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Abstract

Increasing evidence suggests that intact social bonds are protective against age-related morbidity, 

while bond disruption and social isolation increase the risk for multiple age-related diseases. 

Social attachments, the enduring, selective bonds formed between individuals, are thus essential 

to human health. Socially monogamous species like the prairie vole (M. ochrogaster) form 

long-term pair bonds, allowing us to investigate the mechanisms underlying attachment and the 

poorly understood connection between social bonds and health. In this review, we explore several 

potential areas of focus emerging from data in humans and other species associating attachment 

and healthy aging, and evidence from prairie voles that may clarify this link. We examine gaps 

in our understanding of social cognition and pair bond behavior. Finally, we discuss physiologic 

pathways related to pair bonding that promote resilience to the processes of aging and age-related 

disease. Advances in the development of molecular genetic tools in monogamous species will 

allow us to bridge the mechanistic gaps presented and identify conserved research and therapeutic 

targets relevant to human health and aging.
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1. Introduction

The nature and patterns of social relationships evolve over the life course, with social 

attachments defining not only the early relationships between parents and offspring, but 

those developing later in life between mating partners and friends. The study of human 

bonding and relationships is often conducted from a developmental perspective, with 

early life attachments thought to impact those formed in adolescence and adulthood. Our 

conceptualization of the nature of attachment arose from early work by John Bowlby and 

Mary Ainsworth examining mothers and infants (Bowlby 1969; Ainsworth 1979). Despite a 

primary focus on the influence of early life relationships, Bowlby asserted that attachment 

representations were likely to exert influence ‘from the cradle to the grave’ (Bowlby 1979). 

Yet, relatively little attention has been paid to the importance of attachment in later life in 

comparison with other developmental stages (Michael Bradley and Cafferty 2001). As the 

population ages, the interest in extending lifespan, and in particular healthspan (years of 

healthy life), has increased. Studies motivated by this interest are uncovering an intriguing 

association between the maintenance of social bonds and health outcomes (Robles 2014; 

Holt-Lunstad, Smith, and Layton 2010; Rutter et al. 1999; Berkman and Syme 1979). The 

mechanisms underlying this connection remain elusive, thus there is great potential for the 

development of animal models that can address these questions.

Social attachment is defined by the selective, enduring bonds formed between members of 

a species; this definition includes bonds between offspring and a parent or caregiver, those 

between unrelated partners or peers in adolescence and adulthood, as well as mating partners 

that are typically unrelated (Ainsworth 1979; Bowlby and Bowlby 1982; Harlow and Harlow 

1965). Early life attachments, particularly between caregivers and offspring have been 

studied extensively for their impact on psychological development as well as broader health 

outcomes and are thought to continue to impact patterns of attachment behavior into late age 

(Bales et al. 2021; Hazan and Shaver 1987; Ainsworth 1979; Bowlby and Bowlby 1982). 

While less is known about the role of same-sex affiliative bonds in late life, the strength 

and endurance of these bonds likely influences healthy aging in both similar and distinct 

ways compared to mating or romantic attachments (Holt-Lunstad, Smith, and Layton 2010). 

Attachments between mates are typically organized around the formation and maintenance 

of pair bonds (Hazan and Shaver 1987). Adult pair bonds are characterized by long-term, 

preferential mating between two individuals (partners) and the active rejection of novel 

potential mates. These bonds are also associated with physiological distress upon separation 

from the partner, and reduced anxiety with reunion (Brewster 1950; McNeal et al. 2014; 

Hazan and Shaver 1987). A wealth of data supports the health impacts of enduring pair 

bonds in adulthood in humans and other species (Kiecolt-Glaser and Wilson 2017; Verstaen 

et al. 2020; Grewen et al. 2003). Thus, pair bonds represent rich substrates by which to begin 

to dissect the mechanisms that mediate resiliency or vulnerability to age-related processes, 

and we focus our discussion primarily on these types of attachments.

Commonly used genetic animal models do not form adult pair bonds, limiting efforts 

to understand the underlying neurobiology of pair bonding and their relationship to 

healthy aging. Socially monogamous species allow us to investigate the genetic and 
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neurophysiological mechanisms mediating long-term attachments throughout the lifespan 

(Kleiman 1977; Lukas and Clutton-Brock 2013). Across such species, social attachments 

are defined by the patterns of behavior described above, which include parental behavior, 

peer affiliation, and mate (or pair) bonding (Bales et al. 2017; Reichard and Boesch 2003; 

Turner et al. 2010; Lee and Beery 2022; Ribble and Salvioni 1990). Numerous studies 

of pair bonding originate from mammalian and non-mammalian species, in particular bird 

species as ~90% of avian species form socially monogamous mated pairs (Jeffrey M. Black 

1996; Reichard and Boesch 2003). In birds, reproductive success is associated with both age 

and long-term pair bonding, and several studies identify a relationship between mortality 

and aspects of mating strategy, including bond maintenance, in select species_(Holmes and 

Austad 1995; Macdonald 1977; Richdale and Warham 1973; R. Sun et al. 2022; J. M. 

Black 2001). The impacts of pair bonds on subsequent fitness and life expectancy may thus 

be conserved across diverse lineages. Of the 3-9% of mammals that form such sustained, 

selective affiliations (Lukas and Clutton-Brock 2013; Kleiman 1977; Kleiman and Malcolm 

1981) prairie voles (Microtus ochrogaster) are widely studied in the field and in the lab to 

understand the mechanisms of pair bonding (Getz, Carter, and Gavish 1981a; C S Carter, 

DeVries, and Getz 1995; Insel and Young 2001; Young et al. 2011). Given their relatively 

short lifespan, more physiological similarity to humans and other mammals, and amenability 

to laboratory study, they provide a particularly useful model for exploring the links between 

pair bonding and aging (Williams, Catania, and Carter 1992; Carp et al. 2016; Hiura and 

Donaldson 2022; Walum and Young 2018; Getz et al. 1997).

In this review, we will focus primarily on adult pair bond behavior and its impact on healthy 

aging, although there are clearly mechanistic overlaps with other aspects of social aging. In 

humans and other socially monogamous species, the formation of long-term pair bonds is 

intimately related to other patterns of social behavior and experience that may differentially 

impact aging, including social integration, social status, or early life stress (Fletcher et 

al. 2015; Schacht and Kramer 2019; Pedersen 2006; Razzoli et al. 2018; for review see 

Snyder-Mackler et al. 2020). A wealth of data from wild populations of non-human primates 

have examined the links between social health and longevity and consistently find that 

greater social integration and strong social bonds are associated with increased fitness and 

longevity (Alberts 2019; Archie et al. 2014; Chiou et al. 2020; Silk et al. 2010).

Below, we begin by summarizing the existing research on pair bonding and aging biology in 

prairie voles. Importantly, while there has been much focus on the effects of social structure 

and environment on age-related health, the aging process itself may also lead to changes in 

social behavior. Thus, we first address potential age-dependent changes to neuroendocrine 

signaling and cognitive function implicated in pair bonding in mammalian species, primarily 

motivated by human research and supported by complementary data in prairie voles (Figure 

1A). We then turn to the impacts of bonding behavior on age-related health, examining 

both the mechanisms underlying vulnerability with bond disruption and the beneficial effects 

of sustained pair bonds (Figure 1B). We propose that overlap in the cognitive processes 

and the physiological and molecular systems described present high yield entry points for 

understanding the neurobiology of attachment in late age (Figure 1). The mechanistic study 

of aging biology and pair bonding is an emerging field, thus the observations and hypotheses 

outlined here draw on data from humans, prairie voles, and other mammalian species in 
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order to provide an initial framework for understanding the complex interaction between 

bonding behavior and aging.

While outside of the scope of this review, the potential co-evolution of lifespan with social 

structures or the impacts of reproductive strategy on lifespan determination are intriguing 

and important aspects of aging and attachment. More comprehensive lifespan, molecular, 

and neural information in socially monogamous and closely related promiscuous species 

may allow for novel approaches to examine classic genetic and trade-off models of aging 

(Kirkwood 2005). Our discussion centers on identifying the potential proximate mechanisms 

that may link pair bonding to resilience and healthy aging and explain the age-related 

risk of bond disruption. This focus stems from a rich history examining the mechanisms 

underlying pair bonding in species like prairie voles, which may intersect with factors 

that impact known aging hallmarks (López-Otín et al. 2013; 2023) (Figure 1C). These 

hallmarks represent the cellular and systemic processes indicative of age-related changes 

and include genomic instability, epigenetic alterations, disrupted intercellular signaling, as 

well as inflammation and altered immune function, all of which have been implicated 

in social aging more broadly (Snyder-Mackler et al. 2016; 2019; Stevenson et al. 2019). 

Below, we present a cognitive and neurobiological perspective to explore the intersection of 

intra-individual pair bonding and aging biology while identifying directions for future study.

1.2 Prairie voles and pair bonding with age

Studies of prairie voles have been foundational for our understanding of the biology of 

attachment. In the wild, prairie voles live in burrows generally consisting of extended 

family units, and the same male-female pairs are consistently trapped together in the field 

(Getz, Carter, and Gavish 1981b). Comparisons of social behavior and neural substrates 

in prairie voles to those of closely related promiscuous species have provided a basis for 

understanding the neurobiology of social monogamy. Unlike promiscuous species, prairie 

voles display long-term social attachments between mates such that mating partners show 

an enduring pair bond characterized by preference for spending time in close contact with 

a partner (Insel and Young 2001; Young et al. 2011; Carp et al. 2016; Walum and Young 

2018; Williams, Catania, and Carter 1992; Beery 2021). The formation of affiliative bonds 

with a partner is also accompanied by aggressive rejection of novel potential mates (C S 

Carter and Getz 1993; Resendez et al. 2016; Resendez and Aragona 2013). Both sexes 

display bonding behaviors and prairie voles show biparental care of offspring, a hallmark of 

many monogamous species (C S Carter and Getz 1993; A Courtney DeVries, Johnson, and 

Carter 1997; Ahern, Hammock, and Young 2011). Furthermore, separation of bonded mates 

results in increased anxiety- and depression-like behaviors and stress-related physiological 

changes, suggesting neural and physiologic mechanisms that facilitate the maintenance of 

such attachments between individuals (Grippo et al. 2011a; Grippo, Cushing, and Carter 

2007; Martin II et al. 2006; Resendez et al. 2016; Resendez and Aragona 2013; Sadino et al. 

2023).

Recent work more directly examines the relationship between aging and pair bond behavior 

in prairie voles. Kenkel et al. examined the propensity for bonded males to form new 

bonds with unknown females following the dissolution of their established bonds. While 
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aged (1.4-2.8 years old) males go on to form new pair bonds, showing preference for a 

new partner after dissolution of a prior bond, they spend less time in social contact with 

unfamiliar females (Kenkel et al. 2019b). Repairing may be sex-specific as earlier studies 

showed that females do not re-pair after loss of a mate, while the effect of age on repairing 

is unknown (Thomas and Wolff 2004). The trend towards age-associated decreased social 

behavior outside of the pair bond is consistent with studies from other species. For example, 

humans tend to show higher levels of social selectivity in older age, and older individuals of 

diverse species including primates and rodents interact with fewer social partners and spend 

less time in affiliative behavior (Rosati et al. 2020; Almeling et al. 2016; Shoji et al. 2016; 

Boyer et al. 2019; Salchner, Lubec, and Singewald 2004).

Importantly, a recent study in prairie voles examining neophobia found increased avoidance 

of a novel object by young adults compared with one year old animals, but no effect of age 

on social approach towards familiar animals (Powell et al. 2022). The authors conclude that 

with age, prairie voles are less able to adjust behavior to social context, as aged animals 

exhibited aggression towards intruders even in the absence of pair bond formation (Powell et 

al. 2022). In compliment to examination of the impacts of age on social behavior, additional 

work has examined the ability of pair bonding to buffer the effects of social stress with age 

(Akinbo et al. 2022). The authors found that pair bonding is protective to the behavioral and 

neuroendocrine effects of acute restraint stress in aged animals when compared to those that 

had been socially isolated (Akinbo et al. 2022).

The studies above have largely examined long-standing breeder pairs within established 

laboratory colonies. A more extensive representation of late-age prairie voles and formal 

lifespan analysis is therefore required for comprehensive, systematic assessment of bonding 

with age. With validated and conserved markers of the aging process as well as the 

application of Clustered regularly interspaced short palindromic repeats (CRISPR) and other 

molecular genetic approaches, the use of a broader range of species, including voles (Horie 

et al. 2019; Berendzen et al. 2023; Rajamani and Harony-Nicolas 2023), is now feasible 

and likely to yield relevant insights into the impacts of social aging on health. Initial targets 

for mechanistic study are the neuromodulatory systems and the cognitive processes highly 

implicated in attachment behavior, which may be differentially regulated with age. As much 

of the work related to these systems has been done in humans and other species, we present 

these studies as well as motivation for future approaches in prairie voles.

2. Neuroendocrine mechanisms integrating bonding behavior and aging

A major motivation for utilizing the prairie vole model for aging research is to explore 

neuroendocrine mechanisms that link social bonds to aging. Changes to intercellular 

signaling, including neuroendocrine systems, are hallmarks of age-related change and may 

play an important role in mediating the changes to social behavior with age (López-Otín 

et al. 2013; 2023). Examination of the neuroendocrine mechanisms for social behavior, in 

particular pair bonding, has focused primarily on oxytocin (OXT) and arginine vasopressin 

(AVP) (C S Carter 2017; Loth and Donaldson 2021; Lieberwirth and Wang 2016; Bosch 

and Young 2017; Walum and Young 2018; Rigney et al. 2022), often with a heavy emphasis 

on OXT. OXT and AVP are both nine-amino acid peptides synthesized primarily, but not 
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exclusively, in two nuclei of the hypothalamus, the paraventricular nucleus (PVN) and the 

supraoptic nucleus (SON) (P. Wang et al. 2022; Zingg 2002; Althammer and Grinevich 

2017). Studies in voles identified OXT and AVP as critical mediators of pair bonding: 

interspecies variation in the patterns of expression of the oxytocin receptor (OXTR) and 

vasopressin 1a (V1aR) receptors correlates with the potential for pair-bonding between 

closely related vole species (C S Carter, DeVries, and Getz 1995; Winslow, Shapiro, et al. 

1993; Miranda M Lim and Young 2006). Consistently, pharmacologic inhibition of OXT and 

AVP signaling via their respective cognate receptors disrupts pair bonding, while exogenous 

administration of these hormones promotes pair bond formation without mating (Z. Wang 

et al. 1998; Winslow, Shapiro, et al. 1993; Winslow, Hastings, et al. 1993; Insel et al. 1998; 

C Sue Carter et al. 2008; M M Lim, Hammock, and Young 2004; Y. Liu, Curtis, and Wang 

2001; Cho et al. 1999; Insel et al. 1995; 1998; Winslow, Shapiro, et al. 1993; Winslow, 

Hastings, et al. 1993; C Sue Carter et al. 2008). Rigorous mechanistic studies of neuronal 

and circuit function often necessitate animal models. However, the expense of maintaining 

laboratory animals until aging timepoints has contributed to relatively few studies of OXT 

and AVP in aged animals or in the context of aging. The effects of aging on OXT and AVP 

systems have been studied primarily in humans and rats, and we therefore initially focus 

on studies from these species in this section (Stewart and Finger 2021; Wierda et al. 1991; 

Arsenijevic et al. 1995).

In humans, OXT and AVP cell numbers in the PVN are relatively stable throughout aging 

(Wierda et al. 1991; Stewart and Finger 2021). However, the sex difference in AVP cells 

in SON, initially greater in males than in females, is lost with age; as postmenopausal 

women actually show an increase in AVP cells in the SON (Ishunina et al. 1999). Further 

examination of such sex- and age-dependent changes in OXT and AVP have largely been 

limited to measuring peripheral levels of these peptides due to the limited capability for 

invasive research in human studies of aging. Peripheral levels reveal valuable information 

despite imperfectly reflecting central activity (Tabak et al. 2023). Does aging have an effect 

on peripheral OXT and AVP levels in humans? One study examining effects of age on 

plasma levels of these peptides found that young women have the highest plasma levels of 

OXT, and older men the lowest, with no significant effect of age (Plasencia et al. 2019). 

In contrast, plasma AVP rises with age in both sexes, which do not differ from each other 

(Plasencia et al. 2019). Age-related increase in AVP were also found in urine samples from 

older adults at risk of dehydration (Reyes et al. 2014). These patterns contrast somewhat 

with the hypothalamic patterns described above in the lack of a sex difference in young 

people, but are consistent in finding a rise in AVP in older women (Ishunina et al. 1999).

In parallel, work has also sought to determine if plasma OXT and AVP are associated 

with social and non-social cognition and affective processes in aging populations. Higher 

AVP levels have been linked to higher attachment anxiety, assessed by standardized scales 

measuring the experience in close relationships (Plasencia et al. 2019). Plasma OXT in 

humans of 65-90 years of age was positively associated with experience of adverse events, 

but diminished stress, in securely attached participants (Emeny et al. 2015). In healthy older 

men (55-95 years of age), higher plasma OXT was associated with lower ability to identify 

emotion, with this relationship mediated by non-social cognitive abilities, while plasma AVP 

was not related to emotion identification (Polk et al. 2022). Both plasma OXT and AVP 
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were negatively correlated with “crystallized cognition”, i.e. semantic knowledge from past 

experiences (Polk et al. 2022). In contrast, in older Japanese women (on average, 76.2 ± 

6.91 years), serum OXT was positively correlated with performance on a logical memory 

task. Seven years later, the serum OXT from the first timepoint was still positively correlated 

with logical memory at the second timepoint, although the overall levels of OXT were 

significantly lower (Kunitake et al. 2023).

While interesting and suggestive, the above studies do not inform causal mechanisms 

relating OXT, aging, and cognition. Such a causal role has been interrogated through 

intranasal administration of OXT in human subjects. Many of these trials contain a younger 

adult comparison group, as well as placebo controls for OXT (P. Liu et al. 2022; Lin et al. 

2022; Frazier et al. 2021). These studies often examine the areas of the brain regarded as 

the “salience network”, a functional connectivity network described primarily in humans and 

other primates, consisting of nodes in the anterior insula, anterior cingulate cortex, striatum, 

hypothalamus, PAG, and amygdala (Seeley et al. 2007). Intrinsic functional connectivity 

is a measure of BOLD signal that is taken when an individual is in a resting-state, and 

which reflects a functional relationship between brain regions (Greicius et al. 2003). This 

network of brain regions coactivates in response to social contexts and stimuli, among 

other experimental tasks and conditions (Seeley et al. 2007). The subocortical regions above 

heavily overlap with brain areas implicated in the social behavior network, a collection 

of brain regions identified across diverse species that is tied to various social decision-

making and behavioral outputs (Tremblay, Sharika, and Platt 2017; Prounis and Ophir 2020; 

Newman 1999). All areas comprising the salience and social behavior network are expected 

to be affected by OXT and/or AVP (P. Liu et al. 2022; Frazier et al. 2021). Intranasal OXT 

reduced connectivity between the ventral salience network and the left amygdala, but only in 

older adults (71.12 ± 5.25 years) (P. Liu et al. 2022). However, OXT did not affect amygdala 

activity, or ratings of face trustworthiness, in older adults (Lin et al. 2022). In response 

to a breach of trust, OXT treatment modulated activity in the left superior temporal gyrus 

(Frazier et al. 2021).

Consistent with an important influence of age or context in mediating the effects of OXT, 

older men in an OXT treatment group showed improved emotion recognition (Campbell et 

al. 2014). It is notable that OXT also improved the ability of older men in a theory of mind 

task (testing the ability to perceive others’ mental states and intentions), when given minimal 

information, but not in women and not in men when given additional context (Grainger et 

al. 2018). These results suggest that OXT may be most effective in sensitized situations. 

Thus, the effects of OXT treatment on the social salience network and related psychological 

constructs such as trust, remain unclear in relationship to age and require further study.

While little is known about OXT and AVP during aging, even less is known about the effects 

of aging on OXTR and V1aR in humans and other species, although both are widespread 

throughout the mammalian brain (Loup et al. 1991). Aged male Sprague-Dawley rats show 

lower OXTR binding in the head of the caudate-putamen, the olfactory tubercle, and the 

ventromedial nucleus of the hypothalamus (Arsenijevic et al. 1995). A recent study in 

prairie voles also examined regional differences in OXTR signaling with age and showed 

age-related increases in ligand binding in the caudate-putamen in aging males, in contrast to 
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the findings in rats (Kenkel et al. 2019a). Such species differences in age-dependent receptor 

expression may provide insight into mechanisms underlying changes in attachment-specific 

behavior with age.

The relationship between aging and OXTR and V1aR expression and function thus 

represents an important gap in the literature. One predominant theory suggests that social 

bonds promote healthy aging through buffering of the physiological response to social 

stressors, like isolation (Holt-Lunstad, Smith, and Layton 2010). Given both its role in 

social bonding, as well as its function in suppressing hypothalamic-pituitary-adrenal (HPA) 

axis activity (Peen, Duque-Wilckens, and Trainor 2021), OXT may play a critical role in 

the mechanism linking social bonds to healthy aging. Complementary genetic, molecular, 

and pharmacological manipulations in prairie voles that impact neuromodulator systems 

throughout pre- and post-natal development and into adulthood will provide essential 

mechanistic insight into the human data presented that suggests an ongoing and evolving 

role for neuroendocrine systems with age.

3. Cognitive processes underlying bonding are impacted by aging

The oxytocinergic and vasopressinergic systems described here act across diverse neural 

circuits to regulate various cognitive and affective processes important of social behavior. 

The studies in prairie voles described above suggest that aging affects aspects of 

social behavior and thus may impact underlying cognitive processes important for the 

demonstration of pair bonding. The cognitive systems that support pair bonding may show 

particular vulnerability to the process of aging, thus providing a sensitive read-out of age-

related change. However, there are currently substantial gaps in our understanding of how 

the cognitive systems supporting pair bonding evolve with age in voles. We aim to highlight 

potential avenues towards filling these gaps and the relevance of specific cognitive systems 

to age-related social behavior. While multiple sensory, affective, and cognitive processes 

are thought to be required for pair bonding, we focus the discussion on those related to 

memory, reward, and valence processing as the underlying circuitry has been implicated 

in both healthy and pathological age across species (Walum and Young 2018; Samson and 

Barnes 2013)

3.1 Memory systems supporting pair bonding

Memory function and the underlying medial temporal circuitry are perhaps the most 

extensively studied systems with regards to age-related impacts on cognition, primarily 

because of their relevance to Alzheimer’s disease, the most prevalent age-related cognitive 

disorder (Buckner 2004). With healthy aging in humans, there is variability in the degree of 

memory dysfunction with age and changes are mild in the absence of pathological processes 

(Wilson et al. 2020). Episodic memory refers to an individual’s recollection of a particular 

event in place and time and particularly impacts spatial memory and navigation (Leal and 

Yassa 2015). Across species advanced age leads to deficits in episodic and working memory, 

with particular impairments in spatial memory (Gracian et al. 2013; Kubo-Kawai and 

Kawai 2007; Samson and Barnes 2013; Leal and Yassa 2015). Such deficits may implicate 

changes in the underlying circuitry, including medial temporal circuits, the hippocampus and 
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projections from entorhinal, parahippocampal, and perirhinal cortices with age (Leal and 

Yassa 2015). Loss of plasticity in hippocampal circuits as well as selective vulnerability of 

these regions is associated with Alzheimer’s disease (reviewed in Samson and Barnes 2013).

Age-related impacts on memory systems are also linked to the strength of social bonds 

in humans (Zahodne et al. 2019; Holwerda et al. 2014; Kuiper et al. 2015; H. Liu et 

al. 2020). Both structure and quality (based on contact, perceived support, and strain) of 

social relations are correlated with baseline memory performance in older adults (Zahodne 

et al. 2019). In contrast, only social structure (being married or having frequent contact 

with friends) is independently associated with subsequent slower memory decline with 

age (Zahodne et al. 2019). Social isolation or the loss of social bonds are independent, 

significant risk factors for dementia (Holwerda et al. 2014; Kuiper et al. 2015; H. Liu et al. 

2020). Functional networks comprised of cortical and limbic nodes that support processing 

of social stimuli and learning, such as the default mode (DMN) and salience networks, are 

especially vulnerable to cognitive aging and particularly impacted by the neuropathology 

of Alzheimer’s and other neurodegenerative diseases (Spreng et al. 2020; Buckner 2004). 

Though the underlying circuitry for memory function is conserved in mammals, including 

prairie voles, a mechanistic understanding of these effects is lacking.

The development of a partner-specific memory during pair bond formation is thought to be 

critical for bonding behaviors (Ophir 2017; Ophir et al. 2012; Walum and Young 2018). 

Much of the data from prairie voles examining behavior related to memory function focuses 

on spatial navigation and its relationship to mating strategy (Ophir 2017). Studies have 

consistently found that male prairie voles rely heavily on memory systems for sexual 

decision-making, as males must not only recognize and remember their partner consistently, 

but must recognize non-partner females and intruder males in order to defend their territory 

and guard their mate (Ophir 2017). Male fidelity is therefore thought to depend on the need 

to balance the demands of mate guarding with the reproductive value of multiple mates 

(Emlen and Oring 1977). Lower levels of V1aR in regions of a spatial memory circuit 

that includes retrosplenial cortex and laterodorsal thalamus in males correlate with reduced 

fidelity, greater rates of intrusions into other male territories, and poorer mate guarding 

(Ophir, Wolff, and Phelps 2008; Okhovat et al. 2015). Retrosplenial cortex, as part of larger 

functional networks like the DMN, is a region of the brain that, in rats as well as in 

humans, has been linked to variability in spatial memory function with age (Ash et al. 2016; 

Andrews-Hanna et al. 2007). In addition to such observations implicating region-specific 

V1aR expression in fidelity, expression patterns of OXTR within the hippocampus also 

predict the use of monogamous or non-monogamous strategies in a sex-dependent manner 

(Ophir et al. 2012; Rice et al. 2017; Ophir 2017).

Though no studies to date have examined age-related changes in memory function in voles, 

a recent study found altered dendritic morphology in the hippocampal dentate gyrus in 

one year old male prairie voles compared to young adults independent of environmental 

enrichment (Akinbo et al. 2022). While this study is suggestive, the impacts of altered 

anatomy or changes to receptor expression in hippocampal or other circuits on memory-

based cognition with age in the context of pair bonding has yet to be determined.
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3.2 Valence processing and reward in pair bond formation

The development of rewarding associations towards a partner is thought to be critical to 

the formation of a pair bond following mating, driving partner-selective motivated behaviors 

(Lieberwirth and Wang 2016; Vahaba et al. 2022). As a partner-reward association forms, so 

do negatively valenced associations towards novel potential mates, resulting in rejection of 

non-partners. Human studies of loneliness find reduced reward signaling in mesolimbic 

systems with social cues (D’Agostino, Kattan, and Canli 2019; Inagaki et al. 2016) 

and animal studies have consistently identified differences in subcortical reward systems 

associated with social isolation (Cacioppo and Hawkley 2009).

Across species, the ventromedial prefrontal cortex and striatal nucleus accumbens are 

thought to mediate social reward behaviors (Lebreton 2009). Age-related changes in 

prefrontal cortex (PFC) have mostly been studied in the realm of attention and reduced 

processing speed. With age, declines in the volume and function of regions of PFC affect 

not only executive functions like attention, but valence systems regulating reward learning 

and aversion (Samson and Barnes 2013). While the PFC may undergo the largest age-related 

volumetric changes in adulthood relative to other brain regions (Raz et al. 2004), striatal 

volumes decline by about 3% per decade (Raz et al. 2003). Further, frontal white matter 

tracts decline in density and accumulate lesions with age, which may also affect memory, 

executive, and attentional cognitive processes involving frontostriatal networks (Hedden and 

Gabrieli 2004). Beyond volume loss, changes to neurotransmitter levels in the striatum occur 

with age. Across species, substantia nigra and ventral tegmental area (VTA) dopaminergic 

neurons degenerate with age, resulting in a decline in dopamine (DA) (Bäckman et al. 

2006). fMRI studies have shown that changes to phasic dopaminergic signals within the 

striatum and decreased BOLD activity in ventromedial PFC may underlie deficits in reward 

prediction learning in older adults (B. Eppinger et al. 2013). These studies find that while 

learning from aversive outcomes and subsequent avoidance is intact in older adults, they 

perform worse when learning to approach reward (Ben Eppinger and Kray 2011; B. 

Eppinger et al. 2013).

In prairie voles, the process of reward learning towards the partner is initiated with mating 

and appears to be dependent on frontostriatal function. Mating stimulates ventrotegmental 

area (VTA) neurons to release DA in the ventral striatum, specifically nucleus accumbens 

(NAc), resulting in a 51% increase in extracellular DA in the NAc of females (Gingrich 

et al. 2000). DA is also released with mating in the medial prefrontal cortex (mPFC) 

(Ross et al. 2009) and mating may increase dopamine turnover in males (Aragona et al. 

2003; Valera-Marín et al. 2021). Functional connectivity between the mPFC and the NAc 

is altered post-mating and dynamic activity across these frontostriatal circuits enhances 

partner preference formation in response to mating in female prairie voles (Amadei et al. 

2017; López-Gutiérrez et al. 2021). Increased DA signaling through administration of a 

dopamine agonist in the NAc facilitates partner preference formation in the absence of 

mating (Aragona et al. 2003; Williams, Catania, and Carter 1992). The interaction between 

OXT and DA is also important for pair bond formation. Blocking either OXTR or dopamine 

receptor D2 (DRD2) in the NAc prevents mating-induced bond formation (Y. Liu and 

Wang 2003). OXT and its interaction with dopaminergic signaling in the striatum may 
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thus be important for facilitating the reward to social contact. However, it is unknown how 

dopaminergic signaling in the NAc as well as functional connectivity between the NAc and 

other cortical and limbic regions may change with age. Given the role for dopaminergic and 

other neuromodulatory systems in the NAc and other regions for pair bonding, age related 

changes to baseline function of these neuromodulator systems may impact the dynamics of 

bonding in late age.

While caution is warranted when translating age-related behavioral changes from rodents 

to humans, we present evidence for common cognitive systems impacted by age across 

species as a guide for initial investigations. Cognition specifically relevant to social behavior 

may deteriorate due to deficits in distinct component processes, such as sensory processing, 

memory, valence processing, or motivated behavior. Alternatively, age-related insults may 

occur in cortical and subcortical regions that integrate multiple inputs important for the 

orientation towards social information, the enhanced salience of social cues, or generating 

context-appropriate social behavior. Future experiments examining changes to behavior 

in other non-social paradigms such as food or other reward- or fear-motivated learning 

will be helpful to determine whether the cognitive domains of memory and valence 

processing, including approach and aversion, as well as other cognitive processes are altered 

regardless of their involvement in social attachment behavior. Should these capacities show 

changes with age, but conservation in the context of intact pair bonds, this may reveal 

mechanisms for compensation leading to possible cognitive and systemic resilience to aging. 

Such plasticity has been implicated in the circuit dependent mechanisms required for the 

formation of the bond (Walum and Young 2018; Hiura and Donaldson 2022), making the 

pair bond a sensitive and potentially flexible read-out of age-related vulnerability.

4. Vulnerability and resilience: regulation of physiology in times of stress

Certain individuals succumb to the effects of age-related disease and environmental 

stressors, while others appear to be protected from these effects. Identifying the factors that 

contribute to vulnerability or resilience to pathological aging represents a key motivation 

in understanding the neurobiology of aging. There is a clear detriment to human health 

with loss of close relationships, social isolation and loneliness, while positive marital 

relationships and social interactions influence health in both men and women, including 

providing benefits for immune functioning, cardiovascular variables, stress reactivity, mood, 

and longevity (Grewen et al. 2003; Kiecolt-Glaser and Newton 2001; Lewis et al. 2017; 

Robles et al. 2014). A rich literature has focused on the potential of the loss or maintenance 

of social attachments to moderate the impact of aging in humans. We now turn to deficits 

associated with pair disruption and mechanisms that are implicated in pair-bond related 

resilience.

4.1 Consequence of bond disruption and isolation

The insults to attachment systems that commonly occur with aging include grief or 

bereavement states following the disruption or loss of a bond, social isolation, and loneliness 

(Brewster 1950; Shear and Shair 2005; Ong, Uchino, and Wethington 2016). Across species, 

isolation from social cohorts is often experienced as stressful (Cacioppo and Hawkley 2009; 
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Grippo et al. 2007; Zelikowsky et al. 2018; Mumtaz et al. 2018). In humans, grief, and 

especially grief due to the loss of a bonded partner, is a risk factor for poor health in 

aging adults (Sullivan and Fenelon 2014). Data across numerous studies reveal a clear 

effect of disrupted attachment relationships on all-cause mortality, cardiovascular health, 

metabolic function, and dementia in humans (Ong, Uchino, and Wethington 2016; Valtorta 

et al. 2016; Tomaka, Thompson, and Palacios 2006; Troxel 2005; H. Liu et al. 2020; 

Roberson et al. 2018). The disruption of a marital relationship, low social interaction, and 

increased loneliness are independently and significantly associated with incident dementia, 

with relative risks comparable to other established risk factors, such as low education, 

inactivity, and late-life depression (H. Liu et al. 2020; Kuiper et al. 2015).

Though loneliness and social isolation are correlated and often co-exist, loneliness is the 

psychological state related to the perceived lack of attachments and isolation, regardless 

of objective social contact (Vitale and Smith 2022). Loneliness is especially relevant 

to understanding the impacts of attachment on health as it differentiates the quality of 

social connections from the number of such contacts or degree of social connectivity, 

all of which have independently been linked to age-related processes and adverse health 

outcomes (Holwerda et al. 2014). It is unclear whether loneliness differentially engages 

mechanisms related to cognitive and physiological aging compared to social isolation, and 

thus results in distinct risk patterns of age-related disease. In studies assessing structural 

brain changes, loneliness has been associated with smaller gray matter volumes of the 

amygdala, hippocampus, and entorhinal cortex, and reduced white matter density in cortical 

regions related to social cognition (Düzel et al. 2019; Nakagawa et al. 2015). Loneliness 

has also been associated with altered connectivity across functional networks like the DMN 

(Spreng et al. 2020). However, the mechanism by which these social contexts differentially 

influence neural circuits and their vulnerability to age related processes is unclear. Voles and 

other species that form social bonds provide critical models to examine the neurobiology 

of grief and loneliness as the capacity for attachment informs the experience of such states 

(Vitale and Smith 2022).

In the prairie vole, loss of a bonded mate leads to anxiety- or depression-like behaviors, 

recapitulating components of the grief response in humans (Bales and Rogers 2022; Grippo 

et al. 2021a; Bosch et al. 2009; R. Sun et al. 2022). Bond disruption in adult male prairie 

voles following four weeks of separation elicits reduced time in the open arms of an elevated 

plus maze and increased immobility in a forced swim test (P. Sun et al. 2014). The response 

to acute stressor conditions, such as restraint stress or forced swim assays, has also been 

examined in voles following bond disruption. Pair bonded male and female prairie voles 

separated from their partner display increased passive coping behavior following acute 

stressors compared to intact pairs (Bosch et al. 2009; 2016b; Grippo, Cushing, and Carter 

2007; McNeal et al. 2014). These behavioral changes have been linked to signaling through 

the oxytocinergic system. Separation from a bonded mate leads to reduced OXT expression 

in the PVN and reduced OXTR binding in the NAc shell. OXT infusion in the NAc, in 

contrast, reduces the stress response to separation (Bosch et al. 2016a). Studies of bond 

disruption in voles have relevance for our understanding of grief and pathological affective 

states, like depression and complicated bereavement, that are associated with late-life loss of 

attachments.
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Studies in voles have also examined the effects of social isolation, unrelated to bond 

disruption, on behavioral and physiological outcomes in adult animals (Grippo et al. 2007; 

McNeal et al. 2014; Grippo, Cushing, and Carter 2007). Isolation from same-sex siblings 

in adult voles results in anhedonia, indicated by reduced sucrose intake and preference, and 

elevated activity in PVN and plasma OXT relative to cohoused animals (Grippo, Cushing, 

and Carter 2007; Grippo et al. 2007). Interestingly, chronic isolation in adult male voles 

has also been associated with increased reproductive behavior related to polygyny, a male 

having more than one mate, and physiological changes in gonadal hormones that may reflect 

adaptive changes to isolation stress (Perry, Carter, and Cushing 2016; Mabry et al. 2011). 

Such changes suggest an inherent plasticity in pair bond circuitry to support multiple mating 

strategies in response to environmental conditions (Streatfeild et al. 2011). Whether such 

flexibility is maintained with age and how the underlying molecular and circuit mechanisms 

evolve with age may reveal important aspects of age-related resilience.

4.2 Protective aspects of sustained pair bonds

Studies examining the impacts of social relationships on healthy aging in humans 

consistently demonstrate the benefits of intact, close social relationships on diverse health 

outcomes (Robles 2014; Bowlby and Bowlby 1982; O’Connor and Rutter 2000; Rutter 

et al. 1999; Holt-Lunstad, Smith, and Layton 2010; House, Umberson, and Landis 

1988). In humans, stronger social relationships, measured by relationship quality, confer 

a survivorship advantage up to 50% (Holt-Lunstad, Smith, and Layton 2010), similar 

in effect size to interventions related to diet and exercise (Robles 2014). Relationship 

quality and gender modulate the effect of marriage on health outcomes, which includes 

increased risk of cardiovascular disease, cancer and respiratory diseases, particularly in 

males (Dhindsa et al. 2020; Kiecolt-Glaser and Wilson 2017; Steptoe et al. 2004). Positive 

marital relationships and social bonds influence health in both men and women, providing 

benefits for immune function, stress reactivity, as well as mood (Grewen et al. 2003; 

Kiecolt-Glaser and Wilson 2017; Kiecolt-Glaser and Newton 2001; Robles 2014; Verstaen 

et al. 2020; Uchino 2006; Haase et al. 2016). Most of the literature on human bonds and 

their effect on health outcomes focuses on marital relationships, although friendships also 

independently contribute to healthy cognitive aging (Zahodne et al. 2019). Prairie voles 

provide a unique model by which to assess the specific protective effects of pair bonding on 

physiological aging relative to other measures of social health.

Pair bonding in prairie voles results in resilience to social and environmental stress (Grippo 

et al. 2021b; Grippo, Cushing, and Carter 2007; McNeal et al. 2017; Bosch et al. 2009). 

Prairie voles demonstrate reduced passive stress coping, reduced anxiety and depressive-like 

behaviors, and improved peripheral markers of stress when compared to animals that have 

been isolated (Grippo et al. 2021b; Grippo, Cushing, and Carter 2007; McNeal et al. 2017; 

Bosch et al. 2009). Examination of the protective effects of sustained pair bonds compared 

to isolation with age using long term pairs up to 54 months of age revealed that, as with 

younger animals, aged pair bonded animals are protected from short-term stress reactivity 

in response to an acute stressor compared to isolated animals (Grippo et al. 2021b). Aspects 

of the dyadic or reciprocal interactions in a bonded condition may also be important to 

understanding resilience with age as bonded voles engage in “social buffering” behaviors 
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(Lieberwirth and Wang 2016; Peen, Duque-Wilckens, and Trainor 2021). The presence 

of a bonded partner following an immobilization stress reduces anxiety-like behaviors 

when compared to animals that recover alone (Donovan, Liu, and Wang 2018). Peer 

social relationships may also provide some aspect of social buffering or resilience to the 

effects of environmental stress. Females that remain in social pairing with a same-sex 

conspecific show resilience to acute stress compared to isolated animals (Grippo, Cushing, 

and Carter 2007). Social pairing protects against the development of depressive and anxiety-

like behaviors seen in response to isolation as well as to acute stressors such as a forced 

swim test and tail suspension test (Grippo, Cushing, and Carter 2007; McNeal et al. 2017). 

However, this effect has not been evaluated in comparison to pair bonding in the context of 

aging. Such study designs that include a social housing condition will be important in order 

to evaluate protective effects specific to the context of opposite sex pair bonds.

There is significant variability across species in individual susceptibility to age-related 

changes and pathology which may be accounted for by differences in inherent cognitive 

reserve (Stern 2012; Wilson et al. 2020). Beyond measures of reserve related to quantitative 

measures of brain volume, cognitive reserve refers to the functional coping of the brain to 

age-related insults (Stern 2012). Social bonding in prairie voles attenuates many of the stress 

responsive systems described above. These include responses that are potential indices of 

depression-like behaviors (such as reduced passive stress coping or learned helplessness in a 

forced swim task), altered production of neuromodulators, and, as described below, reduced 

HPA axis reactivity and autonomic system imbalance (Bosch et al. 2009; Grippo, Cushing, 

and Carter 2007; McNeal et al. 2014; P. Sun et al. 2014). Sustained social attachments may 

act as a buffer against negative consequences of stressful events by inducing mechanisms 

related to cognitive reserve and resilience.

4.3 Social stress and glucocorticoid and CRF system regulation

Activity across the HPA axis, specifically signaling through corticotropin releasing factor 

(CRF) and the glucocorticoid system, is frequently implicated in mediating the effects of 

social stressors, as well as adverse environmental agents (McEwen et al. 2015; Sapolsky et 

al. 1987a; Bosch et al. 2016b). The brain CRF system, through action on both CRF receptors 

type 1 (CRFR1) and type 2 (CRFR2), is a primary regulator of the HPA axis (Vale et al. 

1981; Aguilera and Liu 2012). Studies across species identify the CRF and glucocorticoid 

systems as important regulators of the response to social stress at various developmental 

time points (Meaney 2001; Sapolsky et al. 1987a; Avitsur, Stark, and Sheridan 2001; 

Vitale and Smith 2022). Studies in humans and other species report increased hypothalamic 

CRF expression and compensatory CRFR1 downregulation during aging (Scaccianoce, Di 

Sciullo, and Angelucci 1990; Tizabi, Aguilera, and Gilad 1992; Ceccatelli, Calzá, and 

Giardino 1996; Aguilera 2011a). However, little is known about age-related CRF effects on 

circuits for pair bonding or their interaction with other neuromodulators.

In voles, the CRF system is intricately tied to attachment behavior as it regulates pair bond 

formation and mediates the response to partner loss. Central activation of CRF pathways 

or local infusion in the NAc facilitates pair bond formation in male prairie voles, even 

in the absence of mating (Bosch et al. 2009; DeVries 2002). Following acute stress in 
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the form of a forced swim test, infusion of CRFR2 antagonist into the NAc reduces the 

effects of partner loss on passive stress coping (Bosch et al. 2009). Further, enhanced CRF 

signaling leads to increased depressive-like behaviors in voles (Bosch et al. 2009). The OXT 

and CRF systems also interact as CRFR2 activation in the NAc suppresses OXT release 

from the PVN, whereas blocking CRFR2 stimulates OXT release (Bosch et al. 2016b). 

Beyond the interaction between CRF and OXT, other neuromodulators, including the Kappa 

opioid system, may modulate the response of OXT to specifically mediate the aversive 

state associated with bond disruption and chronic separation (Bales and Rogers 2022). The 

interactions between the OXT, CRF and opioid systems are dynamic (Bales and Rogers 

2022), and both the function and levels of these various neuropeptides may be differentially 

impacted with age.

Downstream of CRF signaling in the brain, the HPA axis and implicated glucocorticoid 

signaling are among the most common mechanistic pathways implicated in chronic stress 

and adverse health outcomes associated with aging (McEwen et al. 2015; Sapolsky et al. 

1987b). Female prairie voles immobilized for one hour show increased levels of anxiety-like 

behavior and plasma corticosterone (CORT) if they recover alone rather than with their 

male partner (Smith and Wang 2014). In male and female voles, pairing with an opposite 

sex partner leads to a decline in serum CORT directly following introduction. However, 

pairing with a same-sex novel animal does not affect serum CORT (DeVries et al. 1995; 

DeVries, Johnson, and Carter 1997). Further, male prairie voles separated from a female 

partner but not from a male sibling demonstrate increased plasma CORT and adrenal 

hypertrophy (Bosch et al. 2009). Interestingly, these findings suggest a differentiation in 

stress mechanisms buffered by social peers vs reproductive partners. Thus, as stated above, 

comparisons to social peer groups are informative for understanding benefits specific to pair 

bonding. Most studies in voles have relied on peripheral CORT or peptide measurements. 

However, tissue- and cell-type-specific gene expression downstream of glucocorticoid 

signaling as well as expression patterns that overlap with other conserved aging and 

senescence-related changes are important for ultimately understanding the physiological 

effects of chronic stress with age.

4.4 Pair bonding effects on autonomic physiology

Aging is characterized by a gradual decline in all physiological functions, a decrease in 

repair mechanisms, and tissue specific senescence (López-Otín et al. 2013). This decline is 

partially associated with changes in autonomic regulation, in particular, responsivity of the 

autonomic nervous system (ANS) to stress (Hotta and Uchida 2010; Seals and Esler 2000). 

These changes manifest in levels of neurotransmitter, specifically adrenergic, signaling in 

peripheral organs, as well as in processing of autonomic signals centrally (Jones et al. 2001; 

Hotta and Uchida 2010). Aging also leads to alterations in the balance of parasympathetic 

and sympathetic tone. Sympathetic activity increases, despite decreased adrenergic receptor 

expression in the cardiovascular system, and parasympathetic tone decreases, which are 

linked to reduced cardiac vagal suppression of heart rate and cardiac output (Seals and Esler 

2000). These changes affect heart rate, blood pressure, and risk for cardiovascular morbidity 

(Jones et al. 2001; Seals and Esler 2000; Hotta and Uchida 2010). Heart rate variability 

(HRV), a measure of autonomic health, declines with age, a change that has been correlated 
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with various markers of cognitive function and that can be reversed by interventions that 

extend lifespan, such as caloric restriction (Stein et al. 2012; Frewen et al. 2013).

Evidence from human studies suggests that affective states associated with different social 

contexts are accompanied by distinct patterns of ANS activity (Pasquini et al. 2022; 

Quintana et al. 2012; Shahrestani et al. 2015). For example, HRV is associated with 

measures of social cognition, like emotion recognition accuracy, and decreases in the context 

of negative dyadic social interactions in humans (Quintana et al. 2012; Shahrestani et 

al. 2015). Further, activity across functional brain networks that mediate social cognition 

in humans and that map to circuitry for social behavior in animal models, such as the 

salience network, may coordinate ANS function (Pasquini et al. 2022; Seeley et al. 2007). 

The cognitive systems that may be impacted by aging, specifically memory and reward as 

described above, are also intimately tied to the regulation of physiology in response to stress 

(Ulrich-Lai and Herman 2009). Understanding these changes in the context of pair bonding 

in animal models may have bearing on the changes to broader healthspan, particularly 

cardiometabolic health, that are significantly impacted by attachment status in humans.

Pair bonding in prairie voles has been linked to improved cardiovascular function, 

specifically decreased heart rate, mean arterial blood pressure (MAP), and increased HRV 

when compared to isolated animals (Grippo et al. 2011b). Bonded voles are generally more 

aggressive towards an opposite sex intruder and exhibit increased heart rate and MAP 

(Lewis et al. 2017). Such adaptive, state- and stimulus-specific changes in ANS activity 

may be disrupted with social stress. Social isolation in male prairie voles following loss 

of a female partner results in increased heart rate, autonomic imbalance characterized by 

increased sympathetic and decreased parasympathetic drive to the heart, and elevation of 

adrenocorticotropic hormone and CORT (McNeal et al. 2014). Similar effects on heart rate 

and HRV have been seen with isolation from a same-sex conspecific (Grippo et al. 2018). 

In voles, OXT treatment prevents alterations in cardiovascular consequences and depression-

like behaviors induced by social isolation in female prairie voles (Grippo et al. 2009). OXTR 

is expressed throughout the body, in multiple organ systems that regulate cardiovascular and 

metabolic function, smooth muscle contraction, as well as fluid homeostasis and food intake 

(Quintana and Guastella 2020). The oxytocinergic system may thus mediate aspects of both 

central and peripheral changes associated with pair bonding.

Studies have primarily focused on the actions of CRF signaling and glucocorticoids in 

mediating the impacts of social buffering and bond disruption (Avitsur, Stark, and Sheridan 

2001; Bosch et al. 2009; Peen, Duque-Wilckens, and Trainor 2021). However, attachment 

has been conceptualized as both a behavioral and physiological system that dynamically 

adapts to meet the needs of the environment, resulting in centrally modulated peripheral 

processes aiming to regulate stress responses (Mikulincer and Shaver 2010; Quintana and 

Guastella 2020). Such dynamic changes to attachment relationships over the course of the 

lifespan as well as the different types of social and environmental stressors encountered 

likely engage the HPA axis and ANS regulation in different ways (McEwen et al. 2015; 

McNeal et al. 2017; Mumtaz et al. 2018; Yang et al. 2016). Social stressors may also 

have common or divergent consequences depending on when in the life course a stress 

is encountered. Early life stress has been studied in the context of juvenile and adult 
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attachment in prairie voles and other species, but may have continued effects on behavior 

and health into late age (Perkeybile, Griffin, and Bales 2013; Sailer et al. 2022). Further, 

the two physiological systems discussed here are not meant to be exhaustive, and other 

important processes, including epigenetic regulation and immune function, likely play 

important roles in the integration of social function and healthy aging (Chiou et al. 2022; 

Siracusa et al. 2022; Snyder-Mackler et al. 2016; 2019). Identifying the differential response 

to varying types of social stress as well as to other environmental and physiological stressors 

with age will be important for developing specific and effective interventions for diseases 

impacting healthspan.

5. Future directions and conclusions

As studies of social aging develop, many open questions related to pair bonding and 

attachment and their intersection with age-related health remain. Among these is the 

overarching question of how attachment behavior, both in the context of long-term 

established pair bonds as well as the formation of new pair bonds, and the underlying 

neurobiology evolves into late age. We have presented several aspects of cognitive and social 

behavioral change with age in humans and their potential correlates in voles, suggesting 

behavioral constructs that may be operationalized as readouts of aging dynamics. We 

advocate for comprehensive behavioral profiling to fully assess such cognitive domains, 

both in social and non-social contexts. Furthermore, formal lifespan analyses of socially 

monogamous and closely related polygamous species will clarify the relationship between 

mating strategy and lifespan determination.

In order to address the effects of aging on molecular mechanisms related to pair bonding, 

advances in molecular genetics, genomics, and the use of well annotated genomes for vole 

species will continue to be useful. The question of whether certain cellular and molecular 

“hallmarks of aging” are present with age in various tissues in the vole and how they are 

altered with pair bonding or mate loss is also of interest (López-Otín et al. 2013; 2023). 

One study has approached epigenetic regulation with age and pair bonding by developing 

an “epigenetic clock” or DNA methylation-based estimator in voles based on conserved 

mammalian CpGs, representing a promising approach for comparing chronological and 

biological age (Sailer et al. 2020). Further, cellular aging, as measured by oxidative damage 

and telomere degradation in peripheral blood cells in voles is associated with chronic 

isolation, and these effects are ameliorated by injection of oxytocin (Stevenson et al. 2019). 

Enrichment for conserved risk genes for age-related disease in molecular profiles from 

specific populations of neurons linked to social attachment behavior will further identify 

molecular pathways and vulnerable cell populations in which these genes act. Examining 

such conserved markers of aging in prairie voles and varying bonding contexts will allow for 

the identification of reliable predictors of social aging processes.

In addition to studies of molecular and cellular aging, altered activity across specific neural 

populations and defined circuits will be particularly relevant to understanding changes 

in behavior with age and their impacts on health. The neural circuits underlying pair 

bond behavior and their evolution in terms of activity can now be labeled and mapped, 

and the dynamics of activity therein monitored and manipulated using methods for viral 
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mediated labeling, transsynaptic tracing, calcium imaging, opto- and chemo-genetic as well 

as CRISPRa/i approaches, all of which are now feasible in voles. Further, molecular tools, 

such as Fos responsive Targeted Recombination in Active Populations (FosTRAP), allow 

the labeling of neurons active during specific behavioral contexts for later transcriptional 

and activity profiling (Guenthner et al. 2013). The recent adaptation of CRISPR-based 

approaches in voles allows us to now mechanistically examine the resilience of neural 

systems to aging processes (Berendzen et al. 2023; Horie et al. 2019). Such tools will 

identify active neuronal populations that encode bonded partner information and can be used 

to determine how the identity and function of these cells evolves over time with various 

perturbations. The response of peripheral physiological systems to stress conditions and 

where in the brain this information is encoded are also particularly open areas of study.

It is abundantly clear that our social lives influence our lifespan, as well as our health into 

late age. Fundamental to social aging are the attachments and bonds formed with others, 

close partners in particular. Among species that form such long-term, selective bonds, the 

influence of age and effects on health may be conserved, as evidence from prairie voles 

and other species suggests (Powell et al. 2022; Grippo et al. 2021a; Robles et al. 2014). 

In recent years, the call for the expansion of model systems to explore behavioral and 

physiological phenomena across the lifespan has been resounding (Henry, Grainger, and 

von Hippel 2023; Kensinger and Gutchess 2017; Snyder-Mackler et al. 2020). Prairie voles 

and other species that form relationships that endure throughout life give us a path forward 

towards understanding one of the most fundamental of human social behaviors and the 

health impacts of our bonds and losses into late life.
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Figure 1. Model illustrating potential interactions of attachment and aging.
A) Changes in neuromodulator signaling and/or cognitive function with age may influence 

the demonstration of pair bonding and related behaviors, including the response to social 

isolation or loss of a mate in late life (Leal and Yassa 2015; Kenkel et al. 2019b; Powell 

et al. 2022; Cacioppo and Hawkley 2009). B) Experiencing attachments, isolation, or other 

bonding states through mid-life and aging may contribute to resilience or vulnerability to 

age-related stress. HPA/glucocorticoid/CRF signaling and autonomic system regulation are 

implicated in the response to stress throughout the lifespan (Aguilera 2011b; Sapolsky 

et al. 1987a; Stein et al. 2012; Hotta and Uchida 2010). Central regulation of these 

processes is thought to occur partially through neuromodulator signaling (Grippo et al. 

2009; Quintana and Guastella 2020; Bosch et al. 2016b). C) Defined biological hallmarks 

of aging (López-Otín et al. 2013; 2023) may be modulated by bonding state in model 

systems. Furthermore, inter-individual variability in such cellular functions may mediate 

bonding state-dependent differences in resilience or vulnerability to age-related stressors 

and pathological processes. Experiments probing the mutual influences of sociality and 

aging will enhance our understanding of these processes and inform interventions promoting 

healthy aging.
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