




with fine soil texture which has an important influence on soil nu-
trients, water holding capacity, and plant water availability (41–44).
The recovery rate (λ; which indicates more rapid recovery with

smaller values) was sensitive to midsummer precipitation and pre-
cipitation concentration but not mean annual precipitation (Table
S1). This result suggests that the growth of young and recovering
plants through the first few years following fire is limited by warm
season moisture availability, as has been observed in detailed studies
of individual plants (43, 45, 46) and population level analyses (47).
The association with summer precipitation may also be driven by
increased seedling mortality in drier microsites as observed by
Midgley (45) or alternatively by differences in species composition
and community functional traits across the gradient in recovery
time. For example, there is some evidence for higher frequency of
resprouting shrubs in wetter areas (48), which could lead to faster
postfire recovery of biomass observed from satellite. Recovery rate
(λ) is also strongly associated with soil fertility, with faster recovery
occurring in more nutrient-rich soils (Table S1).
The potential maximum NDVI (γ + α) and recovery rate (λ)

have similar (but inverted) spatial patterns indicating lower peak
NDVI values and slower recovery (larger λ) in interior arid re-
gions (e.g., Cederberg and Waterval) compared with wetter areas
along the coast and in the eastern portion of the region with
aseasonal rainfall (e.g., de Hoop and Baviaanskloof; Figs. 1 and 2).
The spatial pattern of maximum NDVI (γ + α) shows the overall
effect of elevation is less pronounced than the coastal-interior gra-
dient (Fig. 2). The most arid parts of the region (near 20°E, 33°S)
have estimated maximum NDVI (γ + α) values near 0.4, indicating
that the aridity limits biomass below the levels found in wetter areas.
The seasonal amplitude (A) is negatively associated with ele-

vation, slope, and mean January (midsummer) precipitation, but
positively associated with soil acidity, maximum January temper-
ature, and mean annual precipitation (Table S1). The seasonality
of precipitation (SI Materials and Methods) is also an important
influence on A, with less seasonal variability in parts of the region

with more seasonal concentration of rainfall. The counter intuitive
relationship is likely driven by differences in species composition
and functional traits across the region. The most important traits
that would lead to a seasonal variation in NDVI are deciduous
leaves or an annual life cycle, which are more common in parts
of the region with aseasonal rainfall (primarily in the east) (49).
Model output including maps of λ, γ, A, and the recovery time are
available at dx.doi.org/10.6084/m9.figshare.1420575.

Climate Projections. The climate models forecast that the region will
consistently warm in the coming century but precipitation is much
less certain, reflecting the climatological complexity in precipitation
across the region. For example, the 2081–2100 RCP8.5 changes
(multimodel regional mean± SD) for January maximum tem-
perature (3.67± 1.07� °C), and July temperature (3.24± 0.95� °C)
are relatively smooth across the region, with higher values in the
inland regions (Fig. S4). However, the predictions for mean annual
precipitation (−17.36± 33.76 mm), mean January precipitation
(0.16± 5.93 mm), and precipitation seasonality (−0.53± 4.47) have
large spatial and intermodel variability (Fig. S4). In general, the
western part of the region is likely to experience decreased mean
annual and January precipitation, whereas there may be an increase
in winter rainfall in the east.
Multimodel mean projections of postfire recovery time show

little change (−1.34± 1.41 y), but predictions vary widely be-
tween models and across the region (Fig. 3). Overall, most show
decreasing (faster) recovery time driven primarily by warmer
winter temperatures (Fig. S5). However, precipitation is para-
mount in this system and the high uncertainty in projected pre-
cipitation change for this region translates to large intermodel
variability even in the sign of the projected postfire recovery rates.
Some models (e.g., MIROC5, GFDL-ESM2M) show regional
gradients with slowing recovery in the west (driven by decreased
precipitation) and faster recovery in the east, while others (e.g.,
FGOALSs2) result in faster recovery times (−3.18± 1.76 y) across
the region by as much as −12.4 y (Fig. 3).

Discussion
Much of the focus in the remote sensing literature has been on
mapping and monitoring ecosystem patterns (50–52) rather than
understanding ecosystem processes and building predictive models
of spatiotemporal dynamics (53). In this study, we used millions of
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Fig. 2. Median posterior values of maximum NDVI (γ + α, unitless) and re-
covery time (years for NDVI to return to prefire levels; Eq. 10). (Inset) His-
togram of the values across the region and serves as a color key to the map
in each panel. Fig. S1 shows the pixels used in model fitting and validation.
Note that maximum NDVI is the modeled asymptotic maximum predicted
due to the climate, topography, and soil across the region. Predictions were
made for all areas in the fynbos biome including those currently transformed
(e.g., for agriculture), whereas white areas are outside the fynbos biome.
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satellite observations collected over the last two decades to identify
recovery gradients in postfire ecosystem dynamics. By breaking
ecosystem recovery into distinct but complementary components
and quantifying the role of climate, soil, and other topographical
variables, we also gain the ability to forecast how the ecosystem may
respond to future climate change. Despite its relative simplicity and
ease of interpretation, the model performed well in cross-validation,
explaining ≈ 50% of the variation in the held-out data.
We found that postfire recovery rate varies dramatically across

the region and is significantly associated with climatic gradients
(Table S1). Additionally, we found that the estimated postfire re-
covery times were a useful predictor of fire return intervals using a
separate survival analysis (SI Materials and Methods and Fig. 4).
Recovery time ranges from only a few years on the warmer mesic
coast to more than three decades in the arid interior where fynbos
shrubland transitions into desert vegetation (Fig. 2). Eastern coastal
regions have the shortest recovery times despite accumulating more
biomass (large γ) due to fast recovery rates (λ< 2). In contrast,
vegetation in the more arid west requires decades to recover to
prefire conditions even though the maximum NDVI tends to be
smaller (γ + α≤ 0.45).
Warmer winter temperatures in the future are expected to ac-

celerate postfire recovery across the region, which could further
increase fire frequency due to faster fuel accumulation (Fig. 3 and
Fig. S5). Warmer conditions are known to increase short-term fire
risk in the region (10), but the impact of climate change on fuel
load accumulation rates had not been previously quantified. This
knowledge gap is important, because climate affects fire regimes
through its influence on fuel loads as well as burning conditions.
This study is limited to recovery of ecosystem-level above-

ground biomass, which cannot account for changes in functional
or phylogenetic community structure. There are likely to be
additional ecological impacts of shorter fire return times according
to the regeneration strategies and dispersal capabilities of the

constituent species (54, 55). For example, some fynbos species
require up to 10 y following fire before successfully reproducing
(56), which in combination with more frequent fires leads to the
aptly named interval squeeze (57). More frequent fires encouraged
by both high-risk weather (10) and faster postfire biomass accu-
mulation could lead to significant shifts in community composition
by eliminating long-lived, nonsprouting shrubs (as observed
experimentally) (58).
However, moisture availability is extremely important in this

region and the climate models exhibit large variability in pro-
jected precipitation (Fig. S4). Several climate models project a
decrease in precipitation in the western CFR, which would lead
to slower recovery rates there and faster recovery in the eastern
part of the region (e.g., MIROC5 in Fig. 3). This outcome would
likely lead to reduced fire frequency in the west due to lack of
fuel despite higher temperatures and more frequent high-risk
fire weather and could lead to a biome conversion from fynbos to
semidesert vegetation in strongly affected areas.
Understanding the spatiotemporal variability of the fire regime

and ecosystem resilience is critical to successfully manage and
conserve floral biodiversity in this system. For example, land
managers in the region currently attempt to maintain intervals
between fires long enough for ≥ 50% of the “individuals in a
population of the slowest-maturing of the obligate reseeding spe-
cies to have flowered and developed seed for at least three suc-
cessive seasons” (59, 60). In combination with field observations,
this modeling framework could be further developed to account for
the phylogenetic and functional composition of plant communities
to give a more comprehensive perspective on the relationship be-
tween climate and ecological resilience in this system.

Materials and Methods
Data. Long-term (1950–2000) mean climate data (61) for the region were
extracted, and topographical parameters were calculated using the 30-m
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digital elevation model (DEM) from the ASTER project (asterweb.jpl.nasa.
gov/gdem.asp) and aggregated to the 500-m grid.

Fire occurrence data include fire boundaries mapped by reserve managers
extending back to the 1950s (10) and the remotely sensed burned area product
derived from the MODIS satellite sensor. The historical burned area polygons
were then used to resolve the postfire age of each pixel in each time step during
the MODIS era, with postfire ages ranging from 0 to 59 y. This, in combination
with the climate data described above, allowed us to extract the multidecadal
climate signal from a single decade of satellite observations. For example,
imagine we know from the field data that a pixel burned in both 1980 and 2008.
The NDVI observations for that pixel (which are limited to post-2000 MODIS)
would start at postfire age 20, continue to 28, and then reset back to age zero
(due to the fire in 2008) and increase again until the end of the record. By
comparing these postfire trajectories with climate rather than weather, we can
arrange the data in terms of age rather than date and have a record of recovery
extending back decades before the satellite data are available.

Locations with no NDVI observations from the first 3 y, or with fewer than
3 y of data, were removed resulting in ≈ 16,700 pixels across the region, each
with 225 bimonthly observations of NDVI through time (totaling ≈ 3.7
million observations of individual pixels) from the MODIS 500-m resolution
16-d gridded NDVI product (MOD13A1). Furthermore, there were 1.4 million
NDVI observations from over 3,000 km2 greater than 10 y old and 375,000
observations from 850 km2 greater than 20 y old. This space-for-time sub-
stitution extended the ability of the model to infer recovery trajectories
much longer than the duration of the MODIS data. See SI Materials and
Methods for a more detailed description of data sources and processing.

Model Design. The postfire NDVI trajectory is modeled as a simple parametric
function of the environmental variables mentioned above in a HBmodel. The
first level of the model fits the trajectory of observed NDVI values as a function
defined in Eqs. 1–3. The second level regresses each parameter against the
environmental variables, providing a link between climate and the shape of the
postfire recovery trajectory (Eq. 4). The model was completed by specifying
vague prior distributions on the model hyperparameters (Eqs. 5–9). This ap-
proach accomplishes several tasks in a single coherent framework. For learning
about environmental controls on resilience, the parameters of primary interest
are the regression coefficients between the environment and the three recovery
function parameters. The model provides full posterior distributions for all
model parameters and avoids complications introduced by stringing together
several disparate models in an ad hoc fashion (e.g., one model to describe the
postfire trajectory of NDVI through time and another to relate the trajectories
to environmental variables). This approach ensures that uncertainty inherent in
each level of themodel is propagated through to the posterior distributions (62).

The postfireNDVI trajectory is approximated by anexponential function that
increases to an asymptote similar to the curve described by Dìaz-Delgado and
Pons (63). We extended this function by adding (i) a sinusoidal component to
capture the seasonality, (ii) a term (ϕ) to adjust the curve for month of fire,
and (iii) a term (α) that allows spatial variation in NDVI immediately following
fire (Eq. 3). Let i∈ 1 : I index space (I≈ 16,700), t ∈ 1 : T index time (2000–2010
with 225 16-d intervals),m∈ 1 : 12 indicates themonth of the previous fire, and
p∈ 1 : P index the environmental covariates including an intercept.

NDVIi,t ∼N
�
μi,t ,

1
τ

�
, [1]

μi,t = αi + γi

�
1− e−

agei,t
λi

�
+ , [2]

Ai sin
n
2π × agei,t +

h
ϕ+

π

6

�
mi,t − 1

�io
. [3]

The spatial recovery parameters (α, γ, λ, and A) are assumed to be constant
for each location (i) and do not vary through time (although the model
could be extended to include time-varying parameters). The terms of this
equation can be interpreted as follows: α represents the initial postfire NDVI.
Because various regions have different postfire reflectance (due to soil,
topography, and other factors), this term accounts for this spatial vari-
ability in the observed NDVI immediately postfire. See ref. 64 for discus-
sion on the impact of different soil types across the region on remotely
sensed data. The γ + α term defines the asymptotic upper limit of the curve
and thus represents the potential maximum NDVI of the pixel (given
enough time to recover after fire). The parameter λ is the exponential
term that describes the recovery rate, A describes the amplitude of the
sine wave and reflects the magnitude of the seasonality in that location,
and ϕ adjusts for month-of-fire (m). The month-of-fire must be taken into
account because the fires occurred throughout the year, so age 0 can occur
at any phase of the seasonal cycle. Using m− 1 fixes January at ϕ and allows
the subsequent months to increase by π=6. The term 2π × agei,t sets the
seasonal frequency to be one year. Fig. 1 provides an example fit of this
function to observed data.

The P environmental variables (soil, climate, topography, etc.; Fig. S2) are
used to explain the variation in the spatial recovery parameters γi, λi, and Ai.
These parameters are fit as independent variables in multivariate regressions
with the matrix of environmental variables X, an I × P matrix with βγ, βλ, and
βA as vectors of length P

ξi ∼ lnN
�
Xiβξ,

1
τξ

�
ξ∈ fγ, λ,Ag; i∈1 : I. [4]

The NDVI immediately after fire can vary due to soil reflectance, exposed
bedrock, and other factors that are not easily explained using climate or
topography. Our uncertainty in the value of this parameter was represented
in the model with a relatively vague prior on the α term

μα ∼Nð0.15, 10Þ, [5]

τα ∼Γð0.01, 0.01Þ. [6]

The priors on each of the regression terms (β and τ) were selected to be
sufficiently noninformative to let the data drive the posterior distributions

βξ,p ∼Nð0,10Þ
τξ ∼Γð0.01, 0.01Þ

�
ξ∈ fγ, λ,Ag; p∈ 1 : P, [7]

αi ∼N
�
μα,

1
τα

�
i∈ 1 : I, [8]

ϕ∼Uniformð−π, πÞ. [9]

The parameters can be used to estimate the postfire recovery time (RT) by
calculating the time until the predicted curve approaches γ + α (33). This
process is sensitive to the threshold (especially for larger values of λ which
increase gradually to the asymptote) but serves as a useful relative metric to
compare the recovery trajectories across the region. Here we define RT to be
when the exponential component of the model equals γ −0.005. Therefore,
solving γið1− e−agei,t=λi Þ= γ − 0.005 for age, we have

RTi = λi × logð200× γiÞ. [10]
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SI Materials and Methods
Fire Data.Fire boundaries from protected areas in the region were
compiled by the CapeNature management organization (65). The
boundaries consist of polygons representing the burned areas and
several attributes including date and cause of fire, if known (66).
These locations were typically mapped by direct observation and
have high spatial accuracy within the reserves (67). However,
CapeNature reserves cover only a small fraction of the study area, so
a satellite burned area product was used to identify fires outside
the reserves. The MODIS/Terra+Aqua Burned Area Monthly L3
Global SIN Grid V005 (MCD45A1) product attempts to map the
approximate day of the fire and extent of the burned area with a
spatial resolution of 500 m (68). We recently evaluated this product
for use in this region (67) and found it has relatively high omission
errors (varying from 40.1% to 80.8% over different years), but low
errors of commission (varying from 8.1% to 19.1% over different
years). In this study, only pixels with fire history are used for analysis,
so it is more important to avoid false positives than to identify every
burned area in the region. These validation results indicate that
the MCD45A1 dataset is a useful product despite the high errors
of omission.
The MCD45A1 data were downloaded in GeoTIFF format

from the University of Maryland (e4ftl01.cr.usgs.gov/MOTA/
MCD45A1.051/) and subset to the CFR. Only burned areas
larger than five pixels (≈ 1.25 km2) with a MCD45A1 pixel
quality assurance equal to 1 were retained for the remaining
analysis to minimize the probability of false positives associated
with partially burned pixels or geolocation error. See ref. 69 for a
description of the detection algorithm and quality assurance
methodology. The CapeNature fire data were then rasterized
and combined with the MCD45A1 data from outside the re-
serves to create a single gridded fire data set with 500-m reso-
lution. Any spatial bias in the fire detection rates (e.g., false
negatives) that are associated with particular environmental
characteristics (such as particular soil characteristics) could in-
troduce some bias into the fitted model. By combining two types
of fire data (human and satellite observed), we hope to minimize
any spatial biases in the fire detection probabilities. The following
information was also compiled for each pixel in the combined
dataset: distance to fire edge, area burned (to capture subpixel
burning in the CapeNature data set), fire date, and whether the
pixel had burned more than once during 1990–2010. Pixels that
burned less than 95%, were within 500 m of a fire edge, or were
within 1 km of the coast were removed to reduce the influence of
mapping errors and heterogeneous fire edges. These thresholds
were selected to remove the most error-prone classes of obser-
vations while retaining as many high-quality observations as pos-
sible for model fitting and validation. The burned areas from these
two sources were subset to include only fires that occurred
between 1990 and 2011. This process produced a dataset con-
taining 2,364 unique fires (of which 61% were identified by the
MCD45A1 dataset) containing ≈ 6,200 km2 of burned area.

Satellite Vegetation Index. We used the NDVI to quantify above-
ground plant biomass as it recovers following the fire. Although
similar studies have used othermetrics such as the normalized burn
ratio (NBR) to assess fire severity and short-term (months to years)
recovery (70), vegetation indices such as NDVI are more appro-
priate for long-term estimates of vegetation biomass recovery (71)
and are known to be a useful proxy for biomass in this system (39).
The complete 10-y record (2000–2010) for tiles h19v12 and

h20v12 were downloaded in Hierarchical Data Format (HDF-EOS)

from the USGS (e4ftl01.cr.usgs.gov/MOLT/MOD13A1.005/). The
tiles were then mosaiced, clipped to the CFR (Fig. S1), and
reprojected to the same 500-m grid as the fire data using the
MODIS Reprojection Tool (https://lpdaac.usgs.gov/tools/modis_
reprojection_tool).

Climate and Topographical Data. Long-term (1950–2000) mean
climate data for the region were extracted from the South African
Atlas of Agrohydrology and Climatology (61), including mean mini-
mum July (winter) temperature (tmin07), mean maximum January
(summer) temperature (tmax01), mean annual precipitation (map),
and mean January precipitation (mmp01). We also included
Markham’s precipitation concentration, which ranges from 0%,
indicating equal rainfall throughout the year, to 100%, indicating
all precipitation falls in a single month (pptconc) (72). The cli-
mate data were downscaled from the original 1-min (∼ 1.55 ×
1.85 km) resolution to the 0.5-km resolution of the MODIS data
using a bicubic interpolation.
Soil texture, fertility, and pH were extracted from a spatial

dataset on soils developed to model species distribution in the
region (73). The soil data were derived from a 1:250,000 scale
vector geological map that was reclassified into edaphic fertility,
texture, and pH. This classified map was then rasterized to 500-m
resolution, keeping the proportion of each cell within various
high/low fertility/texture/pH classes. The rasterized data used
here indicate the percentage of high vs. low fertility/texture/pH
soil in the pixel. The majority of soils across the region are derived
from the quartzitic sandstones of the Table Mountain Group and
are sandy, acidic, and infertile (74). However, there are some
locations (see % high soil fertility panel in Fig. S2) with soils
derived from shales of the Bokkeveld Group that have relatively
fertile soils (74). For example, cells with a value of one for fer-
tility contain only high-fertility soil derived from shales, whereas
cells with a value of zero may contain only soils derived from
nutrient-poor quartzitic bedrock. Interestingly, there is some
evidence that several soil nutrients (Ca, K, P, Fe, and Zn) are
transported into the region as dust blown from the more arid
interior of South Africa during significant wind events (75).
Topographical data including elevation and slope were esti-

mated using the 30-m digital elevation model (DEM) from the
ASTER project (asterweb.jpl.nasa.gov/gdem.asp). The DEM was
also used to estimate daily potential solar radiation (in the ab-
sence of clouds) by summing the incoming direct and diffuse
radiation at 15-min intervals, taking into account the solar ele-
vation and azimuth and the slope, aspect, and surrounding to-
pography using the GRASS GIS r.sun program (76). These daily
values were then averaged over a year to get the mean annual
potential solar radiation for each pixel (rad_ave). The index
sinðslopeÞ× sinðaspectÞ was used to quantify east-westness and
accounts for the decreased significance of aspect as slope goes to
zero. This index (eastwest) varies from −1 to 1 (tending toward
0 in flat areas) and is a convenient way to account for varying
slopes when including aspect in regression models (77). The index
sinðslopeÞ× cosðaspectÞ is a useful metric of north-southness but
is highly correlated with the average potential solar radiation and
is not included in this analysis.
The environmental data were selected to avoid strongly cor-

related variables (no two variables had correlations greater than
0.7 as suggested in ref. 78).

Climate Projections. A suite of 11 CMIP5 general circulation
models (GCMs) for two future scenarios (RCP4.5 and RCP8.5)
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were downscaled to monthly time series at station locations across
the CFR for the CORDEX project (79) and accessed through the
Climate Information Portal at the University of Cape Town (cip.
csag.uct.ac.za/webclient2/app/). These data were aggregated across
months/years into climatological means for three time periods
(1960–2000, 2046–2065, and 2081–2100). The anomalies (future–
current) for both future periods values were then interpolated
using ordinary kriging from the point locations to the full mod-
eling grid (Fig. S4). These interpolated anomolies were then
added to the original high resolution data (see above), and the
biomass recovery model was used to predict ecosystem recovery
parameters under the projected climate for each model-scenerio-
time triple.

Model Fitting and Computational Notes. The data were prepared
using a collection of custom R code that download the data,
conduct the spatial processing using GRASS (76) and R (80),
collate the various data sources, prepare the final data structures
for the model, run the model on a computer cluster, and sum-
marize and plot the output. The model itself was specified in the
BUGS language and fit using JAGS software (81). Four parallel
chains of themodel were run in adaptive mode for 1,000 iterations
to optimize sampling, followed by another 5,000 iterations to allow
convergence. Following convergence, 10,000 posterior samples were
drawn, and every 10th sample was retained to reduce autocorre-
lation. Convergence was assessed using the BGR diagnostic (82)
and visual inspection of the chains. Credible intervals were con-
structed using the highest posterior density (HPD) approach (83).
All variables were significant predictors of at least one of the three
recovery parameters (A, γ, λ).
To assess whether including the climate variables in the model

improves the complexity-penalized model fit, the model was run
with and without the climate variables. These two models were
compared using the (DIC) (40). Model evaluation was accom-
plished with cross-validation. A random subset of 75% of the
pixels was selected and used for model fitting (Fig. S1). The
posterior distributions of all model parameters and environ-
mental covariates were used to predict NDVI in the remaining
25% of the pixels for each time step. The predictive performance
of the model was assessed using the coefficient of determination
(R2) between the predicted and observed data in the validation
pixels. The model chains were run in parallel on a cluster of
Xeon E5530 2.4GHz CPUs and required ≈ 5 d to complete the
model fitting.
The lower predictive performance in the first 2 y following fire

(Fig. S3) is probably due to variability in substrate (i.e., soil and
geology, shadowing, estimated by α) or errors in the exact fire

date as recorded in the field reports. Wildfires in fynbos often
burn for several days but are assigned a single date (the date of
detection) in the database. The decreased performance in older
areas is probably due to differences in species composition and
vegetation structure across the region. For example, stands of
Protea nitida can accumulate over 20 kg/m2 of biomass, whereas
areas dominated by cape reeds (Restionaceae) will rarely accu-
mulate more than 1 kg/m2 (39). These differences will become
increasingly apparent as the stand ages and thus the model does
a poorer job of predicting NDVI in older sites. However, given
that mean fire return times across the region are 10–20 y and the
incidence of short interval (< 6 y) fires are increasing (66), the
model performs best when it matters most: the critical 5- to 15-y
period after fire.

Corroboration with Observed Fire Data. In addition to validating the
observed NDVI trajectories, we also compared the recovery times
to the observed fire intervals across the region. To make the
comparison, we gridded the fire data polygons to the MODIS 500-
m grid and extracted all observed fire return intervals for each pixel
in the model. These observed intervals were then regressed in a
survival model framework with themodeled fire recovery time. Any
pixel with at least one observed fire will have two censored ob-
servations (from before beginning of record to the first fire, and
then from the last fire to the end of the record) in addition to any
complete intervals between two observed fires. Therefore, in this
dataset, the number of censored observations greatly overwhelms
the observed intervals. The censored observations were dealt with
in two ways: (i) The date of initial monitoring of fires in each
reserve was not recorded, so it is unknown when to begin counting
the censored intervals before the first observed fire. However,
after a fire is recorded for a location, it is less likely that future
fires will be missed (due to staggered inclusion of reserves into the
fire monitoring program since the 1950s). Because the probability
of missing fires is much higher in the early part of the record, only
the censored observations from the last fire to the end of the
record were included. It is possible to model the timing of the
prior fire (10), but this was beyond the scope of this analysis. (ii)
After discarding the intervals at the beginning of the record, there
were still nearly four times as many censored observations as
complete observations. To reduce the influence of the censored
observations, they were given a weight of 0.25, whereas the com-
plete observations were weighted at 0.75 (leading to approximately
equal influence of observed and censored intervals in the model
fitting). Two models, one with a constant hazard function and one
with recovery time as a covariate, were fit using the survreg func-
tion from the Survival package in R and compared using the AIC.
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Fig. S1. Illustration of the pixels included in this analysis. The red and blue pixels have associated fire data and were used in fitting and validation, re-
spectively. The model was used to predict the recovery parameters and postfire NDVI trajectory in the light gray region, which includes the full fynbos biome in
the CFR. Predictions are shown for areas that have been transformed (e.g., for agriculture), but these areas were not used in model fitting. The fitted recovery
curves for the four labeled locations are shown in Fig. 1.

Fig. S2. Maps of the environmental variables for the region included in this analysis. The histogram inset in each panel shows the distribution of each variable
across the region. East-westness is an index quantifying east and west aspect, normalized by slope. Precip concentration is a metric of the seasonality of rainfall
and ranges from 0 (equal rainfall in all months) to 100 (all rainfall in a single month). East-westness is a unitless index that ranges from −1 to 1 and accounts for
the effects of slope. See SI Materials and Methods for data sources and complete descriptions of each variable.
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Predictive performance across ages
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Fig. S3. The coefficient of determination (R2) between the median annual predicted and observed values in the validation data set for various age windows.
The x axis represents the start of the age window and the y axis the end. For example, the lower left corner f0,2g indicates that the model predictions had an R2

of 0.36 in pixels between 0 and 2 y of age.

Mean Change across variables (future−current)

Stippling indicates at least 8 out of 11 models agree on the sign of the change
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Fig. S4. Multimodel mean projected change in annual precipitation, January precipitation, precipitation concentration, January maximum temperature, and
July minimum temperature from 11 downscaled CMIP5 GCMs for the period 2081–2100 and scenario RCP8.5. Stippling indicates at least 8 of 11 models agree
on the sign of the change.
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Fig. S5. Median posterior value of predicted change in recovery time with future climate change (RCP8.5, 2080–2100) for 11 downscaled CMIP5 GCMs.

Table S1. Posterior medians and 95% CIs of regression coefficients from the full model

Covariate A γ λ

Intercept −3.9 (−3.98, −3.82)* −1.46 (−1.52, −1.4)* 0.99 (0.74, 1.22)*
Elevation (m) −0.09 (−0.11, −0.07)* −0.11 (−0.12, −0.09)* 0.12 (0.07, 0.17)*
East-westness −0.03 (−0.04, -0.02)* 0.03 (0.02, 0.04)* 0.05 (0.02, 0.08)*
Slope (°) −0.42 (−0.43, -0.4)* 0.02 (0.01, 0.03)* −0.05 (−0.09, −0.01)*
Solar rad (W=m2 ·d) −0.01 (−0.02, 0) −0.02 (−0.03, −0.01)* 0.12 (0.08, 0.16)*
Mean annual precipitation (mm) 0.16 (0.14, 0.18)* 0.01 (0, 0.03) 0.08 (−0.01, 0.15)
Mean January precipitation (mm) −0.31 (−0.33, −0.29)* 0.06 (0.05, 0.08)* −0.38 (−0.53, −0.29)*
Maximum January temperature (°C) 0.14 (0.12, 0.15)* −0.02 (−0.03, −0.01)* 0.12 (0.06, 0.16)*
Minimum July temperature (°C) 0.01 (−0.01, 0.03) 0.07 (0.05, 0.08)* −0.22 (−0.27, −0.17)*
Precipitation concentration −0.41 (−0.43, −0.39)* 0.03 (0.02, 0.05)* 0.14 (0.08, 0.2)*
% high soil fertility 0.03 (−0.06, 0.11) −0.09 (−0.15, −0.02)* −0.6 (−0.87, −0.31)*
% fine soil texture 0.07 (0.04, 0.09)* 0.08 (0.06, 0.1)* 0.2 (0.11, 0.28)*
% high soil acidity 0.2 (0.12, 0.28)* −0.05 (−0.11, 0.01) −0.16 (−0.4, 0.08)

A, amplitude of the sine wave reflecting the magnitude of the seasonality; γ, potential maximum increase in the NDVI (given
enough time to recover after fire); λ, recovery rate (larger values indicating slower recovery).*95% HPD intervals do not overlap 0.

Other Supporting Information Files

Dataset S1 (TXT)
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