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M. W. Guidry, Ft. Massmann, t R. Donangelo, and J. 0. Rasmussen 

; ' : * Lawrence Berkeley Laboratory 
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Berkeley, California 94720 

ABSTRACT 

The U~iform Semiclassical Approximation {USCA) with complex trajec

tories is applied to the problem.of Coulomb-nuclear interference for rota

tional states excited in heavy-ioh reactions. The system 
40

Ar + 238u is 

studied as a function bombarding energy. The calculations show consider-

able sensitivity of the excitation probabilities to both the real and 

,imaginary parts of the complex nuclear potential in the vicinity of the 

Coulomb barrier, suggesting that heavy-ion rotational excitation could 

be a sensitive probe of the nuclear potential near the barrier in deformed 

nuclei. 

..... ·. 
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I. INTRODUCTION 

The phenomenon of Coulomb-nuclear interference has been extensively 

studied for rotational excitation with light ions, l-8) and vibrational 

. t. . h h . . il 9- 13) exc1ta 1on w1t eav1er proJect es. The nature of this effect for 

heavy-ion rotational excitation has received little attention (see, 

however, refs. 14-16). 

The shortness of the deBroglie wavelength associated with heavy-ion 

projectiles implies that classical or semiclassical methods may be feasi-

ble for the investigation of heavy-ion Coulomb-nuclear interference. The 

recent assimilation into nuclear physics of uniform semiclassical 

17~24) . . 
methods or1g1nally developed in the theory of molecular scatter-

. 25-36) .' d 1ng prov1des a promising vehicle for such calculations. The un er-

lying idea of these methods is that one uses analytical continuation of 

the classical equations of motion for the description of the dynamics of 

the system, together with quantized boundary conditions.and the quantum-

mechanical superposition principle in adding amplitudes for different 

trajectories leading to the same final state. 

These new techniques have several advantages relative to the 
' 

1 . . 1 ' . 1 h d 3 7 , 38) 1) b ' . . ear 1er sem1c ass1ca met o s: .· ecause one l.lltegr:ates exact 

classical equations of motion, the nucleus-projectile interaction is 

easily modified to include higher multipoles, different imclear form 

factors, etc., the resulting formalism being dynamically exact in the 
'" ~ 

classical limit; 2) the effect of the imaginary nuclear potential on the 

traJectory is included exactly rather than as a first-order mean free 

path absorption; 3) the results may be interpreted in terms of classical 

concepts, albeit with complex trajectories. 
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A disadvanta~~ is that the method is obviously restricted to cases 

in which a classical 'model can be formulated to describe the system. 

In Part II a brief description of the theory is given and in Part III 

we discuss the general effect of the complex potential on the rotational 

excitation probabilities. .Part IV. deals with a realistic example, 

40 238 
Ar + U, for bombarding energies in the range Elab = 150 - 220 MeV. 

Conclusions are presented in Part V. 

II. BASIC THEORY 

We are concerned here with generalizing the USCA theory of Coulomb 

excitation presented in ref. 23 to include a·deformed complex·optical 

potential. The fundamental quantities.to be determined'will ·be the pro-

bability amplitudes and phases for ,excitation in the channels of interest. 

These represent components of the quantum-mechanical S-matrix evaluated 

by saddle-point (stationary phase) integration m~thods. 18 ,l9) 

We will restrict ourselves to the case of a head-on collision, since 

then the motion is confined'to a plane, which simplifies the numerical 

calculation. The generalization to a three-dimensional rotor will ~e 

made subsequently by arguments similar. to, those used prev~ously for. pure 

Coulomb excitation. 23 ' 24 ) The coordinate system and relevant parameters 

are illustrated in Fig. 1. In the present paper we confine ourselves to 

interactions at or below the Coulomb barrier. Then the Hamiltonian des-

cribing the 'system is parameterized by the form 
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p2 
r 2(1 1) JC = -+P --+-- + 

2m X mr2 2; 

Z Z e 2 Z e 2 

p t + _p_. Q~2 ) P 2 (cosX) 
r ·zr3 

Z e 2 

. + ___£__ Q( 4
) P ( X) Vf - iWf 2rs o 4 cos - r I (1) 

with 

exp c:R~)r 
I 

[r fR = + 

(2) 

fl = [I + exp c:IRI)r 
where m is the reduced mass of the system, r is the radial coordinate, 

x = ( 8- e) is the angle between the symmetry axis of the rotor and the line 

joining the centers of the target and projectile, P>.. ·(':osx) is a Legendre 

polynomial, Zp and Zt a~e the charges of the projectil~ and target respect

ively, and Pr and PX are the classical radial and angular momenta conjugate 

to r and 8. The multipole moments Q(>..) are defined by 
0 . 

(3} 

where A. is the multipole order, p(r) is the target nucleus charge--density 

function, and YA 0(::_) is a spherical harmonic. The moment of inertia :f is 

taken for the present calculation from the experimental exci tati<m energy 

of the first 2+ state of the rotor. The nuclear interaction is 

parameterized in terms of a complex optical potential with different 

Woods-Saxon form factors for the real potential V and the imaginary 

·potential w. The diffuseness parameters for the real and imaginary 

potentials are denoted by aR and a1 respectively, and the real radius is 
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R [· 1 I s , 1 I s ~ R A + A · 1 +: 8 Y (X) 
0 p . t 2 20 

9 

+ f3 .· '+ )] (4) 

where R~ is the real optical radius, Ap and At are the projectile and target 

masses respectively, and the SA. are the nuclear deformation parameters. The 

last term conserves volume to this· order in the deformation parameters. For 

the present work the real and the imaginary potentials are assumed to have 

different radial geometry but the same angular dependence, and the imaginary 

radius R1 is defined by replacing R~ with its' counterpart R~ 'in Eq; (4). 

For a purely reai nuciear potential and fo~ Q ~ '+} = 0, the model for 

Coulomb-nuclear inte~ference ·is thus co~cei ved as a comp·eti tion between the 

repulsive electric quadrupole force and the attractive real nuclear force 

in imparting net torque to the deformed rotor, as Fig. 2 illustrates. The . 

inclusion of the hexadecapole. potential and.the imaginary nuclear potential 

complicates this simple picture, but the classical 'model remains one of a. 

competition between the contributions of attractive and repulsive parts 

of the total potential to the net torque of the system·. 

From the Hamiltonian (1) the classical equations of motion are 

r 

X 

. 
p 
r 

Pr 
= m 

( i 
= mr2 

= 

+ 

p2 
_x_ 

. . 3 mr 

5 
~· 

+ 

+ 

1) 1 I>x 

Z Zte2 
3 

Z e2Q{2) 
p p 0 P (cosX) + '.·y:2. 2 r'+ 2 . 

afR af1 
P (cosX) - V -· - iW -. '+ ·.· . ar .. ar 

(Sa) 

(Sb) 

(Sc) 
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a - [P .. (cosX)] 
ax 

In addition, the classical action 4> in units of h iS determined from 

(Sd) 

. 1 . . 
4> = - h (rPr + XPX) (Se) 

We will confine ourselves to the incoming 9.. = 0 partial wave. Theil classically 

the projectile is incident on the target with.zero impact parameter and the 

initial conditions for the integration of the classical equations of motion 

are 

r. = large and real 
1 

~zm(E~ Z Zte
2

) 
p = - E r. r. 1 1. 

x. = Bo (arbitrary and complex) 
1 

Px. = 0 
1 

4>. = 0 
1 

(6a) 

(6b) 

(6c) 

(6d) 

.C6e) 

The trajectories during the integration are complex due to the complex 

nuclear potential and due to the fact that s·. niay in general be complex. 
0 . 

Following the integration, observable quantities nrust be real. This may 

be specified for PX by appropriate choice of the imaginary part of the 

initial orientation B , and is then assured for P by virtue of the time-o r 
independent Hamiltonian. Finally r may be made real by selection of an 

appropriate complex time path in the asymptotic region of the integration 
--:. 

as in ref. 31. 
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Integration of the complex equationS of motion leads to the exten

sion into the complex plane of the.classical rotational angular momentum 

quantum-number ftmctiori. discussed in ref. 23.: 

= (7) 

The final spin If(B
0

) has a reai and imaginary part, each of which is a 

function of a complex variable 8
0

• The roots analogous to those specified 

iri ref. 23 must satisfy the criteria 

= even integer + ~ (Sa) 

(Sb) 

This is accomplished by ~ppropriate choice of the complex initial orienta-. 

tion B; (see Fig. 5 for an approximate graphical solution to Eq. Sa). 
0 

For the cases studied here·one or two complex trajectories make the 

dominant contribution to the two-dimensional S-matrix. For two contributing 

trajectories the uniform semiclassical S-matrix describing the rotational· 

excitation of the target to a final angular momen.tum I is given by: 
34

) 

= 

+ c-i) cJP;- J:P:) -:k- Ai' c-o} 
1; . 

(9) 

where the subscripts 1 and 2 refer to the cla.ssical trajectories which 

satisfy the boundary conditions of Eq. (S). The amplitudes p. are defined by
23

) 
·. J 

-P· J 
= 

2sinB .. 
J j = 1,2) ' (10) 
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; 

The sinS. factor is the analogue of the weighting factor used in ref. 23 to 
J 

make the transition from a two-dimensional to a three-dimensional rotor. 

In general, sinS. and the derivative in Eq. (10) are complex. The function ' 
J 

t; is defined by 

t; = [3/4(4> - 4> )]2/3 
. 2 1 = (11) 

and Ai and Ai' are respectively the complex regular Airy function and its 

derivative. The traje'ctory subindex j = 2 is the one for which Re(ai(B)/aS) < 0. 

The excitation probability PI+O is given by 

= lsr+o(E)I 
2 

(12) 

For the case that lt:.4>1 >> l one can use the asymptotic expressions for the 

Airy functions to obtain the "primitive" excitation probability, which is 

useful because of its conceptual simplicity: 

pPrim 
·r+O 

pPrim 
I+O 

= 

= 

v' I:P P I sin(Re(l:.4>) +a) 
1 2 

-2Im4> 
e li>l 

!zim(<l\ + 4> 
2

) 

+ 2e 

"allowed transitions" 

(13-a) 

(13-b) 

"forbidden transitions" 

For pure Coulomb exdtation. a= 0. 23) As long 

as the nuclear force does not dominate (which is generally true in the present 

case for bombarding energies below the Coulomb barrier) a will be small and 
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. . . . ' . 

can be neglected when Eq. (13) is used for qualitative considerations. 

Equation (13) is of use in illustrating two important concepts: 1) the 

interference between the amplitudes arising from the different terms in 

the S-matrix, and 2) the exponential damping of the probability amplitudes 

by the imaginary part of the class.ical action ~. For the numerical calcu-

lation, however, the uniform expression (9) was used. 

Finally, we note that the imaginary potential erases the strict 

distinction fo\Dld in Cqulomb excitation23l between the allowed states (those 

states reached by purely real trajectories) and forbidden states (those 

states reached only by complex trajectories). With an imaginary potential 

all trajectories will generally be complex. However, for imaginary potentl.als 

which are not too large it is permissible to speak of 1 allowed 1 states 

(ImB
0 

::::: 0) and 1 forbidden' states· ( 1Imf3
0 
I >> 0). The former will be largely 

characterized by interference betwe.en two contributing trajectories, while 

the dominant feature of the latter will be an exponential damping of the 

probability for a single contributing trajectory, as a consequence of the 

penetrationof the projectile into classically inaccessible regions. 
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II I. THE GENERAL EFFECT OF THE NUCLEAR FORCE ON 

THE ROTATIONAL EXCITATION PROBABILITIES 

The four potential parameter sets for the nuclear Hamiltonian (1) 

that have been studied are displayed in Table 1. The Coulomb and deformation 

parameters are from refs. 40 and 41. The nuclear parameters are taken from 

. 84 208 . 42) 
quasi-elastic scatter1ng of Kr + Pb at Elab = 450 MeV (set II) and 

40 238 43) 
Ar + U at Elab = 286 MeV (sets III and IV) . · We emphasize that 

there are reservations about the propriety of these potentials for the 

application discussed here since our calculations are for lower energies 

than where they were determined, and for the other reasons mentioned below. 

Nevertheless, these potentials still serve as useful starting points for 

the investigation of rotational scattering in the barrier region. 

In Fig. 3 the real and imaginary parts of the Coulomb and nuclear 

potentials along the symmetry axis of the target are plotted as a function 

of the real part of the radial coordinate r. Caution should be exercised 

in referring to Fig. 3. Since the trajectory is in general complex, one 

must consider not just the potential on the real r axis, but the potential 

along the entire trajectory in the complex r-plane. 39 ) Nevertheless, for 

energies where Wf1 in Eq. (1) is not too large, and when Im(S
0

) ~ 0, the r 

trajectory is nearly real and Fig. 3 is a useful approximation to the 

potentials encountered on the complex classical trajectories. 

The model of competition among the repulsive and attractive, forces 

in the nuclear Hamiltonian is clearly illustrated in Fig. 4 where we have 

plotted the classical angular momentum I = PX/h as a function of time 

during the interaction for a given initial orientation and several different 

projectile energies. With increasing energy there is a 

cancellation of the angular momentum imparted by the non-central repulsive 
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potential until finally the attractive nuclear potential dominates and 

the direction of the rotation is completely reversed from that of pure 

Coulomb excitation.· This is further illustrated in Fig. 5 where the real 

part of the quantum number function (final spin vs. initial orientation) 

is plotted with and without the nuclear potential (set II). The final 

spin is lowered by the action of the nuclear force. Graphical solutions 

of (8-a) for the limit S real are indicated for the Coulomb excitation 
0 

case and for the Coulomb-nuclear case. 

The phase difference l:ifJ is much more sensitive to the details of the 

interaction on a particular trajectory than the classical angular momentum. 

Therefore the interference term of Eq. (14), which is proportional to 

sin [ Re(6~)] , will be a more delicate probe of the competition between 

nuclear and Coulomb forces in the interaction region. This is illustrated 

in Fig. 6 where excitation probabilities for 180-MeV 40Ar on 
238u are 

plotted with and without the complex nuclear potential (set II). This energy 

is some 40 MeV below the classical barrier for spherical nuclei, but the 

effect of the nuclear potential on the excitation probabilities is as large 

as 50-100% (note the logarithmic Scale). These results can be largely under-

stood in terms of the effect of the nuclear interaction on the real part of 

the phase difference t.<P in Eq. (13). In Fig. 7 the value of Re(t.~) as a 

function of final spin is plotted, with the constructive and destructive 

regions for the interference term of Eq. (13) indicated. + Taking the 4 state 

as an example, we note that relative to the case of pure Coulomb excitation, 

the nuclear potential shifts the interference term of Eq. (13) further into 

a region of destructive interference, thus decreasing the excitation pro-
+ . . . . 

bability of the 4 state relative to that of pure Coulomb excitation. Also 

plotted are the excitation amplitudes, but at this energy the significant 
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change in the excitation probability is due to the change in the phase. 

Similarly, the phase difference for the 6+ state is shifted from a region 

of destructive interference to one where the interference term is essentially 

zero. Therefore the excitation probability is increased for the 6+ state 

relative to the case of pure Coulomb excitation. The behavior of the 

other probabilities for ITI < 8+ is understood in a like manner. As discussed 

further below, and as Fig. 7 indicates, the nuclear force also lowers the 

probability amplitudes significantly for the higher-spin states (ITI;;;;. 8+), 

in addition to affecting the phase. 

The effect of the nuclear potential is further illustrated in Fig. 8, 

where the real part of the phase difference is plotted as a function of 

energy for several states with and without the nuclear potential. For a 

given state, the passage of IJ.ip through regions of constructive and destructive 

interference is primarily responsible for the well-known oscillations in 

Coulomb excitation probabilities as a function of energy. 23) The effect of 

the real nuclear potential is to shift the phase difference further below 

its value for pure Coulomb excitation with increasing energy. In extreme 

cases the interference term may be shifted from a constructive maximum to 

a destructive minimum at a given energy, or vice-versa. With increasing 

energy (or for high-spin states) the effect of the nuclear force on the 

probability amplitudes .JPj also becomes significant. This is a consequence 

of the effect of the lowered quantum-number function (cf. Fig. 5) on the 

derivatives in Eq. (10). Until the region where the nuclear force 

dominates, the general effect of increasing energy is to increase the 

propability amplitudes of the lower-spin states relative to that of the 

very high-spin states. This is a direct reflection of the competition 
I 

between repulsive and attractive forces in producing torque, and has been 

observed~ previously. 16) Note, however, that this concentration of probability 

amplitudes in lower spins does not necessarily manifest itself in a 

concentration of probability in a particular lower-spin state as it would 
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in a.- purely classical model. The contribution from the· interference term 

of Eq. (13) must also be considered as a function of energy. 

The sensitivity to the potential parameters is further illus-

trated in Fig. 9 .where we have plotted for·a purely real po~ential the 

variation of some rotational state excitation probabilities as a function 

of the real·radius parameter RR. Note that even a small change in RR 0 . . . 0 

produces large changes in the probabilities, and that the behavior of 

the probabilities as a function of R~ is very different for each state. 

For example; if R0 = 1.21 fm, a 0.5% decrease in R
0

. results in changes 

of -10%, +10%, -10%, -7%, +2%·, -6%, and +12% for the 0+-12+ state 

probabilities respectively. These changes can be explained, as have 

the previous examples, in terms of the nuclear-force influence on the 

phase differences ~~·and the amplitudes~. 
J 

The probabilities should also be sensitive to the imaginary potent~al 

for two reasons: 1) absorption due to the imaginary potential may destroy 

For a small value of Wf
1

, the primary effect of the imaginary potential 

on the probability amplitudes is to contribute a damping factor e-lm~ which 

. .. . . 1 b 38) 1s g1ven approx1mate y y . 

- Im~ -wJ f 1 (t}dt 
e ~ e .. (14) 

where f
1 

(t) is the form factor of the imaginary potential. In Fig. 10 

the value of Wf
1 

(t) as a function of t is plott~d for several different 

initial orientations. From (14) the damping of the probability amplitudes 
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,. 
varies exponentially with the area under the curves. Obviously those 

initial orientations near 0° will be subject to stronger damping than 

those near 90°, and in the general case one of the probability amplitudes 

of Eq. (13) will be damped out before the other, destroying the oscillatory 

interference term. 

In addition to absorption effects, the imaginary potential also 

affects the classical trajectory. This can give rise to reflection and 

diffraction phenomena not adequately treated in older semiclassical methods 

which only include the effect of the real potential on the projectile trajectory. 

Within the classical-limit framework described here, these effects are treated 

exactly, and the excitation probabilities should be sensitive to 

the imaginary as well as the real part of the complex nuclear potential 

in the sub-barrier region. In the next section we will further illustrate 

this sensitivity with some realistic calculations. for a representative 

heavy-ion system. 

IV. EXAMPLES AND DISCUSSION 

We have applied the techniques described in the previous sections to 

40 238 
the rotational excitation probabilities for the system Ar + U. As 

before, the calculations were restricted to zero impact parameter. 

1T excitation probabilities for the ground band were calculated for I 

The 

with the four potential parameter sets of Table 1 in the energy range 

Elab = 150-220.MeV. The results are plotted in Figs. 11 and 12. 

Consider first the states for which ITI ~ 8+. In contrast to the 

light-ion case where mostly destructive Coulomb-nuclear interference is 

observed for low spins,1- 8) these states exhibit a large variety of both 

constructive and destructive interferences. The exact structure of the 

. -
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interference depertds on the nuclear potential as Figs. 11 and 12 indicate. 

This behavior is easily tmderstood in qualitative terms, as discuss~d 

in Section III. Consider, for example, the 0+ prob~bility calculated. 

with and without the nuclear force of parameter set II (Fig. 11). In 

the range 150-180 MeV the nuclear force has only a slight effect. Both 

the probability calculated with and that calculated without the nuclear 

force decreases. The reason is apparent in Fig. 8. For both cases the 

phase difference Re(M>) moves from a region of constructive interference 
·' 

into a region of destructive interference; the third term of Eq. (13) 
-

becomes algebraically smaller, and 'the excitation propability is decreased. 
. . 

In the region 170-180 MeV the effect of the nuclear force (primarily the . . 
real part in this case) begins to decrease the phase ·difference between 

the contributing. trajectories relative t'o the case of Coulomb excitation. 
·. .. . 

Thus, at Elab ~ 185, Fig. 8 indicates that the interference term of ·Eq. (13) 

is essentially zero for the Coulomb excitation case while it is destructive 

for the case with the nuclear force included. The nuclear-force case thus 

exhibits a dip below that for Coulomb excitation in this region. Similarly, 

near E 1~b = 200-205 MeV, both phase differences· move into· constructive 

interference regions an,d both the Coulomb and Coulomb-nuclear probabilities 
' . 

exhibit maxima. The Coulomb-nuclear peak is sharper because the phase 
\• . 

difference is changing much more rapidly for it with energy (cf. Fig. 8). 

It is higher because at ~his energy the real nuclea! force.begins to 

affect appreciably the probability amplitudes. Finally for Elab > 205 MeV, 

the real nuclear force shifts the phase dl.fference to.ward a destructive 
. . . 

region and, most importantly, the imaginary potential begins to damp the 
. .. . ,. ' 

probability amplitudes by contributions to the imaginary_phase. The 

result is a precipitous decrease in the excitation probability at 



-16-

Elab ·::::::: 210 MeV. The other curves in Figs. 11 and 12 for I 1T ~ 8+. 

can be understood in a similar manner, though the situation 

for parameter sets Ill· and IV is .more complicated because the 

deeper imaginary potential at higher energies deflects the projectile from 

the real r axis, giving rise to reflective, diffractive, and absorptive 

effects not present for real r. 39) 

The general behavior of the probabilities for sets III and IV.in Figs. 

11 and. 12 is 'a rather structureless fall-off for Elab ;::: 190 MeV .. This is a 

consequence of the damping effect of the imaginary potential which comes strongly 
' . 

into play for. the parameter sets III and IV before it does for set II. Thus 

for all three nuclear potentials the shift of the real part of the phase 

difference is the major effect for Elab ~ 190 MeV, but in the r~gion · 

190-210 MeV set II is dominated by the real part of tne potential, while 

sets III and IV exhibi~ a strong influence of the imaginary potential. . Finally, 

for all potentials exponential damping is the generally dominant feature for · 

Elab > 210 MeV. 

For I.$ 8 a significant amount of oscillatory character is present, 

while for I~ 8 the general behavior is a monotonic decrease of the Coulomb-· 

nuclear case below that of Coulomb excitation .. This is explicable in terms 

of the approximate distinction between "classically allowed" and "classically 

forbidden" processes, as discussed in Section II and· ref. 23. For Wfi"" 0 these 

.correspond respectively'to states below and .above the maximum of the real quantum 

number function in Fig .. S. ·The .forbidden states are reached by analytical 

continuation of the quantum number function into the complex eo-plane. 

As a consequence of the complex initial orientation angle in those cases, 

one finds that only. one of the P. in Eq. (13) contributes significantly, 
. J . 
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and it is exponentially damped by the acquisition of imaginaAy phase on the 

complex trajectory } 3) Therefore there is no interference term for the 

forbidden states and their excitation functions are monotonic rather than 

oscillatory. 

For the forbidden states the deviation of the Coulomb-nuclear proba

bilities from pure Coulomb excitation is a consequence of the, nucLear force's 

effect on the contributing probability amplitude (see Fig. 7). These' 

amplitudes for t~e forbidden states are·extremely sensitive' to the maximum 

of the quantum number function on the real 8 axis (Fig. 5), since the 
0 

lowering of this function increases exponentially the damping of the 

contributing ·am{)litude for a forbidden state. This damping is a consequence, 

not of the im"aginary potential, but of the projectile penetration into 

regions inaccessible ·to classical dynamics with purely 'real traj.e·ctories. 

If an imaginary'potential is also present it contributes an·additional 

component to the damping as discussed in the.classically allowed 

cases: 

From Figs.ll and 12 it is obvious that potential II differs greatly from 

III and IV in its influence on the rotational ~xcitation probabilities. This 

may not be of physical significance, since they were determined with different 

projectiles, at different energies relative .to the barrier, a~d on sphe.rical 

and deformed nuclei, respectively. We may even question whet,her :;my of the 

potentials discussed here ·are realistic iri the sub-.barrier region for a 

deformed nucleus since 1) they were determined frol\1 fits Ul'lil}g spherical 

optical codes on data in which t.rue elastic and many quasi-elastic processes 

are indistinguishable-!, 2) ther~ are theoretical reasons t-o ·believe the shape 

of the imaginary potential may diffe·r from that of the real potential for ·a 

d,eformed nucleus, and 3) the Woods~Saxon optical poJ:en,tial may pot. be the best 

parameterization of the sub-barrier'nuclear interaction. These reservations 

are not of major significance -for the purpose of this paper however. We 
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have merely used these representative potentials to demonstrate that 

rotational excitation is sensitive to the complex nuclear potential, 

and that experimental determination of rotational excitation probabili

ties with heavy ions could be used to explore quantitatively the inter

action in the Coulomb-nuclear interference region~ · 

The probabilities calculated using parameter sets III and IV do not 

differ by more than 10-20~ from each other in the energy range considered 

here. This is not surprising, since they were derived from fits to the 

same data, and Fig. 3 indicates that they are very similar in the critical 

region Re(r) > 13.5 fm where most rotational excitation takes place at 

these projectile energies. Even in this case, however, the 10-20% differ

ences for the large number of different states that are excited might allow 

some distinction between III and IV in a careful experiment, 

V. CONCLUSIONS 

We have demonstrated that rotational excitation probabilities in 

the Coulomb-nuclear interference region should be extremely sensitive to 

the details of the complex nuclear potential near the barrier. Both 

constructive and destructive Coulomb-nuclear interference is predicted 

if the imaginary potential is not.too strong in the surface region. 

These effects are easily understood in terms·of a simple classical model 

which 'describes competition between the electromagnetic and nuclear forces 

in producing rotational torque~ and most_importantly~ the effect of the 

interaction on a sensitive phase difference between trajectories contri~ 

buting to a particular ~tat~. 
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Because the excitation probabilities are sensitive to Coulomb-nuclear 

interference effects, we believe that heavy-ion rotational _excitation 

patterns near Coulomb-ba;-rier energies could provide_a detailed probe of 

the potential in the nuclear surface region. (The potential in the nuclear 

interior is probably inaccessible because ,of tlte s,trong, absorption.) One 

may speculate that the potential for a deformed. nucleus may exhi,hit irregu

lar variations with polar angle B. For example, the imaginary potential 

may be large~y due at barrier ~nergies to loss of flux ~nto neutron transfer 

channels, and hence be_ strongest in the zco,nes of the lightly-;bound Nilsson 

neutron orbitals. If the. concept ofa class~cal traje~_tory has any physical 

signifi,cance in these heavy-ion systems. excitation of different states 
' :· ,. . 

should probe different angula:r z:egions of. t):le nuclear. surface. Referring 

to fig .. S, we_would infer that the excitatiqn probaJ:>tlity fqr spin 8 in 

the case displayed there l!lairtly probes the nuclear potential .near B = 20° , 
.. I 

since the _large-a.ngle .. root B '·· feels less .influenc_e from the nuclear po ten·-2 . . 

.tial. Excitation of lower spins should be sensitive to regions closer to 

the· nuclear ,.tips. At sufficiently higher energies the low-angle roots 

should be damped [Cf. fig. lOl and th~ larger~angle orientations, which 

. now feel the nuclear force, should make the dominant contribution~,. There-

fore., ~>ne wou~d expect the prob.abilittes in this case to be sensitive to 

the nuclear potential nearer, the belly of .. the classical nucleus. 

As another example_, significant attent~on has :recently been directed 

to the po,ssibility of different charge a?d matter distributic;>:ns :i,n the 

nucleus. 
7

) Since the calculati~>ns disc~ssep, here are very sensitive to the 

competition between .the nuclear forces (arising from t-he matter distribution) . . . ' . ' 

and electromagnetic forces (arising ft'om the ch,arge ·dis,tribut:ion), 
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rotational excitation in the surface region could also provide an 

indication of different charge and mass deformations, if such effects 

actually occur. 

It wQuld be premature to attempt a detailed theoretical exploration 

of potentials with more parameters representing irregular angular depen

dence, or differing charge and matter distributions. There are few data 

available yet, and only experimental data can ascertain whether the 

effects discussed here are measurable, However, these considerations at 

least indicate that detailed information about the deformed nuclear potential 

in the surface region may be available in the Coulomb-nuclear interference 

experiments suggested by these calculations. 

With heavy ions the resolution of different rotational states by 

traditional charged-particle spectroscopy is presently difficult or 

impossible. The most promising source of the rotational probabilities 

for very heavy ions·is y-ray spectroscopy of the rotational-band cascade 

in coincidence with scattered particles. In Fig. 13 we show for poten

tials I, II and III the summed intensities that one would expect to see 

for several states in such a cascade (potential IV is omitted because it 

is very similar to III). Although there are still obvious differences in 

the potentials, the detailed structure of Figs. 11 and 12 is quickly 

washed out by the superposition of intensities in the feeding cascade. 

The excitation probabilities, rather than the summed intensities, are 

clearly the experimental quantities of greatest interest. These are 

accessible by difference, however; and can probably be determined with 

5-10% uncertainty in careful experiments. 
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Theoretically it would be advantageous to extend this method to 

t > 0 incident partial waves by treating the full three-dimensional rotor 

eXJ>licitly44) rather than by the geometrical weighting of the two-dimen

sional rotor di,scussed here. This would make it possible to s'tudy excita-

' ' ' 

tion probabilities as a function of sca-ttering angfe. Furthermore, for 

Xe and heavier projec.tiles it is exp~~im~ritally very difficult to detect 

the scattered particles incident with small impact parameter because they 

have low scattering energies in the 'laboratory system. 

Additional consideration must also be given to the situation where 

more than two trajectories contribute to the two-dimensional S-matrix, 

both for real. time paths and for processes·accomplished by complex time 

paths during the period of interaction. Preliminary investigations with 

direct integration methods similar to those of ref. 24, and with complex 

~) ' ' 

time paths in the present method, suggest that for the cases considered 

here no more than two trajectories make significant contributions to the 

S-matrix. For some nuclear potentials and for some bombarding energies 

this may no longer be true, and it may be necessary to consider more than 

' 39) 
two contributions to the S-matrix. . The additional complications 

·arising in such a situation are related to the problems.investigated in 

refs. 21, 45-46. The calculations presented here should.be sufficient, 

however, to suggest the amount and type of.information available from 

heavy-ion rotational inelastic scattering .at barrier and sub-barrier 

energies. 
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TABLE 1. The parameter sets used 

I I! a 

Q2 (eb)a 11.12 11.12 

Q4 (eb2)a 

vo (MeV) 

aR (fm) 

RR 
0 (fm) 

wo (MeV) 

a I (fm) 

RI 
0 

(fm) 

s b 
2 

B b 4 

aFrom ref. 40. 

bFrom ref. 41. 

1.96 1.96 

0 50.0 

0 0.95 

0 1.167. 

0 2.0 

0 0.28 

0 1.305 

0 0.237 

0 0.067 

0 Nuclear parameters from ref. 42 

dNuclear parameters from ref. 43. 

eNuclear parameters from ref. 43. 

in the calculation. 

III d IVe 

11.12 11.12 

1.96 1.96 

73.0 17.7 

0.624 0.531 

.1.131 1.267 

80.3 15.4 

0.624 0.531 

1.131 1.267 

0.237 0.237 

0.067 0.067 
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Fig. 1. The coordinate system used. in the calculatio~s·. 

Fig. 2. The classical model for competition between th.e electromagnetic 

c;tnd nuclear forces. 

Fig. 3. The real and imaginary parts of the Coulomb and nuclear potentials 

of Table 1 as a: function of the real part of the radial coordinate 

·r. 

Fig. 4. The effect of increased nuclear-potential influence on the final 

'classical angular momentum. The radial coordinate is plotted at 

the top .of .each graph, and the time of closest approach is 

indicated by'an c;trrow. The timeis in dimensionless units of the 

time necessary to cover half the distance of closest approach at 

initial asymtotic velocity. 

Fig. 5. The real part ·~f the final spin·vs• the real part of the initial 

Fig. 6. 

orientationangle .... the real quantum number function. For the complex 

trajectory case the function is complex. The effect of the real 

nuclear potential· is to. lower the final spin ,relat'ive to the case 

of no nuclear potential. Graphical solutions to (Sa) for the 10+ 

state are indicated for the Coulomb excitation case (8 and'S), 
l 2 

and the Coulomb-nuclear case ( S' and B') , · whem the · imaginary 
1 ' 2 

potential cari be ignored. 

Excitation probabilities for 40Ar + 238u at'E · = 180 MeV'for lab 

pure Coulomb excitation (parameter set I) and for nuclear parameter 

set II. 

Fig: 7; The real part of the phase d:i.ffer~nce Ll~ ·and the probability 

amplitudes·;;:- for Eq. (13) as a function: of final spin for 
J 
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40
Ar + 

238u a.t Elab = 180 MeV using parameter sets I (Coulomb 

excitation) and II (Coulomb-.nuclear excitation). For I~ 12 only 

one probability amplitude contributes appreciably and it is 

exponentially damped by the imaginary phase (see eq. 13 and ref. 23). 

Fig. 8. The real part of the phase difference 6~ as a function of energy 

Fig. 9. 

f 40 238 · ·. · . I (C 1 b ) or Ar + U . us1ng parameter. sets ou om excitation and 
,· 

,. :(,' 

II (Coulomb-nuclear excitation). 

The variation of rotational excitation probabilities as a function 
~_; 

of the radius parameter RR in a purely real potential for 40Ar + 
0 

238u at Elab = 200 MeV. For this calculation V=50 MeV, a=0.75 fm, 

and W=O. 

Fig. 10: The effective imaginary potential as a function of time for 

40Ar + 238u at E = 205 MeV. Parameter set II has been utilized lab 

and several different initial orientations are indicated. The 

time is parametrized in dimensionless units of the time necessary 

to cover half the distance of closest approach at initial 

asymptotic velocity. 

Fig. 11. Excitation functions for the 0+ state in the reaction 40Ar + 
238u. 

The parameter sets used are listed in Table 1 and the calculation 

was restricted to the zero impact parameter case. 

Fig. 12.Excitation functions for the 2+- 12+ states in the reaction 

40Ar + 
238u. The parameter sets used are listed in Table 1 and 

the calculation was restricted to the zero impact parameter case. 

Fig. 13. The y-ray intensities expected for some states in 238u excited by 

40Ar projectiles. The intensities are summed probabilities for 

the state and the states feeding it. The parameter sets used in 

the calculation are listed in Table 1 and all calculations were 

restricted to zero impact parameter. 
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