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> ABSTRACT _.

| The U;iform Semicléééicél'Appréximation (USCA)‘with complex trajec-
tories is applied-io_tﬁe problem of Coulomb—nuciear interfefence for roté;
tional stéfés excited in heavy-ion réactions; :Tﬁe éystem 40Ar + 238U is
studied as a ﬁhﬁction bombarding energy. Thé calculéﬁions show consider-
ablé sensitivity of the éxcitétioﬁ probabilities to both the real and |
imaginary parts of tﬁé coﬁpleX'ﬁﬁcléarvpoteﬁtiél in the vicinity of ﬁhe
'Coulomb barrier; s@ggéstinglfhét heavy—ion rotational excifation could

be a sensitivevprbbe'Of the nuclear potential near the barrier in deformed

‘_nuélei,A

1



I. INTRODUCTION

The phenomenon of Coulomb-nuclear interference has been extensively

_8)

studied for rotational excitation with light ioms,
| | 9-13)

and vibrational

excitation with heavier pr¢jéc;iles. The natﬁre:of this effect for _
heavy-ion rotational excitation has received little.attention (see,
however; refs. 14-16).
The shortness of the deBroglie wavelength assdciated withvheayy—ion
_ projectiles implies that claééiéal §r semiclaésical methods may bevfeaéi-
ble for the investigation of heavy-ion Coulomb-nuclear interference. Thé
recent assimilaﬁion into nuclearﬁphysics of uniform semiclassical

17-24)

methods’ originally developed in the theory of molecular scatter-

n825—36) provides a promising vehicle for such calculations. The under-

i
lying idea of these methods is ﬁhat one uses analytical goqtinuatiénlof
the classical equatiénsvof motion for the aescription of the dynamics Qf
the system, together wifh quantiéed boundary conditions and the quéntum— |
~mechanical superposition’priﬁciplé in adding amplitudeé forvdifferent
\trajectories leading to the same final state.

These new techniques have several-advantages relative to the

. 37,38)

earlier semiclassical methods: 1) because one integrates exact

classical equations of_m;tion, the:nucleus—projquile inteFaction»is
eaSily quified to include higher multipqles, differeht ﬁugléar form
factors,. etc., the resulting formalism being dynamically»exactuip;the
classical.limit; 2) the effect of the imaginafy nuCleaf potential.on_the
- trajectory is includéd exactly rather than as a firgt—order mean free
‘path absorption; 3) the fesulﬁs may be interpreted in terms of classical

~

concepts, albeit with complex trajectories.



A disadvéntage.is that th; method 1$'obvious1y féstricfed to cases
in which a classical model can be fdrmulated to describe the system.
In Part Ii a brief description of the theory is given and_in Part III
we discuss the géneral effect of the complex potential én the rdtational
éxcitatién piobabilities. Part Iv,deals with a realistic example,

40 + 238

Ar u, fof‘bombarding enetgies in the raﬁge E = 150 - 220 MeV.

lab

Conclusions are presented in Part V.

i

IT. BASIC THEORY
We ére concerned here with géne;;liZing thé:USCA theory of Coulomb
excitation'éresénted in ref.'23't§viﬁ¢iude a deformed comblex’optical
potential. The 'funda_mei{ta‘l quantities to be determined will be the pro-
bability amplitudes andﬂpﬁaseé‘f6¥\e3bi£at10ﬁ in the chénnelé of:interest.
These  represent components of the qﬁéntum-méchaniéai S—métri# ev#luatéd
by saddle-point (stationary'bhase)‘integratibn méthods.lgzlg)
~ We will restrict ourselves tbvthe case of a:head-on cbllision, since
'?hen the motion is confined to a plane, which simplifies the numerical
calculation. The genérélization to.a three-dimensional rotor.will be
méde suﬁsequentiy by argumentsvsimilar;tohthose used préviously for. pure

Couiomb‘excitation;23’24)

.The coordinate system and relevant parameters
are illustrated in Fig. 1. In the present paper we confine ourselves to
interactions at or below the Coulomb barrier. Then the Hamiltonian des-

- cribing the ‘system is parameterized by the form



p? .7 e? z_e?
T 2f 1 1 t
=g PX( ’ )-* - + 2 o) P, cosn)

mr2  2F T 273 9
z_e? () '
+ —fig— Q0 Pu(cosX) - Vfr-- inI o : (1)
with . _ : ~-1 v ' /
. r-R -
. , R
fR = |1+ exp ( )
| R - (2)
i , r- R 1-t
fI = |1+ exp ( N ):

where m is the reduced mass of the system, T is thevradialjcodrdinate,
X = (B-6) is the angle between the symmetry axis of the rotor and the line
joining the centers of the target and projectile,"PA:(qosx) is a Legendre

polynomial, prand Zy are the charges of the projectile and target respect-

ively, and P, and PX are the classical radial and angular momenta conjugate

~ to r and B.  The multipole moments QEX) are defined by

- \’%f Proo Y@ ®

where A is the multipole order, p(r) is the target nucleus charge-density
function, and YXO(Ej is:a spherical harmonic. The moment of.inertia 5’ is
taken for the present calculation from thelexperimentai excitation energy
of the first 2' state of the rotor. The nuclear interaction is
parameterized in terms of a complex optical potentialvwith different
Woods-Saxon form factors for the real potential V and the iﬁaginary
‘potential W, The diffuseness parameters for the'real and'imaginary

potentials are denoted by ap and a; respectively, and the real radius is

2
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‘where RE is the real Aptical radius, Ap and A, are the projectile(and farget
masses respectiveiy, and the BA are the nuclear deformation parameters. The
last term‘conServés volﬁﬁé to thislordér iﬁ the deformation ‘parameters. . For
the pregent work the real and the imaginary potentials are assumed to have
different radial geometry but the same angular dependence, and the imaginary
radius Ri‘iéndefined‘by,feplacing'Rg with ité'couhterpart'Ri in Eq. (4).
For a purely real nuciéar'pdténtiai andv%ﬁi'QE:)==Q, the model for

' Coulomb—nuélédr interference is thus conceived as a Cdmpetition bétween the
repulsiye e1ectric'quadrupole,force and the attractive real nuclear force-
in imparting net forque tblthe deformed rotor, :aS.Fig-v27i11UStraté5- The .
.ihc}usionrof the-heXa&ecapole“potential a@d'the,imagina?y‘ngclear poténtial
v‘complicates this‘simple picfﬁré,-butlthe classiéaltmédei,remains one of a
gdmpetitidﬁ between the contributipns‘waattractive and fepulsivé parts'

of the total potential to the net torque of the system. | !

| Ffom the Hami1fonian (1) the classical equations of.ﬁotion are
P

y = % : . | " (5a)
m

~x=_,__.-+__)p- (5b)
o\ FSX
p2 o 72762 z_e2q(*)
p = X . Pt 3 P 0 p (cos)
T m,r.3w ,::;.r2'- 2 o 2
. ZeZQ(l‘:), 3 af. ‘.
+ 5 P 0 po(cosx) - V=R -iW—L - (5¢)
2 T : Lor ar ' . :



Z,ezd(z) ’ ZAeZQIu) : '
Poo= B0 2 p (cos)] -2 2 [P (cosX)]
X 23 ox . 2 ‘ 2r® ax °
: of of :
s V4w L ' (54)
o ax X ‘ . - -

- In addition, the classical action ¢ in units of h is'determined from
b = -L (P +XB) ‘ .', ~ (5e)
S h r X v : g

We will confine ourselves to the incoming % =0 partial wave. Then classically
the projectile is incident on the target-with‘zerb impact parameter and the

initial conditions for the integration of the classical equations of motion

are

r, = large and real . , - (6a)
| ‘ ‘/ . 3 Ztez" o S .v -

Py, = Y2m (ECM =) o &)

. : 1
X = Bo (arbitrary and‘complei) o (6¢c)
PX. = 0 : v : T _(6d)
i
. = 0 : . ' - (6e)
i , . : .

The trajectdries during the'ihtegfation are complex due to the;Complex
nuclear potential-and dUevto the féct that B;'ﬁay in.general.be complex.
Following the integration, observable quaptitiés must be real. This may
be specified for PX by appropriate choice of the imagihafy pért of the
initial orientation Bo,'and is then assured for Pr by virtue of the time-
independent Hamiltonian. Finally r may'be made real by selection of an
appropriafe'cbmplex time path in the asymptotic region of the integration

as_iﬁ ref. 31.



{} O 0494042 70

Integration of the complex equationé of motion leads to the exten-
sion into the complex plane of the.classical rotational angular momentum

quantum-number function discussed in ref. 23:

1.(8) = Px(eo_)/h- S - M

The final spin I (B ) has a real and imaginary part, each of which is a -

function of a complex variable Bo.' Thé roots analogous -to those specified

in ref. 23 must satisfy the criteria'

n

_even integer + % : (8a)

Re[10(8 )]

(8b)

|
=

In(1g(8,)]

This is accompllshed by appropriate ch01ce of the complex 1n1t1a1 or1enta—
tion B ; (see Fig. 5 for an approx1mate graph1ca1 solutlon to Eq 8a)

For the cases studled here -one or.two complex traJectorles make the
dominant contrlbutlon to the two-dimensional S- matrlx For two contrlbutlng
traJectorles the uniform sem1c1a551ca1 S- matrlx describing the rotat10na1

34)

excitation of the target to a final angular momentum I is given by:

(J— \/-p ) % AL(-E)

, i/2(9, + ¢ o) ' ‘ x
SieoB) = “‘/;ie - { :

+

- V- pz)—%— AL (- e)} - (9

where the subscripts 1 and 2 refer to the classical traJectorles which

satisfy»the boundary conditions of Eq. (8). The amp11tudes p are deflned by
;’l . 2simB. . e U - . |
P: = —-r_——L— . (BJ E'(Bo)j; j = 1:2)’ (10)

J (31(8.5))'
\ 28.

J

3)
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The sinBj factor is the analogue of the weighting factor used in ref. 23 to
make the transitioh'from_a two-dimensional to a three-dimensional rotor.
“In general, sinBj and the derivative in Eq. (10) are complex. The function

& is defined by
€ = [3/48,-01%% = (374 001%% Coan

and Ai and Ai' are respectlvely the complex regular Airy functlon and 1ts
derivative The traJectory subindex i=2 is the one for wh1ch Re(aI(B)/BB) < 0.

The excitation probab111ty P is given by

I<0
, . , | | , _1

Preo® = 15| ,_ a2)

For the case that JA@I >> 1 one can use the aSymptotic expressions for the

Airy functions to obtain the "primitive" excitation probability, which is

useful because of its conceptual simplicity:

| -2Im(8,) 2Im(e,)  %Im(®, + )
prim _ - . - : 2
: P P+0 = lp1| e + |P2|.e + 2§
v fﬁlﬁzl sin(Re(A®) +a) ' . ’ (13-2a)
"allowed tranéitionsV
PR - T - (s
1«0 = ¢ ) P . K

" forbidden transitions"

23). As long

where o is the phase of -ﬁiﬁz*' For pure Coulomb excitation o=0.
as the nuclear force does not dominate (which is generally true in the present

case for bombarding energies below the Coulomb barrier) a will be small and
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can be neglected when Eq. (13) is ﬁsed for.quéiitative considératiqns,
Equation (13) is of use in illustrating tﬁo-imﬁortant conéepfs: 1) the.
iﬁterference between the amplitudes arising from the different terms in
the S-matrix, and 2) fhe expopential damping qf the probability‘amplitudes
by the imaginary pért of the classical action &. Fof the numerical calcu-
lation, however, thevuniform expression (9) was used. |

Finally, wé‘note fhéi the imaginary potential erases the sﬁrict
distinction fouﬁd'in Coulomb excitation?) between the allowed states (those
statgsifeached by purely real trajeéfories) and forbidden states (those
states reaChed only by cpmplex trajectoriqs). With an imaginary potential
all trajectories will génerally be‘complex. However, for imaginary potentials
whiéh are not too large it is permissible to speak of 'allowed; stafes
(ImB, ~ 0) and 'forbidden' states'([Imsol > 0). Tﬁe former will be laxgely
characterized by interferencé between tﬁo.conpributing_trajectories, while
the:domiﬂant feature of the latter will be an exponential damping of the
probability for a singlevcontributing trajectory, as a éonsequence of the

penetration of the projectile into cldssically inaccessible regions.:
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JIII. THE GENERAL EFFECT OF THE NUCLEAR‘FORCE ON
THE ROTATIONAL EXCITATION PROBABILITIES |

The four potential parameter sets for the nuclear Hamiltonian (1)
that have been studied are displayed in Table 1. The Coulomb and deformation
parameters are from refs. 40 and 41. The nuclear parameters are taken from

2

08ph at E

quasi-elastic scattering of 84Kr+ = 450 MeV (set II)42) and

o lab
. .
40Ar+~ 38U at E = 286 MeV (sets III and IV).43) We emphasize ‘that

lab ~ \
there are reservatiops about the propriety of these potentials for the
application discussed here since our calculations are for 1ower energies
than where they were determined, and. for the other reasons mentioned below.
Nevertﬁeless, these potentials still serve as useful starting points for
the investigation of rotational scattering in the barrier region.

In Fig. 3 the real and imaginary parts of the Coulomb and nuélear
potentials along the symmetry axis of the target are plotted as a function
of the real part of the radial coordinate r. Caution should be exercised
in referring to Fig. 3. Since the trajectory is in general éomplex, one
must consider not just the potential on the real r axis, but the potential

39)

along the entire trajectory in the complex r-plane. Nevertheless, for

energies where Wf, in Eq. (1) is not too large, and when Im(Bo) ~ (0, the r

I
trajectory is nearly real and Fig. 3 is a useful approximation to the
potentials eﬁcountered on the complex classical trajectories.

The model of competition among the repulsive and attractive forces

in the nuclear Hamiltonian is clearly illustrated in Fig. 4 where we have

plotted the classical angular momentum I = Px/h as a functioq of time

during the interaction for a given initial orientation and several different

projectile energies. With increasing energy there is a

cancellation of the angular momentum imparted by the nonécentrai.repulsive
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poténﬁial unfil fiﬁaliy the attraétivé nuciear poténtiél dominafes and
the directioﬁ of thé:rotatibn is completely reverséd.froﬁ fhétvof pure‘.
Coulomb excitation. -This is further illﬁstféted in Fig; 5 whefe the real
part of the quantum number function.(fiﬁal spin:vs. initial orientation)
is piotted with and without the nuclear potential (set II); fﬁe final
spin is_lbwered by the action of fhe nuclear force. Graphical solutions
of (8-a) for the limit Bo ;eal are indicated for'thevCoulémb éxcitation
case and for the Coulomb-nuclear case.

The phase difference'AQ is much mére éensitive to the details of the
interacpion on 'a pérticuléf trajectory than the ;1assical angular momentum.
:Thérefore the iﬁterference term of Eq. (14), wbich is_proportional.to )
sin [Re(A@)], will be a more délicaté probe of the céhpétiﬁioﬁ bet&een
nuclear and Coulomb forces ip the interaction regioﬁ;. ihis_is illustrated
in Fig. 6 where excitation probabili;ies for 180-MeV 4oAr on 238U are
plotted with and withput the complex nuclear potentialb(setvII). This energy
is some 40 MeV below the classical ba¥rier for spherical nuclei, But ﬁhe'
effect of the nuclear potential on the excitaﬁion probabilities is as large
as- 50-100% (nqte the 1ogarithmic'Scal€). These tesults c#ﬁvbe largely under-
gtood in terms of the effect of the nuclear‘ihteraétion on the real,part of
‘ the.phase differéhﬁe A® in Eq. (13). In Fig. 7 the value Qf Re(A9) ;s a
functién of final spin ié plotted, with the cOnétchtiveband'destructive
vvregions for the interférencé térm‘of.Eq. (13) iﬁdiéated.  Taking.the 4+ state
as an example,<we note thét relatiﬁé to ﬁhe c;éé of éufe Cbuiémb ékéitatioﬁ,
the nuclear potential shifts the interference termIOfAEq. (13) further into‘
‘a region éf destrﬁctive interfereﬁce, tﬁus decreasiﬁg.fhe excitatidﬁ pro—
.babilify of the 4+Vsta£e relétive t§‘th;t éf pure Coulomb excitatioﬁ.‘ Also

plotted are the éxcitation amplitudes, but at this enefgy the significant
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;change in the excitation probability is due to the change in the pHase.
Similarly, the phase difference for the 6% state is shifted from a region
of destructive interference to one where the interference term is essentially
zero. Therefore the exditation probability is increaeed for the 6  state
»reletive to the case of pure Coulomb excitation. The behavior of'the
other probabilities for I" < 8% is understood in a like manner. As discussed
further below, and as Fig. 7 indicates, the nuclear force also lowers the
probability amplitudes significantly for the higher-spin states (_I1T > 8+),
in addition to affecting the phase. |

The effect of the nuclear potential is further illustrated in Fig. 8,
where the real part of the phase difference is plotted as a function of
energyofor several states with and without the nuclear potential. For n
given state, the passage of A@ithrough regions of constructive and destructive
interference is primarily responsible for the well-known oscillations in
Coulomb excitation probabilities as a function of energy.zs) The effect of
the real nuclear potential is to shift the phase difference further below
its value for pure Coulonb excitation with increasing energy. In extreme
cases‘the interference term may be shifted from a constructive maximum to
a destructive minimum at a given energy, or vice-versa. With increasing

energy (or for high-spin states) the effect of the nuclear force on the

probability amplitudes \ff} also becomes eignificant. This is a consequence
of the effect of the lowered qunntum-number function (cf. Fig. 5) on the
derivatives in Eq. (10); Until the region where the nuclear force

dominates, the general effect of increasing energy is to increase the
probability amplitudes of the lower-spin states relative to tnat of the

very. high;spin statee. .Thisris a direct refiection of the competition
between'repulsive and attractive forces in produeing torque, and has been
observed!previously.16) Note, however, that tnis;concentration of probqbility
amplitudés in lower spins does not_neeessarily manifest itself in a

concentration of probability in a particular lower-spin state as it would



{)Ugéﬁi)wgié
-13-

.in é purely classical model. The contribufiqn'from:the“ihterference terﬁ
of Eq. (13) must élso be édnsidered as a functionIOf-énergy;

Thé sensitivity to the pbtential parameters,ié“further illus-
trated in Fig. 9 where we,ha&e;plotted for‘é purely'real.potential'the
variation of some rotationai state excitatiqh'prbbabilifies as a function
of the rea1'radius parameter'Rﬁa Note that even -a small éhaﬁge in R?
prdduges large chénges in- the probabilitieé, and that the behavior of
the probabilities as a function oijg is very different,foi each state.

For exémfle, if Ry = 1.21 fm, a 0.5% decrease in Rdvresults in changes
of -10%, +10%, -10%, -7%, +2%;»-6%; and +12% for the 0°-12" state
probabili£ies feSbectively. These changes can bé_explained,'as have
the.pfeVioué ekémples, in=terms'of'the nuclear-forceé influence on the
phase differences A® and the amplitudes‘vq;;.

The probabilitieé should also be sensitive to the imaginary poténtjal
fbf.two reasons: l)labsorption due to the imagihary potenfial may destroy
the interférence term in Eq. (13) by preferentially absorbing one of the
: trajectories; sétting 51 or,ﬁzé:o, ahq 2) because the equations of motion
are complex, thé‘trajectory'of the projectile is affected by the imagiﬁary'
potential,
| For a.smallvvalue oqufI,the primary effgct of the.imaginarf poﬁential
dn.the proBability émplitﬁdeé iS»tO qontfibuteﬂq démping faétor e-ImQ ﬁhicﬁ

is given approximately byss?

-1mo -_w_.[fI(tj5dt L B L
e ~ e - S - (14)
where fI(t) is the form factor of thé.imaginary‘potential; In Fig. 10

,fhc valué of WfI(t)'as a function of t is plotted fqr several different -

initial orientations. From (14) the damping of the probébility amplitudes -
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varies exponentially wit§ the area under the curves. Obviously those
initial orientations near 0° will be subject to stfonger damping than
~those heaf 90°, and in the general case one of the probability amplitudes
of Eq. (13) will be damped out before thé other, destroying the oscillatory
interference term.
In additien to absorption effects, éﬁe imaginary potential also-

affects the classical trajéctory. This can give rise to feflection and -
diffraction phenomena not adequately treated in older semiclassical methods
which oniy include the effect of the real potential -on the projectile trajectory.
Within the classical-limit framework described here,fhése effects are treated
" exactly, ahd the excitatioh_probaﬁilities should be sensitive to

the imaginary as well as thé‘real part of the complex nuclear pofential

in the sub-barrier region. In the next section we will further illustrate
this sensitiVityuwith some realistic calculationS»for'é representaﬁive |

heavy-ion sjstem.

IV. EXAMPLES AND DISCUSSION

We have applied the techniques described in the previous sections to
o s 1 2 '
the rotational excitation probabilities for the system 40Ar+ 38U, As
‘before, the calculations were restricted to zeTo impact parameter. The

+ +

-0 -12

excitation probabilities for the ground band were calculated for Iﬁ
with the four poténtiél parameter sets of Table 1 in the energy range
Elab = 150-220'MeV.' The results are piotted'in Figs. 11 and 12. -

Consider first the states for which I" < 8+. In contrast to the’

light-ion case where mostly destructive Coulomb-nuclear interference is

1-8)

observed for low spins, these states exhibit a large variety of both

constructive and‘destructive interferences. The exact structure of the
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interference depends on the nuclear potential as Figs. 11 and 12 1nd1cate
,Thls behav1or is ea511y understood in qua11tat1ve terms, as dlscussed

in Sectlon III. Con51der, for example the O probablllty calculated '

. with and,w1thout the nuclear force of parameter set 1T (F1g 11). 1In

the range 150 180 MeV the nuclear force has only a sllght effect Both
the probab111ty calculated with and that calculated w1thout the nuclear |
force decreases The reason is apparent in Flg 8. For both cases the
phase d1fference Re(A@) moves from a- ‘region of constructlve 1nterference
into a reg1on of destructive 1nterference- the. th1rd term of Eq (13)
becomes algebralcally smaller, and ‘the excitation probablllty is decreased
In the reglon 170- 180 MeV the effect of the nuclear force (prlmarlly the |
real part in thlS case) beglns to decrease the phase dlfference between |
the contr1but1ng traJectorles relatlve to the case of Coulomb exc1tat10n

’ Thus, at E ~ 185, F1g 8 indicates that the 1nterference term of Eq. (13)

lab
is essentlally zero fOr the Coulomb exc1tat10n case wh11e 1t is destructive
for the case w1th the nuclear force 1nc1uded The nuclear force case thus

exhibits a d1p below that for Coulomb eXC1tat10n in this region. Similarly,

. near E —200 205 Mev both phase differences move into constructive

lab
interference reglons and both the C0ulomb and Coulomb nuclear probab111t1es
exh1b1t maxima. The Coulomb nuclear peak is sharper ‘because the phase
difference is changlng much more rapldly for it with energy (cf Flg 8) '
It is h1gher because at thls energy the real nuclear force beglns to

. affect apprec1ab1y the probab111ty amplltudes F1na11y for E1 b> 205 MeV
the real nuclear force shlfts the phase d1fference toward a destructlve
region and most 1mportant1y, the 1mag1nary potent1al begrns to damp the

probab111ty amplltudes by contr1but1ons to the 1mag1nary phase The

result is a precipitous_decrease in the exc1tat10n probab111ty at
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| Eléb‘“=_210:MeV.' The‘ether curves-in'Figs. 11 and 12pf0r I"A< 8 .
can be understood in a similar mapner, though the sifuation'

for parameterzsets ITT'and IV is .more eompliCated becauSe the
deeper imaginary potential at higher energies deflects the‘projeétile from
the real r axis, giving rise to reflective, diffraetive,vand'absorptive
effects not present for realvr{sg) |

. The general behav1or of the probab111t1es for sets 111 and Iv. in Figs.

11 and 12 is a rather structureless fall off for E1 ab ~ 190 MeV.  This is a
consequence of the damplng effect of the 1mag1nary potentlal which comes strongly
into play forlthe parameter sets III and IV before it does for set II. Thus

- for all three nuclear potentials the shift of the real part of the phase

- difference is the Imajor effect for E. < 190 MeV, but in the region .

lab ™~
190-210 MeV set II is domrnated.bybthe real part of the pptent1a1, whlle
sets III'aﬂd IV exhibit aIStrong influence of the imaginary:potential.=Fina11y,
for all potentials erpoaential damping is the generally dominant feature for .
Elab > 210 MeV.: | |

For I<:8 a 51gn1f1cant amount of 050111atory character is present
while for I:’8 the general behavior is a monotonlc decrease of the COulomb-v
nuclear case below that of Coulomb exc1tat10n.~ This 15'exp11cab1e in terms
of the approximate distinction between 'classically allowed" and'"classically
forbidden" processes,vas discussed in Section.II and ref. 23, For wfI*’O these
,correspond respectively ‘to states below and above the maximum of the real quantum
" number function in Fig..5. vThe'fqrbidden states are reaehed‘by-analytical
' continuation of the quaﬁtum number function into the compler‘B —plane. |

As a consequence of the complex 1n1t1a1 orientation angle in those cases,

one finds that only one of the PJ in: Eq. (13) contrlbutes 51gn1f1cant1y,;
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y,
and it is exponentially damped by the acquisition of imaginary phase on the

3)

compléx.,_trajec‘cory.'2 Therefore there is ﬁo inteffe;ence term for‘the
forbidden states and their excitation functions-aré monotdnic rather than
oscillatory. |
For the forbidden states the deﬁiatipn of the Coulomb-nuclear. proba-
bilities from pure Coulomb excitation is a consequence of the:nuclear force's
‘effect on thé'cohtributing probability émplitude'(see Fig. 7).  These
émplitudesﬂfor the forbidden states are ‘extremely -sensitive to: the maximum
of the quantum number function on the real-Bo‘axis (Fig; 5), since the -
lowering of this function increases exponentially the démping of the
cdntributihg'ampiitude for a'fprbiddeh'étate.' This damping <is a .consequence s
not of the imaginary pétentiél, but of the prdjéctile penefration into
'fégions.inaccessibleito classical-d§ﬁamics with'purely”real.trajectories.
If an imaginary potential is 5196 preseht if contributeé an “additional
éomponent to the ‘damping as discussed in the .classically allowed
cases;'
| From Figs. 11 and 12 it is obvious that potentiél I1 differs greatly from
IIT and IV in its influentg on the rotational excitation probabilities. This
may not be of physical significance, since they were determined with different
.projectiles;'at different energies rélatiye,to‘thebbarrier,~and on spherical
and deformed nuclei, respectively. -Wé may even.question=whe§hér any -of the
potentials discussed here afe realistic in the sub-bérrier region for a
Zdéforﬁed‘nucleus;since 1) they were‘deterﬁined from fits<using_sphe§ical
optical codes‘on_data in which true elastic and many quasi-elastic processes
are indisﬁinguishébleg 2) therg‘are theoretical reasons to believe the shape
of the imaginary'pbtentiai'may differ from that of the real poténtial for a
Qeformed'nucleus, and- 3) the'WoodSwSaXOn optical pd;enﬁial may not.be the best
'parameterization of the sub-barrier“nuClear‘interaction. These reservations

are not of major significance for the purpose of this paper however. We
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have merely used these representative potentials to demonstrate that
rotational ekcitation is sensitive to the complex nﬁclear potential,
and that experimental determination of rotational excitation probabili-
ties with heavy ions could be used to explore quantitatively the inter-
action in the Coulbmb—nuclear iﬁterference region; 

The probabilities calculatéd uéing ﬁarameter sets IIT and IV do not
differ by more than 10-20% from each'otﬁer in the énergy‘range considered
here. This is not surprising, since they were derived from fits to the
same data, and Fig. 3 indic#tes'that they are #ery simila; in the critical
regioh Re(r) > 13.5 fm whefe most rotationai excitation takes place at
these projec£iie energies. Even in this case, however, the 10-207% differ-
ences for the large number of different states that arevexcited might allow

some distinction between III and IV in a careful experiment,

V. CONCLUSIONS .

We.have demonstrated that rotational excitatiom pfobabilities inv
the Coulomb-nuclear interferéhce region‘shodld be extremely sensitive to
the details of the complex nuclear potential near the bérrier; " Both
constructive and destructive Coulomb-nuclear iﬁterfereﬁce is prédicted‘
if the imaginary potential is not.to§ strong.in the surface region.

These effegts are easily undefstood in terms of a éimple_classical model
which 'describes compegition between the electromagnetic and nuclear forces
in producing rotational torque; and most_importanfly, the effect of the
_intefaction on aISensitive phase difference between trajectories contri-

buting to a particular state.



"Because the excitation probabilities are sensitive to Coulomb~nuclear
interference effects, we believe that heavy~ion\rotatiqnal excitation
péttérns near Coulomb-barrier ene;gies_coqld.provide_a detailed prgbe of
the potential in the nuclear surface region. (The_potentialvin the»nu¢lear
interior is probably inacceSéiblé-because,of thg strqu absorption.) One
may'speculate thaf the‘popentiql_for a @efprméd{nucleus may'e#hipityir:egu—
lar variagipns with polar angle B. For example, the imaginarytpotgn;ial
may be largely due at barrier.qnergies to loss of flux ;nto,ﬁeutron transfer
channels, and hence be strongest in the zones of the lightly-bound Nilsson
: neﬁtron orbitals,;.Ifﬂthe_concept of a class;calﬂtrajggto:y has any physical
significénce in these heavy-ion systems, excitation pf different states
should'probe different angular negions of the nuclear, surface. Referring
to fig. 5, we would infer that the excitation ﬁrobabiligi fdr spin 8 in
theiéase displayed.théré maiﬁly proBesvthe nuclear,poyentialﬁneéf @ = 20°,
‘since the large-angle root 8; feels less influence from the nuclear poten-
tial. Excitatibn of lower spinsushould be sensitive to regions closer to
the nuclear tips. :At sqfficiently‘higher.energies the low—angle‘roqts
should be damped [ Cf. fig. 10] and thg_lérgerfang;e orientations, which
- now feel the ﬁuclear forcé, should make the dominant contribution,y Thgre—
fore, one would expect the probabilities in this case to bg.segsitive to
'the nuclear potential nearer . the bgliy ofwthe-classical nugleus.

As another examplg,.significant attent}on_has gecently'been diregted
to the possibility of different charge and matter_distributigns in the
nucleus.7) Sincé the calculations discussed here are very sensitive to the
competition between the. nuclear forces (arising from the_qatfer,distribution)

and electromagnetic forces (arising{fnom“the charge distribution),



-20-

rotational excitation in the surface region could also provide an
indication of different charge and mass deformations, if such effects
actually oceur.

| It would be premature to attempt a detaiied theoretical exploration
of potehtials with more parameters representing irregular angular depen-
dence, or diffeting charge and matter distributions. There are few data
available yet, and only experimental data can ascertain whether the
effects discussed here are measurable. However;‘these considerations etv
least indicate thatddetailed information about the deformed nuclear potential
in the surface region may be evaileblevin thevCoulemh—nuelear ihterferepce
experiments-suggested’by these calculations.

With heavy ions the resolution of different rotational states by
'traditional charged—particle spectroscopy is presently difficult or
1@possible.' The most‘promlsing-source of thevrotatlonal probabilities
for very heavy ions'isvy—ray spectroscopy of the rotational-band cascade
invcoincideﬁce with scattered'particles. In Fig. 13 we showvfor poten—
tials I, II and III'the summed intehsities that ene would expect.to seeh
for severel states in such a cascade (potential v is.omitted because.it'
_is very similar to III). Although there are still obvious differences in
the potentials, the detailed structure of Figs. 11 and 12 is quickly
washed out by the superposition-of intensities in the feeding cascade.’

" . The excitation probabilities, rather than the summed'intensities,.are_.

clearly the experimental quantities vagreatest interest. These are

accessible by difference, however; and can probably be determined with

5-10% uncertainty in careful experiments.
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Theoretically it would be advantageous to éktend this method to
% > 0 incident partial waves by treating the full three-dimensional rotor

vexplicit1y44)

rather than bj”thé geometfical weigﬁfiﬁé‘of the two-di@en—
sional rotbfvdiscuésed‘here.' This.ﬁéﬁld make&it"poséiﬁlé to Siﬁdy'excita_
ifisn ?roBaBi1ities as a functioﬁ of:sdsfﬁering angié; ;fﬁrtherﬁéfe, for
ie‘andvheaéier'prbjéctileS it is exﬁé;iméﬁtélly very difficult to detect
the sc#ttered particles'incideni wifh:sﬁéli ihpaét.§é¥amé£ér beééugefthey
have low scatteriﬁgienergies in tﬁe‘laboratofy systeﬁfsl

Additional gonsideration musf also be giyen ﬁo the situation wﬁere
mérg_than two trajectofies contribute to the two—dimenéional S-matrix,
bothvfor real.tiﬁe paths and for.ﬁrocesseS'accoﬁpiished By complex ﬁime ‘
paths during thé period of interaction. freliminafy investigationé with
direct integfation methods similar to thdse of ref. 24,‘and with complex

39) suggest that for the cases considered

- time paths in the present method,
here no more than two trajectories make significan; contributiohs to the
S-matrix. For soﬁe nuclear potentials and for some bombarding energies
this may no longer be tfue; and it may ﬁe necessary to consider more than

two contributions to the S—matrix.39)

The additional complications
-arisingrin such a situétion are-related to the ﬁroblems:investigated in
refs. Zi, 45—46. _Thé caléulations presented.hefg should be sufficient,
_ however, to' suggest the.amount and type of_informa;iqn available from

heavy-ion rotational inelastic scattering .at barrier and sub-barrier

energies.
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TABLE 1. The parameter sets used in:the calculation.
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s
¥

d

1 11’ Bis IV

Q, (eb)® 11.12 11,12 | ii,12 11.12
Q, (eb™)” 1.96 - 1,96 1.96 1.96
v, (MeV) 0 . 50.0 73,0 17.7
ap (fm) 0 0.95 0.624 0.531
RY (£m) 0 1.167 1% 1.267
W, (MeV) 0 $2.0 . 80.3 15.4
a; (fm) 0 1 0.28 0.624 0.531
Ry (£m) 0 1.305 1.131 1.267
g, P 0 0.237 0.237 0.237
B, 2 0 0.067

0.067

0.067

%From ref. 40.

bFrom ref. 41.

®Nuclear parameters from ref. 42

dNucleaf parameters from ref:;43.

®Nuclear parameters from ref. 43.
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" Fig. 1. The.chrdinété system used in the calculations.
Fig._z"'The'CIassicai model for competition bétween,thé eléctromagnetic
an&'ﬁucleér forces.
Fig. 3. The real and imaginary'pérts of the Coulomb and nuclear potentials
of Table 1 as a fhn;tiﬁn of the'feal.part'of the radial coordinate
- ‘ . v
Fig. 4. The effect’of'increésed nuciear—botehtiél influence on the final
| ‘classical angular momentum. The radial coordinate is plgtted at
v tHe»top-of.each graph, and the tiﬁe‘ofléioseét'approach is
~ indicated by}an arrow. The time is in dimensiénless units of thel
'.time‘necessary to cover half the distance of closest approach at
‘initial ééymtdtié'velbcityli
Fig. 5.; The feal‘partvbf the fiﬁaliépin'vs; ;hé ré&l part 6f the initial
orientation angle ~ the real quantim numbef"function; For the complex
trajectory case the function is cbmplex. The effé@t bf the real
nuclear potential is to_ldWérfthé:figal spip'relative to the case
of no nuclear potential. Graphical solutions to (8a) for the 10+
étate are indicated for the COulombvekcitation caée”(Biiand'Bz),
and'the Coulémb-quglear casev(B; and'B;),‘whén thé”imaginary
potential can be ignored.
" , 238 5

U»at'Elab = 180 MeV forv

pure COuIOmb‘excitation (parameter set I) and for nuclear parameter

N

Fig. 6. Excitation probabilities for'40Ar

 get II.
Fig.” 7. The real part of the phase diffetéﬁce Aéland”the'prbbability

.amplitudééf¢§j 'forvK. (13) as a functibﬁidf:fihal spin for

PO
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2 s . o . .
4oAr + 38U at E1ab = 180 MeV using parameter sets I (Coulomb

~

excitation) and II.(Coulomb—nuclear excitation). For I 2 12 only
one probability amplitude cqntributes appreciablf and it is
exponentially damped by the imaginary phaée (see.eq. 13 and fef.,23).
Fig. 8. The real part of the phase diffefence'Aé as a function qf energy |
| for 4OAr + 238U'.using paraﬁétef:sété I (Céulomb excitation) and

II (Coulomb—nuclear-excitétiéﬁ).;

. Fig. 9. The variation of rotétiéngl excitation probabilities-as'a function

of the radius parameter R? in a pureiy real potential for 4.OAr +
238U at E1ab = 200 MeV. For this calculation V=50 MeV, a=0.75 fm,
and'W=0. '

Fig. 10. The effective imaginary potential as a function of time for

40 + 238

Ar U at E = 205 MeV. Parameter set II has been utilized

v lab
and several different initial orientations are indicated. _The
time is parametrized in dimensionless units of the time necessary
to cover half the distance of closest approach at initial
asymptotic veloéity.

; ‘ + 40 238
Fig. 11. Excitation functions for the 0 state in the reaction "Ar + U.
‘The parameter sets used are listed in Table 1 and the calculation
was restricted to the zero impact parameter case.
Fig. 12. Excitation functions for the 2+ - 12+ states in the reaction
40 238 . ' . : -y ‘
“Ar + "7 'U. The parameter sets used are listed in Table 1 and
the calculation was restricted to the zero impact parameter case.
.Fig. 13. The y-ray intensities expected for some states in 238U excited by
4-OAr projectiles. The intensities are summed probabilities for
the state and the states feeding it. The parameter sets used in

the,calculation are listed in Table 1 and all calculationé were

restricted to zero impact parameter.
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Energy Research and Development Administration, nor any of
their employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately
owned rights.
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