diagnostics and therapeutics[3, 67].

Copy number amplification events cause an increase in the gene copy number of

genes located in the amplified region. The phenotypic manifestation of this event

is an elevated expression level. Similarly, as a result of copy number deletion
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events in the DNA, a reduction or in some cases absence of expression is observed.

In breast cancer, mapping amplified regions of the DNA led to the identification

of crucial oncogenes such as EGFR[68, 69]. The number of overexpressed genes

in the amplified regions does not directly translate to total genes in the region

and varies by cancer tissue type. The most pronounced overexpression occurs

in regions of high-level copy number increase[70]. In the case of chronic myeloid

leukemia (CML), amplification of various drug targets is observed that confer drug

resistance[71].

Figure 1.6: SCNAs may result in increase or decrease in copies of a gene
which then affects gene-expression. TCGA SKCM data shows an amplification
in number of copies of BRAF(oncogene) while in case CDKN2A, a tumor

suppressor gene, deletion is prevalent.

Across the genome, SCNAs most commonly observed are focal (short) or span

a chromosome arm (arm-level). Arm-level SCNAs are much more prevalent and

observed at a rate about 30 times that of focal SCNAs[58]. The most common

focal SCNAs observed in cancer are MYC amplification and CDKN2A/B deletions.

c-MYC, located on chromosome 8 q24.21, is an oncogene constitutively expressed

in almost all cancers and is essential for activation of cell proliferation machinery

required by highly proliferative cells such as cancer. CDKN2/B act as tumor

suppressors by regulating the cell cycle, disruption of which is of critical importance

to a cancer cell. For arm-level SCNAs, the most commonly amplified regions
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include regions of oncogenes like CDK4, EGFR, FGFR1 and KRAS, while deleted

regions are most commonly shown to include genes like CDKN2A/B, PTPRD,

RB1 and PTEN[58].

Table 1.1: The landscape of frequent somatic alterations in Melanoma.
Frequencies depicted are from TCGA SKCM PanCan [12] cohort with 471

patient samples and TCGA SKCM [72] described in Chapter 3.

Gene type Gene Most frequent alteration Frequency

NRAS Mutation, amplification 20–30%
BRAF Mutation, amplification 60–80%
KIT Mutation 3–5%
WNT11 Amplification 2–5%
MITF Amplification 5–10%
c-MYC Amplification 5–10%
RAC1 Mutation ≈ 6%
CDK4 Mutation, amplification 3–5%

Proto-oncogenes

AKT3 Amplification ≈ 5%
CDKN2A Deletion, mutation 25–10%
PTEN Mutation, deletion 10–5%

Tumor suppressor genes

TP53 Mutation ≈ 25%

Several high-throughput approaches have been applied to Melanomas to assess

chromosomal aberrations and gene expression patterns in an unbiased fashion. For

example, comparative genome hybridization (CGH) identified several chromoso-

mal and genetic changes. MITF amplification events are highlights of SCNA anal-

ysis in Melanoma and are more prevalent in the metastatic form[73].Other promi-

nent observations include losses of chromosome regions 6q, 8p, and 10 and gains

in copy number of chromosome regions 1q, 6p, 7, and 8 in primary Melanomas.

Frequent deletion of chromosome 13 and 17p in Melanomas arising in chronically

sun-damaged skin is also commonly reported[74–79]. Structural variants and copy

number alterations heavily influence the mutation frequencies of driver genes,

especially in the case of NF1, TP53, PTEN and KIT. The BRAF hotspot mutation

V600E is also observed to be amplified along with MET, which is located adjacent

to BRAF on chromosome 7[24]. Copy number amplification of epidermal growth

factor receptor (EGFR), which mediates cellular response to signal from growth

factors is associated with poor prognosis in melanoma[80].
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1.2.2.4 Methylation & Epigenomic Regulation

Selective modulation of genes and pathways is essential for normal functioning of

a cell. Cell circuitry pertaining a cell state are routinely switched ’on’ or ’off’

through a myriad of processes and factors. These factors include epigenetic events

occurring during cell development and proliferation that alter gene expression

without changing the actual DNA sequence. Epigenomic mechanisms, with DNA

methylation being the most prominently observed marker of gene modulation, are

prevalent methods through which functional regulation of cell state occurs. The

process of epigenomic-mediated silencing is actively repurposed in tumor cells to

promote cell conditions that aid proliferation, progression and evasion of immune-

mediated response. Strong evidence of extensive reprogramming of several aspects

of the epigenome in cancer tissues, including Melanoma, have provided evidence

that epigenetic mechanisms, such as selective methylation, modulate cell state

to promote disease progression[81–84]. Silencing of tumor suppressors through

targeted hypermethylation is an active machinery exploited by cancer; further-

more, aberration in DNA methylation is an epigenetic hallmark of cancer[85, 86].

Although silencing of some genes in cancer occurs by mutation, a large proportion

of carcinogenic gene silencing is a result of altered DNA methylation[87].

An important type of epigenetic change in carcinogenesis is DNA methylation, a

biochemical process by which a methyl (CH3) group attaches to cytosines, thereby

turning off the gene so that it is no longer expressed. The most common site of

DNA methylation causing silencing in cancer typically occurs at multiple CpG

sites. Clusters of CpGs, referred as to as islands, are found in 5’ regulatory and

promoter regions of a protein-coding gene. DNA methylation in mammals is found

sparsely but is globally distributed in defined CpG sequence throughout the entire

genome. CpG islands are short interspersed DNA sequences that are enriched

for GC. These CpG islands are normally found in sites of transcription initiation

(transcription start sites; TSS), and selective methylation of these sites is known

to effect gene regulation; to that end, methylation of CpG leads to gene silencing.

DNA methyltransferases (DNMTs; 1, 3A, 3B) are responsible for catalyzing the

transfer of a methyl group to mammalian genomic DNA and play an active role in

gene silencing and repression. DNMTs induce tumor growth and aid tumor cells
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by orchestrating both methylation-induced and methylation-independent changes

in genes and transcription factor expression[88, 89]. Elimination of both DNMT1

and 3A nearly eliminates methyltransferase activity while disruption of DNMT3A

only reduced the methyltransferase activity by 3%, indicating an enhanced role of

DNMT3A in regulatory and targeted methylation[90].

Figure 1.7: Methylation changes directly translate to changes in expression.
A decrease in gene-expression as a result of hypermethylation in RUNX1, 2
and 3 genes is depicted in plot above. Associated methods and regulation by

methylation are further explained in Chapter5 of this dissertation.

Melanoma exhibits a small degree of global hypomethylation within the bulk-

genome context but focal (local) hypermethylation at the site of tumor sup-

pressor genes and their promoter regions is responsible for most functional and

phenotypic intricacies[91, 92]. Analysis of Melanoma cell lines has identified

a large cohort of hypermethylated genes that are perceived to be repurposed

for malignant disease progression[93]. However, the scope and causal mecha-
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nisms that contribute towards pathogenesis as a result of hypermethylation remain

largely unknown. The effects and functional outcome from hypomethylation have

been studied much less but the phenomenon is common across several cancer

tissues including Melanoma[94]. Gene-specific hypermethylation and the unique

signature of methylation patterns associated with a cell state has been used to

classify Melanoma. In a study with benign nevi and malignant Melanoma, 26

CpG sites and 22 genes were identified to have distinctly different methylation

[95]. Methylation signatures are gaining significant prominence in prognosis and

tumor grading, because methylation pattern is an accurate reflection of cellular

machinery and contains much higher-resolution information of a cell state than

a histopathological slide. Comprehensive pathological diagnosis in tumors of the

central nervous system with use of DNA methylation data was reported to be

accurate in comparison with conventional histological analysis[96].

Epigenomics encompasses the investigation of marks materialized by chemical

modification of DNA and histones. DNA methylation is the most commonly

observed marker of epigenetic modification in cancer, but recent studies have

implicated an increasingly enhanced role of histone modification[97, 98]. Methyla-

tion is not the only form of epigenetic modification; acetylation, phosphorylation,

ubiquitylation, and sumoylation are also forms of epigenetic chemical modifica-

tion. Histone methylation and acetylation can occur at varying degrees; for

example, mono-, di- and trimethyl histones are routinely observed and affect

the chromatin accessibility and gene expression differently as well. All forms

of epigenetic modification generally affect the binding of transcription factors

to the transcription elements and possess the ability to modulate gene expres-

sion. Histone methyltransferases and demethylases cooperate with members of

the transcriptional machinery to modulate oncogenic gene expression.

Histones are chromosomal proteins, around which genomic DNA is compactly

wrapped to form the primary component of chromatin, to reduce chromosomal

volume and strengthen the structure. The pattern, location and amount of hi-

stone modification play a defining role in gene expression. The histone protein

family contains five major histones: H1, H2A, H2B, H3 and H4. Epigenomic

modification of histones occurs through post-translational modification and alters
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Table 1.2: Histone modification marks have a distinct fate as it pertains to
transcription regulation.

Histone
Modification

H3K4 H3K9 H3K27 H3K36

mono-methylation activation activation activation
di-methylation repression repression
tri-methylation activation repression repression activation

acetylation activation activation activation

their interaction with DNA. Alteration in histone structure due to epigenomic

modification impacts chromatin structure which in turn influences gene expression.

The functional interpretation of all histone modification is currently evolving, but

the affect on transcription regulation by most common marks are described in

the table below. Analyzing histone modification marks signals the global trend

of transcription regulation in a sample[99, 100]. Histone modification marks

associated with both active and repressive states of chromatin are implicated in

cancer and occur simultaneously.

Chromatin represents an additional level of gene expression regulation by epige-

netic mechanisms. The switching between inactive and active chromatin is closely

related to the activity of histone-modifying enzymes and chromatin-remodeling

complexes. Transcriptional activation of a gene is a multistep process that starts

with the binding of specific transcription factors to regulatory DNA elements.

Transcription factors ultimately transduce the proliferation signals elicited by

growth factors. Moreover, many human oncogenes encode for transcription factors,

and some of them are prevalent in particular cancer tissues (e.g., MYC, MITF).

Also, some of the most prominent tumor suppressors (e.g. p53) are transcription

factors. Transcription factors are therefore proteins that play a role in regulating

the transcription of genes by binding to specific regulatory nucleotide sequences.

Transcription factors are crucial for maintaining specific cell states and the gene

regulation programs associated with them[101]. Misregulation of transcription

through metabolic reprogramming is an emerging hallmark in cancer, particularly

in Melanoma[62, 102].
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1.3 Summary

Precise interplay between multitude of genomic events contribute to malignancies,

such as cancer. In Melanoma, substantial rewiring of a cell through a diverse set

of mechanisms, including genomic and epigenomic events, is pivotal for carcino-

genesis, progression and therapy resistance. This thesis work outlines analysis

framework and tools for investigation of Melanoma. In the chapters that follow,

a pipeline to efficiently detect driver oncogenic mutations, an assessment of the

impact of mutation on cancer metabolism, and overexpression-induced epigenomic

rewiring that occurs in Melanoma are described.

Table 1.3: The Complete Picture: Landscape of major pathways alterations in
cancer. These interpretation were made using TCGA [12] NGS data from over
10000 patients across multiple cancer tissues and visualized in cbioportal [103].
Tumor suppressor are depicted with green color while oncogenes are depicted

in pink color.

Pathway Gene Fate in Cancer Role Other Genes

Cell cycle

CDKN2A Deletion, Methylation

CDKN2B/C

CCND1 Amplification

CCNE1 Amplification

CDK4 Amplification

CDK6 Amplification

RB1 Deletion, mutation

Cyclins/CDKs

PI3K

PTEN Mutation, Deletion

RICTOR

PIK3R1 Mutation, Deletion

PIK3CA Mutation, Amplification

STK11 Mutation

AKT1 Mutation, Amplification

AKT2 Amplification

AKT3 Fusion, Mutation

Cell growth

p53

MDM2 Amplification

ATMMDM4 Amplification

TP53 Mutation

Cell survival,

proliferation
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Notch

CREBBP Mutation, Deletion

KDM5A

NOTCH1 Mutation, Deletion

NOTCH2 Mutation, Deletion

NOTCH3 Mutation, Deletion

NOTCH4 Mutation, Deletion

NOTCH7 Mutation, Deletion

NCOR1 Mutation, Deletion

Cell growth,

apoptosis

Myc

MYC Amplification

MYCNMAC Mutation

MGA Methylation, Mutation

Cell grwoth,

proliferation,

apoptosis

Hippo

LATS1 Mutation, Deletion

FAT2–4

LATS2 Methylation

YAP1 Amplification

NF2 Mutation, Deletion

FAT1 Mutation, Deletion

Cell proliferation,

differentiation

RTK/RAS

BRAF Mutation, Amplification

RAC1, KIT

NRAS Mutation, Amplification

EGFR Amplification, Mutation

KRAS Mutation, Amplification

MAPK1 Amplification

NF1 Deletion, Mutation

Cyclins/CDKs

Wnt

APC Mutation

ZNRF3CTNNB1 Mutation

TCF7 Methylation

Cell proliferation

TGFβ

TGFBR1 Deletion,Mutation

ACVR2A

TGFBR2 Methylation, Mutation

SMAD2 Mutation, Deletion

SMAD3 Methylation, Deletion

SMAD4 Mutation, Deletion

Proliferation,

stem/progenitor

phenotype
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Chapter 2

Methods

Working with omics data spanning several modalities must account for measure-

ments made across scales of time, space, and biological organization. In a similar

way, computational methods associated with cancer systems biology aim to coa-

lescence data from multiscale systems. The Cancer Genome Atlas (TCGA)[1] and

International Cancer Genome Consortium (ICGC)[2] are collaborative projects

with comprehensive catalogues of NGS data from over 35 cancer tissues collected

from over 25000 cancer patients. The primary focus of ICGC is somatic mutation

while TCGA contains multifaceted cancer-associated data. TCGA also includes

clinical, biospecimen, and transcriptomic information along with genomic and

epigenomic data. For Melanoma, TCGA includes data from 471 samples, of which

367 are the metastasized (TM) form of disease, 103 are solid primary tumors (TP),

and 1 is a blood-derived normal sample (NB).

The following sections outline genetic, epigenetic and transcriptomic data analysis

pipeline frameworks and methods used for performing this thesis work.
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2.1 Detecting Driver Oncogenic Mutation

2.1.1 Motivation

Depending on the cancer tissue, an average whole-exome dataset may contain

mutations on the order of 106. This is further exacerbated in Melanoma and

Lung Cancer due to exogenous mutagens being the primary causes of the disease.

For instance, an extremely high number of mutations is commonly observed in

Melanoma; sequencing datasets therefore pose a series of challenges to analyze.

An efficient mutation call tool is required to identify all instances of mutation in

patient data and it is equally vital to efficiently characterize somatic mutations. In

order to accurately identify downstream perturbations, formulating a faster and

more efficient tool to characterize potentially cancer-driving somatic mutations

above background noise is vital.

2.1.2 Pipeline
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A workflow to identify and characterize driver somatic mutations and then to assess

their functional impact in Melanoma as used in Chapter 3 ,4 of this dissertation.

In the schematic 2.1.2, tools and methods are depicted in orange color while blue

color is used for associated output.

TCGA data access

TCGA data is accessible via the NCI Genomic Data Commons (GDC) data portal,

GDC Legacy Archive and the Broad Institutes GDAC Firehose. The GDC Data

Portal provides access to the subset of TCGA data that has been harmonized

against GRCh38 (hg38) using GDC bioinformatics pipelines. The GDC open ac-

cess data does not require authentication or authorization to access it and generally

includes high-level genomic data that is not individually identifiable, as well as

most clinical and all biospecimen data elements. The GDC controlled access data

requires dbGaP authorization and eRA Commons authentication and generally

includes individually identifiable data such as low level genomic sequencing data,

germline variants, SNP6 genotype data, and certain clinical data elements. This

and the following study were carried out as part of IRB approved study dbGap

ID 5094[3]. GDC API was accessed with TCGAbiolinks [4] package to query

and download SNP6,methylation, mRNA and exome data. Whole exome and

deep sequencing data was obtained from CGHub[5] through genetorrent client.

Data was stored as summarizedExperiment[6] object class or dataframe in R [7].

Processed mutation data provided by TCGA is stored in MAF files (Mutation

Annotation Format), which are derived from VCF files.

Copy number alteration

The tool GISTIC 2.0.21 [8] was used to identify genomic regions that are signifi-

cantly gained or lost across a set of paired normal and tumor samples of TCGA

SKCM data set. The most significant recurrent SCNAs were identified using GAIA

[9], an iterative procedure where a statistical hypothesis framework is extended to

take into account within-sample homogeneity.

Mutation & Filtering

Mutect, the somatic variant caller used in Chapter 3 and 4, uses tumor-matched

normal samples to comprehensively identify only somatic variants. It identifies

https://gdc.cancer.gov/developers/gdc-application-programming-interface-api
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potential variants using the tumor sample and distinguishes only somatic vari-

ants using the matched normal sample. Mutect formulates two model selection

problem5[10]. The wild-type model M0 that assumes all non-reference reads come

from technical artifacts and the mutation model Mf that assumes that a variant

allele is present at an unknown frequency f are two models evaluated in tumor

samples. A log-likelihood ratio is computed to select the better fitted model. At

potential mutation sites (high LOD score), another model selection is performed

in the normal sample to compare the wide-type model M0 and the heterozygous

model M0.5. If M0 is strongly preferred than M0.5, the variant is labeled as somatic.

LODTumor = log10

(
P (observed data in tumor|site ismutated)

P (observed data in tumor|site is reference)

)

LODNormal = log10

(
P (observed data in normal|site is reference)
P (observed datain normal|site ismutated)

)

Figure 2.1: In case of highly mutated cancers, such as Melanoma, mutation
context in addition to frequency is cruicial to efficiently identify driver
mutations. This figure illustrates the rich but skewed landscape of somatic

mutation in Melanoma due to UV damage signature.

MutSig then applied to somatic variants to identify: a) mutation significance, b)

mutation hotspots, and c) conservation of the sites. MutSig works by creating

a background model for mutations, the probability that a base is mutated by

chance by permutations and comparing with observed [11]. Finally, significant
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mutations and frequently-mutated genes (FMGs) are then used as input for InVEx

[12]. InVEx works by creating a permutation model in order to quantify the

mutation burden, which is then used to evaluate the degree of positive selection

in cancer. Mutations are permuted randomly across the genes covered base pairs,

respecting trinucleotide context, and the mutation burden score of the randomized

instance are then calculated. The calculated mutation burden is compared with the

observed burden to define the p-value for positive selection. The mutation context

driven model of InVEx defines functional mutation burden by using PolyPhen2

[13] p-value in conjunction with COSMIC [14] to rank mutations with the highest

functional consequence.

Structure Modeling

Homology modeling and structure simulations are useful to measure the scope

of mutation as it pertains to protein structure, ligand accessibility and solvent-

accessible surface area. Furthermore, comparative structure analysis between

wild type and mutation hotspot can inform the stability and integrity changes

that occur as a result of mutation. SWISS-MODEL [15] was used for homology

modeling to determine protein structure and GROMACS [16] was used for molec-

ular dynamics simulations. Besides quantifying protein dynamics changes such

as root mean square fluctuations (RMSF), GROMACS also provides information

regarding time-coarse changes in a protein structure due to mutation.

Mapping Alterations

Differential expression analysis was performed using DESeq [17] and egdeR packages[18].

GSEA [19] was then used to identify and visualize KEGG [20] pathways signif-

icantly over-represented (enriched). The most statistically significant canonical

pathways identified were ranked according to their p-value corrected FDR (-

Log10).
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2.2 Detecting Driver Epigenomic Events

2.2.1 Motivation

Epigenomic remodeling of the cellular state in a tumor directly impacts tran-

scriptomic machinery including gene expression regulation. It is therefore crucial

to define novel methods that integrate genomic data, such as gene expression,

with epigenomic data such as methylation. Furthermore, upon bridging the gap

in between genomic and epigenomic methods, it is also important to assess the

functional scope. The following section proposes a framework, OncoBox, aimed

at detecting driver epigenomic events in Melanoma.

2.2.2 OncoBox

TCGA GDC API

HM 450k;

RNASeq

DMR DiffEx

*.cel

GAIA

TF Targets

ChIP Seq

Functional impact;

Pathway enrichment

SCNA Genes
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Differential Methylation

Methylation data from TCGA was queried and downloaded using similar methods

as described in TCGA data access section2.1.2. DNA methylation data is obtained

from Illumina 450k arrays (containing 450,000 probes) which consists of three

types of probes: cg (CpG loci), ch (non-CpG loci) and rs (SNP assay). The last

type of probe can be used for sample identification and tracking and should be

excluded for differential methylation analysis. All probes with at least one N/A

were also removed. The DNA methylation data is presented in the form of β values

that uses a scale ranging from 0.0 (probes completely unmethylated) up to 1.0

(probes completely methylated). An R summarizedExperiment object containing

DNA methylation data is then used to calculate differentially methylation region

(DMR). First, the difference between the mean DNA methylation (mean of the β

values) between two cohorts is calculated followed by Wilcoxon test adjusting by

the Benjamini-Hochberg method [21].

βi =
max(yi,methyl, 0)

max(yi,unmethyl, 0) + max(yi,methyl, 0)

where:βi = methylation at ith cg probe.

Differential Gene Expression and DMR

After identifying differentially methylated CpG sites, in order to gauge the changes

in gene-expression, information from DMRs was combined with differential gene

expression data. The log10 (FDR-corrected P value) for DNA methylation was

plotted on the x axis, and gene expression on the y axis, for each gene to observe

significant association between methylation and gene-expression.

ChiP-Seq

ChIP-seq is used primarily to determine the influence of transcription factors and

other chromatin-associated proteins on phenotype-affecting mechanisms. ChIP

data across many tissues can be obtained from NIH Epigenome Roadmap project

[22]. R bioconductor [23] package AnnotationHub [24] was used to query and

download relevant ChIP data. Chipseeker package was then used for, visualization

and average profile heatmap of DMRs in ChIP data [25]. Enrichment of histone

modification marks was also visualized with Chipseeker package. Annotation and
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R GenomicRanges data classes were created for genomic regions identified [26] in

the process.

Differently Methylated Transcription Factors

To measure the functional effect of methylation on transcription factors (TF) and

identify enriched TFs statistical metric to normalize over abundance of DMRs in

large TF families was devised. Significant cg probes identified in step1 with p-

value below 10−2 were grouped by TF families as classified in TFClass database

[27]. The normalization parameter, Z (Equation2.3), takes into account relative

size differences between TF families. The Z scores were converted to p-values using

Gaussian cumulative distribution function ndtr of scipy.special python package.

Zi = X −X

Zi =
XiFA −

∑
F xiF

m

σF

where:

Zi = Z Score

XiFA = Size of a given transcription factor familyA



References

[1] Cancer Genome Atlas Research Network, John N. Weinstein, et al. The

Cancer Genome Atlas Pan-Cancer analysis project. Nature Genetics,

45(10):1113–1120, October 2013.

[2] Junjun Zhang, Joachim Baran, et al. International Cancer Genome

Consortium Data Portal–a one-stop shop for cancer genomics data. Database:

The Journal of Biological Databases and Curation, 2011:bar026, 2011.

[3] Matthew D. Mailman, Michael Feolo, et al. The NCBI dbGaP database

of genotypes and phenotypes. Nature Genetics, 39(10):1181–1186, October

2007.

[4] Antonio Colaprico, Tiago C. Silva, et al. TCGAbiolinks: an R/Bioconductor

package for integrative analysis of TCGA data. Nucleic Acids Research,

44(8):e71–e71, May 2016.

[5] Christopher Wilks, Melissa S. Cline, et al. The Cancer Genomics Hub

(CGHub): overcoming cancer through the power of torrential data. Database:

The Journal of Biological Databases and Curation, 2014, 2014.

[6] Valerie Obenchain Martin Morgan. SummarizedExperiment, 2017.

[7] Ross Ihaka and Robert Gentleman. R: A Language for Data Analysis and

Graphics. Journal of Computational and Graphical Statistics, 5(3):299–314,

September 1996.

[8] Craig H. Mermel, Steven E. Schumacher, et al. GISTIC2.0 facilitates

sensitive and confident localization of the targets of focal somatic copy-

number alteration in human cancers. Genome Biology, 12(4):R41, 2011.

45



Gupta, Rohit 46

[9] Sandro Morganella, Stefano Maria Pagnotta, and Michele Ceccarelli. Finding

recurrent copy number alterations preserving within-sample homogeneity.

Bioinformatics, 27(21):2949–2956, November 2011.

[10] Kristian Cibulskis, Michael S. Lawrence, et al. Sensitive detection of

somatic point mutations in impure and heterogeneous cancer samples. Nature

Biotechnology, 31(3):213–219, March 2013.

[11] Michael S. Lawrence, Petar Stojanov, et al. Mutational heterogeneity in

cancer and the search for new cancer-associated genes. Nature, 499(7457):214–

218, July 2013.

[12] Eran Hodis, IanR. Watson, et al. A Landscape of Driver Mutations in

Melanoma. Cell, 150(2):251–263, July 2012.

[13] Ivan A. Adzhubei, Steffen Schmidt, et al. A method and server for predicting

damaging missense mutations. Nature Methods, 7(4):248–249, April 2010.

[14] Simon A. Forbes, Nidhi Bindal, et al. COSMIC: mining complete cancer

genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids

Research, 39(Database issue):D945–950, January 2011.

[15] Andrew Waterhouse, Martino Bertoni, et al. SWISS-MODEL: homology

modelling of protein structures and complexes. Nucleic Acids Research,

46(W1):W296–W303, July 2018.

[16] Sander Pronk, Szilrd Pll, et al. GROMACS 4.5: a high-throughput and highly

parallel open source molecular simulation toolkit. Bioinformatics (Oxford,

England), 29(7):845–854, April 2013.

[17] Michael I. Love, Wolfgang Huber, and Simon Anders. Moderated estimation

of fold change and dispersion for RNA-seq data with DESeq2. Genome

Biology, 15(12):550, 2014.

[18] Mark D. Robinson, Davis J. McCarthy, and Gordon K. Smyth. edgeR:

a Bioconductor package for differential expression analysis of digital gene

expression data. Bioinformatics (Oxford, England), 26(1):139–140, January

2010.



Gupta, Rohit 47

[19] Aravind Subramanian, Pablo Tamayo, et al. Gene set enrichment analysis: a

knowledge-based approach for interpreting genome-wide expression profiles.

Proceedings of the National Academy of Sciences of the United States of

America, 102(43):15545–15550, October 2005.

[20] M. Kanehisa and S. Goto. KEGG: kyoto encyclopedia of genes and genomes.

Nucleic Acids Research, 28(1):27–30, January 2000.

[21] Y. Hochberg and Y. Benjamini. More powerful procedures for multiple

significance testing. Statistics in Medicine, 9(7):811–818, July 1990.

[22] Bradley E. Bernstein, John A. Stamatoyannopoulos, et al. The NIH Roadmap

Epigenomics Mapping Consortium. Nature Biotechnology, 28(10):1045–1048,

October 2010.

[23] Robert C. Gentleman, Vincent J. Carey, et al. Bioconductor: open software

development for computational biology and bioinformatics. Genome Biology,

5(10):R80, 2004.

[24] Martin Morgan , Marc Carlson, Dan Tenenbaum , Sonali Arora.

AnnotationHub, 2017.

[25] Guangchuang Yu, Li-Gen Wang, and Qing-Yu He. ChIPseeker: an

R/Bioconductor package for ChIP peak annotation, comparison and

visualization. Bioinformatics (Oxford, England), 31(14):2382–2383, July

2015.

[26] Michael Lawrence, Wolfgang Huber, et al. Software for computing and

annotating genomic ranges. PLoS computational biology, 9(8):e1003118, 2013.

[27] Edgar Wingender, Torsten Schoeps, et al. TFClass: expanding the

classification of human transcription factors to their mammalian orthologs.

Nucleic Acids Research, 46(D1):D343–D347, January 2018.



Chapter 3

Efficient detection of genomic

drivers in melanoma

48



Cancer systems biology of TCGA SKCM:
Efficient detection of genomic drivers in
melanoma
Jian Guan, Rohit Gupta & Fabian V. Filipp

Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California Merced, Merced, CA
95343, USA.

We characterized the mutational landscape of human skin cutaneous melanoma (SKCM) using data
obtained from The Cancer Genome Atlas (TCGA) project. We analyzed next-generation sequencing
data of somatic copy number alterations and somatic mutations in 303 metastatic melanomas. We were
able to confirm preeminent drivers of melanoma as well as identify new melanoma genes. The TCGA
SKCM study confirmed a dominance of somatic BRAF mutations in 50% of patients. The mutational
burden of melanoma patients is an order of magnitude higher than of other TCGA cohorts. A
multi-step filter enriched somatic mutations while accounting for recurrence, conservation, and basal
rate. Thus, this filter can serve as a paradigm for analysis of genome-wide next-generation sequencing
data of large cohorts with a high mutational burden. Analysis of TCGA melanoma data using such a
multi-step filter discovered novel and statistically significant potential melanoma driver genes. In the
context of the Pan-Cancer study we report a detailed analysis of the mutational landscape of BRAF and
other drivers across cancer tissues. Integrated analysis of somatic mutations, somatic copy number
alterations, low pass copy numbers, and gene expression of the melanogenesis pathway shows
coordination of proliferative events by Gs-protein and cyclin signaling at a systems level.

T
he Cancer Genome Atlas project aims at the comprehensive elucidation of genomic changes contributing to
malignancies. The application of next-generation sequencing through whole-genome, whole-exome, and
whole-transcriptome approaches revolutionized the resolution of cancer genome alterations, including

nucleotide substitutions, small insertions and deletions, copy number alterations, chromosomal rearrangements,
splice variants, regulation of gene expression, and viral or microbial interactions1. For melanoma patients, next-
generation sequencing has already brought tangible advances. Identification of activating point-mutations in
BRAF kinase (B-Raf proto-oncogene, serine/threonine kinase, Gene ID: 673) has now established a personalized
medicine option with kinase inhibitors of mutated BRAF2–5. However, melanoma patients frequently develop
resistance to BRAF inhibition6. In addition, melanoma subtypes with non-mutated or non-amplified BRAF,
NRAS (neuroblastoma RAS viral (v-ras) oncogene homolog, Gene ID: 4893), KIT (v-kit Hardy-Zuckerman 4
feline sarcoma viral oncogene homolog, Gene ID: 3815), or MAP2Ks (mitogen-activated protein kinase kinase,
Gene IDs: 5604-5609) lack molecular targets and present a need to deepen our knowledge of the molecular
signature of melanoma.

Here, we describe the genomic landscape of skin cutaneous melanoma (SKCM) based on genome-wide
sequencing data from 303 TCGA malignant melanoma patients. We account for the high UV-induced basal
mutation rate in skin cancers and identify genes with significantly perturbed signatures. By employing a multi-
step filter we suggest a modular protocol to efficiently enrich genomic drivers in melanoma. Moreover, we
characterize several novel variants of known oncogenes like BRAF and relate molecular features of new potential
drivers of melanoma to recurring features observed in other cancer tissues. The comprehensive analysis provides
a foundation for future functional and clinical assessment of susceptibility variants in melanoma.

Results
Patient cohort. The TCGA SKCM cohort is focused on metastatic cases (11.6% regional skin cutaneous or
subcutaneous metastatic tissue, 56.4% regional metastatic lymph node, 25.1% distant or unspecified
metastatic tissue) because melanoma is most often discovered after it has metastasized. We utilized files
from 299 single nucleotide polymorphism (SNP) arrays, 102 whole-genome sequencing (WGS), and 276
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whole-exome sequencing (WES) datasets with normal reference
samples from 303 TCGA patients between 15–90 years of age
(Supplementary table 1).

SCNA. Somatic copy number alterations (SCNAs) were analyzed
using both SNP arrays and segmented low coverage whole-genome
sequencing data; coverage of next-generation sequencing data
sufficient for variant detection was set to 14 read-depth in
metastases and 8 read-depth in normal blood-derived reference
samples. All calls of cytobands by whole-genome sequencing were
compared to level 3 segmented data at the TCGA data portal and
confirmed by SNP array data (Supplementary tables 2–5). Overall,
individual SNP arrays produced far fewer copy number calls
compared to low coverage whole-genome sequencing experiments.
Since low coverage whole-genome sequencing data produces more
frequent calls, the number of significant SCNAs by whole-genome
sequencing was lower than by SNP arrays.

The tool GISTIC, genomic identification of significant targets in
cancer7,8, identified 3 amplifications and 3 deletions concordantly by
both SNP arrays and whole-genome sequencing; it identified 14
amplified and 13 deleted recurrent focal SCNAs detected by SNP
arrays affecting 745 amplifications and 1224 deletions of genes with
q-values (minimum false discovery rate at which the test may be
called significant) below a threshold of 0.01 in 299 patients
(Figure 1, Supplementary tables 2–5). There was significant arm-
level amplification of chromosome bands 1q, 6p, 7p, 7q, 20p, and

20q detected as well as deletion of 6q, 9p, 9q, 10p, 10q, 11p, 11q, 14q,
17p with q-values below 0.01 by both SNP arrays and whole-genome
sequencing. The SCNA data also revealed significant amplification of
39 miRNAs and deletion of 73 miRNAs with a gene-wise q-value
below 0.01. Genes involved in pathways of mitogen-activated protein
kinase (MAPK) signaling, melanogenesis, beta catenin / wingless-
type (WNT), and Aurora kinase signaling are significantly deregu-
lated, each with pathway alterations of more than 5% of the cohort
size.

The most common amplification event occurs at chromosome 3 band
p13, chr3:69742187-70115687, and contains MITF (microphthalmia-
associated transcription factor, Gene ID: 4286) (Figure 1, Supple-
mentary table 2–3). Focal amplification at chromosome 1 band p12,
chr1:119726941-150032773, includes PHGDH (phosphoglycerate dehy-
drogenase, Gene ID: 26227), HMGCS2 (3-hydroxy-3-methylglutaryl-
CoA synthase 2, Gene ID: 3158), NOTCH2 (notch 2, Gene ID: 4853),
PDE4DIP (phosphodiesterase 4D interacting protein, Gene ID: 9659),
BCL9 (B-cell CLL/lymphoma 9, Gene ID: 607). At chromosome 1 band
22q13.2, chr22:41468899-41849552, EP300 (E1A binding protein p300,
Gene ID: 2033), MKL1 (megakaryoblastic leukemia 1, Gene ID: 57591),
ACO2 (aconitase 2, Gene ID: 50), and RANGAP1 (Ran GTPase activ-
ating protein 1, Gene ID: 5905) are among the significantly amplified
genes in melanoma with a q-value of 1.0892e-06. BRAF, EZH2 (enhancer
of zeste 2 polycomb repressive complex 2 subunit, Gene ID: 2146),
CREB3L2 (cAMP responsive element binding protein 3-like 2, Gene
ID: 64764) at band 7q34 chr7:135929407-143664054 are amplified with

Figure 1 | Somatic copy number alteration profiling of TCGA SKCM data shows significant focal deletions and amplifications. Somatic copy

number alteration analysis identifies genomic regions that are significantly gained or lost across a set of tumors. GISTIC 2.0.21 found 21 significant arm-

level results, 23 significant focal amplifications, and 29 significant focal deletions in segmented SNP array data of 292 SKCM metastatic tumor

samples. Among those results, amplification of BRAF, as well as reduction of NRAS and PTEN is found. The genomic position is indicated by

chromosome number in the middle panel; chromosome bands and altered genes are labeled at the sides. Normalized amplifications and deletions are

labeled on top and shown in red and blue, respectively.
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a q-value of 2.2567e-05. Additional focal SCNA amplifications detected
by the SNP arrays are PRKAR1B (protein kinase, cAMP-dependent,
regulatory, type I, beta, Gene ID: 5575), GNA12 (guanine nucleotide
binding protein (G protein) alpha 12, Gene ID: 2768), RAC1 (rho family,
small GTP binding protein ras-related C3 botulinum toxin substrate 1,
Gene ID: 5879) at 7p22.1, FZD6 (frizzled class receptor 6, Gene ID: 8323),
MYC (v-myc avian myelocytomatosis viral oncogene homolog, Gene ID:
4609) at band 8q24.21, CCND1 (cyclin D1, Gene ID: 595), WNT11
(wingless-type MMTV integration site family, member 11, Gene ID:
7481), at band 11q13.4, GNAS (guanine nucleotide binding protein,
alpha stimulating, GNAS complex locus, Gene ID: 2778), AURKA (aur-
ora kinase A, Gene ID: 6790) at band 20q13.33, and CDK4 (cyclin-
dependent kinase 4, Gene ID: 1019), MDM2 (MDM2 proto-oncogene,
E3 ubiquitin protein ligase, Gene ID: 4193), RAP1B (RAP1B, member of
RAS oncogene family, Gene ID: 5908) at bands 12q14.1 and 12q15 and
others.

The region around chromosome 9 band p21.3, chr9:21946194-
21977643, includes CDKN2A (cyclin-dependent kinase inhibitor
2A, Gene ID: 1029) and shows a significant deletion with a q-value
of 4.9316e-169 (Supplementary table 4–5). Other detected gene dele-
tions include NRAS, PRKACB (protein kinase, cAMP-dependent,
catalytic, beta, Gene ID: 5567), BCL10 (B-cell CLL/lymphoma 10,
Gene ID: 8915), TRIM33 (tripartite motif containing 33, Gene ID:
51592) and RBM15 (RNA binding motif protein 15, Gene ID: 64783)
at band 1p22, DVL1 (dishevelled segment polarity protein 1, Gene ID:
1855), RPL22 (ribosomal protein L22, Gene ID: 6146), TNFRSF14
(tumor necrosis factor receptor superfamily, member 14, Gene ID:
8764), PRDM16 (PR domain containing 16, Gene ID: 63976) at band
1p36, CTNNB1 (catenin, cadherin-associated protein, beta 1, Gene
ID: 1499), RAF1 (Raf-1 proto-oncogene, serine/threonine kinase,
Gene ID: 5894) at band 3p24.3, PRKAB1 (protein kinase, AMP-
activated, beta 1, Gene ID: 5564) at band 12q23.3, BRCA2 (breast
cancer 2, early onset, Gene ID: 675) at band 13q12.11, RB1 (retino-
blastoma 1, Gene ID: 5925), DCT (dopachrome tautomerase, Gene
ID: 1638) at band 13q34, AKT1 (v-akt murine thymoma viral onco-
gene homolog 1, Gene ID: 207) at band 14q32.3, and MC1R (mela-
nocortin 1 receptor, alpha melanocyte stimulating hormone receptor,
Gene ID: 4157) at band 16q24. The loss of chromosome 10 band q23
containing PTEN (phosphatase and tensin homolog, Gene ID: 5728)
is associated with patient age (p-value of 8.81e-05).

Somatic mutations. The SKCM dataset comprises, after pre-
processing of 276 patients (Supplementary table 1), a number of
55,462,639 incidences listed by MuTect, an algorithm for sensitive
detection of mutations, of which 890,914 were identified as KEEP
mutations. These KEEP mutations build the foundation for the gene-
wise perturbation models. Exonic regions account for 220,031
mutations and classify as 60.1% missense, 3.8% nonsense, 0.5%
frameshift, 0.1% in-frame insertion or deletions, 2.6% splice site,
and 32.9% silent mutations. The SKCM dataset with a mutation
rate of 18 mutations per mega base pairs (Mbp) is about 10-fold
richer than other TCGA tissues (e.g. glioblastoma multiforme
(GBM) has a rate of 1.8 mutations per Mbp in TCGA). Careful
identification of non-synonymous mutations in combination with
consideration of passenger events and basal mutation rate took the
frequency of UV-associated gene mutations into account.

In order to identify potential melanoma driver genes, we estab-
lished a multi-step filter for somatic mutations (Table 1, Methods).
Steps included i) cohort selection at TCGA data portal, ii) mutation
call of whole-exome sequencing data against their somatic refer-
ences, iii) identification of recurrent and conserved positions, and
iv) enrichment of mutations above the basal mutation rate using a
permutation model9. This first set of filters ensures statistically sig-
nificant enrichment of potential driver genes. To explore the bio-
logical impact of mutations we added a second set of filters to identify
cancer drivers. Steps included v) relative frequencies of nucleotideTa
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mutations10, vi) functional mutation burden using structural model-
ing, vii) pathway enrichment and mutual exclusivity to known can-
cer drivers11, and viii) significance in multiple TCGA tissues.

In the SKCM dataset of metastatic samples with normal refer-
ences, the multi-step filter analysis produced a list of 23 significantly
mutated genes (22 nonsense and 1 synonymous mutation) with a
q-value below 1.0e-04 (Figure 2). The multi-step filter analysis
confirmed known cancer driver genes BRAF (Figure 3–4, Supple-
mentary table 6), RAC1, NRAS, TP53 (tumor protein p53, Gene ID:
7157), CDKN2A (results in p16INK transcript), STK19 (serine/
threonine kinase 19, Gene ID: 8859), PPP6C (protein phosphatase
6, catalytic subunit, Gene ID: 5537), PTEN, IDH1 (isocitrate dehy-
drogenase 1, Gene ID: 3417), NMS (neuromedin S, Gene ID: 129521),
CDK4, and VEGFC (vascular endothelial growth factor C, Gene ID:
7424) with significantly enriched functional mutations that passed a
q-value cut-off below 0.01. In addition, TMEM216 (transmembrane
protein 216, Gene ID: 51259) (Figure 5, Supplementary table 7),
CRB1 (crumbs family member 1, photoreceptor morphogenesis
associated, Gene ID: 23418), and CDKN2A were significantly
enriched genes with synonymous mutations below a q-value cut-off
below 0.01. The study also highlighted genes that had never been
associated with melanoma like LUZP2 (leucine zipper protein 2,
Gene ID: 338645) (Supplementary information 1, Supplementary
table 8), PSG4 (pregnancy specific beta-1-glycoprotein 4, Gene ID:
5672), SERPINB3 (serpin peptidase inhibitor, clade B (ovalbumin),
member 3, Gene ID: 6317), SPOCK3 (sparc/osteonectin, cwcv and
kazal-like domains proteoglycan (testican) 3, Gene ID: 50859),

FOLH1B (folate hydrolase 1B, Gene ID: 219595), SPAG16 (sperm
associated antigen 16, Gene ID: 79582), NOTCH2NL (notch 2 N-
terminal like, Gene ID: 388677), TRIM58 (tripartite motif containing
58, Gene ID: 25893), RQCD1 (RCD1 required for cell differentiation1
homolog, Gene ID: 9125), and ACSM2B (acyl-CoA synthetase
medium-chain family member 2B, Gene ID: 348158) below a q-value
cut-off of 1.0e-04 (Supplementary tables 9–10).

BRAF dominates the mutational landscape of melanoma. Given
the predominance of BRAF mutations in metastatic melanoma2–5, we
characterized the somatic mutation landscape of the BRAF gene in
the SKCM dataset as well as in other TCGA cancer tissues.

The metastatic SKCM cohort of 276 patients with somatic controls
contained 140 patients with non-silent mutations of BRAF and
included 151 amino acid replacements affecting 18 unique residues
(50% patient mutation frequency, p-value ,1.00e-15, q-value
,2.26e-12). The single most abundant protein-coding amino acid
replacement observed in 119 of 276 samples is p.V600E, switching
BRAF into a constitutively active protein kinase2. Besides V600E
there are additional non-silent polar replacements in the activator
loop (p.D594N, p.L597Q, p.V600K, p.V600R, and p.K601E). Next,
we investigated whether such unprecedented diversity of BRAF
mutations is specific to melanoma or common to other cancers. By
calculating the relative frequency of mutations corrected for the
cohort size, other BRAF-driven cancers were identified (Figure 3,
Supplementary table 6). Thyroid cancer (THCA) stood out for con-
taining frequent and recurrent somatic mutations of BRAF p.V600E
with 249 of 350 cases (Figure 3, Supplementary table 6). In contrast,
other significantly enriched datasets with BRAF mutations like colon
adenocarcinoma (COAD), lung adenocarcinoma (LUAD), or SKCM
showed mutations up to 37% in other conserved sections of the
protein like the RAS-binding domain (RBD) (p.K183E, p.K205Q,
p.E228V), the glycine-rich ATP binding site (p.G466E, p.S467L,
p.G469A, p.G469E, p.G469R), or the protein surface connecting
RBD and protein kinase (p.E695K) (Figure 4).

Functional analysis of somatic mutations of melanoma genes. In
order to identify potential melanoma drivers, we assessed functional
relevance of significant somatic mutations from nucleotide signa-
ture, structure activity relationship, mutual exclusivity to known
cancer drivers, and recurrence in other cancer tissues. In the con-
text of this study aimed at characterizing the genomic landscape of
melanoma, there is space to discuss somatic mutations of two new,
highly significant genes, TMEM216 (Figure 5) and LUZP2 (Supple-
mentary information 1). Both genes display q-values below 1.0e-6
after the first four steps of the mutational analysis. Their signature of
nucleotide replacement related to UV radiation deviated from the
exome-wide median by more than 5%, indicative for positive
selection of cancer genes (Supplementary information 2). In addi-
tion, we examined their mutational patterns in gene networks,
providing important insights on gene interactions and disease
drivers. We determined network associations of somatic mutations
at the systems level by gene set enrichment analysis12. Detected
somatic mutations were significantly enriched in the Gas

stimulatory heterotrimeric guanine nucleotide-binding protein
(Gs-protein) pathway, M14775, with a q-value below 1.0e-6. This
pathway includes BRAF, RAF1, cAMP-responsive element binding
proteins CREB3 (Gene ID: 10488) and CREB5 (Gene ID: 9586), and
mitogen-activated protein kinase 1, MAPK1 (Gene ID: 5594). In
addition, the cyclin pathway, M1529, including mutually exclusive
mutations of cyclin-dependent kinase CDK4, its inhibitor CDKN2A,
proline-rich protein BstNI subfamily 1 PRB1, and tumor suppressor
TP53 showed statistically significant perturbation with a q-value
below 1.0e-6. The assessment of the mutational pattern in SKCM
patients showed strong mutual exclusivity of TMEM216 with
members of the MAPK pathway (Supplementary information 3).

Figure 2 | Filtered genes show significant enrichment of somatic
mutations above background mutation rate. QQ-plot of mutational

significance analysis is based on a permutation analysis of the background

mutation rate. q-values (q5-log10(p)) above the diagonal indicate

enrichment of somatic mutation. The diagonal y5x serves as reference

where observed and expected mutational burden coincide. The

significantly enriched functional mutation burden of genes passed an

q-value cut-off ,5 0.2 is shown as red circles. The synonymous mutation

burden is shown as yellow triangles. Genes with significantly enriched

synonymous mutation burden passed an q-value cut-off ,5 0.2 are

highlighted with blue frame. Best-fit is shown as dashed-red line

(l 5 6.14) and y 5 x as dashed-yellow line. Gray-shaded area represents

95% confidence interval for expected p-values.
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Recurrent somatic splice site mutation of TMEM216. The trans-
membrane protein 216 (TMEM216) is required for tissue-specific
ciliogenesis and may regulate ciliary membrane composition13,14.
TMEM216 is the melanoma gene with the most significant synony-
mous somatic mutations of the TCGA SKCM dataset. TMEM216 is
mutated at the highly conserved region between transmembrane
helix 1 and 2 in 8 out of 276 SKCM patients (3% patient mutation
frequency, p-value 6.5e-11, q-value 9.80e-8) at a single site at coding
base position 138 from T to G, located at the 39 splice site (Figure 5).
The 39 exon recognition at the acceptor splice site is critical for
U2AF1 (U2 small nuclear RNA auxiliary factor 1, Gene ID: 7307)
interaction15. The c.T138G replacement creates a mutation in the 39

exon splice site of TMEM216. In a different TCGA dataset, the same
significant, high-frequency nucleotide replacement is observed in 3
of 289 patients with lower grade glioma (LGG) (Figure 5,
Supplementary table 7).

Concerted deregulation of G-protein signaling and MAPK cas-
cade stimulates melanogenesis. Integrated systems biology analy-
sis including somatic copy number alterations as well as pathway
enrichment of somatic mutations point towards main signaling axes
in melanoma; Gs-protein and MAPK signaling are frequently
dysregulated in SKCM. The genomic observation in SKCM of
strong mutual exclusivity of NRAS to BRAF is consistent with

NRAS mutations activating both effector cascades BRAF/MEK/
ERK and PI3K/Akt11,16. The analysis identified somatic mutations
and copy number alterations affecting the Gs-protein pathway in
more than 80% of the tumors. Included were activating somatic
point mutations and copy number amplification of BRAF (50%,
responsive to MAPK signaling pathway activator), mutation and
deletion of NRAS (31%, responsive to MAPK signaling pathway
activator), as well as mutation and deletion of GNAI2 (guanine
nucleotide binding protein (G protein), alpha inhibiting activity
polypeptide 2, Gene ID: 2771) (2%, responsive to GTP activator).
GNAI2 proteins contribute to malignant cell growth, and its
inactivation can inhibit proliferation of melanoma cells and
possibly that of other malignant cells both in vitro and in vivo17. So
far statistically significant mutation of GNAI2 in melanoma has not
been reported. It is a potential therapeutic target and needs further
studies to assess its clinical significance. In addition, CAMP, CREB3,
CREB5, MAPK1, and RAF1 are mutated in the Gs-protein pathway
in more than 10% of the tumors. Other mutations, genomic
amplifications, or deletions that affect melanogenesis pathways
included somatic copy number amplification in genes FZD6,
GNAS, EP300, CREB3L2 and MITF. MITF is the top hit of the
SCNA analysis and a critical signaling hub involved in melanocyte
development, survival, and melanogenesis (Figure 6). Increased
expression of MITF and its activation by phosphorylation activates

Figure 3 | Distribution of somatic mutations and mutation types in BRAF gene across The Cancer Genome Atlas Pan-Cancer analysis project. Top

panel shows the relative frequency of non-silent somatic mutations (number of observed type of somatic mutation/cohort size) of detected mutations

across different human cancer tissues within TCGA. Bottom panel shows fraction of mutations sorted by affected protein domains of BRAF. The analysis

includes all non-silent (protein coding missense, indels, frame-shift, stop, splice site) mutations and distinguishes mutations of V600E in purple, ATP

binding site in yellow, all mutations in the protein kinase (PK) domain of BRAF but not V600E or ATP binding site in pink, RAS-binding domain (RBD)

in blue, and remaining protein sequence (other) in grey. The PAN-cancer analysis covers cancer tissues: adrenocortical carcinoma (ACC), bladder

urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), colon

adenocarcinoma (COAD), glioblastoma multiforme (GBM), head and neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH), kidney

renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), acute myeloid leukemia (LAML), brain lower grade glioma (LGG), liver

hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV),

pancreatic adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD), rectum adenocarcinoma (READ), skin cutaneous melanoma (SKCM), stomach

adenocarcinoma (STAD), thyroid adenocarcinoma (THCA), uterine corpus endometrioid carcinoma (UCEC), and uterine carcinosarcoma (UCS).

Right box within panels includes analysis for PAN-cancer cohort and sub-cohort that excludes BRAF-rich cancers of more than 0.5 relative frequency, like

SKCM and THCA, or of more than 50% V600E BRAF, like THCA, COAD, SKCM, GBM (TCGA*). Patient stratification: Bars below the panels mark

stratification strategy of human cancers based on their BRAF genotype. A BRAF-V600E mutation; B BRAF mutation in protein kinase domain other than

V600E; C BRAF-mutation in protein kinase domain; D BRAF-mutation other than protein kinase or RBD; E no BRAF mutation.
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Figure 4 | Comprehensive somatic mutational landscape of BRAF as PAN-cancer driver. Distribution of somatic mutations are shown, for five TCGA

tissues with significant BRAF mutations: skin cutaneous melanoma (SKCM), thyroid adenocarcinoma (THCA), colon adenocarcinoma (COAD), lung

adenocarcinoma (LUAD), glioblastoma multiforme (GBM). Diamonds indicate mutation type of non-synonymous mutations in red, splice-site

mutations in orange, indels in brown, stop in black, and silent protein-coding mutations in white. Numbers refer to codons. Each filled circle represents

an individual mutated tumour sample. The RAS binding domain (RBD) of BRAF is colored in magenta. The protein kinase (PK) domain of BRAF is

colored in blue with the ATP binding site highlighted in yellow, and the activator loop around residue 600 in purple. Domains are colored accordingly.

Residues affected by coding somatic mutations of BRAF, NCBI Gene ID 673, are depicted in sticks onto ribbon structure of 3ny5.pdb and 4e26.pdb.
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the transcription of melanocyte-specific proteins TYR, TYRP1 and
DCT. Other somatic copy number deletions occurred in genes
MC1R, DVL1, CALML6, and DCT.

Discussion
Sample size of highly mutated cancer. The TCGA landmark study
across many cancer types revealed that the universe of cancer
mutations is much bigger than previously thought. In the case of
melanoma, however, comprehensive cataloguing of low-frequency
mutated genes (in ,2% patients) will require more than 5000
samples18. The SKCM study with about 300 samples nearly
doubles the existing pool and adds value to the growing list of
whole-exome sequenced melanoma9,10,19–22.

Most genes are mutated at intermediate frequencies, creating a
challenge for melanoma samples with high mutation rate of 12–18
mutations per Mbp (TCGA SKCM this study: 18/Mbp, Broad
Institute’s melanoma study: 12.9/Mbp18). A filter-based strategy
helped to control for passenger mutational load (Table 1,
Figure 2). Using this strategy, we were able to characterize in-depth
predominant melanoma drivers—BRAF, NRAS, PTEN, TP53,
CDKN2A—and also validate recently identified melanoma genes,
RAC1(p.P29S)9,10 and STK19(p.D89N)9. Among 10 newly identified
melanoma genes, SERPINB3 is a suicide-substrate protease inhib-
itor, which balances cell survival and apoptosis, and is shown to be
up-regulated in breast, liver, cervical, lung, and other cancers23. The

high level of genomic instability is evidenced by significantly
increased frequencies of SCNA (Figure 1). We detected concurrent
arm-level alteration of both arms of chromosomes 6, 20, 9, 10, 11
indicative of aneuploidy. In addition to aneuploidy or focal SCNA
events, significant enrichment of inactivating TP53 may contribute
to other classes of structural variations, like breakage or fusions.
While SCNAs alone cannot infer on history or heterogeneity of the
tumor, future analysis on clonality status may provide additional
weight to identified drivers.

New cancer drivers. TMEM216 stands out among the newly dis-
covered genes in melanoma as a low-frequency, highly statistically
significant, recurrent splice site mutation. The mutation c.T138G in
the splice site joining exons 2 and 3 disrupts the recognition motif of
splicing auxiliary factor U2AF115,24. The importance of the splice site
mutation is further enhanced by the nature of the non-UV induced
nucleotide change, strong mutual exclusivity with known oncogenes,
and recurrence in non-melanoma cancer tissues. Germline muta-
tions of TMEM216 (or MKS2) cause human ciliopathies like
Meckel–Gruber syndrome (MKS) or Joubert syndrome (JBTS)13

and revealed localization of TMEM216 to Golgi vesicles necessary
for ciliary assembly25. Cilia are important organelles of cells and are
involved in numerous activities such as cell signaling and processing
developmental signals. Inactive TMEM216 hyper-activates RHOA
signaling and increases phosphorylation of the planar cell polarity
pathway of non-canonical Wnt signaling protein Dishevelled,
DVL114,25,26. In the context of melanoma, somatic splice-site muta-
tion of TMEM216 suggests potential tumor suppressor function and
sets the RHOA/GNA12 pathway apart from the Gs-protein/MAPK
pathway by mutual exclusivity of TMEM216 towards known
oncogenes NRAS and RAC1 (Supplementary information 3).

Pan-cancer. Somatic missense mutation of BRAF has been identified
in roughly half of all malignant melanoma cases and at much lower
frequency in all other cancers2,9,10. Today, whole-genome and -exome
sequencing allows deep insight into molecular carcinogenesis of
melanoma. The TCGA SKCM study adds to existing genome
studies where BRAF(p.V600E) has been identified in 52.9% of the
samples of the melanoma study of the Broad Institute9, 64.0% in the
Harvard study22, 45.9% in the Yale study10, as well as in 20.8% of all
NCI60 cell lines27.

Previously reported mutations rarely fell outside the kinase
domain, with the coding substitution of p.V600E accounting for
more than 80% of reported cases2. Our detailed and targeted sam-
pling of the mutational landscape of BRAF in TCGA melanoma as
well as in all other tissues of TCGA by next-generation sequencing
brought three main insights forward: a) BRAF is significantly
increased at a copy-number level and constitutively activated by
somatic mutations; b) The whole-exome data showed unprecedented
diverse mutational events within BRAF (Figure 3) aside from
p.V600E preserving mutual exclusivity to activating NRAS muta-
tions; c) Other cancers have similar or even stronger BRAF signa-
tures than melanoma.

These observations manifest BRAF as a bona fide pan-cancer dri-
ver and have consequences for BRAF as an anti-cancer target and
diagnostic marker. Lessons already learned from molecular studies of
the BRAF pathway are relevant to almost all cancer tissues, which
showed somatic missense mutations. The diverse mutational land-
scape challenges medicinal chemistry efforts to develop new com-
pounds recognizing the different molecular conformations of
mutated activator and ATP binding loop aside from established
p.V600E binders. A single SNP test for c.1799T.A is not sufficient
to capture the majority of mutational events of BRAF in its RBD or in
the ATP binding site of its PK domain. Datasets like TCGA lung
squamous cell carcinoma (LUSC) show mutational incidents of
BRAF in more than 5% of the patients but not a single substitution
of c.1799T.A. On a positive note, the diagnostic value of

Figure 5 | The c.T138G somatic mutation is recurring and affects the
splice site of TMEM216. Splice site mutations are indicated in red on the

transcript and protein sequence of TMEM216, NCBI Gene ID 51259. The

somatic mutation c.T138G is located on exon 3 at the second splice site.

The splice site codon 46 translates to glycine 46. Observed somatic

mutations in TCGA SKCM and LGG datasets are marked by red diamonds.

The position of transmembrane helices is indicated in cyan and

determined based on protein family PF09799, positive segments in

TMPred, and uniprot entry Q9P0N5.
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c.1799T.A for BRAF diagnostics is widened to many other cancers
besides SKCM that homogeneously show single p.V600E substitu-
tions like THCA, COAD, GBM, KIRP, READ, and LGG.

Conclusion
The systems biology analysis of melanoma showed an unpreced-
ented richness and depth of statistically significant and novel mel-
anoma genes (Figure 2). By combining established tools in
genomics, we were able to create a multi-step filter that accounts
for enrichment in functional hot spots as well as the elevated and
nucleotide-specific basal rate due to UV damage (Supplementary
information 2). The integrated analysis of somatic mutations and
structural genomic alterations in melanogenesis showed coordina-
tion of proliferative signaling events in mutually exclusive settings in
melanoma (Figure 6, Supplementary information 3). If driver muta-
tions are observed in other cancer tissues as well, lessons learned on
regulation of signaling cascades and drug resistance of cancer targets
might be directly translatable. Thyroid cancer showed an enrich-
ment of the somatic melanoma driver mutation BRAF(p.V600E)
that surpassed profiles of BRAF of any other tissue (Figure 3–4),
while preserving mutually exclusive setting to RAS mutations
(Supplementary table 6). For patients with activated BRAF path-

ways in their thyroid tissues, knowledge on molecular medicine of
the BRAF cascade in melanoma becomes highly valuable. The sys-
tems biology integration of genomic alterations in melanoma pro-
vides a glimpse into how a spectrum of genomic aberrations
contributes to melanoma genesis and progression (Figure 6).
Identification of such genomic aberrations in melanoma patients
contributes to new treatment regimens based on molecular under-
standing of driver events that govern this malignancy.

Methods
The Cancer Genome Altas project. The study was carried out as part of IRB
approved study dbGap ID 5094 ‘‘Somatic mutations in melanoma’’. The results
shown are in whole based upon data generated by the TCGA Research Network
http://cancergenome.nih.gov. Restricted access whole-genome sequences and whole-
exome sequences were obtained from the TCGA data portal.

Somatic copy number alterations. The tool GISTIC 2.0.217,8 was used to identify
genomic regions that are significantly gained or lost across a set of paired normal and
tumors samples of TCGA SKCM data set (for abbreviations see glossary). We executed
GISTIC 2.0.21 on Illumina HiSeq data recorded with a low coverage whole-genome
sequencing protocol, MD Anderson Cancer Center, TX, as well as on Agilent SNP 6.0
gene expression microarrays G4502A_07_01, UNC Chapel Hill, NC. GISTIC 2.0.21
distinguishes arm-level events from focal events at a broad length cutoff of 0.7. Events
whose length was greater or less than 50% of the chromosome arm on which they
resided were called arm-level or focal events, respectively, and these groups of events

Figure 6 | Deregulation of melanogenesis by G-protein and cyclin pathway signalling in TCGA SKCM patient samples. Coordination of signaling

events is demonstrated by integrating low coverage whole genome sequencing somatic copy number alteration (WGS SCNA) data, SNP somatic copy

number alteration (SNP SCNA) data, somatic mutations, and RNASeq gene expression analysis. Amplifications or activations are indicated in red,

deletions or reductions in blue, non-silent mutations by dashed line. Genes are boxed by analysis type. High or low activity (gene expression) is indicted by

red or blue font. Grey indicated undefined state in patient cohort. 1 and – symbols indicate activation and inhibition of factors in the normal pathway.

The network is assembled based on gene-associations of map hsa04916 and entries of M14775 and M1529 identified by systems biology gene set

enrichment analysis.
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were analyzed separately. The data was concordant to segmented level 3 data publically
available at the TCGA data portal. Since GISTIC 2.0.21 uses ratios of segmented tumor
copy number data relative to normal samples as input, segmented level 3 data aligned to
HG19 served as input for analysis runs. For significant loci and genes a cutoff q-value of
0.01 was applied, and concordance determined by overlaying whole-genome sequencing
and SNP data. All experiments on SCNAs were carried out at a confidence level of 0.99
according to established standards by the TCGA Research Network and compared to
benchmarks established by the Broad Institute TCGA Genome Characterization Center
http://www.broadinstitute.org/collaboration/gcc and Broad Institute GDAC Firehose
pipeline https://confluence.broadinstitute.org/display/GDAC.

Multi-step filter for somatic mutations. We applied a multi-step filter to identify
somatic mutations (Table 1). Critical components of the computational filters were i)
TCGA data portal for cohort selection and CGHub for access of raw data; ii) MuTect
1.1.4 at default settings for preprocessing, alignment of reads in the tumor and normal
sequencing data, and mutation calling28; iii) MutSig 2.0, an algorithm for
identification of mutation significance, for assessing the clustering of mutations in
hotspots as well as conservation of the sites29; and iv) InVEx 1.0.1, a permutation
based Intron vs Exon algorithm for ascertaining positive selection of somatic
mutation above the background level considering heterogeneity on a per-patient and
per-gene level9. Functional impact was assessed by v) UV biased nucleotide
signature10; vi) structural modeling using SWISS-MODEL http://swissmodel.expasy.
org/ and TMpred http://www.ch.embnet.org; vii) GSEA 2.1.0 for gene set enrichment
analysis12 and MEMo 1.1 for mutual exclusivity modules analysis11; as well as viii)
recurrence in other TCGA tissues.

i) Whole-exome sequencing files wes.bam in compressed binary version of sequence
alignment map SAM (BAM) format for 276 TCGA patients (barcodes provided in
Supplementary table 1) collected on Illumina HiSeq platforms recorded at the MIT
Broad Institute, MA or Biospecimen Core Resource collected by TCGA consortium
were downloaded from CGHub, Cancer Genomics Hub Browser, hosted at the
University of California, Santa Cruz. Each sample from a tumor metastatic cancer (TM)
was matched with a normal blood derived sample (NB). ii) For the MuTect 1.1.4
analysis28 GrCh37 (Genome Reference Consortium Human Reference 37, Broad
Institute variant of human genome assembly 19 (HG19)), SNP database (dbSNP) build
132.vcf, and catalogue of somatic mutations in cancer (COSMIC_54.vcf) library were
referenced. dbSNP build 132.vcf is a database referenced to GrCh37 of known human
germline variations derived from the 1000 genomes project. COSMIC_54.vcf is a
database referenced to GrCh37 of somatically-acquired mutations found in human
cancer. The call_stats.txt files containing the list of all the mutations per patient and
coverage.wig in wiggle file format were generated for every matched sample as an output
of MuTect 1.1.4. The mutation call_stats.txt file was queried in bash prompt to retain all
the statically significant KEEP mutations under standard settings i.e. ensuring coverage
of 80% power for a 0.3 allelic fraction mutation. iii) MutSig 2.0 executed on whole-
exome Illumina HiSeq DNA sequencing data accesses three main sources of evidence in
the data to estimate the amount of positive selection a gene underwent during tumor-
igenesis: 1. Abundance of mutations relative to the background mutation rate, 2.
Clustering of mutations in hotspots within the gene, and 3. Conservation of the mutated
positions. MutSig 2.0 was the method of choice for the SKCM study, because it has
augmented sophisticated procedures for treating the heterogeneity in per-gene, per-
patient, and per-context background mutation rate. Evidence of conservation and
clustering are examined by a separate part of MutSig 2.0 that performs many permu-
tations. Mutations were inferred from raw binary alignment wes.bam files and com-
pared to benchmarks at the cancer genome analysis multi-pipeline Firehose, which
performs analyses including quality control, local realignment, single nucleotide varia-
tions identification, insertion and deletion identification, as well as inter-chromosomal
and large intra-chromosomal structural rearrangement detection and mutation rate
calculation. From 220,031 exonic mutations, Mutsig 2.0 produces a list of significantly
mutated genes, covariates.txt. iv) The permutation algorithm InVEx 1.0.1, Intron vs
Exon, was employed to efficiently model the somatic mutation rate among genes to
identify the genes that most frequently harbor non-silent mutations9. InVEx 1.0.1
permutes coding, untranslated, and intronic mutations per nucleotide for each gene in
all the patients to generate a list of genes that have the most functional impact. The
polymorphism phenotyping version 2 (PPH2) library, human genome HG19,
nucleotide_classes_HG19.txt, genePeptideFile_HG19, and COSMIC_54.vcf library are
used as references. The coverage.wig and covariates.txt files were used as an input for
InVEx 1.0.1. The QQ-plot qq.png of functional mutation burden and synonymous
mutation burden significant_mutation_burden.txt were produced as an outcome of
InVEx 1.0.1.

The list of enriched genes significant_mutation_burden.txt produced by filtering
steps i)-iv) is analyzed for functional impact. v) Deviation from the exome-wide
median of the signature of nucleotide replacement can be indicative for positive
selection of cancer genes. In particular, increased transitions from cytidine to thy-
midine (C-.T) characterize an ultraviolet-induced mutational signature
(Supplementary information 2). The mutation annotation file patient.maf entries for
target genes were sorted by transition type and filtered for UVA (C.A) or UVB
(C.T) mediated transitions. vi) Mutations were plotted on existing experimental or
modeled structures using SWISS-MODEL. In the case of transmembrane proteins,
the transmembrane topology was assessed using TMpred. vii) Impact of pathways
was assessed by GSEA 2.1.0 and MEMo 1.1 using scna.txt matrix file, amplified and
deleted genes amp_del_gene.txt of GISTIC 2.0.21, coverage.wig file from MuTect
1.1.4, covariates.txt from Mutsig 2.0, while referencing the tcga_patient_list.txt, with a
q-value threshold of 0.10 and 10 alterations. Absolute expression levels of RNASeq

data from 302 patients were assessed using 5th or 95th percentile thresholds for lowly
or highly expressed genes, respectively. The SKCM dataset at the TCGA datahub only
contained a somatic reference file for 1 of 302 patients with metastatic melanoma at
the point of the analysis. viii) For driver genes of covariates.txt in SKCM with high
mutational burden in i)-iv) as well as functional impact in v)-vii), all patient.maf files
in TCGA were searched for recurrence in other cancer tissues. The results are sorted
covariate.maf tables for each cancer driver (Supplementary tables 9, 10).
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Hypermutation of DPYD Deregulates
Pyrimidine Metabolism and Promotes
Malignant Progression
Lauren Edwards, Rohit Gupta, and Fabian Volker Filipp

Abstract

New strategies are needed to diagnose and target human
melanoma. To this end, genomic analyses was performed to
assess somatic mutations and gene expression signatures using
a large cohort of human skin cutaneous melanoma (SKCM)
patients from The Cancer Genome Atlas (TCGA) project to
identify critical differences between primary and metastatic
tumors. Interestingly, pyrimidine metabolism is one of the major
pathways to be significantly enriched and deregulated at the
transcriptional level in melanoma progression. In addition, dihy-
dropyrimidine dehydrogenase (DPYD) and other important
pyrimidine-related genes: DPYS, AK9, CAD, CANT1, ENTPD1,
NME6, NT5C1A, POLE, POLQ, POLR3B, PRIM2, REV3L, and
UPP2 are significantly enriched in somatic mutations relative to

the background mutation rate. Structural analysis of the DPYD
protein dimer reveals a potential hotspot of recurring somatic
mutations in the ligand-binding sites as well as the interfaces of
protein domains that mediated electron transfer. Somatic muta-
tions of DPYD are associated with upregulation of pyrimidine
degradation, nucleotide synthesis, and nucleic acid processing
while salvage and nucleotide conversion is downregulated in
TCGA SKCM.

Implications: At a systems biology level, somatic mutations of
DPYD cause a switch in pyrimidine metabolism and promote
gene expression of pyrimidine enzymes toward malignant pro-
gression. Mol Cancer Res; 14(2); 196–206. Ó2015 AACR.

Introduction
Cancer cells take advantage of distinct metabolic pathways

promoting cellular proliferation or oncogenic progression.
Emerging evidence highlights central metabolic pathways includ-
ing glucose- and glutamine-dependent biomass production to
support tumor growth (1). However, complex metabolic require-
ments of dividing, migrating, or nutrient and oxygen limited
cancer cells suggest that tumor cells have much more complex
metabolic requirements than previously appreciated (2). The
Cancer Genome Atlas (TCGA) puts an even-handed view on
tissue-specific genomic determinants, revolutionizing our per-
spective onmalignancies by next-generation sequencing (3).Here
we describe cross-talk between signatures of somatic mutations
and gene expression of skin cutaneous melanoma (SKCM) based
on RNASeq data from 471 TCGA melanoma samples. By con-
necting pattern of somatic mutations with responses of gene
expression at a pathway level, new features of melanoma metab-
olism and progression are elucidated.

Pyrimidine synthesis is a key metabolic bottleneck important
for DNA replication in tumor cells and, therefore, represents a
valuable diagnostic and therapeutic target. Early success in cancer
metabolism took advantage of this characteristic by making
cancer cells vulnerable to inhibition of this pathway.Heidelberger
and colleagues designed fluorinated uracil-based pyrimidine
analogues, which disrupted tumor DNA biosynthesis and which
are to this day used to treat colorectal and breast cancer (4, 5).

To analyze TCGA SKCM dataset, we have employed a bottom-
up strategy involving pathway enrichment analysis of RNASeq
data and structural analysis of somatic mutations. The approach
identifies DPYD (dihydropyrimidine dehydrogenase, Gene ID:
1806) as a pivotal factor of pyrimidine metabolism and offers a
comprehensive view on how a hypermutated metabolic gene
deregulates pyrimidine and nucleic acid synthesis and promotes
malignant progression of melanoma.

Methods
Patient cohort

The TCGA SKCMcohort includes RNASeq data for 471 samples
allowing us to extract statistical significant pattern of differential
expression between solid primary tumors (TP; 103 patients) and
metastatic tumors (TM; 367 patients), while there is only one
dataset for blood-derived normal tissue (NB; 1 patient; Supple-
mentary Table S1). In addition, we utilized files from whole-
exome datasets of 339 patients (61 TP; 278 TM) (Supplementary
Table S2; ref. 6). Clinical data including a history of drug treat-
ment was available for 447 patients (Supplementary Table S3).
The study was carried out as part of Institutional review board
approved study dbGap ID 5094 "Somatic mutations in melano-
ma" and conducted in accordance with the Helsinki Declaration
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of 1975. The results shown are based upon next-generation
sequencing data generated by the TCGA Research Network
http://cancergenome.nih.gov. Restricted access clinical, RNASeq,
and whole-exome sequences were obtained from the TCGA
genome data access center and the data portal.

Identification of somatic mutations
Identification of somatic mutations took advantage of compo-

nents of the modular multistep filter as described (6). TCGA data
portal was used for cohort selection and CGHub for access of raw
data.Whole-exome sequencingdata for 339patientswithprimary
tumor or metastatic tumor were matched with blood-derived
normal reference. For the MuTect 1.1.4 analysis (7) GrCh37
(Broad Institute variant of HG19), dbSNP build 132.vcf, and
COSMIC_54.vcf library were referenced. Somatic incidences file
was queried in bash prompt to retain all the statically significant
KEEP mutations. The coverage.wig files served as input to model
and account for Intron versus Exon functionalmutation burden in
InVEx 1.0.1 (8). In addition, MutSig 2.0 assessed the clustering of
mutations in hotspots as well as conservation of the sites (9). It is
noted that the SKCM cohort contains an interesting case, patient
TCGA-FW-A3R5, who has more than 20,000 mutations and an
APOBEC signature (10). This patient shows multiple missense
mutations in DPYD with nucleotide transitions according to
canonical UVB signature, C>T and G>A. Including or excluding
this patient had no implications on the outcome of this study.

Structural model and molecular dynamics simulation
The structural model of human DPYD was based on Sus scrofa

X-ray structure (PDB entry 1gth) using swiss-model. Mutations
were plotted on the modeled human structure and ligand
proximity was evaluated by a 5Å cut-off. The solvent accessible
surface of each residue of DPYD was determined on the basis of
a molecular dynamics simulation over a 5 ns trajectory using
GROMACS 5.0.2 (11).

Gene expression analysis and statistical analysis
Level 3 RNASeq Log2-transformed expression levels for 18,086

genes were collected for each sample. Differential expression was
determined byDESeq in the R package and Student t test was used
to determine significant differences in expression between TP and
TM samples and onto metabolic pathways (12). The probability
of the test statistics (P values) were adjusted for multiple hypoth-
eses testing (13). When referred to genomic information, gene
symbols are italicized and upper case, while protein names are
upper case but not italicized. All used gene symbols are listedwith
gene description in the glossary in the Supplementary tables.

Results
Pathway enrichment of differential RNASeq gene expression
data identifies shift in metabolism

Differential expression analysis by DESeq showed 4383 and
4811 to be significantly down- and upregulated, respectively.
KEGG Pathway enrichment analysis highlights three distinct sets
of pathways, metabolism, cancer signaling, and epidermal devel-
opmental markers, to be central to the changes occurring in the
metastatic transition. Metabolic pathways include global metab-
olism (KEGG ID:01100), oxidative phosphorylation (ID:00190),
pyrimidine metabolism (ID:00240), purine metabolism
(ID:00230), glycosphingolipid biosynthesis (ID:00601), metab-

olism of cytochrome P450 (ID:00980), tyrosine metabolism
(ID:00350), as well as glutathione metabolism (ID:00480) to be
significantly enriched pathways with deregulated gene expression
with P values lower than 0.001. Interestingly, metabolic pathways
show comparably high enrichment as pathways known to be
closely associated with an invasive, metastatic phenotype. Next to
pyrimidine metabolism, focal adhesion, actin cytoskeleton reg-
ulation, and tight junctions are highly enriched in the metastatic
melanoma cohort with P values below 1.0EÀ04. Pyrimidine
metabolism stands out as highly enriched pathway (enrichment
ratio down 3.60, ratio up 2.19, adjusted P value down 3.49EÀ10
and adjusted P value up 4.00EÀ04). There are 34 and 23, in total
57 genes in pyrimidine metabolism, which are significantly
down- and upregulated, respectively (Supplementary Table S4).
Pyrimidine enzymes undergoing differential expression between
skin cutaneous primary andmetastatic tumors include all steps in
nucleoside triphosphate synthesis, DNA and RNA polymerases,
as well as pyrimidine degradation. The top downregulated
enzyme of pyrimidine metabolism is CDA (cytidine deaminase,
Gene ID: 978, log2 change between primary and metastatic
tumor: 1.66, P 5.06EÀ15), the highest upregulated enzyme is
DPYD (log2 difference between primary and metastatic tumor:
þ1.43, P 2.85EÀ13). Genes differentially expressed in pathways
in cancer include important signaling molecules in MAPK signal-
ing like BRAF,NRAS, KRAS,MAPK8,MAP2K1, in WNT signaling,
CTNNB1, FZD1/3/4/8, in STAT signaling, PIAS1, STAT1, STAT5B,
in AKT signaling AKT3, MTOR, and others like RB1, NFKB1.
Another remarkable theme of enriched genes during metastatic
progression is dedifferentiation of melanogenesis, keratinocytes,
and Wingless (WNT) signaling (Table 1). Such gene sets are
important for cell differentiation of normal melanocytes, epider-
mal development, and pigmentation.

Hypermutation of dihydropyrimidine dehydrogenase in
pyrimidine metabolism

To identify potential melanoma driver genes in pyrimidine
metabolism, we assessed recurrence and statistical enrichment of
somatic mutations for all pyrimidine genes in melanoma. DPYD
stands out for its highest mutation rate above 20% for all mel-
anoma patients and significant enrichment of somatic mutations
above background mutation rate with a q value of 4.40EÀ06
(Table 2). Twelve other pyrimidine genes show high somatic
mutation rates, P values of recurrence and conservation, or q
values of enrichment above background mutation rate including
DPYS (dihydropyrimidinase, Gene ID: 1807), AK9 (adenylate
kinase domain containing 1,Gene ID: 221264),CAD (carbamoyl-
phosphate synthetase 2, aspartate transcarbamylase, and dihy-
droorotase, Gene ID: 790), CANT1 (calcium activated nucleotid-
ase 1, Gene ID: 124583), ENTPD1 (ectonucleoside triphosphate
diphosphohydrolase 1, Gene ID: 953), NME6 (NME/NM23
nucleoside diphosphate kinase 6, Gene ID: 10201), NT5C1A
(50-nucleotidase, cytosolic IA, Gene ID: 84618), POLE (polymer-
ase (DNA directed), epsilon, Gene ID: 5426), POLQ (polymerase
(DNA directed), theta, Gene ID: 10721), POLR3B [polymerase
(RNA) III (DNAdirected) polypeptide B, Gene ID: 55703], PRIM2
[primase, DNA, polypeptide 2 (58 kDa), Gene ID: 5558], REV3L
[REV3-like, polymerase (DNA directed), zeta, Gene ID: 5980],
and UPP2 (uridine phosphorylase 2, Gene ID: 151531). The
majority of these genes show statistically significant somatic
mutations in other cancers of the TCGA Pan-cancer cohort
(Table 2). For example, PRIM2 has recurrent somatic mutations
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Table 1. KEGG pathway enrichment analysis of RNASeq data of 470 TCGA SKCM patients with adjusted P values below 1.00EÀ03

Pathway name KEGG ID

Number of
deregula-

ted
genes in

TCGA SKCM
RNASeq

Expected
number

Ratio of
enrichment

P value from
hypergeometric test

Adjusted P value by
multiple test
adjustment

Number
of

reference
genes in
pathwayDown Up Down Up Down Up Down Up Down Up

Metabolic pathways ID:01100 359 216 107.77 119.87 3.33 1.80 3.16EÀ99 5.34EÀ18 6.79EÀ97 9.19EÀ17 1130
Pathways in cancer ID:05200 76 108 31.09 34.58 2.44 3.12 1.64EÀ13 3.70EÀ28 5.88EÀ12 1.94EÀ26 326
Pyrimidine metabolism ID:00240 34 23 9.44 10.50 3.60 2.19 1.30EÀ11 2.00EÀ04 3.49EÀ10 4.00EÀ04 99
Purine metabolism ID:00230 42 44 15.45 17.19 2.72 2.56 1.37EÀ09 3.14EÀ09 3.27EÀ08 1.35EÀ08 162
Melanogenesis ID:04916 31 27 9.63 10.71 3.22 2.52 2.41EÀ09 4.49EÀ06 5.18EÀ08 1.18EÀ05 101
Endocytosis ID:04144 47 60 19.17 21.32 2.45 2.81 5.73EÀ09 5.40EÀ14 1.03EÀ07 4.73EÀ13 201
Phagosome ID:04145 38 50 14.59 16.23 2.60 3.08 2.86EÀ08 1.40EÀ13 4.10EÀ07 1.09EÀ12 153
Peroxisome ID:04146 24 21 7.53 8.38 3.19 2.51 1.84EÀ07 5.44EÀ05 2.20EÀ06 1.00EÀ04 79
Spliceosome ID:03040 32 34 12.11 13.47 2.64 2.52 2.41EÀ07 2.68EÀ07 2.73EÀ06 8.28EÀ07 127
Focal adhesion ID:04510 43 68 19.07 21.22 2.25 3.21 3.12EÀ07 5.81EÀ19 3.35EÀ06 1.11EÀ17 200
Wnt signaling pathway ID:04310 35 46 14.31 15.91 2.45 2.89 5.01EÀ07 1.59EÀ11 4.49EÀ06 1.04EÀ10 150
MAPK signaling pathway ID:04010 52 86 25.56 28.43 2.03 3.02 6.02EÀ07 1.11EÀ21 5.18EÀ06 2.91EÀ20 268
Neurotrophin signaling ID:04722 31 36 12.11 13.47 2.56 2.67 7.79EÀ07 2.45EÀ08 6.44EÀ06 8.72EÀ08 127
Actin cytoskeleton regulation ID:04810 43 68 20.31 22.60 2.12 3.01 1.86EÀ06 2.51EÀ17 1.45EÀ05 3.51EÀ16 213
Protein processing in ER ID:04141 36 58 15.74 17.50 2.29 3.31 1.91EÀ06 3.70EÀ17 1.45EÀ05 4.86EÀ16 165
Tight junction ID:04530 30 32 12.59 14.00 2.38 2.29 5.59EÀ06 6.03EÀ06 3.43EÀ05 1.54EÀ05 132
Ubiquitin-mediated proteolysis ID:04120 30 43 12.87 14.32 2.33 3.00 9.00EÀ06 1.80EÀ11 5.09EÀ05 1.15EÀ10 135
Calcium signaling pathway ID:04020 36 52 16.88 18.78 2.13 2.77 1.03EÀ05 4.91EÀ12 5.68EÀ05 3.33EÀ11 177
GnRH signaling pathway ID:04912 24 27 9.63 10.71 2.49 2.52 2.13EÀ05 4.49EÀ06 1.00EÀ04 1.18EÀ05 101
Small-cell lung cancer ID:05222 21 26 8.11 9.02 2.59 2.88 3.67EÀ05 4.06EÀ07 2.00EÀ04 1.24EÀ06 85
Oocyte meiosis ID:04114 25 29 10.68 11.88 2.34 2.44 4.48EÀ05 4.05EÀ06 2.00EÀ04 1.10EÀ05 112
ECM-receptor interaction ID:04512 21 24 8.11 9.02 2.59 2.66 3.67EÀ05 5.36EÀ06 2.00EÀ04 1.39EÀ05 85
N-Glycan biosynthesis ID:00510 15 16 4.67 5.20 3.21 3.08 3.24EÀ05 2.71EÀ05 2.00EÀ04 6.39EÀ05 49
Renal cell carcinoma ID:05211 18 33 6.68 7.43 2.70 4.44 7.37EÀ05 1.18EÀ14 3.00EÀ04 1.13EÀ13 70
Acute myeloid leukemia ID:05221 16 23 5.44 6.05 2.94 3.80 5.84EÀ05 5.29EÀ09 3.00EÀ04 2.10EÀ08 57
VEGF signaling pathway ID:04370 19 25 7.25 8.06 2.62 3.10 7.13EÀ05 1.41EÀ07 3.00EÀ04 4.42EÀ07 76
Fc gamma phagocytosis ID:04666 21 38 8.96 9.97 2.34 3.81 2.00EÀ04 5.66EÀ14 7.00EÀ04 4.75EÀ13 94
RNA transport ID:03013 29 49 14.40 16.02 2.01 3.06 2.00EÀ04 3.31EÀ13 7.00EÀ04 2.48EÀ12 151
Adipocytokine signaling ID:04920 17 22 6.49 7.21 2.62 3.05 2.00EÀ04 1.07EÀ06 7.00EÀ04 3.16EÀ06 68
Phosphatidylinositol signaling ID:04070 18 31 7.44 8.27 2.42 3.75 3.00EÀ04 1.94EÀ11 9.00EÀ04 1.20EÀ10 78
Gap junction ID:04540 20 30 8.58 9.55 2.33 3.14 3.00EÀ04 5.82EÀ09 9.00EÀ04 2.26EÀ08 90
Melanoma ID:05218 17 20 6.77 7.53 2.51 2.66 3.00EÀ04 3.29EÀ05 9.00EÀ04 7.51EÀ05 71
Natural killer cell cytotoxicity ID:04650 — 61 — 14.43 — 4.23 — 2.13EÀ24 — 7.46EÀ23 136
Cell adhesion molecules ID:04514 — 54 — 14.11 — 3.83 — 2.46EÀ19 — 5.17EÀ18 133
Jak-STAT signaling pathway ID:04630 — 59 — 16.44 — 3.59 — 2.37EÀ19 — 5.17EÀ18 155
Toll-like receptor signaling ID:04620 — 41 — 10.82 — 3.79 — 7.37EÀ15 — 7.37EÀ14 102
TGFb signaling pathway ID:04350 — 31 — 8.91 — 3.48 — 1.81EÀ10 — 9.27EÀ10 84
NOD-like receptor signaling ID:04621 — 24 — 6.15 — 3.90 — 1.34EÀ09 — 5.99EÀ09 58
Allograft rejection ID:05330 — 18 — 3.93 — 4.59 — 6.72EÀ09 — 2.52EÀ08 37
Antigen processing presentation ID:04612 — 26 — 8.06 — 3.22 — 3.22EÀ08 — 1.13EÀ07 76
Basal transcription factors ID:03022 — 15 — 3.93 — 3.82 — 2.26EÀ06 — 6.33EÀ06 37
Oxidative phosphorylation ID:00190 76 — 12.59 — 6.04 — 5.25EÀ43 — 5.64EÀ41 — 132
Proteasome ID:03050 19 — 4.20 — 4.53 — 5.22EÀ09 — 1.02EÀ07 — 44
RNA polymerase ID:03020 14 — 2.77 — 5.06 — 9.76EÀ08 — 1.31EÀ06 — 29
Glycosphingolipid biosynthesis ID:00601 13 — 2.48 — 5.24 — 1.67EÀ07 — 2.11EÀ06 — 26
Metabolism of xenobiotics P450 ID:00980 22 — 6.77 — 3.25 — 4.02EÀ07 — 4.12EÀ06 — 71
Tyrosine metabolism ID:00350 16 — 3.91 — 4.09 — 4.56EÀ07 — 4.40EÀ06 — 41
Glutathione metabolism ID:00480 17 — 4.77 — 3.57 — 1.95EÀ06 — 1.45EÀ05 — 50
Arginine and proline metabolism ID:00330 17 — 5.15 — 3.30 — 6.44EÀ06 — 3.85EÀ05 — 54
Glycosylphosphatidylinositol ID:00563 11 — 2.38 — 4.61 — 7.33EÀ06 — 4.26EÀ05 — 25
Drug metabolism P450 ID:00982 20 — 6.96 — 2.87 — 1.09EÀ05 — 5.86EÀ05 — 73
Fructose mannose metabolism ID:00051 12 — 3.43 — 3.50 — 7.82EÀ05 — 3.00EÀ04 — 36
Sulfur relay system ID:04122 6 — 0.95 — 6.29 — 1.00EÀ04 — 4.00EÀ04 — 10
Arachidonic acid metabolism ID:00590 16 — 5.63 — 2.84 — 9.20EÀ05 — 4.00EÀ04 — 59
Sphingolipid metabolism ID:00600 12 — 3.81 — 3.15 — 2.00EÀ04 — 7.00EÀ04 — 40
Glycosaminoglycan degradation ID:00531 8 — 1.81 — 4.41 — 2.00EÀ04 — 7.00EÀ04 — 19
Hedgehog signaling pathway ID:04340 15 — 5.34 — 2.81 — 2.00EÀ04 — 7.00EÀ04 — 56
Drug metabolism ID:00983 14 — 4.96 — 2.82 — 3.00EÀ04 — 9.00EÀ04 — 52

NOTE: Pathway enrichment on pyrimidine metabolism is highlighted in italic.
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at residue E221, G334, P391, and is also significantly mutated in
HNSC (P¼ 0.00558; q¼ 3.34EÀ06) or LUSC (P¼ 0.000339; q¼
2.27E-04). Somatic DPYD mutations coincide with deleterious
mutations of gatekeeper and caretaker genes TP53, BRCA1, FAT3,
FAT4, PTPRD, and SPEN with P values below 1.0EÀ06 and q
values below 1.0EÀ04 connecting to DNA maintenance and
stability. In comparison with other TCGA tissues, DPYD is the
top somatically mutated gene in pyrimidine metabolism, affect-
ing 67 patients of 278 whole-exome sequenced metastatic mel-
anoma (Fig. 1A, Supplementary Table S5). There are in total 74
non-synonymous mutations in DPYD detected, including inci-
dents where two or three residues of the same polypeptide chain
are affected. Examples of multiple mutations coinciding inDPYD
are S204F and D949N in patient TCGA-EE-A2MI, or V396I,
G851R, E937K in patient TCGA-FW-A3R5. The nucleotide signa-
ture of somatic transitions of DPYD tracks with the validated
mutational signature of melanoma identified across human can-
cers (6, 10), and is governed by UVB-associated C>T/G>A transi-
tions (Supplementary Table S6; Fig. 1B).

Structural hotspots of somatic hypermutation of DPYD in
ligand-binding sites as well as interfaces of protein domains

To decipher functional implications of somatic mutations of
DPYD, we analyzed the domain distribution, polymorphism
phenotyping v2 (PPH2) scores, solvent accessible surface, prox-
imity to ligands, and mutational recurrence of all identified
somaticmutations (Supplementary Table S7). The cytosolic dihy-
dropyrimidine dehydrogenase (EC 1.3.1.2; OMIM 612779 and
274270) is the initial and rate-limiting enzyme in the catabolism
ofpyrimidines. It reduces thepyrimidinebases thymine anduracil
in a NADPH-dependent manner. The highly conserved homo-
dimeric 1025-residue protein contains four 4Fe-4S-clusters,
one FAD, and one FMN in the active site cavity of each subunit
(Figs. 2 and 3A and B). A special electron transfer pathway
involves the 4Fe-4S-clusters of both subunits, so that DPYD
comprises two independent electron transfer chains and is active
just as a dimer (14, 15). The somaticmutations affect 153 residues
of 1025 in the TCGA Pan-cancer dataset (TCGA: 181 mutation
affecting 153 unique residues; SKCM: 74 mutations affecting 60

Table 2. Analysis of somatic mutations in pyrimidine metabolism of 339 whole-exome sequenced TCGA SKCM patients (KEGG pathway ID:00240)

TCGA Pan-cancer
Symbol Gene ID Mutation rate P value MutSig q value MutSig q value InVEx Tissue (P and q value MutSig)

AK9 221264 5.00% 4.30EÀ01 2.66EÀ01 8.80EÀ04 LAML (P ¼ NA; q ¼ 1.97EÀ02)
CAD 790 5.00% 6.77EÀ03 4.06EÀ02 2.71EÀ02 LGG (P ¼ 2.87E-02; q ¼ 8.81EÀ02)
CANT1 124583 3.00% 4.45EÀ02 2.86EÀ02 2.71EÀ02 PRAD (P ¼ 4.13EÀ02; q ¼ 4.62EÀ03)
DPYD 1806 20.50% 1.00Eþ00 7.13EÀ01 4.40EÀ06 HNSC (P ¼ 1.40EÀ02; q ¼ 7.36EÀ02)
DPYS 1807 7.00% 4.87EÀ01 5.32EÀ01 8.25EÀ03 PAAD (P ¼ 3.02EÀ02; q ¼ 3.14EÀ07)
ENTPD1 953 4.00% 1.53EÀ01 1.61EÀ01 1.58EÀ02 —

NME6 10201 1.00% 1.22EÀ01 1.76EÀ01 1.58EÀ02 COAD (P ¼ 1.77EÀ01; q ¼ 3.68EÀ02)
NT5C1A 84618 1.00% 2.60EÀ02 9.72EÀ02 6.44EÀ01 STAD (P ¼ 2.68EÀ02; q ¼ 9.90EÀ02)
POLE 5426 6.00% 2.69EÀ01 6.22EÀ01 1.51EÀ03 ACC (P ¼ 5.86EÀ03; q ¼ 2.02EÀ02)

KIRC (P ¼ 2.85EÀ02; q ¼ 9.37EÀ02)
UCEC (P ¼ 1.29EÀ02; q ¼ 6.90EÀ02)

POLQ 10721 8.00% 3.55EÀ01 7.01EÀ01 8.14EÀ04 LUSC (P ¼ 3.40EÀ02; q ¼ 1.43EÀ01)
POLR3B 55703 5.00% 7.59EÀ01 9.47EÀ01 1.32EÀ03 UCEC (P ¼ 2.24EÀ03; q ¼ 3.96EÀ03)
PRIM2 5558 6.00% 3.52EÀ02 1.00EÀ05 7.63EÀ04 HNSC (P ¼ 5.58EÀ03; q ¼ 3.34EÀ06)

LUSC (P ¼ 3.40EÀ04; q ¼ 2.27EÀ04)
REV3L 5980 6.00% 1.47EÀ01 4.29EÀ01 2.20EÀ01 BRCA (P ¼ 6.48EÀ03; q ¼ 2.62EÀ02)
UPP2 151531 2.00% 1.22EÀ02 2.99EÀ02 7.63EÀ04 LUAD (P ¼ 3.90EÀ01; q ¼ 3.40EÀ02)
NOTE: P values above 0.05 or q values above 0.10 are in italic. The column TCGA Pan-cancer lists significant somatic events in pyrimidinemetabolism in other cancer
tissues.

Figure 1.
SKCM stands out in frequency and nucleotide signature of somatic mutations of dihydropyrimidine dehydrogenase (DPYD) across Pan-cancer patients of The
Cancer Genome Atlas (TCGA). A, somatic mutational frequency of DPYD mutations in melanoma and across TCGA PAN-cancer patients. B, nucleotide signature
of somatic transitions of DPYD mutations analyzed by UV-type for melanoma (UVB associated with C>T and G>A, and UVA-type with G>T and C>A) shown as
absolute count of mutational incidences. Fraction of nucleotide signature of somatic transitions of DPYD mutations is given at the right across all TCGA Pan-cancer
tissues in TCGA.
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unique residues). Recurrent somatic mutations are detected in all
five functional domains of DPYD (Fig. 2). While the pyrimidine-
binding domain has the highest mutational count with 55 muta-
tions in total, correction for domain length shows that domains
II–IV, which bind metabolite substrates and cofactors, show
enriched mutation frequency (37 mutations over 197 residues
in FAD-binding domain II domain; 33 mutations over 155
residues in NADPH-binding domain III domain; 55 mutations
over 323 residues in the FMN and pyrimidine-binding domain
IV). The functional impact of somatic missense mutations
was quantified using PPH2 scores and plotted onto the protein
structure (Fig. 3C). Molecular dynamics simulations in com-
bination with computation of solvent accessible surface
revealed an accumulation of damaging, missense somatic
mutations in the core of the protein (PPH2 scores > 0.95;
making up 52% of somatic mutations; solvent accessible sur-
face values of affected residues below 0.50). In contrast, pos-
sibly benign somatic changes are surface-bound (PPH2 scores <
0.50; making up 37% of somatic mutations; elevated average
value above 0.65 for the solvent accessible surface, Fig. 3C). The
location of somatic mutations predicted to be damaging based
on high functional PPH2 scores and lack of surface accessibility
coincides with detected somatic recurrence in SKCM as well as
in the TCGA Pan-cancer cohort (Fig. 3A, C and D).

Recurring somatic missense mutations D291N, V335M, and
A437 frame the nucleotide-binding site (Fig. 4A). In addition, the
NADPH-binding domain houses mutations A323D/P/T, V362I,
G366I/S/V, as well as V365 nonsense mutation. Somatic muta-
tions involved in the hydrogenbondnetwork andwithin less than

3.5Å to the FAD ligand are P197S, E218K, G224S/V, S260R, and
S492L. The mutation L135F is located at the catalytic route
between FAD and N-terminal 4Fe-4S cluster (Fig. 4A). There are
20 non-recurring mutations that populate residues involved in
the electron transfer between the four 4Fe-4S cluster. Between C-
terminal 4Fe-4S cluster and electron entry site of FMN, there is the
somatic mutation E611K (Fig. 4B). Mutations D949N, D965N,
A554V, and E615A line up between C-terminal 4Fe-4S domain V
and pyrimidine binding domain IV. The pyrimidine substrate
binding pocket is framed by recurrent somatic mutations T575I,
E611K, N668K, and G795E (Fig. 4B). A hotspot of recurring
somatic mutations D96N (3x), S204F (3x), M115I (2x), G851R
(2x), E828K (2x), and P545H/L/S is at the interface between
domain I, II, and IV (Fig. 3C and D). S204F is a structural residue
of FAD binding domain II, linking the three domains forming the
large cleft of DPYD. S204F is part of an a-helix which directly
bridges to residues L95I and N1200S, affected by somatic muta-
tions. Similarly, Q828 is an anchor at domain IV and spans a
hydrogen bond network to domain I viaD96N, S99L, andM115I,
affected by somatic mutations.

Cross-talk betweenDPYDmutations and gene expression of the
pyrimidine pathway

Next, we addressed whether the mutational and transcrip-
tional signature of pyrimidine metabolism in melanoma fol-
lows a distinct pattern. More than half of the pyrimidine
enzymes are differentially expressed between primary and
metastatic tumor, showing distinct clusters in key steps of
pyrimidine nucleoside triphosphate synthesis, DNA and RNA

Figure 2.
Somatic mutational landscape of DPYD mutations in melanoma and across TCGA PAN-cancer patients. Somatic mutations are indicated on the protein sequence
of DPYD, NCBI Gene ID 1806, A, for skin cutaneous melanoma (SKCM) and B, for 24 TCGA tissues with missense DPYD mutations. C, non-sense, frame-
shift, and splice-site mutations are indicated separately. Functional domains are annotated according uniprot entry Q12882 and 11179210: Domain I N-terminal
4Fe-4S clusters (27-172, yellow); domain II FAD-binding domain (173-286, 442-524, blue); domain III NADPH-binding domain (287-441, cyan); domain
IV FMN and pyrimidine-binding domain (525-848, red; FMN binding in green); domain V C-terminal 4Fe-4S clusters (1-26, 848-1025, yellow).
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synthesis, as well as pyrimidine degradation (Fig. 5A). At the
mutational level there is also a progressive enrichment of
somatic mutations in the SKCM cohort comparing primary
and metastatic tumors. DPYD is mutated in 11.5% of primary
tumors, while in metastatic tumors somatic mutations are
detected in 22.5% of all whole exome–sequenced samples
(Fig. 5B). Comparison of gene expression and mutational data
of DPYD and other key pyrimidine enzymes in SKCM shows
that enrichment of somatic mutations in metastatic tumors
coincides with elevated expression levels (Fig. 5). The gene
expression signature is significantly enhanced by somatic DPYD
mutation. The expression level of pyrimidine enzymes changes
in SKCM metastatic tumor samples with DPYD wild-type status
in comparison with metastatic tumor samples with DPYD
mutation with P value below 0.05. In addition, the direction
of expression change in melanoma progression (up or down
from tumor to metastasis) is the same as the difference between
DPYD mutation and wild-type (up or down from wild-type to
mutation, respectively). The observed deregulated gene expres-
sion of pyrimidine enzymes, including DPYD itself, correlates
with metastatic progression and is enhanced by somatic DPYD
mutations (Fig. 5B and C). Almost all differentially expressed

pyrimidine enzymes (with the exception of POLR3D), which
show up- or downregulation between primary and metastatic
tumors, show progressive increase or decrease with DPYD
mutation, respectively (Supplementary Table S8). Somatic
mutations of DPYD enhance the metastatic progression signa-
ture of melanoma (Fig. 5D).

Bifurcation of pyrimidine metabolism inmetastatic melanoma
Somatic mutations and differential gene expression have

severe implications for the metabolic network of pyrimidine
metabolism. Mapping of gene expression data onto a pathway
map of pyrimidine metabolism (modeled after KEGG pathway
ID:00240) revealed a 2-fold separation. Pyrimidine degrada-
tion initiated by enzymes DPYD and DPYS is significantly
upregulated (Fig. 6A). Enzymes TYMP (thymidine phosphor-
ylase, Gene ID: 1890), UPP1 (uridine phosphorylase 1, Gene
ID: 7378), CDA, TK1 (thymidine kinase 1, soluble, Gene ID:
7083), TK2 (thymidine kinase 2, mitochondrial, Gene ID:
7084), UCK1 (uridine-cytidine kinase 1, Gene ID: 83549), and
DTYMK [deoxythymidylate kinase (thymidylate kinase), Gene
ID: 1841] salvaging pyrimidines are significantly downregu-
lated. Enzymes DCK (deoxycytidine kinase, Gene ID: 1633),

Figure 3.
Structural analysis of DPYD dimer
reveals hotspots of somatic mutations
in ligand binding sites as well as
interfaces of protein domains. A, The
4Fe-4S cluster domain I of DPYD
(uniprot entry Q12882 and PDB entry
1gth) is shown in orange, the FAD-
binding domain II in blue, the NADPH-
binding domain III in cyan, the
pyrimidine- and FMN-binding domain
IV in red, and the 4Fe-4S cluster
domainV is shown in yellow. The lower
monomer is color-coded according to
domains and contains small-molecule
ligands as sticks, the upper monomer
is overlaid in black. B, the five domains
of each DPYD monomer are color
coded according to protein domains
showing that the electron transfer
chain crosses the dimer interface
twice. The 4Fe-4S cluster domains I
and V are intertwined and form
extended inter-domain contacts.
C, functional impact of somatic
missense mutations plotted as PPH2
scores onto surface (lower monomer;
showing surface-bound mutations)
and ribbon of DPYD structure
(emphasizing accumulation of
deleterious mutations in protein core
in black). D, recurrent missense
somatic mutations in ligand-binding
sites as well as interfaces of protein
domains of DPYD. Gray frames
indicate regions of coincidence of high
functional PPH2 scores, lack of surface
accessibility coincides, and somatic
recurrence shown enlarged in Fig. 4.
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CANT1, AK9, and NME7 (NME/NM23 family member 7, Gene
ID: 29922) providing pyrimidine nucleoside triphosphate and
nucleic acid building enzymes POLA1 [polymerase (DNA direct-
ed), alpha 1, Gene ID: 5422], POLK [polymerase (DNA directed)
kappa, Gene ID: 51426], POLQ, POLR1A [polymerase (RNA) I
polypeptide A, Gene ID: 25885], POLR1B [polymerase (RNA) I
polypeptide B, Gene ID: 84172], POLR2B [polymerase (RNA) II
(DNA directed) polypeptide B, Gene ID: 5431], POLR2D
[polymerase (RNA) II (DNA directed) polypeptide D, Gene ID:
5433], POLR3A [polymerase (RNA) III (DNA directed) poly-
peptide A, Gene ID: 11128], POLR3D, REV3L, PRIM1 (primase,
DNA, polypeptide 1, Gene ID: 5557), PNPT1, and TWISTNB
(TWIST neighbor, Gene ID: 221830) are upregulated. This is
enforced by a significant downregulation of pyrimidine nucle-
oside triphosphate–degrading enzymes ENTPD3 (ectonucleo-
side triphosphate diphosphohydrolase 3, Gene ID: 956),
ENTPD8 (ectonucleoside triphosphate diphosphohydrolase 8,
Gene ID: 377841), ITPA [inosine triphosphatase (nucleoside
triphosphate pyrophosphatase), Gene ID: 3704], NT5C (50, 30-
nucleotidase, cytosolic, Gene ID: 30833), and NT5M (50,30-
nucleotidase, mitochondrial, Gene ID: 56953). In addition,
enzymes RRM1 (ribonucleotide reductase M1, Gene ID:
6240), RRM2B [ribonucleotide reductase M2 B (TP53 induc-
ible), Gene ID: 50484] required for anabolic conversion of uracil
nucleosides to thymidine diphosphate nucleosides are upregu-
lated, while enzymes TYMP- or CDA-mediating production of
uracil, uridine, and deoxyuridine are downregulated. At a path-
way level, somatic mutations in SKCM patients are most fre-
quently observed in enzymes DPYD, DPYS, ENTPD1, CANT1,
and UPP2 of pyrimidine degradation, as well as degradation of
pyrimidine nucleoside triphosphates (q value below 0.03; Fig.
6B; Supplementary Table S5). Somatic mutations of DPYD
significantly enhance the signature of pyrimidine nucleoside
triphosphates and nucleic acid–generating enzymes CMPK1,
AK9, NME7, POLA1, POLD3, POLK, POLR3F, POLR3G, PRIM2,
and TWISTNB (P < 0.05; Fig. 6C, Supplementary Table S8). In
addition, DPYD-mutated samples show significantly increased
DPYD transcript levels (P < 0.05). Taken together, the combined
mutational and gene expression analysis shows a shift towards
pyrimidine nucleoside triphosphates and nucleic acid synthesis,
and disconnection from pyrimidine salvage and degradation
(Fig. 6D; Supplementary Table S4).

Discussion
Enzymes in pyrimidine metabolism undergo a significant

deregulation at the gene expression level in the transition from
skin cutaneous primary tumors toward metastatic tumors
(Table 1; Fig. 5). This transition is accompanied by an enrichment
of somatic mutations of DPYD (Table 2; Figs. 1–4).

The mutational analysis identified more than 130 unique and
novel recurrent somatic mutations in DPYD, including recurrent
missense, nonsense and splice site mutations (Supplementary
Table S7). In addition, wewere able to confirm frequently recurring
deleterious mutations S204F and G275 frame shift (Fig. 4A and C;
refs. 8, 16). The mutational burden of DPYD after correction for
background rate is equally high as established melanoma drivers
and shows significant enrichment with a q value of 4.40EÀ06
(Table 2; ref. 8). An emerge theme in cancer genomics, facilitated
by the advent of deep sequencing data of large patient cohorts, is
that the mutational landscape of proto-oncogenes and tumor
suppressors ismore diverse than anticipated (6). Structural analysis
of cancer driver BRAF showed unprecedented events in the RAS-
binding domain interface and the ATP-binding pocket aside from
established p.V600E/K/R/D substitutions. Detailed topological
analysis of the DPYD dimer reveals structural hotspots in ligand-
binding sites and interfaces of protein domains of DPYD. Events
with three-time recurrence are detected in each of the functional
domains with p.D96N (Fe-S cluster I–II), p.S204F (FAD-binding
domain), p.A323T/P/D (NADPH-binding domain), and p.P545S/
L/H (pyrimidine-binding domain). There are distinct areas of
interest with high density of somatic recurrence of mutations in
DPYD (Fig. 4). Two NADPH-binding loops between V335 and
G366 positions the nucleotide and initiate the electron transfer.
Somatic mutations V335M, A437M, D291N, V362I, and G366I/S/
V closely frame thenucleotide-binding site and are expected tohave
reduced NADPH binding, similarly to the reduced affinity of
reported variant G366A (Fig. 4A; ref. 17). Recurring somatic muta-
tions T575I, E611K, N668K, and G795E in pyrimidine and FMN-
binding site affect hydrogen bond network of enzymatic effector
domain IV (Fig. 4B).

The interface between FAD-binding domain II, N-terminal 4Fe-
4S cluster domain I, and pyrimidine-binding domain IV stands
out for high-frequency recurrences of somatic mutation (Fig. 3C
and D). E828 is engaged in a tight hydrogen bonding network to

Figure 4.
Recurring somatic missense mutations
frame ligand–binding sites of DPYD
modulating its enzymatic activity.
A, recurring somatic mutations in
ligand-binding sites of NADPH, FAD,
and 4Fe-4S clusters at the interface of
domain I–III. B, recurring somatic
mutations in pyrimidine and FMN-
binding site affect hydrogen bond
network of enzymatic effector domain
IV. C, accumulation of recurring
somatic mutations at domain interface
shows hinge-residue Q828 in domain
IV and its connectivity to domain I via
hydrogenbonds. Location of expanded
regions on global map of protein
structure of the DPYD dimer is
indicated as gray frames in Fig. 3.
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Figure 5.
Gene expression signature of pyrimidinemetabolism in the progression of metastatic melanoma. A, tumor status of TCGA SKCM patients. Solid primary tumors (TP,
yellow) are marked in the first row; metastatic tumors (TM, red, second row) are marked in the second row. Mutational status of DPYD is indicated in the third row
(DPYD MUT, green). B, significant upregulation and downregulation (C) of genes in pyrimidine metabolism between skin cutaneous primary and metastatic
tumors. GeneswithP values below0.05 aremarkedwith an asterisk next to thegene symbol.D, impact ofDPYDmutationsongene expression of pyrimidine enzymes
is shown in green. Tumor progression of skin cutaneousmelanoma (SKCM) cohort is shown for normal tissue (NB, black), solid primary tumor (TP, yellow),metastatic
tumor with DPYD WT status (TM, DPYD WT, red), and metastatic tumor with DPYD mutations (TM, DPYD MUT, green). Box plots depict data distributions
through quartiles. Asterisks above plots indicate results of statistical significance tests (Student t test: Ã ,P 0.05; Ã ,P 0.01; Ã ,P 0.001; Ã ,P 0.0001; ns,P!0.05).
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D96, S99, and M115, which are also affected by somatic muta-
tions (Fig. 4C). E828K has demonstrated higher DPYD activity
(18), stressing the importance of this hydrogen bonding net-
work. Somatic mutations in highly recurring sites D96N, S204F,
P545L/S/H is associated with high PPH2 values of 1.0 indicating
possibly damaging outcome of DPYD function. In contrast, the
somatic mutation A323T has been shown to be benign with
enzymatic activity close to wild-type (18). Overall, the functional
analysis of somatic mutations shows strong agreement with a
comparative in vitro analyses of DPYD variants that somatic
mutations have reduced DPYD activity (Supplementary Table
S7; refs. 17, 18).

Pyrimidine enzymes undergo differential upregulation
between skin cutaneous primary and metastatic tumors in key
steps of nucleoside triphosphate, DNA and RNA synthesis, as well

as pyrimidine degradation. Somatic mutations can generate met-
abolic bottlenecks and reroute metabolic paths. Visualization of
somatic incident at a pathway level helps identifying such bottle-
necks (Fig. 6). The intricate network pyrimidine metabolism has
built-in redundancy, where enzymatic steps can be encoded by
different genes or enzymes can recognize and process multiple
substrates. Furthermore, the pathway contains steps for conver-
sion between uridine and thymidine nucleotides as well as for
salvage of pyrimidine bases. However, if the transition between
skin cutaneous primary and metastatic tumors relies on distinct
isoenzymes, new therapeutic targets might open. Distinct over-
expression of nucleoside diphosphate kinases AK9 or NME7 in
metastatic cancer puts emphasis on pyrimidine nucleotide syn-
thesis while pyrimidine deamination is downregulated (Figs. 5B
and 6C). On the basis of the metabolic maps, another potential

Figure 6.
Somatic mutations of DPYD in TCGA SKCM enhance metastatic signature of melanoma and promote deregulation of the pyrimidine pathway toward malignant
cancer progression. A, gene expression signature is plotted onto pathway map of pyrimidine metabolism in metastatic melanoma (KEGG pathway ID:00240). On
the left side, enzymes DPYD, DPYS, and UPB1 are responsible for pyrimidine degradation, in the center TYMP connects uracil derivatives, and at the right
pyrimidine kinases DTYMK and CMPK, nucleoside diphosphate kinases NME, and polymerases POLD and POLR provide synthesis of DNA and RNA nucleic acids.
B, frequency of somatic mutations in pyrimidine enzymes is color coded from 0% in gray to 25% in purple in metastatic melanoma (Supplementary Table S5).
C, impact of DPYDmutations on enzymes of pyrimidine metabolism is indicated by regulatory symbols and shading of enzyme boxes (red, plus) for enhancement
and suppression (blue, minus; Supplementary Table S8). Somatic frequency of mutations, enhanced gene expression signature of patients with DPYD
mutations are provided in Supplementary tables. D, pathway map shows separation and directionality of upregulated pyrimidine degradation (red, left) and
nucleic acid synthesis (red, right) by downregulated uracil and thymidine salvage (blue, center). Concerted dysregulation of metabolic enzymes at a pathway
level contributes to bifurcation of pyrimidine metabolism. The systems biology maps depict metabolites as circles, reactions with their respective directionality
as arrows, and enzymes as boxes. Enzymes of anabolic direction are shown above reactions and enzymes of catabolic direction below reactions. Staggered
boxes indicate metabolic redundancy that multiple genes encode enzymes for the reaction.
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melanoma drug target is RRM1. Established efficacy of nucleoside
analogues in acute leukemias might facilitate new treatment
regimens in skin cancer (19). Given a strong reliance on biosyn-
thetic building blocks, the upregulation of pyrimidine degrada-
tion lowers the pool of nucleotide bases available for salvage. The
ribonucleotide reductase RRM1 responds to DPYD alteration, is
significantly upregulated in metastatic melanoma, and bridges
bottlenecks between deoxyribo- and ribonucleotides (Supple-
mentary Table S8; Fig. 6C and D).

The systems biology analysis of melanoma data in TCGA
revealed a strong separation of pyrimidine degradation and
nucleotide synthesis, which is important for effective nucleic acid
synthesis (Fig. 6D). The mechanism of DPYD controlling pyrim-
idine metabolism is unknown (17). A likely possibility is the
existence of metabolic feedback loops of other enzymes shifting
metabolism into a different gear within the progression of cancer
(20). ElevatedDPYD expression results in lowmetabolite pools of
the pyrimidine nucleobases thymine and uracil, which could
allosterically bind metabolic enzymes or signaling molecules.
Moreover dihydropyrimidines and deoxypyrimidines are alloste-
ric inhibitors of thymidine kinase (21, 22), which enhance the
importance of TYMS for de novo pyrimidine synthesis.

Nucleotide synthesis is closely linked to production as well as
stability of nucleic acids. Not surprisingly, purine metabolism
scored equally high in the enrichment study, as both pathways
share important enzymes in nucleoside salvage and nucleic acid
processing (Table 1). However, mutational signature, correlation
between somatic alterations and gene expression, and metabolic
bottlenecks were unique to pyrimidine metabolism motivating
further studies of DPYD. Remarkably, mutated DPYD was found
to be overexpressed in metastatic cells promoting synthesis of
DNA and RNA (Fig. 5). In addition, somatic DPYD alterations
cooccurred with mutations of tumor suppressors and DNA care-
takers in melanoma patients. Deregulated pyrimidine catabolism
may not only be connected to nucleotide anabolism but also
negatively affect DNA maintenance and stability. Further experi-
mentswill be needed to decipher the cellularmechanisms respon-
sible for the development and the progression of melanoma.

In addition to executing the epithelial–mesenchymal transi-
tion program, metastatic cells acquire traits associated with
high-grade malignancy, including resistance to apoptosis
and chemotherapy. Patients with a complete or partial DPYD
deficiency have been reported as suffering from lethal toxicity
after the administration of 5-FU (5-fluorouracil, PubChem
CID:3385) (23). On the basis of the pathway analysis of SKCM
samples, we established a gene expression signature of pyrim-
idine enzymes, which grants drug sensitivity while limiting
toxicity. 5-FU has to be processed by TYMP, TK, CMPK, and
NME enzymes to produce the active drug-metabolite FdUMP
(5-fluorodeoxyuridine monophosphate, PubChem CID:8642),
which is a tight-binding inhibitor of TYMS. As TYMS represents
the sole intracellular source of de novo TMP, the inhibition of TS
exploits a metabolic bottlenecks in the biosynthesis of DNA
(Fig. 6). In addition, UPP, UCK, CMPK, NME enzymes facilitate
production of 5-FUTP (5-fluorouridine triphosphate, Pub-
Chem CID:10255482) causing nucleic acid damage and apo-

ptosis. Low levels of NT5 support accumulation of 5-FUMP
(5-fluorouridine monophosphate, PubChem CID:150856) and
FdUMP and cell toxicity. Despite DPYD degrades 5-FU to
DHFU (5-dihydrofluorouracil, PubChem CID:121997), pyrim-
idine degradation is necessary and causes systemic failure if
absent or partially dysfunctional (24). None of the metastatic
melanoma patients show compatible signatures of gene expres-
sion (Figs. 5A and B and 6A). On the basis of the mutation rate
of DPYD of more than 20% in melanoma in combination with
downregulation of TK and UPP, we predict high risks of 5-FU
toxicity in melanoma. For these reasons, fluorinated uracil-
based pyrimidine analogues cannot be considered to be a safe
treatment regime for melanoma patients. While knockdown
experiments will be necessary to identify more efficient thera-
peutic regimen in the pyrimidine pathway, the systems biology
analysis provides a diagnostic insight at the pathway level.
Importantly, the increased genotyping coverage achieved by
a comprehensive description of the mutational landscape of
DPYD improves predictive value for 5-FU toxicity.

Conclusion
The structure-based analysis of detected somatic events high-

lights vulnerabilities in DPYD. Recurring missense mutations
accumulate in ligand-binding sites as well as at domain interface
between Fe4S4 clusters, FAD, and pyrimidine binding. The tran-
scriptional data shows that mutated DPYD selectively activates
components of pyrimidine metabolism. The cross-talk between
somatic mutations and gene expression promotes proliferative
aggressiveness. Taken together, the transition from primary to
metastatic tumors reconfigures the pyrimidine metabolism and
emphasizes nucleic acid synthesis required for rapid cellular
proliferation.
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Abstract

Aberrant   DNA   methylation   is   an   epigenetic   hallmark   of   Melanoma.   Focal   DNA
hypermethylation of tumor suppressor gene promoters is observed across many cancer tissues.
Activation and repression of transcription factors that play a detrimental role in oncogenesis and
tumor suppression through targeted methylation led by DNMTs is vital for understanding the
mechanisms   employed  by   tumor   cells   to   reprogram   cell  machinery.   In   this   study,   genomic
analysis was performed to assess the scope of overexpression in key methylation­inducing genes,
DNA   methyltransferases   3a   &   3b   (DNMT3a,   DNMT3b),   through   subtyping   based   on   gene
expression data. A large cohort of human skin cutaneous melanoma (SKCM) patient data from
the The Cancer Genome Atlas (TCGA) was used for  the analysis.  Differential  methylation  in
DNMT expression­based patient cohort revealed selective hyper­ and hypomethylation in gene
and   promoter   regions   of   key   tumor   suppressors   and   oncogenes,   respectively.   In   addition,
transcription factors of RUNX family and HOX family were also targeted for hypermethylation.
Overall,  at  a systems biology level,  a pattern of  targeted methylation induced as a  factor of
DNMT3a & 3b gene expression directs repression of key tumor suppressors to promote malignant
progression.

Introduction

DNA methylation   in  mammals   is   found   sparsely  but   is   globally  distributed   in  definite  CpG
sequences throughout the entire genome. CpG islands are short interspersed DNA sequences that
are enriched for GC. These CpG islands are normally found in sites of transcription initiation
(transcription start sites; TSS), and selective methylation of these sites has been studied to affect
gene regulation; to that end, methylation of CpG leads to gene silencing. It is crucial to study the
methylation pattern of CpG islands in cancer, as silencing of tumor suppressors through targeted
hypermethylation to silence tumor suppressors has been found to be a prominent machinery
exploited by cancer; furthermore, aberration in DNA methylation is an epigenetic hallmark of
cancer [1, 2]. 
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DNA methyltransferases (DNMTs; 1, 3A, 3B) are responsible for catalyzing the transfer of
methyl   groups   to  mammalian  genomic  DNA and  play  an  active   role   in  gene   silencing  and
repression.   DNMTs   have   been   found   to   induce   tumor   growth     and   aid   tumor   cells   by
orchestrating   both   methylation­induced   and   methylation­independent   changes   in   genes   and
transcription   factor   expression   [3­5].  Elimination  of  both  DNMT1 and  3A nearly   eliminates
methyltransferase  activity,  while   disruption  of  DNMT3A  only   reduced   the  methyltransferase
activity by 3%, indicating an enhanced role of DNMT3A in regulatory and targeted methylation
[5].  DNMT3A deletion promotes  tumor growth,  but not   initiation,   in mouse models  of   lung
cancer. DNMT3A­deficient tumors had high proliferation and significantly fewer differentially­
methylated   regions   across   genomic   DNA,   indicating   DNMT3A­mediated   targeted   promoter
methylation for gene repression [4]. DNMT3B silencing also inhibits proliferation and stimulates
apoptosis in hepatocellular carcinoma (HCC) and its siRNA­mediated knockdown led to locus­
specific hypomethylation and increase in gene expression [6]. Analysis of melanoma cell lines
has identified a large cohort of hypermethylated genes that are perceived to be repurposed for
malignant disease progression [7]. However, the scope and causal mechanisms  that contribute
towards pathogenesis as a result of hypermethylation remain largely unknown. The effects and
functional outcome from hypomethylation have been studied much less but the phenomenon is
common across several cancer tissues, including Melanoma [8].

Subtyping is an effective way to determine common set of changes that occur in a  subset
of patients with a specific cancer. In Melanoma subtyping based on mutation, gene expression,
methylation, UV signature etc. has been performed to identify underlying factors that play an
enhanced role in promoting cancer phenotype [9,10]. Methylation­based subgrouping study in
50 metastatic Melanoma patients  revealed hypermethylation  in PRC2 target  gene­sets  and 3
different  methylation   groups   [11].   The  BRAF  V600E  mutation   in  melanoma  has   also   been
studied to direct widespread promoter methylation and epigenetic silencing and BRAF­directed
pathways   also   mediate   epigenetic   silencing   in   colorectal   cancer   [12,   13].   While   epigenetic
silencing and selective induction by methylation has been studied in many cancer tissues, the
effect and scope of DNMT enzymes' transcriptional activity as it relates to driving these changes
in cancer   is  not  explicitly  established.   In this study we performed subtyping  in TCGA­SKCM
patients on the basis of DNMT 1, 3A & 3B transcriptional activity to map out global and targeted
methylation that are directed by DNMTs in Melanoma.

Overexpression of DNMT3B and its splice variant DNMT3B4 has been studied in breast
cancer, clear­cell­renal­cell carcinoma (ccRCC) and non­small­cell ling cancer (NSCLC). Aberrant
methylation and hypermethylation of PRC2 targets as a result of overexpression was observed
[14­16]. In Melanoma, DNMT3B is also overexpressed, and its knockdown markedly suppresses
Melanoma formation and proliferation [17] but the underpinning mechanisms and host of genes
and   transcription   factors   that   govern   this   are   poorly   understood.   Furthermore,   combining
transcription activity of DNMT1, 3A and 3B with methylation changes will provide a window to
understand the alterations in Melanoma machinery that stem from epigenetic changes led by the
methyltransferase group of enzymes.
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Transcription factors are crucial for maintaining specific cell states and gene­regulation
programs   associated   with   them[18].   Misregulation   of   transcription   through   metabolic
reprogramming    is  an emerging hallmark  in  cancer,  particularly   in  Melanoma[19].  Previous
studies across several cancers including Melanoma have provided substantial evidence depicting
epigenetic   mechanisms,   such   as   selective   methylation,   as   the   primary   methods   by   which
modulation of cell state occurs to promote disease progression [20­23].

Materials and Methods

Genomic Analysis of TCGA­SKCM

We used National Cancer Institute (NCI) Genomic Data Commons (GDC) portal to access
TCGA­SKCM Level 2 and 3 methylation, mutation, transcriptomic, and clinical datasets used in
this study. GDAC Firehose along with GDC data portal were used to query GISTIC2 processed
Copy  Number  Variation   (CNV)  data.  DNA methylation  data  obtained   from GDC portal  was
acquired through Illumina Infinium HumanMethylation450k beadchip (HM450k) which contains
485579 probes per patient sample. Methylation levels are reported as a beta score (ß) between 0
and 1, with a score of 1 denoting highest methylation. 

RNAseqV2 with gene expression normalization acquired by Illumina HiSeq2000 was used for
gene expression quantification. We used TCGABiolinks package to process the data and convert
each   dataset   into   SummarizedExperiment   class   object   to   add   subtyping   data   and   clinical
information to the data. 

ChiP   data   used   in   this   study   was   obtained   from   foreskin   primary   melanocyte   cells
(skin03; EpigenomeID – E061), through Roadmap epigenomics project database and retrieved
using AnnotationHub package in ENCODE narrowPeak format as BED files. 

Statistical methods for epigenomic analysis 

Patient cohort based on DNMTs (1, 3a & 3b) transcriptional activity were created by
selecting   50   patients,   each   with   highest   and   lowest   expression   of   DNMT1,   DNMT3a   and
DNMT3b genes (Supplement Table 1). Three cohorts comprising 100 patients each (100/471
from TCGA­SKCM) with 50 subjects  in “high” and 50 subjects  in “low” transcription activity
group were created and then used to identify regions of DNA with differential methylation as a
direct cause of varied transcription levels.

Differentially­methylated CpG sites on the DNA were identified by a two­step process that
first calculated the difference between mean DNA methylation for each patient cohort for each
probe in all patients in the cohort. We removed probes with NA values and a minimum absolute
beta­value difference less than 0.15. Finally, Wilcoxon test adjusted by the Benjamini­Hochberg
method was performed and probes with adjusted p­values of <0.01 were selected as significantly
hypermethylated probes.
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To assess  the effect of selective methylation on genes we  integrated differential gene
expression data with differential  methylation.  Differential  expression analysis  (DEA) between
patient cohorts previously created was carried using edgeR package which performs pair­wise
Fisher’s exact test by comparing and performing statistical tests in each gene pair between the
cohorts. Gene­pairs with log fold change (logFC) of above 10^­5 and FDR corrected p­value of
above 10^­5 were selected. Next, DMR with FDR corrected p­value of 10^­2 and above and
mean methylation of at least 0.15 were merged with the gene­pairs from previous step.

Regulatory motif search was performed using rGADEM on selectively DMR identified in
previous steps. A window of 100 bases (upstream and downstream of the probe) was created at
each differentially­methylated CpG site. Starting position weighted matrix (PWM) was created
with equal probability distribution for each nucleotide. rGADEM uses a genetic algorithm (GA)
with an embedded expectation­maximization algorithm to improve starting PWM based on the
sequence encountered in the window created in earlier step. We used motifStack to visualize
regulatory motifs identified. To identify transcription factors that most closely match with the
regulatory motifs we used MotIV, an R Bioiconductor package that matches motif PWM against
JASPAR database using alignment.

To annotate and visualize histone methylation marks and the average profile peaks in
and   around   hypomethylated   and   hypermethyalted   regions   in  ChiP­Seq   data  we  used   an  R
Bioconductor package called Chipseeker. A window of 3000bp (+/­ 3 kbp) was created both
upstream   and   downstream   of   each   differently­methylated   probe   to   create   average   profile
enrichment plots of histone methylation marks. A heatmap of peak binding regions of histone
marks was made using ggplot. R package TxDb (object TxDb.Hsapiens.UCSC.hg19.knownGene),
which contains transcript­related features of a genome, was used in conjunction with Chipseeker
for annotation of peaks. Enrichment analysis (EA) to assess KEGG pathways and genes affected
by  CG probes  with   significant   hypermethylation  and  hypomethylation  was  performed  using
annotated profile peaks obtained in the previous step of differential methylation analysis. The
Chipseeker package was then used to create an EA plot for KEGG Pathway enrichment.

To aid identification of distal regulatory enhancers we used R package ELMER (Enhancer
Linked by Methylation/Expression Relationship). To filter HM450k probes that function as distal
regulatory probes and are located at least +/­ 2kb away from transcription start sites (TSS) we
used comprehensive list of TSS annotated by ENSEMBL and accessed by biomaRt package. A
multiassayexperiment (MEA) object  containing DNA methylation data of  distal  enhancer and
gene expression values was created to be used in ELMER. For each distal probes a rank based on
Beta methylation is created which is then used to identify hyper/hypo methylation based on
unpaired one­tailed t­test  between between patient cohorts.  Next,  each enhancer probe with
methylation changes was tested for correlation with 10 upstream and 10 downstream genes. 

To analyze the role and scope of each transcription factor family in promoting differential
methylation and thereby transcriptional misregulation to promote tumor phenotype as indicated
by EA plot, we used Python 2.7.16 in Ipython shell. BeautifulSoup python package was then used
to parse TFClass database[24] which contains exhaustive classification of transcription factors
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and   associated   families.   Significant   CG   probes   (10^­2)   with   high   degree   of
hyper­/hypomethylation were grouped by transcription factor families and total number of hyper
and hypo probes were computed. Relative significance score was then calculated as factor of
transcription factor family size and total number of significant probes across all transcription
factors for a given family. Relative significance score was however an inaccurate indicator of
significance as relatively larger TF families harbored many more CG probes but had little to no
functional influence. To correct for size biases and take only significant probes in functionally
relevant regions into consideration, CG probes in distal intergenic regions were ignored while
probes in regions of exons, promoter and enhancer were retained. The normalization parameter,
Z­score, was devised to take into account relative size differences between TF families. Z­score of
significance was calculated using formula (1). The Z­scores were converted to p­values using
Gaussian cumulative distribution function ndtr of scipy.special  python package. Transcription
factors meeting p­value threshold of <= 0.1 were then selected.

Z i=X− X

Z i=

X iFA −
∑ x iF

m
σ F

where: Zi = Z­score

XiFA = Number of CG probes in a given transcription factor

XiF = Number of CG probes in TF Family

m = Number of members for a gen TF family

To   perform   downstream   analysis   to   assess   the   scope   of   selective   methylation   in   a
transcription factor family tftargets R package was used to obtain activated and repressed target
genes for transcription factor family identified in preceding step. To visualize changes in target
genes in low and high DNMT expression patient cohorts R library ggplot2 was used.

Results

DNMT3a and 3b transcriptional activity drive methylation in key tumor suppressor genes and 
pathways like Wnt and TGFbeta. 

473/473 TCGA­SKCM patients expressed DNMT1, DNMT3a and DBNT3b at varying 
levels. DNMT1 showed overall high expression relative to all other genes and highest within 
methyltransferase genes. Genomic coordinates of differentially­methylated CpG regions were 
then mapped to gene locations. DNMT1 had 106 differentially­methylated probes when 
comparing methylation (ß value) between DNMT1 high expression and low expression cohort. 
These 106 differentially­methylated probes spanned 68 genes, with some genes harboring 
multiple differentially­methylated probes, and 15 probes were located in intergenic regions. 
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DNMT3A contained 3714 differentially­methylated probes spanning 1518 genes with some genes
and transcription factors. 1338/3714 differentially­methylated probes were located in intergenic 
regions. Differential methylation analysis in DNMT3B produced a total of 1222 DMR spanning 
567 genes, 404/1222 probes were located in intergenic region while genes and transcription 
factors like HCK (chemokine signaling pathway) , EXOC3L2, PLEC1, TET1 and RUNX1 
containing at least 5 differentially­methylated probes each.

Homeobox family of transcription factors (HOXB13, HOXD12, HOXA13, HOXA4, HOXB9,
HOXD13) were significantly hypermethylated and contained about 30 hypermethylated probes 
in total between DNMT3a and 3b patient cohort. HOX genes have been studied to be tumor 
suppressors and targets of selective methylation in colorectal cancer [25]. Differential expression 
and correlation between expression and metastasis in HOX genes has been observed in 
Melanoma. In this study we identify hypermethylation in several HOX genes; most noticeably, 
HOXB13 contained 9 and 3 hypermethylated probes in DNMT3a and DNMT3b respectively. 
HOXB13 and other members of HOX family of transcription factors were identified by ChiP 
antibody to be hypermethylated  in colorectal cancer and are believed to function as tumor 
suppressors [26], while HIXD9 has promoter methylation and is associated with clinical 
prognosis in Melanoma Brain Metastasis (MBM)[26]. HOX transcript antisense RNA (HOTAIR) 
originates from the HOXC cluster, and is shown to have pro­metastasis activity in breast and 
pancreatic cancer [27,28]. HOTAIR recruits PRC2 to specific target genes[29,30].

The Runt­domain containing family of transcription factors (RUNX1, RUNX2, RUNX3)
conserve   the  ability   to   counter  oncogenic   signals   through oncogene­induced   senescence  and
function as tumor suppressors [31]. All three RUNX members are integral components in the
activation of the TGF­ß and Wnt signaling pathways [32]. In our data­set we observe significant
hypermethylation   in  DNMT3A and  3B high   transcription  activity   cohort.  RUNX1,   studied  to
regulate   E­cadherin   and   mediating   TGF­ß   led   tumor   suppression   [33],   contained   7
hypermethylated probes in DNMT3A and 4 hypermethylated probes in DNMT3B high activity
cohort respectively. RUNX3, also a known tumor suppressor [34], contained 4 hypermethylated
probes in DNMT3A and 2 hypermethylated probes in DNMT3B high activity cohort respectively.
RUNX3     and   RUNX1   interact   with   FOXOA3   to   induce   BCL2   [35,36].   We   also   observed
hypermethylation   in   the   distal   enhancer   site   of   FOXD2,   driving   its   suppression.   RUNX2   is
overexpressed in Melanoma and is reported to mediate migration and invasion in Melanoma cell
lines [37]; we observed 3 hypermethylated probes in DNMT3A and 1 probe in DNMT1 high
activity cohort respectively.

Hypermethylation of SFRP2 has been found to silence Wnt/ß­catenin pathway in gastric
cancer[38]. 12 significantly hypermethylated probes across DNMT3A and DNMT3B high activity
cohorts were associated with SFRP2 in our dataset. We believe that a combination of epigenetic
silencing   through   hypermethylation   and   copy   number   deletion   (CNV)   contribute   to
inactivation/silencing of the TGF­ß and Wnt signaling pathways in Melanoma. Sclerostin domain
containing  1   (SOSTDC1)  protein,   an   antagonist   and  modulator   of   the  BMP   [39]   and  Wnt
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signaling pathways in breast cancer [40], contained 4 and 6 significantly hypomethylated CG
probes in DNMT3A and DNMT3b patient cohorts, respectively.

Highly selective significant hypermethylation of ZFHX3 was observed in DNMT3a and
DNMT3b which contained 8 and 4 hypermethylated CG probes, respectively. ZFHX3 has been
found to be a tumor suppressor in several cancers and functions by negatively regulating c­Myb
and trans­activation of cyclin­dependent kinase inhibitor 1A (p21CIP1). Tumor necrosis factor
receptor  1 (TNFRSF1A),  a substrate  of  TNFalpha,   leading to  its  activation,  was significantly
hypermethylated and contained 4 hypermethylated CpG probes in patients with high DNMT3a
transcriptional activity.  It  should be noted that a battery of immune response, apoptosis and
inflammation response genes and transcriptional factors were also selectively hypermethylated in
patient cohorts with high DNMT3a and 3b activity.

Genes and targets of genes in Polycomb repressive complex 2 (prc2) were also observed
to be selectively methylated. Most noticeably, JARID2 contained 3 hypomethylated probes in its
promoter region in patient cohort with high DNMT3a expression and 2 hypomethylated probes
in DNMT3b high expression patient cohort. Considerable overlap between targets of PRC2 and
selectively methylated genes in DNMT3a and DNMT3b high activity cohort was also observed.
Key   genes   (PIK3CA,   PIK3CD,   PIK3CG)   in   PI3K­AKT   signaling   pathway   were   selectively
hypomethylated   and   thereby   transcriptionally   activated   to   promote   the   cancer   phenotype.
Selective   hypomethylation   of   proto­oncogenes   like   PTPRN2   (increased   expression   confers
resistance to apoptosis in breast cancer), CACNA1H (MAPK signaling pathway), ARC (apoptosis
repressor), GSE1 (oncogene in breast cancer), ELANE  (inhibited apoptosis by activating PIK/Akt
activation) and NCOR1/SMRT corepressors (Notch signaling pathway) was also observed.

Copy number loss and gain correlate with hypermethylation and hypomethylation respectively.

Recurrent copy number variations (CNV) with significant amplification and deletion and
significance threshold of q­value <= 10^­2 were identified using GAIA in TCG­SKCM data. Gain
or   loss   of   chromosome   regions   as   identified   by   CNV   analysis   correlated   with   regions   of
hypermethylation and hypomethylation, indicating mutually­exclusive mechanisms undertaken
by the cancer cell for deletion and amplification of gene/chromosome regions with oncogene or
tumor   suppressors,   respectively.   Copy   number   gain   is   associated   with   increases   in   gene
expression due to extra copies of the gene and, similarly, copy number losses tend to translate
into loss of gene expression. Unsurprisingly, regions of hypermethylation that overlapped with
copy number deletion events had a substantial decrease in expression. The chronological order
or   mechanisms   that   aid   concurrent   copy   number   deletion/amplification   and
hypermethylation/hypomethylation   are   not   included   in   this   study   and   further   investigation
would  be   required.  This  overlap  between  targets  of   selective  methylation and  somatic   copy
number alteration further highlights the robust nature of a tumor cell and its capacity to recruit
diverse sets of mechanisms to promote malignant disease progression.

Enrichment of histone methylation mark H3K27me3, associated with polycomb repression
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To  understand   the   scope  of   varied   methylation   on   targeted   activation/repression   of
transcription   factors   and   other   chromatin­associated   proteins   we   used   ChIP­seq   analysis   in
tandem with the DNA methylation and gene expression data. ELMER analysis was used to infer
the effect of DNA methylation on distal regulatory enhancers and to map the effect of targeted
methylation at distal enhancers on regulation of upstream regulators like transcription factors.

The p53/RUNT DNA binding transcription factor superfamily, which is found in the p53
and   the  RUNT   families   of   transcription   factors,  was   one  of   the  most   significant   targets   of
selective   methylation,   regulation   by   enriched   motif   and   distal   enhancers.   RUNX1,   RUNX2,
RUNX3 had 19 significantly hypermethylated probes within the gene­body and 35 significantly
hypermethylated probes in their distal enhancer sites. To access the role of hypermethylation in
distal   enhancer   sites  we  evaluated   correlation   in   expression  of  RUNX1,  2  and  3  with  DNA
methylation at those sites. This analysis clearly demonstrated a significant decrease in expression
with increase in methylation at distal enhancer sites (>2kb from TSS). Consequently, higher
transcriptional activity in DNMT1, 3a & 3b drove hypermethylation in RUNX transcription factors
which   resulted   in  an   active   repression  of   their   expression.  Analysis   of   regulatory  motifs   in
differently methylated regions to identify transcription factors that can bind to them revealed
TP53   as   one   of   the   most   significant   (8e­02)   target   of   motif   CTGCGCCAGGC   found   in
hypermethylated CG probes in DNMT3B. 

Selective methylation at distal enhancer sites resulted in a targeted regulation of  WNT9B
gene expression, this along with promoter methylation observed at other members of Wnt and
MAPK signalling pathway point towards an active involvement of DNMTs in regulation of MAPK
and Wnt pathways. We also observed significant association of expression in key regulatory TFs
like FOS,FOSB, FOSL1, FOSL2, E2F5, E2F7, JUN, JUNB with DNA methylation at enriched motif
sites of distal enhancers. 

ChiP­Seq  analysis   to   assess   how differently­methylated   regions   identified   in  previous
steps influenced chromatin accessibility and histone methylation showed a significant enrichment
of   H3K4me1   (Histone   H3   lysine   monomethylation),   H3K4me3   (Histone   H3   lysine   4
trimethylation), H3K27me3 (Histone H3 lysine 4 trimethylation), H3K27ac (Histone H3 lysine
27 trimethylation), H3K9me3 (Histone H3 lysine 9 trimethylation) in the DMR CpG regions of
DNMT3A while H3K4me1 (Histone H3 lysine monomethylation), H3K4me3 (Histone H3 lysine 4
trimethylation),   H3K27me3   Histone   H3   lysine   27   trimethylation),   H3K27ac   (Histone   H3
acetylated at lysine 27) were significantly enriched in DMR CpG regions of DNMT3B. Enrichment
of  histone methylation mark H3K27me3 which   is  mediated by polycomb repressive  complex
(PRC) for gene silencing [41­43] was in line with selective hypomethylation of PRC genes like
JARID2.

Effect of selective methylation in transcription factors translated to their targets as well.

KEGG pathways classified as associated with transcription misregulation in cancer were
observed to have a significant overlap with hypermethylated gene regions as identified in our
previous   analysis.   These   findings   indicate   re­purposing   at   the   transcription   factor   and
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transcription factor family level to promote malignant progression, and not limited to targeted
genes and promoters. In order to map out transcription factor families with the highest degree of
differential  methylation,  we  implemented  a   statistical  parameter   to   rank   transcription  factor
families that harbored the most functionally relevant and significantly differentially­methylated
regions. To select only the functionally relevant probes, we annotated DMR probes identified in
previous steps and first observed the relative distribution of probes in introns, exons, promoter,
transcription start sites (TSS) and distal intergenic regions (Supplementary Figure1 & 2). Probes
in all regions except distal intergenic were then selected for further analysis. Total number of
functionally   significant   CG   probes   for   every   TF   family   as   classified   by   tfclass   mammalian
database  was   then   calculated.   Finally,   to   correct   for   large   transcription   factor   families   size
normalization using Z­score normalization was performed. 

Transcription factor family with the highest number of significant, functionally relevant
hypermethylated   probes   were   the   HOX­related   factor   family,   with   53   probes   across   52
transcription factors in its family, followed by the paired­related HD family (PPRX2) containing
50 significant probes. The SOX­related factor family contained 34 significant probes across 23
members.  The Runt­related factor  family and TBX2­related factor  family harbored 31 probes
each across  3  and 4   transcription  factors   in   their   family   respectively.  Upon performing   size
normalization, Runt­factor family followed by TBX2 and Friend of GATA protein factor (FOG 1,
2) families were found to be harbor most significant probes. The Runt­related transcription factor
family was the most significantly enriched family with p­value of   0.000391, followed by TBX2
related   factors   with   a   p­value   of   0.011.   Interestingly,   individual   members   of   Runt­related
transcription   factor   family   were   also   target   of   selective   hypermethylation   and   substantial
enrichment at the transcription factor family level further validates our finding. 

Second degree effects of hypermethylation in transcription factor families propagated to
their   target   genes.   Across   all   members   of   transcription   factor   families   with   enriched
hypermethylated probes, effector actions were either limited or inversed. In the case of target
genes   that   are   known  to   be  activated,   either  no   increase  and   in   some   cases   repression  of
mRNASeq expression was observed,  and  in   the case of  genes  repressed by hypermethylated
targets,   an   increase   or   no   change   in   expression   was   generally   observed.   Runt­related
transcription factor family with Z­enrichment p­value of 0.000391 had up to 1.5 fold change in
IL2,   a   target   generally   activated   by   RUNX1   transcription   factor,   but   as   a   result   of
hypermethylation in RUNX1 and Runt­factor family an inverse action was observed. A general
trend of decrease  in expression across  targets activated by RUNX1, RUNX2 and RUNX3 was
observed. Most notably, genes associated with immune and inflammation response, CCL3, IL2,
JUN,   CDKN1A   exhibit   constitutive   inhibition   in   the   DNMT   high   expression   cohort,   while
constitutive activation of   targets  otherwise repressed by Runt­family  transcription  factor  was
observed as well.  Genes serving functions related to oncogenesis and actively promoting the
tumor phenotype, including VEGFA, MYC, JAG1 for example, were seen to be up­regulated. 

Discussion
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The   high   degree   of   methylome­led   regulatory   mechanisms   are   implicated   in   cancer
progression, especially in the case of Melanoma. The underpinning mechanisms that enable mis­
direction of routine cellular processes, like methylation, by a cancer cell is of principal research
interest among many groups seeking to better therapeutic strategies to treat Melanoma. A series
of reprogramming in cellular machinery through selective methylation led by DNMTs is observed
throughout this study. Highly targeted changes in DNA methylation are repurposed by melanoma
cells to promote constitutive activation and repression of genes and transcription factor activity.
The effects of selective methylation observed in transcription factors propagated to their target
genes as well. We observed consistent increase in mRNAseq expression of target genes generally
known to  be   repressed by  a  hypermethylated  transcription   factor  and  similarly,  decrease   in
expression of target genes otherwise known to activated. 

Analysis of gene expression data and differential methylation patterns in select genes and
regions  of  promoters  point   towards highly  localized regulation  tied  to DNMT transcriptional
activity. Mapping targets subject to differential methylation onto pathways shows a pattern of
enrichment   or   repression.   Highly   significant   focal   hypomethylation   of   oncogenes   and
transcription factors and hypermethylation of tumor suppressors shows that re­molding of cell
metabolism is routine in cancer cells. Similarly, several members of pathways required for cancer
proliferation,   like   immune   modulation,   were   hypermethylated   and   as   a   result   the   overall
pathway was observed to be repressed in order to further promote the tumor phenotype. Focal
regulation as a result by DNMT3a and 3b is the first study in the TCGA SKCM dataset to our
knowledge that establishes a link between direct regulation potential of DNMTs as a factor of
their  expression.   Interestingly,  comparative analysis  between methylation patterns of primary
and  metastasized  Melanoma did  not   show  significant   enrichment   in  gene  of   significance   in
metastasis. This result further shows that signals of metastasis are harbored early in the primary
Melanoma and largely have mutation and copy number alteration origins.

Both   the   Runt­related   transcription   factor   family   and   its   individual   member   genes,
RUNX1,   RUNX2,   RUNX3,   were   targeted   for   significant   hypermethylation.   RUNX   genes   and
transcription  factor  families   function as   important   tumor suppressors by activating a host  of
immune­related pathways  and help counter oncogenic signals. While the tumor suppressor role
and  hypermethylation  of   RUNX   genes   has   been   studied   in   other   cancer   tissues,   this   study
demonstrates   the   mechanism   and   scope   of   DNMT3a   &   3b   over­expression   that   drives   this
hypermethylation event in Melanoma.

An   enrichment   of   histone  methylation  marks,  H3K27me3,   associated  with   polycomb
repression   (PRC2)   and   other   mono­,   di­   and   tri­histone   methylation   marks   known   to   be
associated   with   transcription   repression   observed   in   this   study   further   show   large­scale
repression.   Taken   together   with   focal   methylation,   this   finding   is   in   line   with   overall
transcription mis­regulation of pathways through repression commonly observed in cancer. Distal
enhancers   of   transcription   factors   like   JUN  and  FOS   that   are   crucial   for   oncogenesis  were
targeted for  hypomethylation,  while   tumor suppressors,   including TP53,  significantly  aligned
with the consensus regulatory motif detected in the hypermethylated CpG region of DNMT3B.
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Consistent   with   the   tumor   suppressor   function   of   KLF4   we   saw   a   hypermethylation­driven
decrease in its expression by its promoter and enhancer methylation driven my DNMT 3a & 3b. 

While the role of methylation in cancer is well established, very little is known of the
impact on methylation as a result of transcription activity of the key methylation genes, DNMT1,
3a & 3b. We demonstrate a clear model of regulation tied to transcription activity in TCGA­SKCM
patient  cohort.  Taken together,   it   can be concluded that  DNMT (1,  3A &3B)  transcriptional
activity that drives selective methylation plays a pivotal role in the regulation of genes, distal
enhancers, transcription start sites and transcription factors. Overexpression of   DNMT3a plays
an enhanced role in marking sites for selective methylation. These insights, combined with our
data, support the rationale of a diagnostic signature for Melanoma based on methylation.  ß
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Figures

Figure1: Differential methylation and somatic copy number alteration analysis in overexpression
patient cohort of TCGA SKCM.

1A.  differentially­methylated regions (DMR) identified in high and low transcriptional activity
patient class in DNMT1, DNMT3a and DNMT3b. Selective methylation in regions include notable
tumor suppressors TP53, Tumor necrosis factor receptor 1 (TNFRSF1A) a substrate of TNFalpha
and  proto­oncogenes   like  ARC (apoptosis   receptor)   and  several  polycomb group  of  proteins
(PRC1 & PRC2).

1B. Somatic copy number analysis (outermost ring) with amplified and deleted regions in TCGA­
SKCM, density of hypermethylated (middle ring) and hypomethylated regions (innermost ring)
as   identified  by  differently  methylated  CpG probes.  Co­occurence   of   hypermethylation  with
deletion events and hypomethylation with amplification events is observed.
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Figure   2:  Comparing   differential   targets   with   gene   expression   shows   prominently   affected
pathways and gene. Transcription mis­regulation related pathways were observed to be most
significantly enriched in hypertmethylation. 

2A. Combining differential expression with differential methylation in DNMT3A and DNMT3B to
observe effect of selective methylation on gene expression
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2B. KEGGpathways enriched by selective methylation.

2C:  Heatmap   depicting   changes   in   gene   expression   in   members   of   enriched   pathways   as
identified in figure 2b.
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Figure  3:  ChiP­Seq  analysis   to   assess   the   impact  on   chromatin  accessibility  due   to  histone
modification   mark   shows   an   enrichment   of   marks   associated   with   transcription   repression.
Enrichment of histone methylation mark H3K27me3, mediated by polycomb repressive complex
(PRC) for gene silencing, was in­line with selective hypomethylation of PRC genes like JARID2
observed   in   our   data.   Distribution   of   histone   modification   marks   in   relation   to   differently
methylated CpG sites in DNMT3A. 

Figure 4: Transcription factor families ranked by p­value to identify the families harboring the
most  number  of   functionally   valuable  CG probes.  Size  normalization   in   transcription   factor
families was performed to correct for large transcription factor families harboring relatively large
number of significant CG probes. Only CG probes found in functional location were included for
normalization step and significant CG probes in distal location in relation to closes genes were
ignored.
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4A:  Runt­related   transcription   factor   family   (p­value  0.000391)   and   TBX2­related   factor
transcription   family   (p­value  0.011132)harbored  most     significant   and   functionally   relevant
hypermethylated CG probes. 

4B:  Distribution   of   functionally   signficant   CG   probes   across   members   of   Runt­related
transcription factor  family. As expected,  there were almost no hypomethylated signficant CG
probes due to substantial enrichment of hypermethylated CG probes.
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Figure   5:  Mapping   the   effect   of   selective   methylation   onto   their   targets.   Gene   expression
changes  in targets of RUNX1, RUNX2 and RUNX3 that are conventionally activated(5A) and
repressed(5B) were plotted to observe changes as a result  of hypermethylation  in  individual
genes.

5A:  Gene   targets   activated  by  RUNX1,  2  &  3  are  prominently   immune  modulation   related
factors.   As   a   result   of   selective   hypermethylation   a   reversal   of   conventional   function   was
observed.

5B: Oncogenic factors, like MYC, that are repressed by transcription factor RUNX3 in its function
as a tumor suppressor were activated in DNMT3A hypermethylated­overexpression cohort.
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Chapter 6

Conclusion

Understanding how diverse genomic events converge to support cell fate decisions

is an important question in oncology. It is essential to understand the processes

that govern the reshaping of the cellular state in order to promote a disease state.

Greater emphasis on studying the genomic basis of the tumor cell is required, to

gain insights into mechanistic principles which would pave the way for the design

of efficient, personalized, and targeted therapies. Significant work needs to be done

to formalize the comprehensive map of changes that aid in the development and

progression of tumors. Genomic analysis allows leveraging of modern computing

frameworks for faster results, producing valuable, high-resolution, and large-scale

data of the cancer cell state. In this dissertation, I have focused on the development

of detection methods and workflows to study the oncogenic factors that drive the

malignant progression and metastasis in Melanoma. A significant component of

this thesis relates to the application of systems biology approaches through the

invention and use of bioinformatics-based methods on Melanoma datasets from

The Cancer Genome Atlas (TCGA).

In the first project, listed in Chapter 3 of this dissertation, the genomic landscape

of primary and metastatic Melanoma was characterized. This project further

emphasizes that the universe of somatic mutation in Melanoma is more expan-

sive than previously identified. This work, with nearly 300 whole-exome sam-

ples, nearly doubled the sample pool at the time. Furthermore, several novel
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driver oncogenic mutations and 10 novel oncogenes that play a significant role

in Melanoma oncogenesis and progression were identified. This body of work

once again establishes the prevalence of UV-induced damage and BRAF hotspot

mutations in the mutation landscape of Melanoma. The novelty introduced by

this study is the multi-step pipeline (Section 2.1.2) to identify driver oncogenic

mutations with the highest mutation burden, indicative of positive selection in

Melanoma. The use of a probabilistic model for permutation in tandem with

multi-step filter enables: a) the detection of predominant hotspot mutation regions

in the genome, b) the ranking of mutations by degree of positive selection, and c)

validation of pathway enrichment. The novel oncogenic factors identified in this

project work depict the extensive gene/pathway network remodeling in Melanoma

due to accumulated driver oncogenic mutations. The discovery of novel oncogenic

driver mutations at a splice site of the TMEM216 gene presents a new class

of Melanoma driver mutations. The concerted deregulation caused by somatic

mutations and copy number alterations provide further evidence of the robust

nature of Melanoma and tumors in general.

Future studies could expand this knowledge base by use of recent genomic technolo-

gies, such as single-cell genomic analysis from circulating tumor DNA (ctDNA),

for discovery of somatic mutations at low and ultra-low frequencies. Additionally,

single-cell genomics would also be instrumental in resolving tumor heterogeneity

because each cell is considered a separate entity and whole-genome and whole-

exome data fail to capture intricacies within each cell of a population.

The metabolism of cancer cells is known to support continued growth under a

diverse set of cellular conditions. The complex metabolic requirements of dividing,

proliferating, or nutrient-limited cancer cells illustrates that tumor cells utilize

a diverse and extensive metabolic rewiring. However, being able to effectively

translate this knowledge of strict nutrient requirements in a rapidly growing tumor

cell mass to a therapeutic regimen is not widespread. Furthermore, in-depth

understanding of the synergy between genomic events such as somatic mutations

and factors that govern tumor cell metabolism is lacking. The second project,

described in this thesis work as part of Chapter 4 , addresses the question of

influence of somatic mutations and gene signature associated with the DPYD gene
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to promote pyrimidine metabolism in Melanoma. Chapter 4 utilizes the detection

pipeline (Section2.1.2) from the previous project listed in Chapter 3 of this thesis,

and integrates other genomic components such as gene expression, gene-expression

signature, and structural impact of somatic mutations. This project revealed

the process of hypermutation in a metabolic gene (DPYD) that ultimately leads

to deregulation of pyrimidine and nucleic acid pathways to promote malignant

progression of Melanoma. The TCGA SKCM cohort of 471 Melanoma patients

used in this project had a statistically significant enrichment of DPYD mutations

for positive selection. The novelty of this work is integration of several facets of

genomic data to propose a possible causal link between driver oncogenic mutations

that perturb pyrimidine metabolic pathways for malignant disease progression.

The signature of bifurcation in pyrimidine metabolism might be useful as a prog-

nostic signature in Melanoma to predict the risks of 5-FU toxicity.

Chapter 5 of this dissertation proposes a framework and associated tools to com-

prehensively map the oncogenic scope of epigenetic events linked with Melanoma.

This project outlined systemic regulatory methylation in Melanoma tied with over-

expression in key methyl enzymes, specifically, a disruption of tumor suppressor

genes and transcription factors through focal hypermethylation events to limit

gene expression and actively promote malignant progression of Melanoma. In

addition, this project provides an example of a congruent relationship between

two distinct genomic events: somatic copy number alterations and methylation.

Upon examining the genomic regions of focal hypermethylation, silencing of tumor

suppressor genes and transcription factors was found to be the de facto cause of the

malignant state of the cell. The novelty of this work is the bundled package that

enables similar epigenomic analysis across any cancer tissue with use of data from

TCGA. The findings of this project further illustrate active modulation by the

recruitment of epigenomic mechanisms known to be associated with cancer. To-

gether, these results indicate that over-expressed DNMT3A & DNMT3B enzymes

function as potent regulators and play a substantial role in promoting malignant

progression of Melanoma. This strategy of combined analysis of genomic and

epigenomic datasets is not just limited to Melanoma; the underlying methods

used in this project are broadly applicable for resolving questions pertinent to
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other malignancies.

Together these results represent a cancer systems biology investigation of Melanoma

datasets and explain the genomic basis of the defining characteristics of a tumor

cell. An extensive genomic and epigenomic network was found to regulate several

aspects of cell state. Moreover, genomic mechanisms were found to be one of the

primary modes of propagation for the transformational regulatory signals essential

for the development and continued growth of tumor cells. Further development

of genomic methods in conjunction with other omics strategies will permit cancer

systems biologists to better characterize key cellular states and processes. The

application of systems biology principles to clinical problems will continue to usher

in an era of precision-guided, personalized medicine. Furthermore, bringing quan-

titative measures and systems-wide genomics approaches to a clinically-relevant

field like cancer will provide researchers with a rational, targeted approach to

cancer. Overall, I envision my future efforts to focus on the development of

novel cancer genomic methods that further delineate the tumor cell state, which

inevitably shall provide better therapeutic strategies.
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