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ABSTRACT OF THE DISSERTATION

Maximizing information transmission
under threshold modulation via inhibitory neurons

by

Wei-Mien Hsu

Doctor of Philosophy in Physics

University of California San Diego, 2021

Professor Tatyana O. Sharpee, Chair
Professor David Kleinfeld, Co-Chair

Information maximization has been one of the guiding principles for understanding

sensory neural processing. Given the framework, our goal is to explain nonlinear processing by

a group of neurons in the retina, encoding the same filter inputs. We begin with a single-cell

model, then extend to a neural population subject to relevant constraints, including metabolic

costs and neural noise. Still, their predictions only explain part of the observation. Ultimately,

we introduce an extra factor, the noise due to modulation, for better elucidating the retina data.

Modulation of neuronal thresholds is ubiquitous in the brain. Phenomena such as figure-

xii



ground segmentation, motion detection, stimulus anticipation, and shifts in attention all involve

changes in a neuron’s threshold based on signals from larger scales than its primary inputs.

However, this modulation reduces the accuracy with which neurons can represent their primary

inputs, creating a mystery as to why threshold modulation is widespread in the brain. We find

that modulation is less detrimental than other forms of neuronal variability. Its adverse effects

can be nearly eliminated if modulation is applied selectively to sparsely responding neurons

in a circuit by inhibitory neurons. We verify these predictions in the retina, where we find that

inhibitory amacrine cells selectively deliver modulation signals to sparsely responding ganglion

cell types. Our findings elucidate the central role that inhibitory neurons play in maximizing

information transmission under modulation.
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Chapter 1

Introduction

The need to use efficient representations within the nervous system currently provides

one of the leading frameworks for understanding neural computation. Efficiency can be defined

in many ways, from maximizing information transmitted about incoming stimuli to minimizing

estimation errors. These measures of efficiency are interrelated and often produce similar

predictions for neural circuit properties. For example, application of information maximization

principles in conjunction with metabolic constraints associated with neural spiking could

explain the existence of different types of ganglion cells in the retina tuned to different types of

spatiotemporal features [3, 42, 22, 8, 33, 15, 53, 18, 19, 5, 43] and account for many nonlinear

aspects of these neural responses [29, 27, 19].

In general, to test the theory of efficient neural computation, one needs to account for

several factors/parameters based on the experimental setup and observations. These factors

includes metabolic cost, linear/nonlinear tuning properties (e.g. receptive fields, neural input-

output relation), input statistics, size of the neuronal population [27, 11, 51], etc. Some of the

factors serves as the constraints of the optimization problem, while the others are kept as the

ground truths and will be compared with the predictions.

Chapter 2 focuses on the information transmission of a single neuron with the binary
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response subject to different constraints. These constraints are generally associated with the

neural response properties, such as (1) neural noise, a factor proportional to the tuning width

of neural nonlinearity, and (2) spiking probability that affects the metabolic cost. Notably, we

propose a constraint that couples the neural noise and spike probability, and demonstrate that its

optimal solutions can explain the neural response properties observed in some, but not all, of

the retinal ganglion cell types.

Chapter 3 explores the maximally informative strategies for a group of neurons encoding

the same scalar inputs. We are particularly interested in the threshold coordination between

neurons subject to two factors, the spiking probability, and the neural noise. Note that, unlike

the coupled constraint introduced in Chapter 2, we will treat the spiking probability and neural

noise as two constraints determined via experimental data. We restraints the degrees of freedom

in the optimization for the sake of saving computational time, yet we reserve the rooms for

predicting the threshold configuration. The theoretical results for a neuron pair qualitatively

explain the emergence of two types of Off retinal ganglion cells (RGCs) encoding the same

temporal fluctuations of light intensities but with different thresholds [25]. However, when it

comes to the quantitative comparison, the predictions in threshold differences between the neural

pairs yielded values that were systematically larger than those observed experimentally [27].

Other theoretical work has pointed out that incorporating multiple noise sources could

affect the predictions for threshold differences between cell types [11]. In contrast, our former

formalism assumed that the measured neural noise came from the same neural processing stage

of the retinal circuit. After testing different scenarios, we found an alternative model with

two noise sources: (1) noise from neural nonlinearity in the primary pathway; (2) a secondary

pathway modulated the threshold of the primary pathway for each cell type (c.f. Chapter 4,

Box 4.1). This model could quantitatively account for the measurements of threshold differences

between cell types, across several different contrasts.

In Chapter 4, much attention has been given to investigating how the additional noise

2



source–the modulatory effects on cells’ thresholds–in conjunction with the noise in the primary

pathway, affects information transmission. For a sensory circuit, modulation of neuronal

threshold independent of the primary sensory input is bound to decrease the information that

this circuit can transmit about that primary input. Nevertheless, modulation always decreases

information less than an equivalent increment in primary noise. Furthermore, modulation’s

negative impact is nearly ignorable if directed to a subset of sparsely responding neurons in a

coupled neural circuit. Indeed, after fitting the maximally informative model with threshold

modulation to the retinal data, we found that one of the cell types with high threshold experiences

more extensive threshold modulations than the other with low threshold. On the other hand, the

primary pathway noise levels were similar for both cell types. These also explained why higher

noise levels, a nonlinear sum of the two types of noise, were observed in high-threshold cells

compared to low-threshold ones. Regarding the causes of threshold modulation, our analysis

from a separate experiment indicated that amacrine cells send stronger inhibitory inputs to

the high-threshold cell than to the low-threshold one. It is consistent with the scheme where

high-threshold neurons get more inhibitory input for regulating the activity and, therefore,

respond sparsely and have more noise.

Overall, this dissertation focuses on explaining nonlinear processing for a group of

neurons in the retina, assuming that sensory circuitry optimizes their neural code to encode

sensory information efficiently. We started with a single-cell model, then extended to a neural

population subject to relevant constraints. Finally, we consider an additional noise caused by

threshold modulation, for better clarifying the retina data. All theoretical results shown here are

based on the basic concepts of information theory. Therefore, they should apply not only in the

retina but also in other neural circuits.

3



Chapter 2

Maximally informative encoding

strategies of a single neuron under the

metabolic constraints

Efficient coding posits that, given internal constraints (e.g., metabolic resources), sen-

sory systems optimize their neural code for transmitting maximal information about sensory

inputs. Mutual information maximization framework has been one of the guiding principles

for understanding neural computation, and it accounts for a number of different properties of

neural responses [7, 3, 42, 22, 8, 33, 15, 53, 18, 19, 5, 43, 29, 27, 11], including optimal ways

for neural circuits to adapt to statistically consistent changes in the input statistics [7, 16, 47, 9].

To test maximally informative solutions on experimental observation, one needs to

consider one or a set of internal constraints, including metabolic cost [7, 31, 30, 53, 5], lin-

ear/nonlinear tuning properties (e.g. receptive fields, neural input-output relation) [29], input

statistics, size of the neuronal population [27, 11, 51], etc. This chapter focuses on two factors:

metabolic cost, related to neural spiking rate, and the width of neural nonlinearity, which

we denote as ‘neural noise.’ Metabolic cost strongly impacts maximally informative solu-

4



tions [53, 7]. Generally, the capacity for transmitting information increases with the average

spike rate [44] and, for binary responses, reaches its peak at 50% of the maximally achievable

rate. Nevertheless, many neurons in the brain respond at much lower rates [40]. This is thought

to occur because high response rates incur the disproportionately large metabolic cost [5, 31].

Meanwhile, for any given average spike rate, the information capacity increases as the noise

level decreases and reaches its extreme at zero noise value that is not biologically realistic.

Considering a single binary neuron, we predict a family of optimal encoding solutions

subject to a newly defined ‘energy’ constraint that incorporates average spike rate and neural

noise. We test the predictions on OFF retinal ganglion cells (RGCs) and find one of the cell

types operates over a range of energies, adjusting both the noise level and spike rate to follow

the maximally informative solutions. The other cell types follow the contours of constant energy

rather than the predicted optimal solutions.

Based on the experimental setup and the measurements, the two types of OFF RGCs

encoded the same temporal fluctuations of light intensities but with different thresholds. This

threshold coordination between the two cell types suggests that they might work together, and

one should consider their joint neural responses for predicting the informative solutions. Thus,

the next chapter will focus on the information maximization for a group of neurons jointly

encoding the same filtered inputs.

2.1 Neural encoding model and mutual information

This section provides the formalism to quantify the information transmitted by a single-

neuron. We consider a neuron as a communication channel that encodes the scalar stimulus x

with prior p(x) into its binary activities, either r = 0 (silence) or 1 (spike). Firstly, we define the

neural response, an mathematical abstraction of input/output relation, as the probability to elicit

the response r for a given stimulus x, p(r|x). With the neural responses, one can compute the

5



average spiking probability and the mutual information between neuronal response and stimulus.

This single-neuron model can be extended to a group of N neurons that jointly encode the same

filtered stimulus values (c.f. Chapter 3).

Model of neural response

We model responses of a single neuron as binary variable, r = 1 or 0, corresponding

to the presence or absence of a spike in a small time bin, respectively. Spiking probability is

modeled as a threshold crossing event. Here, we use a saturating sigmoid function (normal

cumulative distribution function, Fig. 2.1) to describe the probability to elicit a spike (r = 1) for

a given filtered stimulus (x),

p(r = 1|x) = p(r = 1|x,µ,ν) (2.1)

=
1
2

[
1+ erf

(
x−µ√

2ν

)]
, (2.2)

and p(r = 0|x) = 1− p(r = 1|x) is the probability to be silent. Neuronal threshold (µ) sets the

stimulus value corresponding to 50 % spiking probability. Neural noise (ν) determines the

variation in neural responses for a given input value relative to the threshold (x− µ) : when

ν is small, there is only a small range of stimuli for which neuronal responses varies from

trial-to-trial, as reflected by spike probabilities ∼ 0.5. When parameter ν is large, the range of

stimuli with uncertain neuronal responses is greater. For inputs that are either much greater or

smaller than the threshold µ, the spike probability is nearly certain, with values close to either 1

or 0, cf. Fig. 2.1. The increase in the uncertainty in neural responses with ν can be quantified

using a quantity known as noise entropy [10], which represents the average uncertainty in the

neural responses across different stimuli.
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Figure 2.1: Encoding model for neural responses. The static nonlinear function of a cell
(blue) maps the filtered stimulus x onto a spiking probability ranging between zero and one.
The x-axis is scaled by the standard deviation of filtered stimulus (gray).

Averaged neural responses

Averaging the neural response p(r|x) across all possible stimulus x ∈ X gives the total

probability to spike (r = 1) or of being silence (r = 0),

p(r) =
∫

∞

−∞

dx p(r|x) p(x) , (2.3)

where p(x) is the probability density function of filtered stimulus. If p(x) is a Gaussian

distribution with mean x0 and standard deviation σx, we get nice form for the average responses,

p(r = 1) =
1
2

[
1− erf

(
µ− x0√

ν2 +σ2
x
√

2

)]
, (2.4)

p(r = 0) = 1− p(r = 1) .

Mutual Information

To quantify the average amount of information the neural responses (r ∈ R) conveys

about the filtered stimulus (x ∈ X), we compute the mutual information between the two

variables, R and X [13],

7



I (X ;R) =
∫

dx ∑
r∈R

p(r,x) log2
p(r,x)

p(r) p(x)
, (2.5)

=
∫

dx p(x) ∑
r∈R

p(r|x) log2
p(r|x)
p(r)

, (2.6)

wherep(r|x) is the neural responses given by Eq. 2.2 and p(x) is the probability density function

of the filtered stimulus (x).

In next section, we revisit the results of how the information changes with the spike rate

and neuronal noise, and show the optimal encoding strategies under this model framework.

2.2 Information transmission of a single neuron

We will review how the neural noise and the average spike probability affects information

transmission regarding the single-neuron case. Given the neural response function (Eq. 2.2) and

that the stimulus p(x) is a Gaussian distribution with mean x0 and standard deviation σx, we can

compute the mutual information between the stimulus and the neural responses, I (X ;R) (Eq. 2.6)

(Fig. 2.2 (A)). The same applies to the average spike probability, pspike (Eq. 2.4) (Fig. 2.2 (B)).

Note that both I (X ;R) and pspike shown in Fig. 2.2 are straightforwardly represented in the

space of the neural threshold (µ) and noise level (ν), which are parameters of the response

function (Eq. 2.2). To better illustrate how the information depends on neural noise and average

spike probability, we remap the parameters of information from the space of (µ,ν) onto that of(
pspike,ν

)
(Fig. 2.3 (A)) based on Fig. 2.2 (A)(B).

Figure 2.3 (A) to (C) summarize two main observations: (1) the average spike probability

(pspike) considered by itself increases information until pspike reaches the half of its maximal

value (Fig. 2.3 (B)); (2) similarly, the noise (ν) when considered separately from other parameters

decreases information transmission (Fig. 2.3 (C)). Both of these effects are well established in

8
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Figure 2.2: Information transmission and the averaged spiking probability of a single
neuron. (A) Information contours as a function of threshold (µ) and neural noise level (ν).
Here, the threshold (ν) is relative to the mean of the filtered input (Fig. 2.1) and both ν and µ
are in the unit of stimulus standard deviation, σx. (B) Information always peaks at µ = 0 where
spiking probability (pspike) is 0.5 for any constant noise levels (ν). (C) The global maximum
of information is at ν = 0 for a given threshold (µ). (D) The spiking probability contours with
the same axes as (A). (E) Spiking probability is asymptotic to one (zero) as the threshold (µ)
moves further below (above) the input mean. (F) Spiking probability increases (decreases)
with neural noise (ν) when the threshold (µ) is below (above) the mean of the input, and stays
as constant 0.5 as the threshold equals to the input mean (µ = x0 = 0).

the literature [10, 31]. However, in the biological system, neurons not only fire sparsely over

time (pspike� 50%), but also are unlikely to be noiseless (ν = 0), i.e., experimental observed

neural response is never going to be a binary step function. One possible reason is that both

pspike and ν relate to the metabolic cost. In the next section, we introduce a conceptual model of

how the interaction between these two factors can lead to unexpected results.
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2.3 Maximally informative encoding with energy constraint

Neurons do not transmit information for no energy consumption. In Sec. 2.2, we

reviewed that information transmitted via a neuron depends both on the spiking probability

(pspike) and neural noise (ν). Intuitively, both of these factors should relate to some energy

(metabolic) quantities. Thus, we formalize total energy consumed per unit time as follows,

εcost = pspike +Γ(ν) , (2.7)

where pspike is the spiking probability of a neuron, and Γ(ν) is the energy cost dependent on

the neural noise. As reducing the neural noise increases information transmission, the function

Γ(ν), at the first approximation, can be assumed to be a negative power function of noise level

(ν),

Γ(ν) = qν
α, with α < 0 (2.8)

where the parameter q weights the costs relative to that of spiking,

εcost
(

pspike,q,ν
)
= pspike +qν

α. (2.9)

Mutual information between the filtered input (X) and the neuronal responses (R),

I (X ;R), can be parameterized as a function of spiking probability pspike (µ,ν) = p(r = 1) and

neural noise ν (Eq. 2.4). The objective is to maximize the information constraining on the

available total energy εcost

arg max
pspike,ν

I (X ;R) (2.10)

subject to εcost
(

pspike,q,ν
)
≤ εmax,

which predicts the optimal neural response properties,
(

pspike,ν
)

opt, or equivalently, (µ,ν)opt.

10



0.0 0.1 0.2 0.3 0.4 0.5

2

4

6

8

10

0.2

0.4

0.6

0.8

1.0

0.0
0.0 0.2 0.4 0.6 0.8 1.0

0.1
0.2

p
spike= 0.5

C

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

In
fo
rm

at
io
n 0.2

0.0

ν = 0.4

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Spiking probability (pspike)

In
fo
rm

at
io
n

0.2 0.4 0.6 0.8 1.0
Noise level (ν)

0.3

0.5

0.02 0.05
q

Eng.

Spiking probability (pspike)

0.0 0.2 0.4 0.6 0.8 1.0

1 /
ν²

N
oi
se

le
ve

l(
ν)

0 1

A B

E FD

Figure 2.3: Information optimization for single cell. (A) Information contours as a function
of noise level (ν) and spiking probability (pspike). (B) Information always peaks at pspike = 0.5
for any constant noise levels (ν). (C) Primary noise decreases information for any constant
pspike. (D) Same as (A) but as a function of 1/ν2 and pspike. (E) Information peaks at different
pspike (black dots) for different energy constraints (Eq. 2.9, with α = −2), denoted as three
straight lines in (D). (F) Optimal neural noise changes with different energy constraints.

The predicted solution (µ,ν)opt changes with different sets of (εcost,q,α). Figure 2.3 (D)-

(F) shows the examples of fixed α=−2 with different εcost and q. At a constant εcost, the increase

in q makes the cost of noise reduction more expensive and shifts the optimal noise level (ν) to

a larger value. Meanwhile, both the optimal spike probability and the attainable information

decreases (dashed-lines, Fig. 2.3 (E, F)). At a fixed q, in general, the more the total energy (εcost)

is, the lower the optimal noise level can be, the closer the spiking rate can reach to 50%, and

the higher the information is achieved (red-lines, Fig. 2.3 (E, F)). Figure 2.4 summarizes how

the optimal noise level, spiking probability and transmitted information change with the total

energy for different sets of (q,α).
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Figure 2.4: Response properties and information transmission as a function of con-
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asymptotically approaches their best values, 0.5 and 1, respectively. For a given α, smaller q
ensures higher pspike and transmits more information.
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2.4 Test of information maximization subject to the energy-

constrained

We test the predicted maximally informative solutions on the responses of two types of

OFF retinal ganglion cells (RGCs) that encode the same temporal fluctuations of light intensities

but with different thresholds. These cells have been termed ‘adapting’ and ‘sensitizing’ based on

their short-term plasticity [25], the main differences between these cell types are that adapting

cells have higher thresholds and larger noise levels than sensitizing cells.

We find that some retinal cell types follow contours of constant metabolic cost, e.g.

adapting cells in Fig. 2.5. Other cell types, e.g. the sensitizing cells operate over a range

of metabolic rates, adjusting both the primary noise and spike rate to follow the maximally

informative contours. These analyses stay qualitatively the same for different definitions of

metabolic cost. Here, we used a weighted sum of spike rate and inverse primary noise squared,

εcost = pspike +
q
ν2 , (2.11)

where parameter q weighs the contributions associated with increasing the firing rate and

reducing noise.

We find that all sensitizing cells (except for one outlier cell to be discussed below)

balanced noise reduction with firing rate increases across contrasts in a way that aligned with

a maximally informative contour with a fixed q = 0.01±0.003 (mean and standard deviation

across cells), cf. Fig. 2.5. The outlier sensitizing cell balanced its noise and firing rate in a way

that aligned with a constant energy cost, with the same q value as the rest of the sensitizing cells.

This sensitizing cell had the highest firing rate, and the fact that its data points aligned with the

contour of highest energy across the sample, indicates that it reached its maximal metabolic

rate and was forced to deviate from the maximally informative curve that other sensitizing cells
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followed. The majority of adapting cells changed their parameters in ways that were similar to

the outlier sensitizing cell, except that they limited their overall metabolic cost to a low value.

When these cells increase their metabolic energy, they join the same maximally informative

curve as the sensitizing cells. Notably, the q parameter for the constant energy contours followed

by most adapting cells and the outlier sensitizing cell was the same as that for the maximally

informative curve followed by the rest of sensitizing and adapting cells.

Overall, these analyses illustrate that, as a rule, sensitizing cells balance their noise

and threshold settings to provide maximal information. These cells can adjust their metabolic

parameters over a relatively wide with contrast. In contrast, adapting cells work at low metabolic

levels. We will show that the different threshold placements adopted by the two cell types

allow for efficient information transmission when considering them together (c.f. Chapter 3).

Besides, each cell type impacts information differently when receiving modulatory inputs from

a secondary pathway (c.f. Chapter 4).
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Figure 2.5: Sensitizing cells maximize their capacity under the trade-off between noise
reduction and firing rate. Adapting (open symbols) and sensitizing (filled) cells adopt
different strategies in balancing the metabolic costs of spiking (x-axis) and noise reduction
(y-axis). Same symbols (filled or open) denote pairs of sensitizing and adapting cells that
were recorded simultaneously, with multiple points representing data for different stimulus
contrasts. Most of the sensitizing cells (blue line shows the linear least-squares fitting) follow
a maximally informative contours with a fixed q value (pink line). The one outlier sensitizing
cell had the highest firing rate (light-blue circles) and aligned with a constant high-energy
contour, suggesting that it was energy limited. Most of the adapting cells also followed a
constant energy contour (gray dashed lines), but at low value, with a small fraction following
the maximally informative contour with the same q value as the sensitizing cells. This supports
the notion that adapting cells tend to operate at low constant metabolic costs, increasing their
information transmission in a maximal way when necessary.
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Chapter 3

Maximally informative encoding

strategies for groups of neurons

Sensory systems are designed to maximize the information transmission about the

environment through optimizing the neural populations at each level of neural circuitry, across

the information pathways. This optimization leads to the emergence of multiple cell types,

each of which not only encodes a certain linear (spatial-temporal) feature [29, 3, 9, 42, 22, 8,

33, 15, 53, 18, 19, 27, 5, 43] but also responses with a specific group of nonlinear properties

(e.g., thresholds and sensitivity) [36, 38, 25, 19, 27]. For instance, the retinal ganglion cell

(RGC) population transmits information more efficiently by having On and Off cell types that

maximally respond to different visual features, than doing so with just either one [19]. In

addition, recent studies found the Off population, rather than On, responses to the same visual

feature with two classes of neural thresholds: Off adapting cells with a higher threshold, and

Off sensitizing with a lower one [25].

Here, we review the mutual information framework for a group of neurons encoding

the same scalar inputs and show their optimal threshold coordination in conjunction with the

constraints. Unlike the constraint stated in Chapter 2, we will take the spiking probability and
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neural noise as two ground-truth constraints determined by the experimental data. Although

we restraints the degrees of freedom in the information optimization for saving computational

resources, we keep the room for predicting the threshold allocations among neurons.

Regarding the hallmark in predictions, as the neural sensory noise lies below a specific

value, having a neural population encoding a particular linear feature but with multiple classes

of threshold becomes the most optimal encoding strategy [19, 27, 11]. This prediction accounts

for the emergence of two types of Off RGCs that have low neural noise, as well as the single

type among On cells that have high neural noise.

3.1 Neural responses and mutual information

First, we defined the model of neural response for a group of neurons (N > 1) that jointly

encode the same stimulus. Our choice of the modeling framework was motivated in part by

the experimental setup that used full-field temporally varying stimuli to probe responses of the

retinal ganglion cells (RGCs) [25]. Specifically, we were interested in characterizing how two

types of fast-Off neurons, the adapting and sensitizing RGCs, jointly encode these temporal

fluctuations in light intensity. These two types of neurons have very similar temporal filters [25].

Thus both types of neurons encode the same input component x(t) =
∫
(t− τ)s(τ)dτ.

Given the neural response that depends on the neural threshold (µi) and noise level (νi)

of each cell, we can compute spiking probability and mutual information as a function of (µi,νi).

Via maximizing information transmission, we calculate the optimal neural thresholds (µi) given

different neural noises (νi) and spiking probabilities.

In the next section, we recap the result that the mean noise level of a cell pair (N = 2)

controls their optimal thresholds and that it becomes optimal to encode stimulus with different

thresholds when the mean noise level is lower than a critical value [36, 27].
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Joint response of for a group of neurons

If we consider a group of N binary neurons jointly encoding the same filtered stimulus

(x ∈ X), given the assumption that their responses are “conditionally independent” without

significant correlations, the probability of yielding the joint response r for a given filtered

stimulus x is

p(r|x) =
N

∏
i=1

p(ri|x) , (3.1)

where the vector r = (r1,r2, ...,rN) denotes N-neurons’ responses with ri = {0,1}, and the

response function of individual neuron i, p(ri|x) = p(ri|x,µi,νi), is given by Eq. (2.2)

p(ri = 1|x) = 1
2

[
1+ erf

(
x−µi

νi
√

2

)]
, (3.2)

p(ri = 0|x) = 1− p(ri = 1|x) . (3.3)

Averaged neural responses and total spiking probability

The joint neural response p(r|x) averaged across the stimulus distribution p(x) gives

the averaged probability of response r,

p(r) =
∫

dx p(x) p(r|x) , (3.4)

=
∫

dx p(x)
N

∏
i=1

p(ri|x) . (3.5)

where p(x) is the probability density function of filtered stimulus (x). The averaged total spiking

probability pspike of N neurons is to sum over the possible 2N responses (r ∈ R) as following

pspike = ∑
r∈R
‖r‖1 p(r) =

N

∑
i=1

p(ri = 1) , (3.6)

‖r‖1 =
N

∑
i=1

ri.
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where p(ri = 1) is the spiking probability of ith neuron given by Eq. (2.3).

Taking N = 1 and 2 as examples, all the possible response r ∈ R and the total spiking

probability are summarized as follows:

N r R pspike

1 r1 {1,0} p(r1 = 1)

2 (r1,r2) {(1,1) ,(1,0) ,(0,1) ,(0,0)} p(r1 = 1)+ p(r2 = 1)

For N = 2, the total spiking probability is the linear sum of individual

pspike = ∑
r∈R
‖r‖1 p(r) ,

= ∑
r∈R
‖(r1,r2)‖1 p(r1,r2)

= 2p(1,1)+ p(1,0)+ p(0,1) ,

= [p(1,1)+ p(1,0)]+ [p(1,1)+ p(0,1)] ,

= p(r1 = 1)+ p(r2 = 1) .

This applies to arbitrary number of N, as given by Eq. (3.6).

Mutual information

Similar to the formalism of single cell (Sec. 2.1), for N neurons (r ∈ R) joint encoding

the same filtered stimulus, mutual information between their responses (r ∈ R) and the stimulus

values (x ∈ X) is given by (cite: 2012 Elements of information theory by Cover, Information

Theory by MacKay):

I (X ;R) =
∫

dx p(x) ∑
r∈R

p(r|x) log2
p(r|x)
p(r)

, (3.7)
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where p(r|x) is given by Eq. (3.1) and p(x) is the probability density function of filtered

stimulus.

Given the neural response p(r|x) that depends on the neural threshold (µi) and noise

level (νi) of each cell, one can compute spiking probability, pspike, and mutual information,

I (X ;R), as a function of (µi, νi). Via maximizing information transmission, we calculate

the optimal neural thresholds (µi) subject to the given constraints: the neural noises (νi) and

total spiking probabilities (pspike). Figure 3.1 shows the examples of optimal thresholds and

individual spiking probability for the two and three neurons cases. In the next section, we

recap the result [36, 27] that the mean noise level of a cell pair (N = 2) controls their optimal

thresholds and that it becomes optimal to encode stimulus with different thresholds when the

mean noise level is lower than a critical value.

3.2 Maximally informative encoding thresholds for a pair of

neurons

3.2.1 Optimal neuronal thresholds as a function of mean noise level

By considering the case of a neuronal pair (N = 2), we recap the theoretical prediction

of how the emergence of different neural types is subject to the mean neural noise. For the

purpose of our problem, the main differences between these two neuronal types is that they

encode the same signal (x ∈ X) with different thresholds. Thus, our first step is to define the

optimization problem that predicts the optimal neuronal thresholds, or alternatively, the optimal

difference between thresholds of a neuronal pair (∆µ = µ1−µ2).

For two neurons, both mutual information I (X ;R) and spiking probability pspike depends

on the four parameters of the encoding model, Eq. (3.1): the thresholds and noise levels of all

cells (µi,νi) ,∀ i = {1,2}. One can reparametrize the information function from the space of
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Figure 3.1: Maximally informative solutions for a groups of neurons. (A) The distribution
of thresholds are plotted as a function of noise level (ν = ν1 = ν2), but subject to a constant
total spiking probability (pspike = 0.2), for the two (solid-line) and three neurons (dashed-line).
(B) is the same as (A) but shown as a function of total spiking probability (pspike) subject to
constant neural noise (νi = 0.2). (C, D) are similar to (A, B) but shows the distribution of
individual spiking probability in groups of neurons.

(µi,νi) onto that of (pspike,µ1−µ2,
ν1+ν2

2 ,ν1−ν2), which is similar to what we demonstrated

with the single-cell case (c.f. Sec. 2.2). This makes it possible to predict the optimal value for

∆µ = µ1−µ2 via information maximization under the constraints (or knowledge) of other three

parameters. Besides, one can test to what degree theoretical predictions agree with experimental

data.

The most prominent feature of the mutual information is a bifurcation that occurs when

noise decreases below a certain, critical value νc (Fig. 3.2). In the case where both neurons have
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Figure 3.2: Information predicts the optimal thresholds for a pair of neurons given the
values of noise level. (A) and (B) shows the information transmitted by a pair of neurons at
different values of noise and thresholds. The noise level is the same for the two neurons in (A)
and different in (B), ∆ν/νc =−0.02, between neurons. Each colored curve is the information
as a function of ∆µ at a given mean noise level

(
ν = ν1+ν2

2

)
. Black and dark-green dots mark

global and local information maxima, respectively. Local maxima appear when noise levels
differ across neurons (B); otherwise the maxima are equivalent as in (A). Gray dots mark the
inflection points, the so-called spinodal lines that delineate the regions where local maxima
can be found.

the same noise levels ∆ν = 0 (ν1 = ν2, Fig. 3.2 (A)), a single peak at zero threshold difference

(∆µ) splits into two symmetric peaks upon decreasing the mean noise level (ν). Each of these

peaks represents equivalent solutions obtained by exchanging neuronal indices. One of the

peaks describes the case where µ1 > µ2 whereas the other describes the case where µ1 < µ2.

When neurons have different noise values (ν1 > ν2), the peak with µ1 > µ2 is globally optimal

while the other with µ1 < µ2 becomes suboptimal, and vice versa (Fig. 3.2 (B)). Thus, the lower

threshold neurons should have lower noise. This agrees with the intuition that a neuron which is

more sensitive to small input fluctuations should have smaller noise.

22



3.2.2 Test of maximally informative model in retina

One can test the predicted maximally informative solutions on the responses of pairs of

retinal ganglion cells (RGCs) that encode the same temporal fluctuations of light intensities but

with different thresholds [25]. These cells have been termed ‘adapting’ and ‘sensitizing’ based

on their short-term plasticity, but for the present analyses in steady-state conditions, the main

differences between these cell types are that adapting cells have higher thresholds and larger

noise levels than sensitizing cells.

From the measurements of the average spike rate for two neurons (pspike), one can

predict the critical noise value (νc) below which one can expect to find neurons with different

thresholds encoding the same filtered stimulus x. The measured noise values for the adapting and

sensitizing retinal ganglion cells (RGCs) were indeed below the critical noise value (νc) [27].

This explains why these two separate cell types are observed among Off neurons but not among

On neurons whose measured noise values are above νc [27]. In addition, one can make detailed

predictions for the expected threshold difference (∆µ) based on the measurements of other three

parameters
(

pspike,
ν1+ν2

2 ,ν1−ν2
)
. Note that both the threshold difference (∆µ) and critical

noise (νc) depend on the average spike rate (pspike) that changes from one to another cell pairs

and under different stimulus condition. To show all the retinal data
(
∆µ, ν1+ν2

2

)
on one x− y-

plane that is universal across different pspike, we transformed the data based on the rescaling

method provided in Ref. [27] . Here, theoretical predictions were in qualitative agreement with

experimental measurements, but quantitatively the observed threshold differences between the

adapting-sensitizing neuron pairs were systematically smaller than those predicted based on

maximizing information (Fig. 4.8 (A)) [27].

Additional theoretical efforts indicate that including multiple noise sources could affect

the predictions for threshold differences between cell types [11]. Therefore, in the next Chapter

we address whether a model with multiple nonlinearly interacting pathways could quantitatively

explain the existing RCG data on coordination thresholds between the two cell types.
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Chapter 3, in part, have been submitted for peer review of the material as it may appear

in Cell Reports, Hsu, Wei-Mien; Kastner, David B.; Baccus, Stephen A.; Sharpee, Tatyana O.,

Cell Press. The dissertation author was the primary investigator and author of this paper.
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Chapter 4

The influence of threshold modulation on

maximally informative encoding strategies

Previous chapters have covered the efficient nonlinear properties for a single and a

group of neurons, regulated by different constraint settings. However, it is also important to

consider the case where information transmission occurs in the presence of fluctuations in input

statistics that might not be strong enough, or persist for long enough time, to trigger full-scale

adaptation. These types of fluctuations are nevertheless important to take into account because

they can evoke and/or represent modulatory influences from other circuits, as is ubiquitous in

the brain. For example, modulatory influences include contextual or top-down signals about

input properties on the scales larger than that of the neuron’s primary receptive field, which

closely follows the neuron’s linear or the so-called classical receptive field [49]. Such contextual

effects underlie figure-ground segmentation, motion selectivity, motion reversal or anticipation

and other predictive effects in the retina the retina [20, 26, 24]. These effects are also prominent

in the cortex where they include cross-orientation suppression [37, 39] and other non-classical

receptive field effects in visual [45, 49] and auditory [6] cortices. Threshold modulation can also

result from the direct action of neuromodulatory circuits [2] that represent changes in arousal

25



and attention [28, 34, 21]. The ubiquity of modulatory signals makes it essential to consider

how they may influence the properties of maximally informative neural circuits.

Previous maximally informative solutions for pairs of neurons accounted for many

aspects of these neurons’ responses, including why these two separate cell types are observed

among Off neurons but not among On neurons [27]. However, some noticeable quantitative

differences between theory and experimental measurements were left unexplained [27]. Recent

studies have pointed out that incorporating multiple noise sources could affect the predictions

for threshold differences between cell types [11]. Therefore, we set out to determine whether

modulatory effects on a cell’s threshold would influence the theoretical predictions, bringing

them into better agreement with experimental measurements. After testing a number of scenarios,

we found that a model where a secondary pathway modulates the threshold of the primary

pathway for each cell type (Box 4.1) could quantitatively account for the measurements of

threshold differences between cell types, across several different contrasts. We envision that this

threshold modulation occurs even for a fixed contrast, and in the case of the retina derives from

contextual modulation from inputs on scales larger than neuronal receptive field center, or for

cortical neurons, the classical receptive field [50].

4.1 Maximally informative model in the prescience of thresh-

old modulation

Neural responses with threshold modulation

To understand information transmission in the presence of threshold modulation, once

again, we modeled responses of individual neurons as binary, 1 or 0, corresponding to the

presence or absence of a spike in a small time bin, respectively (Sec. 2.1). This model of neural

responses yields a saturating nonlinearity shown in Box 4.1 and described by the following
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Box 4.1 Two-pathway model of information transmission in the presence of thresh-
old modulation
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The experimentally observed neural nonlinearity reflects two noise sources:
• the intrinsic noise ν in the primary pathway

• threshold modulation that occurs on longer time scales with variance σµ.

• Over time, the observed nonlinearity is an average over different threshold positions
p(r|x) =

∫
dµ̃p(r|x,µ,ν)p(µ̃) and has an effective width νeff =

√
ν2 +σ2

µ.

• Right panel: Threshold variation over time is much stronger than variation in the
primary noise.

Figure 4.1: Two-pathway model of information transmission in the presence of threshold
modulation.

equation:

p(r = 1|x,µ,νeff) =
1
2

[
1+ erf

(
x−µ√
2νeff

)]
. (4.1)

In this equation, we write νeff instead of ν to emphasize the fact that the observed noise in neural

responses represents actually a joint effect of multiple different types of noise [11]. Here, we

will focus on two types of noise: the “primary” noise ν that arises in the direct afferent circuitry

for each cell, and the secondary source of variability that arises from the modulation of the

threshold µ of the primary pathway and acts on longer time scales. On short time scales, similar

to those of the spike generating process, the threshold value does not vary, and variability in
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neural responses is described by ν only. On long time scales (∼ seconds) , which are necessary

to measure the neural input-output function, its width is described by

νeff =
√

ν2 +σ2
µ, (4.2)

We note that, in principle, noise ν in the primary pathway can itself also be subject to modulation,

not just the threshold µ. This modulation would also increase νeff. However, in practice, we

found that variation in ν was much weaker (Box 4.1, right panel). Therefore, in what follows,

we focus on the effect of modulation on changes in the threshold.

Mutual information with threshold modulation

To analyze the impact of threshold modulation on information transmission, we compute

the mutual information in two steps:

1) On short time scales, mutual information between is computed for a fixed threshold µ:

I (X;R|M = µ) = ∑
r

∫
dx p(r|x) p(x) log2

p(r|x)
p(r)

, (4.3)

where x is the filtered stimulus according to the spatiotemporal receptive field of the

neuron, and r ∈ {0,1} represents the response of a single neuron before the incorporation

of the modulation in the secondary pathway (σµ = 0,νeff = ν).

2) On longer time scales, we average the mutual information over the varying threshold

value µ̃:

Ilong−term =
∫

dµ̃ I (X;R|M = µ̃) p(µ̃) . (4.4)

Here, p(µ̃) describes the distribution of threshold values.

The information in Eq. (4.4) is actually the so-called conditional mutual information [12]
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I(X;R|M) between the input and the responses of the primary pathway, conditional of the

signals µ from the modulatory pathway. As such, this information differs from the full in-

formation provided jointly by modulatory and primary pathways only by the term I(X;M):

I(X;R|M) = I(X;{R,M})− I(X;M), where I(X;M) represents information provided solely by

the modulatory pathway. Because I(X;M) does not depend on the parameters of the nonlinear-

ity of the primary pathway, it can be dropped when searching for the maximally informative

properties of the primary pathway. Thus, one can find the maximally informative setting for the

primary pathway and the optimal modulation by maximizing information from Eq. (4.4). These

arguments generalize to the case of multiple neurons where one evaluates information between

inputs X to the primary pathway of each neuron and the vector of responses across the neural

population R = {ri}, ri ∈ {0,1}.

4.2 Impact of threshold modulation on information trans-

mission

We start by considering the impact of threshold modulation on single neurons. Here,

modulation always decreases information transmission (Fig. 4.2 (A)). However, for an equivalent

amount of variance, modulation decreases information less than does primary noise. Therefore,

if the system has a choice between reducing the primary noise or reducing modulation, it is

always preferable to reduce the primary noise first, cf. Fig. 4.2 (B).

The effect becomes more interesting in groups of neurons, starting with pairs of neurons.

Here, we find that if modulation is directed to the neuron with the lowest firing rate in the group,

then the negative effect of modulation is almost completely removed, cf. Fig. 4.3, panels (A)

and (B). In these calculations, the firing rates were assigned to maximize information while

constraining the average spike rate across the neurons (Fig. 4.4). We find that one can apply

much larger modulation to a single neuron than the modulation distributed to many neurons and
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Figure 4.2: Impact of threshold modulation on information transmission. (A) The differ-
ence in information before and after adding different types of variability: either modulation
(blue lines) or primary noise (black lines). Both of types of variability decrease information,
but modulation (blue lines) decreases information much less than the primary noise (black
lines). We note that both the primary noise and the modulation also increase the spike rate.
Therefore the baseline information (without modulation) is computed for the higher rate that
matches the rate in the presence of modulation. (B) The stronger detrimental effects of primary
noise on information transmission compared with modulation are shown here for the case
where primary noise and modulatory variance are constrained to sum νeff =

√
ν2 +σ2

µ = 0.3.
In this case, the smaller the primary noise (bottom x-axis), the larger the information (y-axis),
despite the corresponding increases in modulatory variance (top x-axis).

still have less of a decrease in information. Selective application of modulation also maximized

information in groups of three neurons (Fig. 4.3 (C, D)). With three neurons, information was

maximally preserved under modulation when it was applied to the neuron with the smallest

spike rate. The most detrimental effects of modulation were observed when modulation was

applied to the neuron with the largest spike rate. This was followed by progressively better

results if modulation was applied equally to all neurons or to the neurons with the intermediate

spiking rate. However, these intermediate cases still led to worse performances compared to

the case where modulation is directed to the neuron with the lowest spike rate (Fig. 4.3D).

The degree of protection from modulation-induced loss is higher for the three-neuron circuit

compared with a two-neuron circuit (Fig. 4.3 (D)). This suggests that the benefits of including a

sparsely responding neurons can be larger in large groups of neurons.
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We also examined the case where neurons have the same thresholds and spike rates, as

can be optimal for high values of the primary noise [27]. In this case we found that the optimal

ways to apply modulation differed depending on whether same-threshold neurons had small or

large spike rates, cf. Fig. 4.5. In the case where neurons had small rates, it was optimal to apply

modulation equally to both of them. In the case where neurons had large response rates, it was

optimal to direct modulation to one of the neurons than split it equally to both neurons (Fig. 4.5).

The application of modulation lowered the spike rate in the target neurons. The implication

from these results therefore is that if a large neural circuit contains neurons of the same type

with small spike rates, such as for example the adapting cells in the retina, then modulation

should be applied selectively to the class of neurons with sparse responses and equally within

this class neurons.

Why is it beneficial to direct modulation to the neuron with the lowest spike rate?

An intuitive explanation for this phenomenon can be obtained by considering the shape of the

information function for a single neuron with respect to its threshold (Fig. 4.6 (A)). This function

is concave for small thresholds and convex for large thresholds. This is important because

concave functions decrease their value upon averaging of their inputs, as occurs as a result of

threshold modulation, while convex functions increase their value. This means that neurons

with small thresholds, i.e. high spike rates, will suffer a decrease in information transmission

upon modulation, cf. Fig. 4.6 (B). In contrast, neurons with large thresholds, i.e. small spike

rates, will increase information transmission upon threshold modulation. The lower the spike

rate, the greater is the increase in the information transmission with modulation.

At this point, it is important to clarify that this increase in information transmission with

modulation is accompanied by an increase in the spike rate. Unlike information, the firing rate

function is convex for all values of its argument (Fig. 4.6 (A)). As a result, modulation always

increase the spike rate (Fig. 4.6 (C)). The increase in the information from modulation is less

than it would have been if the rate was simply increased by lowering the threshold, without the
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Figure 4.3: Modulation directed to sparsely responding neurons protects against infor-
mation loss in the presence of modulation. (A) The information loss is smallest when only
the lowest-spiking neuron (red line) receives modulation, compared to modulating all neu-
rons (gray line) or the highest-spiking one (blue line). Black line shows information in the
absence of modulation. The primary noise ν = 0.2 for all cases, lines with modulation have
the same averaged effective noise νeff = 0.4 after modulation. Arrows describe how points on
the unmodulated curve change in terms of information and spike rate upon adding the same
amount of overall modulation. The red and blue arrows have different final values for spike
rate because the modulation-induced increase in the spike rate depends on the initial spike
rate values and is different for the lowest and highest spiking neuron in the pair. The averaged
effective noises after modulation are νeff = 0.3 for all curves. The spike rates were optimized
to yield maximal information for a given average spike rate. The corresponding rates are
shown in Fig. 4.4. (B) Same as (A) but in terms of percentage of information loss to show
the results on an expanded scale. (C, D) Same as (A) and (B) but for three neurons. In (D),
results from (B) pertaining to pairs of neurons are re-plotted using dashed lines for comparison.
Green lines shows the case where modulation is directed to the neurons with intermediate
spike rates, other colors are the same as for pairs of neurons. Directing modulation to the most
sparse neurons yields the smallest information loss from modulation. Modulation can be more
fully compensated in three-neuron groups compared to two neurons, for smaller spike rates.
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with and without threshold modulation. The results shown here correspond to the analyses of
the impact of threshold modulation shown in Fig. 4.3.

modulation. As a result, the information vs. rate curve in the presence of modulation has the

same shape as in the absence of modulation, just with reduced information for a given rate.Thus,

these results are consistent with those in Fig. 4.2 (A) showing modulation decreases information.

It is just that the increase in information upon modulation can nearly completely match the

increase that would have been observed if the firing rate was increased without modulation.

The conclusions from the theoretical analyses of information transmission in the presence

of threshold modulation indicate that modulation should not be equally distributed to all neurons

in the target circuit. Instead, it should be directed to the neuron with the lowest spike rate with

inhibitory signals. The use of inhibitory signals ensures that the rank-ordering of neurons does

not change under modulation, and the neuron that receives modulation does not get its spike

rate raised. They also illustrate the need to use neurons with diverse spike rates, because the

average spike rate in the circuit sets the upper limit on the amount of information that this group

of neurons can transmit, with or without modulation. To have the capability to transmit large

amounts of information, the circuit has to include neurons with large spike rates. Including

neurons with small response rates and directing modulation to them helps maintain information

transmission near its maximal levels in the presence of modulation.
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Figure 4.6: Modulation induced transition in information transmitted as a function of
spike rate. (A) Spike probability is a convex function of threshold position (black line). In
contrast, information (red line) changes convexity as a function of threshold. When a function
has positive convexity (solid segments of the curve) the average of its two values at points
a and b is always larger than the function value at (a+ b)/2. In this regime, fluctuations
increase information transmission. The opposite is true for regions of negative convexity
(dashed-curve). As a result, fluctuations in threshold decrease information when thresholds are
low and increase information when threshold are high, i.e. when neurons respond sparsely (B)
Threshold modulation increases information transmission when spike rates are small (filled
dots) but decreases it when spike rates exceed a certain transitional value (open dots). Shaded
pink region denotes the value where modulation increases information transmission. Thick
solid lines show information in the absence of threshold modulation (σ2

µ = 0), for two noise
levels ν1,2 = 0 (black) and 0.2 (light-blue). Thin solid lines and the eight series of color-dots
on them show how curves shift upon introduction of threshold modulation. Each series of
color-dots evolves from the same intrinsic noise (ν) and threshold (µ). Color denotes the
resulting effective noise νeff =
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µ. (Inset) The transitional value in response rate is
plotted as a function of the intrinsic noise. (C) Modulation increases response rate.
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4.3 Test of maximally informative prediction in the presence

of threshold modulation

4.3.1 Retinal input-output functions are maximally informative under

threshold modulation

We now test how these predictions using responses of pairs of cells in the retina that

differ in their average spike rates. The adapting and sensitizing cells are two cell types that

represent the same temporal pattern of light intensity modulation but have different thresholds.

Our first analysis is to fit the maximally informative model with modulation to the responses of

pairs of adapting/sensitizing cells. The fit was made while requiring that the effective noise and

the average spike rate for the pair matched experimental measurements (see Appendix D for

details). The fit yields estimates for threshold modulation and primary noise for each neuron in

the pair as well as an estimate for the difference in their thresholds. These estimates can then be

compared to direct experimental measurements of these variables.

We find that the inferred amount of noise in the primary pathway was similar for both

adapting and sensitizing cells (Fig. 4.7 (A)). However, the threshold modulation was substantial

for adapting cells and very close to zero for the sensitizing cells (Fig. 4.7 (A)). The fitting results

were consistent across cell pairs. (Table D.1). Thus, the differences in the effective noise that

are observed between these two cell types [25] are due to differences in threshold modulation.

We also note that threshold modulation was small in sensitizing cell even relatively to their

thresholds (the modulation was ∼ 100 times smaller for sensitizing cells compared to adapting

cells, whereas their thresholds are only approximately half as small as those of adapting cells).

The threshold modulation values predicted by the maximally informative model with

modulation can be compared with direct experimental estimates of their threshold modulation.

To compute the amount of threshold modulation that is observed experimentally, we estimated
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neuronal nonlinearities from shorter data sub-sets (1/4 to 1/6 compared to the full dataset).

Each nonlinearity was fit with a logistic function to determine its threshold value. We find that

the observed variation in thresholds for a given adapting cell matches those estimated using

the maximally informative model (Fig. 4.7 (B), paired non-parametric t-test p = 0.73). [This

analysis was only carried out for adapting cells, because threshold modulation was negligible in

sensitizing cells]. Those adapting cells that had larger variance in thresholds across trials also had

larger values of threshold modulation as indicated by fitting the maximally informative model

to the full set of their response (the correlation was statistically significant, with p = 0.015,

Fig. 4.7 (B)). These analyses add credence to the use of the maximally informative model

with modulation as a method for separating the noise component that is due to threshold

modulation. They also indicate that the observed threshold modulation in adapting cells is

maximally informative given their other parameters, such as the primary noise and firing rate.

Another prediction that one can obtain from the maximally informative model with

modulation pertains to the differences in the thresholds between adapting and sensitizing cells.

Previous predictions for the threshold differences obtained for pairs of neurons without taking

modulation into account yielded values that were systematically larger than those observed

experimentally [27], replotted in Fig. 4.8 with black line. We find that the maximally informative

model with modulation provided more accurate predictions for thresholds differences between

pairs of neurons than the model with no modulation, cf. Fig. 4.8. Statistically, the threshold

difference (in units of contrast) between adapting and sensitizing cells were consistent between

the average values across contrasts for each cell pairs from the maximally informative model

and experimental measurements (paired non-parametric t-test p = 0.14). By comparison, the

model with no modulation yielded systematically greater threshold differences that is observed

experimentally (black line in Fig. 4.8). We note that experimental data points show larger

residual variation across different contrasts than our model indicates. The reason for this is that,

in the model, noise components and threshold modulation for adapting cells were constrained to
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Figure 4.7: Experimentally observed threshold variation matches maximally informa-
tive values. (A) Intrinsic neural noise and threshold modulation inferred using the maximally
informative model with modulation from retinal data. Both neural types have comparable
amounts of intrinsic neural noise (νi) but distinct levels of threshold modulation (σµ,i). All
noise types varied linearly with the stimulus contrast, except for modulatory noise in the
sensitizing cells, which was small and contrast-independent. (B) The experimentally observed
threshold variation across adapting cells is positively correlated with threshold modulation
inferred from the maximally informative model (r = 0.3, p = 0.015). Both axes are in units
of contrast. Colors denote different neurons. Data points for the same neuron/color represent
measurements from different input contrasts.

change linearly with contrast (to reduce the number of fitted parameters, see Methods). Thus, the

model was not meant to predict residual variation across contrasts that remains after rescaling

inputs by their contrast. Other than this variability, the predictions of the maximally informative

model with modulation for threshold differences between adapting and sensitizing cells are fully

consistent with experimental measurements ( Fig. 4.8B).

4.3.2 Amacrine cells as a source of threshold modulation for adapting

cells

One of the key predictions of the theory is that modulation should be directed to neurons

with low spike rates. However, as we have seen above, modulation increases the spike rate

(Fig. 4.6C), albeit by moderate amounts. One way to minimize the risk of altering the rank-

38



0.8 1
0

0.5

1

0.8 1
0

0.5

1

Prediction with
threshold modulationSalamander fast Off RGCs

Th
re
sh
ol
d
di
ffe
re
nc
es

A B

νeff ⁄ νc νeff ⁄ νc

Δνeff ⁄ νc Δνeff ⁄ νc

Prediction w/o
TH. modulation

Spinodal

0 0.2 0.4
0

0.5

1

0 0.2 0.4
0

0.5

1

Th
re
sh
ol
d
di
ffe
re
nc
es

C D

Figure 4.8: Maximally informative model with modulation accounts for threshold differ-
ences between adapting and sensitizing cells. Threshold difference between adapting and
sensitizing cells is plotted as a function of average (top row) and difference (bottom row) in
the effective noise between the two neurons. Columns show data (left), maximally informative
predictions with modulation (right). Different colors denote different cell pairs. Open circles
represent data for a given contrast, filled circles show the average across contrasts. Black lines
show predictions for threshold differences without threshold modulation. Gray dashed lines
denote spinodal lines that separate regions where information has two maxima vs. a single
maximum. Points close to the spinodal lines (e.g. blue, light blue, and light green) are more
difficult to fit because they mark the region where one of the maxima ceases to exist. This
pushes the interpolated solutions away from the spinodal line (c.f. Fig. 3.2). Despite these
technical issues, the overall distribution of mean threshold values normalized across contrasts
was not statistically different between fitted and experimental values, p = 0.14.

39



ordering of neurons in terms of their spike rate is to deliver it with inhibitory neurons. In this

way the neuron that is undergoing modulation will automatically have its threshold raised and

spike rate lowered. This is consistent with our observations in the retina where adapting neurons,

which undergo modulation, also have larger thresholds and smaller spike rates. In the retina,

inhibitory amacrine cells could be the source of that input (Fig. 4.9A). If amacrine cells provide

stronger inputs to adapting cells than the sensitizing cells, then this would simultaneously explain

why the thresholds of adapting cells are higher and more variable than those of sensitizing

cells. The fact that both the mean threshold and its modulation varies approximately linearly

with contrast is also consistent with this wiring scheme. Inputs to and from amacrine cells just

need to be scaled by contrast just like inputs within the primary pathway for the adapting and

sensitizing cells.

We tested this hypothesis by performing a separate set of experiments to analyze how the

hyperpolarization and depolarization of sustained Off-type amacrine cells by intracellular current

injection affected responses of nearby adapting and sensitizing cells recorded simultaneously

with a multielectrode array (see Methods and Fig. 4.9). Specifically, we analyzed the change in

the mean threshold of adapting/sensitizing neurons between hyperpolarization and depolarization

of the amacrine cell. When an amacrine cell is hyperpolarized (depolarized), this decreases

(increases) its inhibition onto neurons it is directly connected to. Although we do not assume

that there are direct connections between amacrine cells and the ganglion cells we recorded

(the connection could be polysynaptic, through circuitry involving bipolar or other amacrine

cells), this approach measures the functional effect of individual amacrine cells. In Fig. 4.9C

we plot the change in the threshold as a function of distance between the receptive fields

(RFs) of the amacrine cell (that was subjected to hyperpolarization/depolarization) and the

adapting/sensitizing cell whose nonlinearity was measured to estimate its threshold. In the

case of adapting cells, there was a clear and statistically significant dependence of the amount

of threshold shift as a function of the distance to the amacrine cell RF center (p = 8× 10−5
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F-test compared with null hypothesis of no dependence on distance). The dependence was not

statistically significant in the case of sensitizing cells (p = 0.9). Thus, these data support the

hypothesis that the larger thresholds of adapting ganglion cells arise as a result of inhibition from

the amacrine cells, and that this inhibition also brings with itself stronger threshold modulation.
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Figure 4.9: Distance dependent inputs from amacrine to adapting cells. (A) Inferred
model of the presynaptic circuitry of the two types of Off retinal ganglion cells based on
observed differences in the strength of the modulatory pathway. (B) The nonlinearity of Off
ganglion cells during the depolarizing (dot) and hyperpolarizing (triangle) current injection
into the amacrine cell. The solid and dashed curves show the fit with sigmoid function. The
distance between the receptive field (RF) of the amacrine cell to that of the adapting cell was
0.090 mm, 0.101 mm to the RF of the sensitizing cell. (C) The amount of inhibitory input
from amacrine cells to the adapting cell decreases with distance significantly (p×10−8, f-test).
[Inhibition may be direct or polysynaptic, through circuitry involving bipolar cells or other
amacrine cells.] The dependence on distance was not statistically significant for sensitizing
cells (p = 0.9). Solid lines show the exponential fits with distance.

4.4 Conclusion

In this work we analyzed information transmission in the presence of threshold mod-

ulation. There are two main conclusions. The first conclusion is that modulation should not
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be equally applied to all neurons in the circuit. Instead it should be directed to select neurons,

preferably those with the low spike rates in the circuit. The second conclusion describes the

central role that inhibitory neurons play in delivering modulatory signals into the circuit. These

conclusions are obtained by through basic analyses using information theory, and therefore

should apply to all neural circuits. We now discuss the implications of these conclusions, with a

focus on cortical circuits.

The first conclusion highlights the need to form circuits using neurons with different

spike rates. The large number of sparsely firing neurons in the cortex have long presented a

puzzling observation [41]. The chief explanation offered so far is that sparse response reflect

due to metabolic constraints. However, one could have hypothetically used a smaller number of

neurons with higher spike rates, if metabolic constraints were the leading cause for the sparseness

of neural responses. The information-theoretic analyses in the presence of modulation offer a

different explanation. Neural circuits need to have neurons with both high and low firing rates

in order to transmit large amounts of information in the presence of modulation. High firing

neurons make it possible to transmit large amount of information, whereas neurons with small

spike rates protect against loss of information transmission in the presence of modulation.

The second conclusion describes a rather unexpected role for inhibitory neurons as

intermediaries for delivering modulation signals. This set up helps to ensure that low-spiking

neurons that receive modulation remain in this regime under varying modulation levels. We find

support for this prediction in the retina where inhibitory amacrine cells send modulatory signals

to sparsely spiking adapting cells. If modulation were delivered to adapting cells via excitatory

pathway, then this would risk making their spike rate greater than that of sensitizing cells and

losing protection against negative effects of threshold modulation on information transmission.

The same role appears very plausible for inhibitory neurons in the cortex. There,

inhibitory neurons expressing the vasoactive intestinal peptide are the major target of neuro-

modulatory inputs as well as modulatory, context-dependent inputs from higher-order cortical
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areas [23]. Similarly, somatostatin expressing inhibitory neurons use this neuropeptide as a

co-transmitter with GABA to modulate the activity of local neurons [32, 48]. The slow action of

neuropeptides, such as somatostatin, conforms with our modeling framework where modulation

changes neuronal threshold on slower time scales than those on which the primary activation

pathway operates. We note also that all of the other inhibitory neurons, including parvalbumin-

positive inhibitory neurons, are directly responsive to neuromodulators such as acetylcholine

and serotonin [52]. Furthermore, even when neuromodulators, such as acetylcholine, act directly

on excitatory neurons, they exert first an inhibitory response [14] in their target neurons. The

information-theoretic results offer a new explanation for this tight link between neuromodulatory

and inhibitory circuits in the brain.

Chapter 4, in full, have been submitted for peer review of the material as it may appear

in Cell Reports, Hsu, Wei-Mien; Kastner, David B.; Baccus, Stephen A.; Sharpee, Tatyana O.,

Cell Press. The dissertation author was the primary investigator and author of this paper.
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Appendix A

Data acquisition

A.1 Experimental preparation

We use a combination of new and previously published experimental data [25]. Full

details of the experimental procedures for measuring neural nonlinearities are provided in [25].

Briefly, uniform field stimuli were drawn from a Gaussian distribution with constant mean

intensity, M, of 10 mW/m2. Contrast is defined as σ =W/M, where W is the SD of the intensity

distribution. Neurons were probed with flashes of nine different contrast values from 12% to

36% in 3% intervals. The contrasts were randomly interleaved and repeated. Each contrast was

presented, in total, for ≥ 600 s. For the calculation of the response functions, the first 10 s of

data in each contrast were not used to allow for a better estimation of the steady state.

A.2 Intracellular recording

Simultaneous intracellular and multielectrode recordings from the isolated intact sala-

mander retina were performed as described [35]. Sustained amacrine cells were distinguished

from horizontal cells by their flash response and their spatiotemporal receptive fields, with
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horizontal cells lacking an inhibitory surround and being greater than 300 µm in diameter. For

the intracellular recordings the stimulus comprised of randomly drawn contrasts with contrast

amplitudes that ranges from 0 to 40% Michelson contrast units, where Michelson contrast is

defined as (Imax− Imin)/(Imax + Imin). The flash amplitude varied randomly every 400 ms, the

first 100 ms the flash was greater than the mean, from 100 to 200 ms the flash was lower than

the mean, and for the last 200 ms the flash was at the mean luminance level. Changing the

distribution of amplitudes slower than the integration time of ganglion cells allowed for a rapid

measurement of the ganglion cell response function without having to also measure the ganglion

cell temporal filter [9]. Synchronized to the visual stimulus, we injected from 100 to 300 ms,

randomly interleaved, hyperpolarizing (−500 pA) or depolarizing (+500 pA) current pulses

into the amacrine cell. The ganglion cell response function was calculated at the firing rate

of the ganglion cell from 100 to 400 ms of each contrast amplitude. This focused on the off

response of the ganglion cell.

A.3 Analysis of inhibition from amacrine cells versus RFs

distance

To quantify the amount of inhibition from the amacrine cells to a ganglion adapting/sen-

sitizing cells (Fig. 4.9), we analyzed how the threshold of the ganglion cells changes when

nearby amacrine cells are depolarized or hyperpolarized. For each ganglion cell and amacrine

cell condition, the relation between firing rate and filtered input was recorded (c.f. Method of in-

tracellular recording). Fitting the two response curves with sigmoid functions yielded thresholds

of a ganglion cell during the hyperpolarizing (µh) and the depolarizing (µd) current injection

to the amacrine cell. The difference in thresholds (µd− µh) reflects the impact of amacrine

cell inputs on the response properties of the ganglion cell. We analyzed these differences as a

function of the receptive field distance between the ganglion and amacrine cells. Overall, the
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analysis was based on current injection to 40 different amacrine cells and recordings from 144

Off ganglion cells. We note that an amacrine cell usually connects to multiple ganglion cells,

and some of the ganglion cells receive inputs from multiple amacrine cells. The red and blue

points shown in Fig. 4.9 are obtained by binning (according to RFs distance) results from 169

amacrine-to-adapting cell pairs and 32 amacrine-to-sensitizing pairs, respectively. The standard

error in RFs distance (x-axis error) is too small to be visible in the plot.
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Appendix B

Impact of threshold modulation on

maximally informative threshold positions

To understand how threshold modulation affects maximally informative threshold po-

sitions, one may note that threshold modulation effectively smooths the information surface

computed over long time scales (Fig. B.1). In the regime where the mutual information has

two maxima, it has the effect of bringing the maxima closer to each other. Another effect that

proved necessary to take into account is that noise in the primary pathway can be larger for the

neuron that experiences smaller threshold modulation, leading to a smaller overall effective

noise value for that neuron. In this case, the information transmitted matches the smaller (local)

of the two maxima of the information. In other words, the model allows for the possibility that

coordination of neural thresholds between neurons might not be able to keep up with changes in

input statistics for the circuit to match the properties of the global maximum of information.

Instead, we observed that in some cases neural response properties match a local maximum of

the information that required smaller adjustments in thresholds following the change in input

statistics.

Taking both of these effects – threshold modulation and the possibility of local optimality
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– made it possible to account for the observed threshold differences between sensitizing and

adapting cells. Each cell pair was probed with flashes of nine different contrasts, producing

four experimental parameters of the neuronal nonlinearity (νeff,1, νeff,2, µ1, µ2) at each contrast.

The maximally informative model also has six parameters (µ1, µ2, ν1, ν2, σµ,1, σµ,2). It can

predict the difference µ1− µ2 given a set of values for µ1 + µ2, ν1, ν2, σµ,1, σµ,2; only three

of these five parameters are constrained by the measured input-output functions. Thus, the

model is underconstrained for one value of contrast. However, experiments indicate that

once neurons are adapted to a given value of contrast, parameters of experimentally measured

nonlinearities increase approximately as a linear function of contrast [29, 25, 9, 16, 4]. We use

this observation to fit the maximally informative model across contrasts. The resulting model

has eight parameters altogether: the linear and offset terms with respect to contrast for each of

the four noise terms (ν1, ν2, σµ,1, σµ,2). Because position of information maxima are affected

by changes in any of these parameters, the maximally informative model can therefore be used

to predict 27 independent measurements across contrasts (three values of µ1−µ2, νeff,1, and

νeff,2 for each contrast).
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Figure B.1: Long-term information surface. The threshold modulation effectively smooths
the information surface (thin lines, gray dots mark maxima) to give rise to the long-term
information surface (thick lines, red dots mark maxima).
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Appendix C

The effect of correlated noise on the

optimal threshold separation

We also tested whether a model where the primary and secondary pathways simply sum

with no nonlinear interaction could account for the data. In this case, the secondary pathway

presents itself in the form of correlated noise variability between the adapting and sensitizing

cells. Small, correlated variability has been observed in the retina [27, 1, 46], and its impact of

information transmission has been studied [17, 54]. However, we now show that the correlated

variability model cannot account for the observed threshold differences between neuronal types

(assuming they are maximally informative or at least follow a local maximum of information).

First, we find that small positive correlations increase the optimal threshold separation

between cell types, cf. Fig. C.1A. The negative correlations are largely not consistent with

measurements [25], and in any case would not be able to reduce optimal threshold separation

enough to match experimental measurements. In Fig. C.1B, we show that taking into account

observed differences in the noise for the adapting and sensitizing cells further increases optimal

threshold separation. This again shifts predictions in the direction opposite from the experimental

measurements in Fig. 4.8. Thus, these results argue that the observed threshold differences
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between RGCs need to be interpreted in the context of nonlinear threshold modulation.
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Figure C.1: The effect of correlated noise on the optimal threshold separation between
the neural types. Equal (A) and unequal (B) noise levels for the two neurons in the pair.
We only show points satisfying ∆νeff ≥ 0 that would be consistent with the experimental
observation of large effective noise in the adapting compared to sensitizing neurons. Positive
correlations (ρ > 0) increase threshold separation. Although negative correlations reduce
optimal threshold separation, the reduction is not sufficient to reach the area adjacent to the
spinodal line and thus fail to explain the data.
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Appendix D

Least-squared-fitting for parameters of

the threshold modulation model from the

retinal data

Base on the maximally informative modulation model, at a given (µ1 +µ2) the solution

to threshold difference between a pair of adapting and sensitizing cell, ∆µmodel, is nonlinearly

dependent on the magnitude of each noise source (νi, σµ,i). This allows us to separately estimate

the magnitude of these noise components from the neural data.

The results of least-square fitting were also constrained to match the observed values

for νeff,i. Seven pairs of adapting (index 1) and sensitizing cells (index 2) were probed by the

nine different full range of contrasts (σ = 12% to 36% in 3% intervals [25]). The adaptive

dynamics of noise level has been experimentally observed in many sensory systems [29, 25, 9,

16, 4]. Typically, the width of the transition region of the nonlinearity changes linearly with

stimulus contrast (standard deviation). This adaptive process serves to optimize the information

processing [9]. Here, we assume that both the primary (νi) and the secondary
(
σµ,i
)

noise
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sources are approximately linearly dependent on contrast (σ),

νi (σ,~α) = α
(i)
1 σ+α

(i)
2 , (D.1)

σµ,i (σ,~α) = α
(i)
3 σ+α

(i)
4 . (D.2)

The effective noise also depends on contrast,

νeff,i,model (σ,~α) =
√

ν2
i (σ,~α)+σ2

µ,i (σ,~α), (D.3)

where i = 1,2 denotes adapting or sensitizing neuron, respectively. The parameters ~α ={
α
(i)
1,2,3,4 ∈ R,∀ i = 1,2

}
are to obtained by the least-squared-fitting for each cell pair while

requiring them to also be consistent with νeff,i measurements from the shape of the nonlinearity.

This model has eight parameters. Although formally it can be fit to data points for each

individual cell pair, we reduced the number of parameters in half by focusing on the dominant

term between the linear and contrast-independent terms for each type of noise. Initial fitting of

the model indicated very small values for α
(1)
2 , α

(2)
2 , α

(1)
4 , and α

(2)
3 . The final fitting reported here

was obtained by setting these terms to zero, i.e., that noise in the primary pathway scales linearly

with contrast for both types of cells; threshold modulation was set to be linearly increasing with

contrast for adapting cells and to be contrast-independent for sensitizing cells.

The observed nonlinearities for a pair of adapting (index 1) and sensitizing cells (index

2) determine the threshold separations (∆µ = µ1−µ2) and the effective noise levels
(
νeff,1 or 2

)
.

For each cell pair, we aim to dissect two contributions to their νeff,1(or 2): the one from the

intrinsic noise level (ν) and that due to threshold modulation
(
σµ
)
, via minimizing the squared-

error between the retinal data and the model predictions across the nine contrasts (σ = 12% to

36% in 3% intervals). Given a contrast (σ) a data point of a cell pair, ~O(σ), consists of three
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components,

~O(σ) =
(
νeff,1 (σ) ,νeff,2 (σ) ,∆µ(σ)

)
, (D.4)

and so does our model ~E (σ,~α),

~E (σ,~α) =
(
νeff,1,model (σ,~α) ,νeff,2,model (σ,~α) ,∆µmodel (σ,~α)

)
. (D.5)

Here, ∆µmodel (σ,~α) is the predicted threshold separation from our model, dependent on the

intrinsic νi and modulatory noise σµ,i of each cell types,

∆µmodel (σ,~α) = ∆µmodel
(
ν1 (σ,~α) ,ν2 (σ,~α) ,σµ,1 (σ,~α) ,σµ,2 (σ,~α)

)
. (D.6)

The predicted threshold differences (∆µmodel) were firstly computed discretely in the grid space

(ν1,ν2,σµ,1,σµ,2) and interpolated with Mathematica build-in function to construct the solutions

between the grids. To avoid biasing the result by the component with largest error-bar, we

standardize the
[
~O(σ)−~E (σ,~α)

]
of each dimension with the inverse of its standard deviation.

That is, the rescaling factors (weights) were

~w = 1/
(
s.d.
(
νeff,1

)
,s.d.

(
νeff,2

)
,s.d.(∆µ)

)
, (D.7)

or more specifically,

wi =
1

s.d.(Oi)
=

[
1

N−1 ∑
σ

(Oi (σ)−〈Oi〉σ)
2

]− 1
2

, for i = 1 to 3. (D.8)
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We defined the sum of weighted squared errors (or residuals) as

χ
2 (~α) = ∑

σ

∣∣∣~w�[~O(σ)−~E (σ,~α)
]∣∣∣2 , (D.9)

where � denotes component-wise multiplication. The parameter~α is the best-fit minimizing

the weighted least-squared-error,

~α = argmin
~α′

χ
2 (~α′) , (D.10)

which predicts how the intrinsic (νi) and the modulation noise
(
σµ,i
)

depend on the stimulus

contrast (σ). To quantify the goodness of fit, we use the variance (or reduced χ2 )

χ
2
red (~α) =

χ2

d.o. f .
=

χ2

N−n
, (D.11)

where d.o. f . = the number of degrees of freedom = N− n; N is the number of observations

(nine contrasts in our case), and n is the number of fitted parameters. Note that by considering

the threshold modulation, the predictions for the minimal threshold differences between the

two cell types cannot go below the spinodal line. This makes it difficult to fit the data points

adjacent to or below the spinodal region with our model. Therefore, the fitting results for three

cell pairs did not adequately capture the trends (Fig. 4.8).

Finally, we also fit a single model across all cell pairs and contrasts. The resulting

parameters (provided in the last row of Table D.1) were consistent with average values of

parameters fitted to individual cell pairs (Fig. 4.7).
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Table D.1: Estimated noise components in the primary ν and modulatory σµ pathways
for each cell pair. The dependence of noise components upon the contrast are fitted by cell
pair, across the nine contrasts (σ = 12% to 36% in 3% intervals). All the fitting parameters are
in the unit of critical noise value, νc.

Cell pair #
Adapting Sensitizing

ν1 (σ) σµ,1 (σ) ν2 (σ) σµ,2 (σ)

A 0.819σ 0.281σ 0.784σ 0.0
B 0.671σ 0.546σ 0.749σ 0.049
C 0.713σ 0.448σ 0.801σ 0.025
D 0.413σ 0.618σ 0.545σ 0.051
E 0.670σ 0.598σ 0.758σ 0.010
F 0.604σ 0.528σ 0.622σ 0.033
G 0.482σ 0.751σ 0.594σ 0.013

Combined fit 0.597σ 0.563σ 0.685σ 0.033
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