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ABSTRACT OF THE DISSERTATION 

   

A Time Amplifier Assisted FDC and DTC Linearization for Digital Fractional-N PLLs 

by 

Eslam Mohamed Sayed Ali Helal  

Doctor of Philosophy in Electrical Engineering (Electronic Circuits and Systems) 

University of California San Diego, 2022 

Professor Ian A. Galton, Chair 

 

Phase-locked loops (PLLs) are critical components in modern electronics 

communication systems, where they are used to synthesize local oscillator signals for 

modulation and demodulation in wireless transceivers. They are also used to clock digital-to-

analog converters (DACs), analog-to-digital converters (ADCs), and digital processors.  

Most PLLs incorporate either analog filters and voltage-controlled oscillators (VCOs) 

or digital filters and digitally-controlled oscillators (DCOs). The former are called analog PLLs 
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and the latter are called digital PLLs. To date, analog PLLs have the best phase error 

performance, but digital PLLs have the lowest circuit area and are more compatible with highly-

scaled CMOS integrated circuit (IC) technology. Thus, improving the performance of digital 

PLLs has been the subject of intensive research for many years. 

The first chapter of this dissertation presents time-difference amplifier (TA) and its 

application to a digital fractional-N phase-locked loop (PLL). The TA includes a delay-

averaging linearity enhancement technique and the PLL is based on an improved dual-mode 

ring oscillator (DMRO) delta-sigma (ΔΣ) frequency-to-digital converter (FDC). The TA 

mitigates contributions to the PLL’s phase noise from DMRO noise. The paper also presents a 

delay-free asynchronous DMRO phase sampling scheme, and the first experimental 

demonstration of a recently-proposed ΔΣ FDC digital gain calibration technique.  

The second chapter of this dissertation presents an entirely digital background 

calibration technique that adaptively measures and cancels error resulting from DTC 

component mismatches that would otherwise degrade the phase noise of digital PLLs with 

DTC-based quantization noise cancellation. This technique indirectly addresses the well-known 

DTC nonlinearity problem because it facilitates the use of inherently-linear DTCs comprised 

of cascades of 1-bit DTC stages. Such DTCs tend to introduce excessive error from component 

mismatches, which has heretofore hindered their application to low-jitter PLLs. Published 

digital predistortion techniques provide an alternate means of mitigating DTC nonlinearity, but 

their convergence rates are at least an order of magnitude slower than that of the presented 

technique. It also presents a rigorous mathematical analysis that precisely quantifies the 
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calibration technique’s settling performance and provides conditions under which it is 

unconditionally stable.  
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CHAPTER 1  

A TIME AMPLIFIER ASSISTED FREQUENCY-TO-DIGITAL 

CONVERTER BASED DIGITAL FRACTIONAL-N PLL 

 

Abstract— This paper presents a wide input-range delay chain based time amplifier 

(TA) and its application to a 6.5 GHz digital fractional-N phase-locked loop (PLL). The TA 

includes a delay-averaging linearity enhancement technique and the PLL is based on an 

improved dual-mode ring oscillator (DMRO) delta-sigma (ΔΣ) frequency-to-digital converter 

(FDC). The TA mitigates contributions to the PLL’s phase noise from DMRO flicker noise, 

which would otherwise degrade the PLL’s in-band phase noise, and from ΔΣ FDC quantization 

error, which would otherwise degrade the PLL’s phase noise at high bandwidth settings. The 

paper also presents a delay-free asynchronous DMRO phase sampling scheme, and the first 

experimental demonstration of a recently-proposed ΔΣ FDC digital gain calibration technique. 

The TA assisted PLL achieves a random jitter of 145 fsrms, a total jitter that ranges from 151 to 

270 fsrms as a result of fractional spurs, and a worst-case fractional spur of –49 dBc without 

requiring nonlinearity calibration. 

 
Manuscript received October 17, 2020; revised December 8, 2020 and December 22, 2020; accepted December 

23, 2020. Date of publication February 2, 2021; date of current version August 26, 2021. This article was 

approved by Associate Editor Pietro Andreani. This work was supported by the National Science Foundation 

under Award 1617545. (Corresponding author: Eslam Helal.) 

The authors are with the Electrical and Computer Engineering Department, University of California at San 

Diego, San Diego, CA 92092-0407 USA (e-mail: ehelal@ucsd.edu). 

Color versions of one or more figures in this article are available at https://doi.org/10.1109/JSSC.2020.3048650. 

Digital Object Identifier 10.1109/JSSC.2020.3048650  
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I. INTRODUCTION 

Many types of phase-locked loops (PLLs) use a phase-frequency detector (PFD) with 

subsequent circuitry to measure the time differences between corresponding edges of the 

reference signal and a divided-down version of the PLL output signal. In such PLLs, using a 

time amplifier (TA) to amplify the edge time differences prior to the PFD and subsequently 

dividing the measured time differences by the gain of the TA attenuates the noise introduced 

by the measurement process without otherwise changing the loop dynamics. 

Several TAs have been proposed over the last two decades [1]–[6], yet most suffer from 

significant drawbacks such as narrow input range [1]–[4], gain and input range dependency on 

technology parameters [1]–[4], high nonlinearity [1]–[5], a tradeoff between gain and input 

range [1]–[3], and a tradeoff between linear input range and noise [4]. The TA presented in [6] 

avoids most of these issues, but its relatively complicated implementation limits its noise 

performance which reduces its suitability for high-performance PLLs. 

A low-noise inverter based delay chain TA with an analog delay-averaging nonlinearity 

mitigation technique is presented in this paper. The gain of the TA is nearly constant across a 

wide input range and is relatively insensitive to process, voltage and temperature (PVT) 

variations, as it depends on a ratio of inverter delays. The TA’s principle of operation is similar 

to that of the TA presented in [6], but its implementation is simpler and it achieves better noise 

performance.  

The proposed TA is demonstrated in the context of a 6.5 GHz digital fractional-N PLL 

based on a dual-mode ring oscillator (DMRO) delta-sigma (ΔΣ) frequency-to-digital converter 

(FDC) [7]–[9]. As demonstrated in [7], this type of PLL can achieve good fractional spur 
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performance, but the DMRO’s 1/f 3 phase noise component degrades the PLL’s in-band phase 

noise, and ΔΣ FDC quantization error limits the PLL’s performance at high bandwidth settings. 

The PLL presented in this paper applies the proposed TA to overcome these issues by 

attenuating both noise sources by approximately 16 dB. Additionally, it incorporates and is the 

first experimental demonstration of several ΔΣ FDC improvements proposed in [9]. These 

improvements include an all-digital background gain calibration technique that simplifies the 

DMRO design, and various architecture changes that relax the ΔΣ FDC’s timing constraints. A 

modified delay-free asynchronous DMRO phase sampling scheme is also incorporated in the 

PLL to further relax the ΔΣ FDC’s timing constraints. 

II. PLL HIGH-LEVEL ARCHITECTURE 

 PLL Overview 

A high-level block diagram of the PLL is shown in Fig. 1(a), where vref(t) and vPLL(t) 

are the output waveforms of the reference oscillator and the PLL, respectively. Ideally, vPLL(t) 

is periodic with frequency fPLL = 2(N + α)fref, where fref is the reference frequency, N is a positive 

integer, and α is a fractional frequency offset that ranges from –½ to ½.  

The PLL consists of a TA-assisted DMRO ΔΣ FDC, a digital loop controller (DLC) 

with quantization noise cancellation (QNC), a digitally-controlled oscillator (DCO), and a 

divide-by-2 block with output vdiv2(t). The ΔΣ FDC generates two fref-rate digital sequences, 

y[n] and –êq[n]. Ideally, 

 
PLL

[ ] [ ] [ ] [ 1] [ 2],2q q qy nn n e n nee e − − +− −= + −  (1) 
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where ePLL[n] is a measure of the PLL’s average frequency error over the nth reference period 

and eq[n] is ΔΣ FDC quantization error [8], [9]. The sequence êq[n] is an estimate of eq[n], and 

it is used to cancel most of the contribution of eq[n] prior to the digital loop filter (DLF) [7]–

[12]. 

Fig. 1(a) and (1) imply that the DLF input, p[n], is a measure of the PLL average phase 

error over the nth reference period plus a first-order highpass shaped version of the residual ΔΣ 

FDC quantization error, eq[n] – êq[n]. The p[n] sequence is lowpass filtered by the DLF, the 

output of which controls the DCO. 

Fig. 1(b) shows a simplified block diagram of the TA-assisted DMRO ΔΣ FDC. It 

consists of a PFD, a DMRO, a digital ring phase calculator (RPC), a multi-modulus divider 

(MMD), and a TA. The signal vsamp(t), which is an inverted version of vref(t), is used within the 

RPC to sample the DMRO phase each reference period. The signal processing details of the 

RPC including the gain calibration technique are shown in Fig. 1(c) [9]. 

 TA-Assisted DMRO ΔΣ FDC Behavior 

An analysis similar to that presented in [8] but modified to include the TA and the 

improvements presented in [9] yields the ΔΣ FDC behavioral model shown in Fig. 2. In this 

model, JTA[n] is the TA’s output jitter during the nth reference period, θPLL(t), θref(t), and 

θDMRO(t) are the respective phase errors in cycles of vPLL(t), vref(t), and the DMRO, τn, tn, ρn and 

γn, for n = 0, 1, 2, …, are the respective times of the nth rising edges of vdiv(t), vref(t), vTA(t) and 

vsamp(t), Tref = 1/fref, and TPLL = 1/fPLL.2 The behavioral model in Fig. 2 does not include error 

 
2 By definition, θref(t) is the phase error at time t of vref(t) in units of cycles of vref(t). Accordingly, Trefθref(t) has units 

of seconds and it represents the reference oscillator’s absolute jitter. Similarly, θPLL(t) represents the phase error at 
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sources corresponding to the PFD, the MMD, or the divide-by-2 block. Simulations performed 

by the authors indicate that these blocks do not significantly affect the PLL’s phase noise, so 

they are omitted in the figure for simplicity. 

The MMD is identical to those in analog PLLs, so, as illustrated in Fig. 2, τn is an 

accumulated version of 2TPLL(N – v[n – 1]) plus noise, where 2TPLL is the divide-by-2 block’s 

output period and N – v[n – 1] is the MMD modulus. 

As explained in Section III-B, the TA is implemented as a chain of NTA nominally 

identical delay cells. The propagation delay of each delay cell is τfast when vref(t) is low and τslow 

otherwise, where τfast < τslow. As also explained in Section III-B, the TA delays the rising edges 

of vdiv(t) such that the pulse-width of the PFD output, u(t), during the nth reference period, i.e., 

un = ρn – tn, is given by 

 ( )TA T TAslowA
,[ ]n n nu A t N J n = − ++−  (2) 

where 

 TA slow fast
A  =  (3) 

is the TA gain and NTAτslow is a constant offset term introduced as a byproduct of the 

TA’s operation. Thus, the combined behavior of the TA and the PFD is equivalent to that of an 

inverting amplifier with input tn – τn and additive noise and offset terms. 

The DMRO is a ring of NR nominally identical delay cells. Ideally, its frequency is fhigh 

when u(t) is high and flow otherwise, where fhigh > flow. As explained in [8] and illustrated in Fig. 

2, the behavior of the DMRO is that of an accumulator with gain 

 
time t of vPLL(t) in units of cycles of vPLL(t), so TPLLθPLL(t) has units of seconds and it represents the PLL output 

signal’s absolute jitter. 
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DMRO high low

A ff= −  (4) 

followed by an additive noise source, an additive nflowTref term, and a quantizer, Qr, with 

quantization step-size Δr = (2NR)–1. 

As explained in [9], the RPC extracts the information encoded in the sampled and 

quantized DMRO phase and computes a fixed-point measure of –α – ePLL[n] each reference 

period. This measure is quantized to the nearest integer to compute y[n], and the resulting 

quantization error, êq[n], is used within the DLC to perform QNC. This coarse quantization 

operation is represented by a unity step-size quantizer, Qc, in Fig. 2. 

An analysis similar to that presented in [9] shows that the DMRO locks to an average 

frequency of Mfref, and the average u(t) pulse width, Tū, is 

 ( )1
DMRO ref low

.uT A M T f−= −  (5) 

The parameter M is chosen so that the falling edges of u(t) occur between rising edges of vref(t) 

and vsamp(t), i.e., tn < ρn < γn for all n. This with the TA operation described in Section III-B 

causes the rising edges of vdiv(t) to precede the rising edges of vref(t), i.e., τn < tn for all n, so that  

 
1 n n n nn

t   
−
     (6) 

when the PLL is locked. 

A simplified version of the TA-assisted ΔΣ FDC behavioral model that is valid for 

constant gn is shown within the dashed contour in Fig. 2, wherein all noise components are 

input-referred and lumped into ePLL[n], the offset components are omitted, and the quantizers 

Qr and Qc are replaced by their respective additive error sequences, eqr[n] and êq[n]. The model 

implies that the behavior of the ΔΣ FDC when 
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PLL TA DMRO

1
2n T A A

g =  (7) 

is identical to that of a second-order ΔΣ modulator, the output of which is given by (1) with 

 .ˆ[ ] [ ] [ ]q n qr qe gn n ee n= +  (8) 

As explained in [9], when (7) is not satisfied, êq[n] is imperfectly canceled by QNC so it leaks 

into the DLF input, thereby degrading the PLL’s phase noise. The gain calibration technique 

shown in Fig. 1(c) causes gn to converge to the right side of (7), which effectively circumvents 

this problem [9]. 

It follows from Fig. 2 and (7) that the power contribution of the DMRO’s phase noise 

to y[n], and, hence, to the PLL’s phase noise, is proportional to both ATA
−2 and ADMRO

−2. The 

original DMRO ΔΣ FDC PLL presented in [7] does not incorporate a TA, so it corresponds to 

the case of ATA = 1 in (7), and its in-band phase noise is dominated by the DMRO’s 1/f 3 phase 

noise component. In the absence of a TA, modifying the DMRO to increase ADMRO and/or 

reduce the DMRO’s 1/f 3 phase noise component are the only options that would have mitigated 

this problem. 

Unfortunately, these options are not attractive. In principle, increasing the widths of the 

transistors that make up the DMRO’s delay cells increases ADMRO via 

Error! Reference source not found. and decreases the DMRO’s 1/f 3 phase noise component 

by reducing transistor flicker noise, but in practice ADMRO increases only up to a point beyond 

which parasitic capacitances and supply resistance cause ADMRO to decrease with further 

transistor width increases. After this point, ADMRO can only be increased further by reducing the 

number of DMRO delay cells, NR. Given that eqr[n] is proportional to Δr = (2NR)–1, this would 
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reduce the effectiveness of QNC, which would require the PLL bandwidth to be reduced to 

compensate for the increase in quantization noise power. Interestingly, increasing the number 

of DMRO delay cells does provide a modest net benefit. For example, doubling NR reduces 

ADMRO
2 by 6 dB, but as shown in [13] it decreases the power of the DMRO’s 1/f 3 phase noise 

component by 9 dB. Hence, each doubling of NR reduces the power contribution of the DMRO’s 

1/f 3 phase noise component to the PLL’s phase by 3 dB. Unfortunately, achieving large phase 

noise reductions in this manner typically requires impractically large numbers of DMRO delay 

cells. 

These tradeoffs are avoided in this work because the TA provides amplification prior to 

the DMRO. As described above, the DMRO’s contribution to the PLL’s phase noise is 

proportional to ATA
−2, so each doubling of ATA reduces the power of the DMRO’s contribution 

to the PLL’s phase noise by 6 dB. 

Both the TA and the DMRO are made up of dual-delay inverter based delay cells, but 

the TA is an open-loop chain and the DMRO is a ring, so transistor flicker noise gives rise to 

1/f noise in JTA[n] and 1/f 
3 noise in θDMRO(γn). Nevertheless, as implied by Fig. 2, the 

contributions of JTA[n] and θDMRO(γn) to y[n] are first-order and second-order highpass shaped, 

respectively, so flicker noise injected by each TA transistor has a similar contribution to the 

PLL’s phase noise as that injected by each DMRO transistor. 

Yet it is not the case that using the TA simply transfers the problem of reducing the 

effect of flicker noise from the DMRO to the TA. As implied by (3), ATA depends on a ratio of 

inverter delays, so the TA’s flicker noise can be reduced by increasing transistor widths without 

significantly decreasing ATA or incurring other side effects similar to those mentioned above 
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that come with reducing the DMRO’s 1/f 
3 phase noise component. Furthermore, the TA is only 

active for a fraction of each reference period, whereas the DMRO operates continuously. As 

the power of the noise introduced by a chain of inverters grows at least proportionally to the 

number of inverters that transition as explained in [13], it follows that the TA noise contribution 

can be made small compared to that of the DMRO. 

For instance, in the implemented PLL, 100 TA delay cells transition each reference 

period, whereas 660 DMRO delay cells transition each reference period on average. Moreover, 

in contrast to the TA, each delay cell within the DMRO transitions four to six times each 

reference period. Given that flicker noise changes slowly relative to Tref, having four to six 

transitions per reference period effectively increases each delay cell’s power contribution to the 

DMRO’s 1/f 
3 phase noise component by approximately 6 to 9 dB compared to what the delay 

cell would have contributed had it only transitioned once per reference period. These features 

made it possible for the TA to suppress the DMRO’s contribution to the PLL’s phase noise 

without the TA’s noise being a limitation. 

III. IMPLEMENTATION DETAILS 

The implemented PLL is shown in Fig. 3. It has four power supply domains, which 

correspond to the dashed boxes in Fig. 3. The place-and-route (PNR) digital block is clocked at 

a rate of fPLL/8 by vclk(t) and contains the DLC, the DCO control logic, the ΔΣ FDC’s z–1 register, 

and all RPC components except the cycle counter and phase-sampling flip-flops. 

As shown in Fig. 4, the PNR digital block comprises three sub-blocks, FDC digital, 

DLC, and DCO digital, that are clocked sequentially by gated versions of vclk(t). The signal 
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vrdy(t) is timed such that it goes high once each reference period when the DMRO phase 

information is ready to be processed by the PNR digital block. The clkFDC, clkDLC and clkDCO 

clock signals are generated by the flip-flop chain driven by vrdy(t), and the numbers of flip-flops 

between adjacent clock signals are such that enough time is allocated for each digital sub-block 

to meet digital timing constraints across PVT corners for an input clock frequency of 1 GHz. 

The details of the sub-blocks within the PNR digital block are similar to those presented 

in [7]. Most of the differences are in the ΔΣ FDC’s digital sub-block to incorporate the 

improvements proposed in [9] which include the gain calibration technique shown in Fig. 1(c). 

As explained in [9], the fref-rate multiplier prior to the RPC’s accumulator in Fig. 1(c) represents 

most of the gain calibration technique’s added complexity. Its inputs have respective bit-widths 

of 12 and 14 bits, and its output has a bit-width of 25 bits. The RPC’s accumulator would have 

required 24 bits in the absence of the multiplier, so the inclusion of the gain calibration 

technique negligibly increases the power consumption and circuit area of the RPC accumulator 

and subsequent digital sub-blocks. Furthermore, the relaxed timing of the implemented ΔΣ FDC 

architecture relative to that presented in [7] causes the power consumption and circuit area of 

the multiplier to be negligible relative to those of the overall digital block. 

 Timing 

As shown in the timing diagram of Fig. 5, the MMD loads its inputs, mod4[n] and 

mod5[n], 30TPLL after the rising edge of vdiv(t). Fig. 5 implies that for the earliest possible vdiv(t) 

rising edge, the ΔΣ FDC portion of the PNR digital block has a time budget of about 51TPLL ≅ 

¾Tref to generate its outputs after vrdy(t) goes high. This constraint is easy to satisfy in practice 

as the ΔΣ FDC logic does not require more than two periods of vclk(t) (i.e., 16TPLL) to compute 
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the MMD inputs. Accordingly, the implemented PLL has no significant timing bottle-necks, 

which makes its implementation much simpler than that of prior ΔΣ FDCs [7], [8], [12], [14], 

[15]. 

 TA 

Fig. 6(a) shows a conceptual block diagram of the proposed TA. It consists of NTA 

nominally identical inverter based delay cells, where NTA is an even number. The delay of each 

delay cell, τdelay, takes on one of two values: τfast when vref(t) is low and τslow when vref(t) is high. 

It follows from (6) that during the nth reference period, the time, tn, of the rising edge of 

vref(t) occurs after the time, τn, of the corresponding rising edge of vdiv(t), but before the time, ρn, 

at which the rising edge of vdiv(t) finishes propagating through the TA. Therefore, at time τn, 

when the rising edge of vdiv(t) starts propagating through the TA, the delay cells have a delay 

of τfast. When vref(t) goes high at time tn, the rising edge of vdiv(t) has already propagated through 

⌊(tn – τn)/τfast⌋ delay cells and a fraction, given by (tn – τn)/τfast – ⌊(tn – τn)/τfast⌋, of a delay cell. Thus, 

at time tn, the rising edge of vdiv(t) has propagated through an equivalent of (tn – τn)/τfast delay 

cells, including both integer and fractional parts. At this time, the TA’s delay cells are switched 

to have a delay of τslow, so the remaining TA delay cells through which the edge must propagate 

contribute a combined delay of (NTA – (tn – τn)/τfast)τslow. Consequently, the time, ρn, at which vTA(t) 

goes high is given by  
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This implies that the pulse-width of u(t) during the nth reference period, un = ρn – tn, is given by 

Error! Reference source not found. with ATA given by (3), where the jitter term, JTA[n], 

represents the combined effect of all transistor noise sources within the TA. 

It follows from the explanation above that for the TA to provide time-difference 

amplification it is necessary to ensure 

 TA fast
0 .n nt N  −   (10) 

Otherwise, the TA would only introduce a fixed delay between vdiv(t) and vTA(t). Fig. 5 implies 

that the time at which the MMD loads its inputs also imposes a constraint on the maximum 

value of tn – τn. Specifically, the MMD must load its inputs at the time of the rising edge of 

clkFDC at the earliest, which can occur up to 37TPLL after the falling edge of vref(t). Therefore, tn 

– τn must satisfy 

 PLLref
½ 7n nt TT−  −  (11) 

in addition to (10). Moreover, for the ΔΣ FDC to work properly, u(t) must go low before the 

DMRO phase is sampled at time γn, which requires 

 PLLref
10 .0 ½nu TT +   (12) 

Equations (10)-(12) impose design constraints on the TA parameters NTA, τslow, τfast and 

ATA. 

As shown in Fig. 6(b), each of the TA’s dual-delay inverters consists of a standard 

inverter in parallel with a larger tri-state inverter. When vref(t) goes high, the tri-state inverter is 
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disabled by disconnecting its ground and power supply terminals from the supply rails, thereby 

increasing τdelay from τfast to τslow. 

Ideally, τdelay changes instantaneously from τfast to τslow when vref(t) goes high, in which 

case the TA performs linear amplification. Unfortunately, the τfast-to-τslow transitions are non-

instantaneous in practice, which causes TA nonlinearity. Moreover, as illustrated in Fig. 6(c), 

this transition also depends on whether the cell’s input, dn–1(t), goes from low to high or vice 

versa.  

The TA topology shown in Fig. 7(a) is proposed to reduce such nonlinearity. It consists 

of two nominally identical delay chains in parallel, where the input of one delay chain is an 

inverted version of that of the other delay chain, both delay chains are controlled by vref(t), and 

each pair of parallel delay cells are cross-connected with averaging resistors. As shown in Fig. 

7(a) for the top and bottom delay chains in isolation, the odd-indexed and even-indexed delay 

cells have inputs that transition in opposite directions, so they have different τfast-to-τslow 

transitions. This causes a quasi-periodic artifact in the input-output characteristics of the delay 

chains. Driving the bottom delay chain by an inverted version of vdiv(t) causes its input-output 

characteristic to be shifted with respect to that of the top delay chain such that, when averaged 

via the cross-coupled resistor network, the non-linearity of the cross-coupled delay chains is 

considerably smaller than that of either delay chain in isolation. Behavioral simulations of the 

PLL in which the TA’s nonlinear behavior is considered and all other spur-generation 

mechanisms are neglected suggest that the power of the PLL’s worst-case fractional spur 

decreases by 7 dB when the proposed nonlinearity mitigation technique is used.  
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In addition to having improved linearity, the proposed TA topology’s pseudo-

differential nature can be exploited to implement a TA power-saving (PS) mode. Without the 

PS mode, the falling edge of vdiv(t) propagates through the TA each reference period. This resets 

the delay cells’ states for the next rising edge of vdiv(t), but the power consumed by the resulting 

delay cell transitions represents a significant portion of the TA’s total power consumption. The 

idea behind the PS mode is to swap the differential inputs and swap the differential outputs of 

the TA each reference period to obviate the need to reset the delay cells, so the falling edge of 

vdiv(t) can be prevented from propagating through the TA to save power. 

The implemented TA, which includes the non-linearity mitigation technique and PS 

mode option as described above, is shown in Fig. 7(b). It comprises the TA core shown in Fig. 

7(a) as well as input and output swapping circuitry used when the PS mode is enabled. The 

transistor-level details of the TA’s delay cells are shown in Fig 7(c). The TA core was designed 

to maximize the value of ATA while satisfying the constraints in (10)-(12). Specifically, NTA = 

100, τfast = 10 ps, τslow = 70 ps and ATA = 7. Simulation results predict that the TA’s gain varies 

by ±7% across process corners, ±10% across process corners and temperature variations (0 °C 

to 85 °C), and ±14% across process corners, temperature variations, and voltage variations 

(±10%).  

The PS mode is enabled and disabled via the PSen signal. When enabled, the 1(t) and 

2(t) signals are used to implement the input and output swapping operations. The signal 1(t), 

which is derived from vdiv(t), is used to swap the inputs and the outputs of the TA core each 

reference period, whereas 2(t) is used to control the input and output latches. As illustrated in 

the timing diagram shown in Fig. 7(b), these latches prevent the falling edges of vdiv(t) from 
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propagating through the TA core, and also prevent the output swapping circuitry from 

disturbing vTA(t) while the swapping occurs. 

The TA was laid out such that systematic mismatch among its unit cells is negligible, 

and the unit cells are sized such that the power of the PLL’s worst-case fractional spur caused 

by random mismatches among the TA’s delay cells is approximately –50 dBc. This was 

determined by performing a Monte Carlo simulation in Cadence to obtain 90 different TA input-

output characteristics, and the results were imported into a bit-exact, event-driven, custom 

behavioral PLL simulator. Fig. 7(d) shows a histogram of the simulated PLL’s worst-case 

fractional spur power. As shown in the figure, the worst-case fractional spur power’s expected 

value is –51.7 dBc, and its standard deviation is 2.5 dBc. 

As mentioned in Section I, the proposed TA achieves better noise performance than a 

comparably configured TA of the type presented in [6]. One reason for this difference is that 

the TA in [6] incorporates two ring oscillators that both contribute noise to the output whereas 

the proposed TA incorporates a single delay-chain that contributes noise to the output. Another 

reason is that TA presented in [6] requires NAND gate-based delay cells instead of inverter-

based delay cells which each introduce more phase noise than comparable inverter-based delay 

elements. 

 DMRO and Phase Sampling Scheme 

The DMRO, which is shown in Fig. 8, consists of NR = 127 inverter delay cells and has 

ADMRO = 670 MHz (fhigh = 730 MHz and flow = 60 MHz). Each DMRO delay cell contains a dual-

delay inverter that is similar to that used in the TA. It includes a standard ×1 inverter in parallel 

with a ×16 tri-state inverter, and the tri-state inverter’s power and ground lines are connected 
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to or disconnected from the supply rails when u(t) is high or low, respectively. This modulates 

each delay cell’s propagation delay such that the DMRO frequency is fhigh when u(t) is high and 

flow when u(t) is low. In both cases, the DMRO outputs swing from rail-to-rail, which allows 

the DMRO outputs to drive standard digital logic without the need for level-shifting. The ×2 

inverter shown within the dashed box in Fig. 8 is used to buffer the delay cell’s input to reduce 

the disturbance to the DMRO when its phase is sampled. 

As explained in Section II-B, the TA causes the PLL phase noise contributed by the 

DMRO to be attenuated in power by a factor of ATA
2. Additionally, the DMRO’s 1/f 

3 phase 

noise component is further mitigated by using a large number of stages [13]. This comes at the 

expense of higher digital complexity and higher power consumption, primarily due to the 

charging and discharging of the gates controlled by u(t). 

To prevent the DMRO from running with multiple stages transitioning simultaneously, 

even for a brief period of time, the first delay cell includes a switch between the ground terminal 

of the ×1 inverter and the ground rail. At startup, both u(t) and the enable signal are set low. 

This opens the ring so that any transition propagating through it eventually reaches the first 

stage and stops propagating. The switch is subsequently closed after which the DMRO operates 

normally. 

The DMRO phase sampling scheme is shown in Fig. 8. As explained below, it addresses 

the issue that the sampling clock, vsamp(t), and the DMRO are asynchronous yet avoids the delay 

incurred by the DMRO sampling scheme in [7]. It consists of a cycle counter followed by 

sampling flip-flops and a phase decoder. The principle behind the sampling of the cycle 
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counter’s outputs is based on that of the asynchronous sampling schemes presented in [16], 

[17]. To the knowledge of the authors, the proposed phase decoder implementation described 

below is introduced for the first time in this work. 

The cycle counter consists of two 4-bit counters that are clocked, respectively, by the 

rising and falling edges of the DMRO delay cell with output d1(t). On each rising edge of the 

fref-rate signal vsamp(t), the counter outputs cpos(t) and cneg(t) are sampled to generate cpos[n] and 

cneg[n], and the DMRO outputs d1(t), d2(t), …, d127(t) are sampled to generate d1[n], d2[n], …, 

d127[n]. The phase decoder consists of a lookup table (LUT) that quantizes the sampled DMRO 

outputs to a 10-bit sequence, tR[n], which represents the fractional part of the sampled DMRO 

phase, and logic that computes cR[n], which represents the integer part of the sampled DMRO 

phase. The number of bits of tR[n] was chosen to ensure that the contribution to the PLL’s phase 

noise from the error introduced by the LUT’s quantization operation is negligible compared to 

those of the other error sources. 

The top and bottom counters in the cycle counter are clocked when tR[n]  0 and tR[n]  

126Δr, respectively, where Δr = 1/254. Hence, tR[n] can be used to determine which counter 

output was not changing when the sampling event occurred. As shown in Fig. 8, whenever tR[n] 

is between 63Δr and 189Δr, cR[n] is set to cpos[n]. Ideally, cR[n] should be set to cneg[n] when 

tR[n] is between 190Δr and 253Δr, and to cneg[n] + 1 when tR[n] is between 0 and 62Δr so as to 

account for the bottom counter being clocked half a DMRO cycle after the top counter is 

clocked. Yet to work correctly this would require cpos(0) = cneg(0) and the initial DMRO 

fractional phase to be such that the top counter is clocked before the bottom counter after 

startup, which are hard to ensure in practice. 
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These requirements are avoided via the ccorr[n] correction logic shown in Fig. 8. As both 

sampled counter outputs are reliable when tR[n] is around 63Δr and 190Δr, the ccorr[n] logic 

block in Fig. 8 computes 
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and cR[n] is set to cneg[n] + ccorr[n] when tR[n] is between 190Δr and 253Δr, to cneg[n] + ccorr[n] + 

1 when tR[n] is between 0 and 62Δr, and to cpos[n] otherwise. 

 MMD 

As shown in Fig. 9, the MMD consists of a finite-state machine (FSM), a 4/5 prescaler, an 

edge-select flip-flop and a resynchronization flip-flop. As explained below, the MMD causes 

the rising edges of vdiv(t) during the nth and (n+1)th reference periods to be separated by N – 

v[n] periods of vdiv2(t).  

When the FSM’s psel(t) output bit is low, the prescaler divides by 4. Otherwise, it divides 

by 5. At the beginning of each MMD cycle, the FSM sets psel(t) low for five periods of vpres(t), 

so the first five periods of vpres(t) each have a duration of four vdiv2(t) periods. Then, the FSM 

sets psel(t) so that mod4[n] counts to 4 followed by mod5[n] counts to 5 occur, where 
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after which N – v[n] periods of vdiv2(t) will have occurred. 
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As illustrated in the timing diagram shown in Fig. 9 for the example case of mod5[n] = 

1, the FSM’s ppass(t) output goes high at the start of the last full vpres(t) period prior to the next 

rising edge of vdiv(t), which causes the edge-select flip-flop’s output to go high on the next rising 

edge of vpres(t). The resynchronization flip-flop samples the edge-select flip-flop output on the 

next rising edge of vdiv2(t) to prevent the MMD output edge from being corrupted by noise and 

modulus-dependent delay error that originated in the prior MMD components. 

All MMD blocks were built using standard cells, with the exception of the 

resynchronization flip-flop which was custom-designed to minimize its contribution to the 

PLL’s phase noise. 

 DCO 

The DCO is similar to that presented in [7]. It consists of a single-turn center-tapped 

inductor, a cross-coupled pair of nMOS transistors, a tail resonant tank of the type proposed in 

[18], a triode MOS transistor tail source, an integer frequency control element (FCE) bank 

driven by cI[p], and a fractional FCE bank driven by cF[p]. The implemented FCEs are of the 

type presented in [15], and the minimum-size FCE has an equivalent frequency step of Δmin = 

160 kHz at 6.5 GHz. The DCO’s 16-bit input sequence, d[n], is split into integer and fractional 

parts. The integer part is encoded to drive the integer FCE bank, which comprises eight 32Δmin 

FCEs and five pairs of 16Δmin , 8Δmin , 4Δmin , 2Δmin  and Δmin FCEs. The fractional part is up-

sampled and re-quantized by a second-order ΔΣ modulator that generates a 5-level output 

sequence. This output sequence is scrambled by a dynamic element matching (DEM) encoder, 
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the outputs of which drive four Δmin FCEs within the fractional FCE bank. The PLL controls 

the DCO over a range of 41 MHz with a minimum step size of 625 Hz. 

The DCO also contains a binary-weighted capacitor array controlled via a serial 

peripheral interface (SPI), which is in parallel with the integer and fractional FCE banks. The 

capacitor array has 7 bits of tuning over a frequency range of 5.6–6.6 GHz. 

 

IV. MEASURMENT RESULTS 

The prototype IC contains the PLL in Fig. 3 as well as an SPI port and test circuitry to 

measure internal signals during testing. It was fabricated in the GlobalFoundries 22 nm CMOS 

22FDX technology. A die photograph is shown in Fig. 10, and area and power breakdowns are 

presented in Table I. The IC is packaged in a QFN28 package with ground paddle and was 

tested with an Ironwood SG-MLF-7003 compression elastomer socket. Except where noted 

otherwise, all of the measurements presented below were taken with a common set of PLL 

parameters set via the SPI. 

Unfortunately, the DCO tank’s quality factor is severely degraded by a layout issue to 

the point that the DCO as-fabricated does not even oscillate, and the problem was not flagged 

by simulations prior to fabrication because of a post-layout extraction tool flaw. Removing 

metal near the DCO’s main inductor via FIB surgery made the DCO functional, but even with 

its maximum current setting and its supply set to 0.9 V, its oscillation amplitude is extremely 

low. Consequently, the DCO’s power consumption is that of a high-performance DCO, yet it 

achieves relatively poor phase noise performance (e.g., 10 dB worse at a 1 MHz offset than 
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expected3) and its low oscillation amplitude makes it highly sensitive to interference from other 

circuit blocks. While the PLL’s overall measured performance is nevertheless in line with the 

current state of the art, these issues limited its performance as quantified later in the section. 

The IC’s measured output power is around –34 dBm, so an amplifier module was used to boost 

the output power to around –2 dBm. 

 Fig. 11 shows the measured phase noise of the PLL at fPLL = 6.5 GHz with and without 

the TA enabled for PLL bandwidths of 1 MHz and 4.5 MHz. The integrated random jitter (i.e., 

the jitter omitting spurious tones), σRJ, is also reported in Fig. 11, where the integration band 

extends from 10 kHz to 80 MHz. To estimate the expected noise reduction when the TA is 

enabled, ATA was calculated indirectly from (7) using measured values of gn read through the 

SPI. It was found that gn converged to about 0.758 and 4.832 with and without the TA enabled, 

respectively, with which two equations based on (7) were solved to find ATA = 6.37. This 

suggests that the TA reduces the power of the portions of the PLL’s phase noise contributed by 

both the DMRO’s circuit noise and its quantization noise by 16 dB. 

In the case of Fig. 11(a), the in-band spot phase noise at a 100 kHz offset frequency 

decreases from –99 to –107 dBc/Hz when the TA is enabled, whereas in the case of Fig. 11(b), 

the in-band spot phase noise at a 1 MHz offset frequency decreases from –100 to –112 dBc/Hz 

when the TA is enabled. In the former case, the PLL’s in-band phase noise has comparable 

contributions from the DMRO, reference signal, and DCO, whereas in the latter case, the in-

band phase noise is mostly dominated by the DMRO phase noise. Accordingly, as the TA 

 
3 The spot phase noises of the DCO after the FIB surgery when tuned to 6.5 GHz are –59, –117 and –148 

dBc/Hz at offset frequencies of 10 kHz, 1 MHz and 100 MHz, respectively.   
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suppresses the DMRO’s contribution to the PLL’s phase noise, the PLL’s in-band spot phase 

noise reduction is more significant in Fig. 11(b). Nonetheless, as shown in Fig. 11(a), the spot 

phase noise at a 1 MHz offset frequency decreases from –100 to –112 dBc/Hz when the TA is 

enabled, which occurs because the PLL’s phase noise is dominated by DMRO quantization 

error around that offset frequency. 

Fig. 12 shows the PLL’s measured phase noise with αfref set to 18 MHz, the PLL 

bandwidth set to 1 MHz, and the TA enabled. In this case, the integrated total jitter (i.e., the 

jitter including spurious tones), σTJ, was 151 fsrms. This represents the best-case total jitter 

because it corresponds to a case where the spurious tones are well outside the PLL bandwidth.  

The largest measured fractional spur and σTJ versus αfref are shown in Fig. 13(a) and Fig. 

13(b), respectively, for a PLL bandwidth of 1 MHz. The fractional frequency offset, α, was 

swept such that αfref ranges from 1 kHz to 40 MHz with 20 equally-spaced values per decade 

on a log scale. The integration band of the jitter extends from 10 kHz to 80 MHz to include all 

significant spurs. The spur powers were measured with the spectrum analyzer’s averaging 

option disabled, and for each value of α, the instrument was configured to ensure that five 

negative and positive fractional spur harmonics were always visible. In each case, the largest 

fractional spur was one of the first three harmonics of αfref, and was no higher than –49 dBc. 

The measured worst-case spurious tone powers are in line with those predicted by simulation 

results that include random mismatches among the TA delay cells. 

For some values of αfref > 5 MHz, spurs with power lower than –60 dBc and frequencies 

that are not multiples of αfref were measured. The authors have not definitively determined the 

origin of these spurs, but suspect they are from external interference that is parasitically coupled 
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into the DCO and their effect is exacerbated by the DCO’s abnormally low amplitude. These 

interference spurs are not reported in Fig. 13(a), although their contribution to σTJ is taken into 

account in Fig. 13(b), which is why σTJ increases somewhat for αfref > 5 MHz. 

As shown in Fig. 14, the measured reference spur power is lower than –80 dBc. As 

mentioned above, the authors believe that the DCO’s low oscillation amplitude makes it 

extremely sensitive to external interference. This theory is supported by the observation that 

increasing the DCO supply, which increases its oscillation amplitude somewhat, tends to reduce 

the measured spurs. For example, measurements taken with the DCO supply set to 1.1 V yields 

a reference spur of –85 dBc. Accordingly, the reported reference spur power in Fig. 14 is a 

worst-case bound on the reference spur performance of the PLL, as the power of this spur is 

expected to decrease when the DCO problem mentioned above is fixed in a future version of 

the PLL.  

Fig. 15 shows the measured phase noise of the PLL with and without the gain calibration 

technique enabled for a PLL bandwidth of 4.5 MHz. The results demonstrate the effect of non-

ideal ΔΣ FDC forward path gain, i.e., the effect of gn not satisfying (7), on the PLL’s 

performance at high bandwidth settings. As indicated in the figure, the spot phase noise at a 20 

MHz offset frequency decreases by 32 dB when enabling the gain calibration technique, which 

causes σTJ to decrease from 2.7 psrms to 248 fsrms. 

Measurements indicate that enabling the TA PS mode has several effects: 1) it decreases 

the PLL’s power consumption by 1.45 mW, which corresponds to 37% of the TA power 

consumption when the PS mode is disabled, 2) it increases the best-case σTJ by 20 fs because 

the swapping circuitry shown in Fig. 7(b) introduces noise into the reference path, 3) it 
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decreases the worst-case σTJ by 30 fs due to the slightly better fractional spur performance, and 

4) it increases the reference spur power by 14 dB. The authors believe that the reference spur 

power increase is related to coupling from the analog domain to the DCO, again because of the 

DCO’s low oscillation amplitude. 

Table II summarizes the performance of the PLL with and without the TA PS mode 

enabled, along with that of the best digital PLLs published to date [7], [19]–[27]. As shown in 

the table, the PLL achieves one of the best in-band spot phase noises, and its spurious tone 

performance is comparable to that of other state-of-the-art digital PLLs, even though no 

dedicated spur mitigation technique is used. In contrast, automatic time-to-digital converter 

(TDC) gain tracking is used to reduce the fractional spur from –35 dBc to –55 dBc in [22], a 

TDC calibration technique is used to reduce the fractional spur power from –43 dBc to below 

–74 dBc in [21], and a phase interpolation nonlinearity calibration technique is used to reduce 

the fractional spur from –24.58 to –53.1 dBc in [20]. Similarly, digital-to-time converter (DTC) 

range reduction techniques are used in [19], [24] and [25] to improve fractional spur 

performance. 

The PLL’s best-case σTJ is lower than most of the other PLLs in Table II, but its power 

consumption is higher than those of the other PLLs. As previously mentioned, the implemented 

DCO consumes the power of a DCO with much better phase noise. Simulations run by the 

authors suggest that for a properly designed DCO with similar phase noise to that of the 

implemented DCO, the power consumption should be around 4 mW instead of 8.75 mW. 

Alternatively, if the DCO had performed as expected, the PLL’s best-case σTJ would have been 

115 fsrms instead of 151 fsrms. Furthermore, as mentioned in Section III, the PNR digital was 
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overdesigned to be clocked at 1 GHz, which is supported by measurement given that the digital 

domain power supply can be reduced from 0.8 V to 0.55 V without affecting the PLL’s 

performance. In this case, the power consumption of the PNR digital goes down from 4.76 mW 

to 2.66 mW. Therefore, the implemented PLL’s power consumption is higher than necessary, 

and it could potentially be lowered by approximately 6.85 mW.  

Nonetheless, as shown in Table II, even with the higher-than-necessary digital power 

consumption and worst-than-expected DCO performance, the PLL achieves a Gao figure of 

merit (FoM) comparable to or better than prior-art digital PLLs [28]. Had the DCO performed 

as expected, i.e., with performance comparable to that of the DCO presented in [7], the PLL’s 

best-case FoM would have been –245.1 dB and –245.4 dB with and without the TA PS mode 

disabled, respectively. Alternatively, had the PLL’s power consumption be 6.85 mW lower as 

explained above, the PLL’s best-case FoM would have been –244.3 dB and –243.7 dB with and 

without the TA PS mode disabled, respectively. 

ACKNOWLEDGEMENTS 

The authors are grateful to Colin Weltin-Wu, Yiwu Tang and Dongmin Park for helpful 

advice, Raghavendra Haresamudram for his constant support with the different software tools, 

Julian Puscar and Mahmoud Abdellatif for digital-flow advice, Prof. Gabriel Rebeiz for the use 

of his Signal Source Analyzer, Roddy Cruz for FIB support, Mohammed Salah El-Hadri for the 

die photo, and Tom McKay and Global Foundries for IC fabrication, PDK support, and helpful 

advice. 



 

 

26 

 

This chapter, in full, has been published in the IEEE Journal of Solid-State Circuits, 

volume 56, number 9, pages 2711-2723, September 2021. E. Helal, E. Alvarez-Fontecilla, A. 

I. Eissa, I. Galton, 2021. The dissertation author is the primary investigator and author of this 

paper. Professor Ian Galton supervised the research which forms the basis for this paper. 

  



 

 

27 

 

FIGURES 

y[n]

 êq[n]
vref(t)

vPLL(t)

α

p[n]

N

 TA-Assisted
DMRO Based 
Second-Order

ΔΣ FDC
Digital Loop 
Controller with QNC

1

1–z  

1–z  

DCO
Digital 
Loop 
Filter

(a)

vref(t)

TA-Assisted DMRO ΔΣ FDC

v[n]

(N v[n])

u(t)

vdiv(t)

PFD DMRO
y[n]

 êq[n]

vdiv2(t)
z  

Cycle 

Counter 

& Phase 

Decoder

M

RPC with Gain Calibration

1–z  

2α

3 MSBs

LSBs

r[n]1

1–z  

2z  

RPC
TA

vTA(t)

(b)

(c)

127

127

Gain 

Calibration

gn

y[n]

 êq[n]

2
vdiv2(t)

α

d[n]

vsamp(t)

vsamp(t)

sgn
v[n   1] 

+ α 
1–z  

1−z 1

K

z  

DMRO

pR[n]

MMD

 

Figure 1: (a) High-level block diagram of the PLL, (b) simplified block diagram of the TA-

assisted DMRO ΔΣ FDC, and (c) details of the RPC with gain calibration. 
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Figure 2: Behavioral model of the TA-assisted DMRO ΔΣ FDC with the gain calibration 

technique details omitted. 
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Figure 3: Block diagram of the PLL showing implementation details and the four different 

power domains in dashed boxes. 
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Figure 4: High-level block diagram of the PNR digital block and clocking scheme. 
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Figure 5: PLL timing diagram. 
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Figure 8: DMRO and delay-free asynchronous phase sampling scheme details. 
 



 

 

32 

 

4/5 Prescaler

psel(t)
ppass(t)

vdiv2(t)

vpres(t)

Q DQ D Q D
Resynch. Flip-flop

(custom)

Q D Q Dvdiv(t)

4
mod4[n]

2
mod5[n]

MMD FSM

vdiv2(t)

2TPLL

8TPLL 10TPLL
vpres(t)

ppass(t)

psel(t)

vdiv(t)

MMD starts new cycle  

Figure 9: MMD block diagram with example timing diagram. 

 



 

 

33 

 

DCO TA

PNR

XO

DMRO

MMD

1
.2

 m
m

1.1 mm

 

Figure 10: Die photograph. 
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Figure 11: Measured PLL phase noise at fPLL = 6.56 GHz with and without the TA enabled for 

(a) 1 MHz bandwidth and (b) 4.5 MHz bandwidth. 
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Figure 13: (a) Largest measured fractional spurious tone and (b) total integrated jitter (σTJ) as a 

function of the fractional frequency. 
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Figure 14: Representative PLL output spectrum. 
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Figure 15: PLL phase noise with and without gain calibration (GC) enabled for a 4.5 MHz 

bandwidth. 
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TABLES 

Table 1: Area and power breakdown of the IC. 
 

Block Area (mm2) Power (mW) 

PNR Digital 0.0242 4.76 

Reference Buffers 0.00158 0.165 

ΔΣ FDC 0.00713 9.44 / 8 
(1) 

DCO 0.137 8.75 

Total Area 0.6321 
23.15 / 21.7 (1) 

Active Area 
(2) 0.1683 

   

1 Without and with TA PS mode enabled, respectively. 
2 Without decoupling capacitors. 

 

Table 2: Performance summary and comparison table. 
 

 

This work C. Weltin-

Wu 

JSSC’15 

 [7] 

A. Elkholy 

JSSC’15 

 [19] 

M. Heo 

ESSCIRC’17 

[20] 

C. Yao 

JSSC’17  

[21] 

D. Liao 

JSSC’17 

[22] 

Z. Xu 

JSSC’16 

[23] 

Y. Wu 

JSSC’17 

[24] 
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Bertulessi 
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[25] 

X. Gao 

ISSCC’16 

[26] 

Z. Chen 

ISSCC’15 

[27] 
TA PS 

dis. 

TA PS 

ena. 

Architecture ΔΣ FDC+TA ΔΣ FDC 
DTC+TDC

+TA 
PI+TA 

TDC+SA

R-ADC 

2D 

Vernier 

TDC 

SAR-ADC 

TDC 

DTC+ 

TDC 

Bang-

Bang 

Digital 

Sampling 

Digital 

Sampling 

Technology 22 nm 65 nm 65 nm 40 nm 14 nm 55 nm 65 nm 40 nm 65 nm 28 nm 65 nm 

Supply (V) 0.8 
(1) 1.0 1.0 1.1 - - 1.0 

0.65/0.8/ 
1.1 

- 1.05/1.5 1 

Area (mm2) 0.63/0.17 
(2) 0.35 0.22 0.14 0.257 0.56 0.38 0.5 0.61 0.3 0.23 

fref (MHz) 80 26 50 32 26 80 50 50 52 40 49.15 

fPLL(GHz) 6.5 3.5 4.5 3.6 2.7 2.08 3.63 2 3.8 5.83 2.68 

BW (kHz) 1000 140 750 1100 500 
(4) 1000 1000 800 150 - 700 

In-band PN  

(dBc/Hz) 
(3) 

–107 
@100kHz 

–106 
@100kHz 

–87.6 
@100kHz 

–98.8 
@100kHz 

–96.9 
@300kHz 

–106 
@100kHz 

–97.1 
@100kHz 

–102.2 
@500kHz 

–98.7 
@100kHz 

–102 
@100kHz 

–104.6 
@100kHz 

-102.9 
@100kHz 

Frac. Spur 

(dBc) 
–49 –50 –60 –51.5 –50 –74.5 

(4) –55 –41 –42 –50 –54 –62.3 

Ref. Spur 

(dBc) 
–80 –66 

(5) –81 –69 –60 –87.6 - –39.6 - - –78 –60 

Tot. Jitter 

(fsrms) (6) 

151/270 
10k-

80MHz 

170/240 
10k-

80MHz 

665 
(7) 

12k-

20MHz 

440/490 
10k-

20MHz 

534 
(7) 

10k-

30MHz 

137 
(7) 

10k-

10MHz 

549/- 
10k-

10MHz 

 390/622
(8) 

10k-

10MHz 

330/490 
1k-

30MHz  

183 
(7) 

1k-

30MHz 

159 
(7) 

10k-

40MHz 

226/240 
1k-

100MHz 

Power (mW) 23.15 21.7 15.6 3.7 5 13.4 9.9 9.7 10.7 5.28 8.2 11.5 

FoMjitter 
(9) 

–242.8/ 

–237.7 

–242/ 

–239 
–231.6 

–241.5/ 

–240.5 
–238.5 –246 

–235.3/ 

- 

–238.3/ 

–234.3 

–239.3/ 

–235.9 
–247.5 –246.8 

–242.3/ 

–241.8 
 

1 DCO power supply is set to 0.9 V instead of 0.8 

V. 

6 Best and worst reported total integrated jitters 

(including spurs), σTJ. 
2 With and without decoupling capacitors, 

respectively. 

7 Not specified if it is random jitter (σRJ), or 

best/worst total jitter (σTJ). 
3 Phase noise (PN) normalized to 6.5 GHz. 
4 BW estimated from Fig. 15 and spur value taken 

from Fig. 17 in [21]. 
5 Decreases to –70 dBc by raising the DCO 

supply to 1.1 V. 

8 Worst jitter taken from Fig 18(b) in [23]. 
9 FoMjitter = 10log(jitter2

 × power/1mW) [28].   
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CHAPTER 2 

DTC LINEARIZATION AND MISMATCH-NOISE CANCELLATION FOR DIGITAL 

FRACTIONAL-N PLLS  

 

Abstract— Digital-to-time converter (DTC) based quantization noise cancellation 

(QNC) has recently been shown to enable excellent fractional-N PLL performance, but it 

requires a highly-linear DTC. Known DTC linearization strategies include analog-domain 

techniques which involve performance tradeoffs and digital predistortion techniques which 

converge slowly relative to typical required PLL settling times. Alternatively, a DTC 

implemented as a cascade of 1-bit DTC stages can be made highly linear without special 

techniques, but such DTCs typically introduce excessive error from component mismatches 

which has so far hindered their use in low-jitter PLLs. This paper presents a background 

calibration technique that addresses this issue by adaptively canceling error from DTC 

component mismatches. The technique is entirely digital, is compatible with a large class of 

digital fractional-N PLLs, and has at least an order of magnitude lower convergence time than 

the above-mentioned predistortion techniques. The paper presents a rigorous theoretical 

analysis closely supported by simulation results which quantifies the calibration technique’s 

convergence time and noise performance. 
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I. INTRODUCTION 

The signal processing performed within any fractional-N phase-locked loop (PLL) for 

frequency synthesis inevitably involves quantization. The resulting quantization error degrades 

the PLL’s phase noise unless it is actively canceled prior to frequency modulation, a process 

known as quantization noise cancellation (QNC). An increasingly popular QNC method uses a 

digital-to-time converter (DTC) to cancel most of the quantization error prior to phase error 

measurement within the PLL. This prevents the quantization noise from being subjected to the 

inadvertent but inevitable nonlinearity of the phase error measurement circuitry, thereby 

avoiding fractional spurs which would otherwise be caused by nonlinearly distorting the 

quantization error [1]-[5]. 

However, for such DTC-based QNC to be effective, the DTC must be highly linear. 

Otherwise, it nonlinearly distorts the quantization error directly, so it becomes a cause of 

fractional spurs in its own right. Several analog and digital techniques have been proposed to 

linearize DTC circuits to address this issue. The published analog techniques generally increase 

power consumption or circuit area considerably [6]-[10]. The published digital techniques 

perform predistortion via look-up tables (LUTs) to mitigate DTC nonlinearity, but the data with 

which the LUTs are populated must be measured in background via correlation algorithms 

which take considerably longer to converge than typical target PLL settling times [11]-[13]. As 

examples, the cold-start convergence times of the techniques presented in [11] and [12] are over 

30,000 and 600,000 reference cycles, respectively. 

Alternatively, a DTC implemented as a cascade of 1-bit DTC stages can be made highly 

linear without any special linearization techniques provided the stages are sufficiently buffered 
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so that the state of each stage does not significantly affect the delays through the other stages. 

However, such DTCs typically introduce far more error from component mismatches than the 

more commonly used single-stage DTCs, which has so far stymied their application to DTC-

based QNC in low-jitter PLLs. While dynamic element matching (DEM) can be applied to 

cause the DTC error arising from component mismatches, i.e., the DTC mismatch noise, to be 

free of nonlinear distortion and have a highpass spectral shape, the power of the mismatch noise 

nevertheless tends to be high enough that it significantly degrades the PLL’s jitter. 

This paper proposes an entirely digital DTC mismatch noise cancellation (MNC) 

technique that is applicable to a large class of digital fractional-N PLLs. The DTC-MNC 

technique adaptively measures and cancels DTC mismatch noise in background within the PLL 

prior to the PLL’s digital loop filter, thereby making highly-linear DTCs comprised of 1-bit 

DTC stages practical for low-jitter digital fractional-N PLLs (although the technique is also 

applicable to single-stage DTCs). The DTC-MNC technique’s convergence time is an order of 

magnitude faster than that of the fastest of the published predistortion techniques and results in 

significantly lower simulated jitter and spurious tones than the corresponding reported 

simulation and measurement results for the previously published predistortion techniques. The 

paper presents a rigorous analysis closely supported by simulation results which quantifies the 

DTC-MNC technique’s convergence time, and proves that the DTC-MNC technique has no 

convergence bias and is unconditionally stable. 
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II. DTC-BASED QUANTIZATION NOISE CANCELLATION  

 General Form of a Digital PLL with DTC-Based QNC  

The general form of a digital fractional-N PLL driven by a reference oscillator of 

frequency fref is shown in Fig. 16a [14]-[26]. The PLL is comprised of a phase-error-to-digital 

converter (PEDC), a lowpass digital loop filter, and a digitally controlled oscillator (DCO). Its 

objective is to generate a low-noise oscillatory output signal, vPLL(t), with instantaneous 

frequency fPLL = (N+α)fref, where N is a positive integer and α is a fractional value bounded in 

magnitude by 1. 

In many digital fractional-N PLLs, the PEDC incorporates a multi-modulus divider as 

shown in Fig. 16b. The multi-modulus divider is controlled such that its nth and (n+1)th rising 

output edges are separated by N−v[n] DCO cycles, where v[n] is an integer-valued digital 

sequence generated within the PEDC. The rest of the PEDC digitizes the phase difference 

between vref(t) and vdiv(t) to generate p[n], and the PLL’s feedback loop controls the DCO such 

that p[n] stays bounded, thereby ensuring that the divider’s average output frequency is fref. In 

some PLLs, v[n] is generated by a digital delta-sigma (ΔΣ) modulator such that its average 

value is −α, and in other PLLs, v[n] is generated within the PLL’s feedback loop such that its 

average converges to −α. In either case, the N−v[n] division in conjunction with the feedback 

causing the divider’s average output frequency to converge to fref causes the DCO’s average 

output frequency to converge to (N+α)fref. 

The reason that v[n] is restricted to integer values is that dividers are only capable of 

counting integer numbers of DCO cycles. Hence, in all such PLLs, v[n] contains zero-mean 
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quantization error which ultimately contributes to the PLL’s overall phase error unless it is 

canceled prior to the DCO via QNC. 

The quantization process with which the PEDC generates v[n] happens in the digital 

domain so the quantization error is known to the system. One option is to perform QNC in the 

digital domain after the PEDC digitizes the phase difference between vref(t) and vdiv(t). 

However, in most PLLs with divider-based PEDCs, quantization error is the dominant 

component in v[n] and when the quantization error is subjected to the inevitable nonlinearity of 

the PEDC’s phase error measurement and digitization circuitry, fractional spurs are induced 

which digital-domain QNC is unable to cancel. Therefore, it is desirable to perform QNC prior 

to phase error measurement and digitization if possible. 

In principle, this can be done by inserting a DTC between the divider output and the rest 

of the PEDC. Ideally, the DTC would introduce a time delay of TD + ε[n] to the nth output edge 

of the divider, where ε[n] represents the effect of the quantization error on the time of the nth 

rising output edge of the divider, and TD is a constant that is large enough to ensure that TD + 

ε[n] > 0 for DTC causality. Hence, the time of the nth rising edge of the DTC output is the ideal 

time of the nth rising edge of the divider output, i.e., the time that would have resulted had v[n] 

not been quantized, aside from an additional fixed delay of TD. The rest of the PEDC digitizes 

the phase difference between vref(t) and vDTC(t), so the PLL’s feedback controls the DCO such 

that the average value of this difference converges to zero, thereby causing the average DCO 

frequency to converge to (N+α)fref. The primary difference between this case and that of Fig. 

16 is that QNC occurs prior to phase error measurement and digitization, which has the potential 

to significantly reduce spurious tones. 
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A commonly used DTC circuit is shown in Fig. 17 [7], [8], [27]. It consists of inverters 

I1, I2, I3, and I4, and a bank of capacitors. The ith capacitor’s top plate is connected to the output 

of inverter I2, and its bottom plate is connected to or disconnected from ground when the ith bit 

of the input codeword c[n] is high or low, respectively. Hence, c[n] controls the RC time 

constant at the output of inverter I2, and, consequently, the delay through the DTC. 

Inverter I2 differs from the other inverters, which are standard two-transistor inverters, 

in that it contains resistor R in series with the drain of the inverter’s pMOS transistor. The 

pMOS transistor is chosen to be wide enough that its on-resistance is small compared to R. This 

makes the time constant at the output node of inverter I2 relatively independent of the 

transistor’s on-resistance when the inverter’s output voltage transitions from low-to-high, 

thereby improving the DTC’s linearity, i.e., the linearity of the delay between each rising edge 

of vdiv(t) and the corresponding rising edge of vDTC(t) as a function of c[n]. Another advantage 

of this design choice is that the large pMOS transistor size results in a relatively low flicker 

noise contribution from the transistor. As the PLL’s timing information is only carried by the 

times of the rising edges of the divider and DTC outputs, it is not necessary for the nMOS 

transistor in inverter I2 to be large or to include a resistor in series with its drain. 

 

 Nonideal DTC Behavior 

A DTC’s resolution specifies the number of different delays that the DTC is able to 

introduce. For example, if the capacitors in the DTC of Fig. 17 have values of 2iC for i = 0, 1, 

2, …, b−1, and the ith bit of c[n] controls the transistor connected to the 2iC capacitor, then the 

DTC is said to have b bits of resolution because it can introduce 2b different delays. 
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In many applications, the minimum step-size of α is so small that it is not practical to 

implement a DTC with sufficient resolution to achieve delays of exactly TD + ε[n], so it is often 

necessary to have the DTC input be a quantized version of ε[n]. As described above, the purpose 

of the DTC is to cancel the effect of the quantization error in v[n] prior to the PEDC’s phase 

error measurement and digitization process, so quantizing ε[n] prior to the DTC appears, at first 

glance, to defeat the purpose of the DTC. However, the error from quantizing ε[n] prior to the 

DTC usually can be made much smaller than the quantization error in v[n], so the quantization-

noise-induced spurious tones it causes are much smaller than the those which would have 

occurred in the absence of the DTC. Furthermore, the quantization of ε[n] is done in the digital 

domain, so the quantization error is available within the PEDC as digital sequence. Hence, if 

necessary, the small amount of quantization error introduced by the quantization of ε[n] can be 

canceled within the rest of the PEDC following the phase error measurement and digitization 

operation.  

Another practical DTC limitation relates to component mismatches. In the DTC 

example described above, the 2iC capacitor would typically be implemented as a parallel 

combination of 2i unit capacitors of size C for each i = 1, …, b−1. Mismatches among the 

different unit capacitors from fabrication errors and systematic layout asymmetries cause the b 

capacitors to deviate from their ideal values, which results in DTC nonlinearity. 

If necessary, DEM can be applied to at least partially address this problem [28], [29]. 

Provided the number of DTC capacitors and their nominal values satisfy certain constraints, a 

digital DEM encoder can be used prior to the DTC to control which capacitors are connected 

and disconnected within the DTC during each reference period such that the error introduced 
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by component mismatches is either white or highpass spectrally shaped noise instead of 

nonlinear distortion [30]. 

As described above, the DTC ideally introduces a delay to the nth rising edge of vdiv(t) 

that well-approximates TD + ε[n]. However, DTC gain error, which is inevitable in practice 

because of various types of nonideal circuit behavior, causes this delay to instead approximate 

ADTC (TD + ε[n]) where ADTC is a constant that deviates from its ideal value of unity. Fortunately, 

background calibration techniques that adaptively measure ADTC and compensate for it are well-

known [4], [22]. 

Fig. 18 shows a DTC-enabled version of the PEDC of Fig. 16b in which DTC gain 

calibration, quantization, and DEM are applied to address the DTC’s gain error, resolution 

limitation, and component mismatches, respectively. The details of the DEM encoder and the 

DTC gain calibration are not described in detail in this paper because they are well-known, 

established techniques that are described in detail in the cited references. 

The remaining types of nonideal DTC behavior are circuit noise, and nonlinearity from 

sources other than component mismatches. Usually, for a given DTC topology, circuit noise 

can only be reduced at the expense of increased power consumption and/or area. Nevertheless, 

fractional-N PLLs with DTC-based QNC have been demonstrated with excellent phase noise 

performance and power efficiency, so the circuit noise issue has proven to be manageable [7], 

[8]. Unfortunately, DTC nonlinearity from sources other than component mismatches remains 

a significant issue, especially for DTCs with high dynamic range [6].  
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 DTC Linearity Versus Component Mismatch Tradeoff 

While careful sizing of the pMOS transistor and resistor in Inverter I2 can reduce the 

nonlinearity of the type of DTC shown in Fig. 17 as described above, it is often not possible to 

reduce it sufficiently to prevent it from causing significant spurious tones. Consequently, low-

jitter fractional-N PLLs with DTC-based QNC typically incorporate DTC linearization 

techniques as mentioned in the introduction. 

Alternatively, the DTC can be implemented as a cascade of 1-bit DTC stages as shown 

in Fig. 19. Ideally, the ith DTC stage introduces a delay of δi[n] = Ti + ci[n]Δi, where Ti is a 

constant delay, ci[n] is the ith output bit of the DEM encoder preceding the DTC, and Δi is a 

constant which represents the DTC stage’s delay step-size. For example, each 1-bit DTC stage 

in Fig. 19 can be implemented by the DTC shown in Fig. 17 except with a single capacitor and 

nMOS transistor in place of the full DTC capacitor bank. To the extent that the inverters at the 

input and output of each stage provide sufficient isolation that the ith stage’s delay, δi[n], does 

not depend on cj[n] for any j ≠ i, each DTC stage introduces one of only two possible delays to 

its input at any given time so each 1-bit stage is inherently linear (two points always lie on a 

straight line). However, component mismatches cause the two possible delays from each DTC 

stage to have static deviations from their ideal values, which, in the absence of DEM, would 

introduce overall DTC nonlinearity. Fortunately, by scrambling the usage pattern of the DTC 

stages, the DEM encoder causes error from component mismatches to introduce noise-like error 

instead of nonlinear distortion [30]. 

However, unlike the single-stage DTC of Fig. 17 wherein mismatch noise is dominated 

mainly by unit capacitor mismatches, every component within each stage of the multi-stage 
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DTC contributes to the DTC’s mismatch noise. As mentioned in the introduction, this typically 

causes the mismatch noise from the multi-stage DTC of Fig. 19 to be so high that its application 

to QNC in low-jitter PLLs has been problematic to date. The DTC-MNC technique presented 

in the next section addresses this problem.  

III. ADAPTIVE DTC MISMATCH NOISE CANCELLATION 

The PEDC of Fig. 18 generates an output sequence which can be written as  

 [ ] [ ] [ ]eideal
p n r n r n= + , (15) 

where rideal[n] is what p[n] would have been had the DTC not introduced mismatch noise, and 

re[n] is the component of p[n] resulting from DTC mismatch noise. The purpose of the DTC-

MNC technique is to adaptively measure and cancel re[n]. As explained shortly, this is 

accomplished by the block labeled DTC-MNC logic in the digital PLL shown in Fig. 20 

 In general, DEM causes the DTC’s mismatch noise, eDTC[n], to have the form 

 
1

[ ] [ ]
L

DTC k k
k

e n B S n
=

= , (16) 

where L is a constant that depends on the details of the DEM encoder, each Sk[n] is a white or 

spectrally shaped pseudo-random sequence that is known because it is generated within the 

DEM encoder, and each Bk is a constant that is unknown because it depends on the DTC’s 

component mismatches [30], [32]. 

The PEDCs in high-performance PLLs must be quite linear to avoid inducing large 

spurious tones, so by far the largest term in p[n] resulting from eDTC[n] is a scaled and delayed 
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version of eDTC[n]. While PEDC nonlinearity causes p[n] to also contain a nonlinearly distorted 

version of eDTC[n] which the DTC-MNC technique does not completely cancel, the power ratio 

of the linear to nonlinear terms is typically several tens of dB. Provided this ratio is larger than 

the desired level of cancellation of eDTC[n], which is usually only about 30 dB, then the 

nonlinearity of the PEDC can be neglected. Hence, (16) implies that re[n] can be approximated 

as 

 
1

[ ] [ ]
L

e k k
k

r n b s n
=

= , (17) 

where bk is proportional to Bk, sk[n] = Sk[n – Q], and Q is a positive integer delay. 

 DTC Mismatch-Noise Cancellation Implementation 

The details of the DTC-MNC logic block in Fig. 20 are shown in Fig. 21. The structure 

consists of L feedback loops, each of which contains the residue estimator block shown in Fig. 

21b. The kth residue estimator accumulates Kr[n]sk[n] and multiplies the result by sk[n], where 

K is a constant called the DTC-MNC loop gain. For most types of DEM including those 

considered in this paper, each sk[n] sequence is limited to values of −1, 0, and 1, so the 

multiplications are not hardware-intensive. As proven shortly, the kth feedback loop estimates 

and cancels the kth term of (17) in background, i.e., during normal operation of the PLL. 

Although the DTC-MNC technique is applicable to any type of DEM, the analysis 

presented in this paper assumes that the DEM encoder has the general form of that presented in 

[31], [32] and causes the DTC’s mismatch noise to have either a white or first-order highpass 
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shaped power spectral density (PSD). In all such cases, sk[n] for each k is a known, zero-mean 

pseudo-random sequence called a switching sequence, which takes on values of −1, 0, and 1. 

It is necessary in the analysis below to keep track of the values of n for which each 

switching sequence is non-zero, so the mth non-negative integer n for which sk[n] ≠ 0 is denoted 

as Jm,k. Therefore, 0 ≤ J1,k < J2,k < J3,k < …, and sk[n] = 0 if n ≠ Jm,k for any value of m. 

The two most common options for the switching sequences in (17) are analyzed in this 

paper: white switching sequences and first-order highpass shaped switching sequences. The 

non-zero values of these sequences are given by 

 ( )
1

, ,

1
[ ] [ ],    and   [ ] 1 ,

2

r

k r k k k r k k

r
s J w r s J w

−   
  
    

−
= = −  (18) 

respectively, where r = 1, 2, 3, …, the sequences wk[p], for all k and p, are independent zero-

mean random variables, each of which is restricted to values of −1 and 1, and x for any real 

number x denotes the largest integer less than or equal to x.  

The two switching sequence options correspond to the switching sequences generated 

by mismatch scrambling and first-order highpass mismatch shaping DEM encoders, 

respectively. For the latter case, (18) implies that each successive pair of non-zero sk[n] values 

is either 1,−1, or −1, 1, where the choice between these two possibilities is made randomly with 

equal probability and independently from all other variables in the system. 

 DTC Mismatch-Noise Cancellation Analysis  

The DTC-MNC logic is a special case of the multi-loop least-mean-square (LMS) like 

noise canceler analyzed in [33] for the case of white switching sequences, but not for the case 
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of spectrally-shaped switching sequences. Furthermore, the DTC-MNC logic for both types of 

switching sequences differs in two ways from the noise canceler presented in [33], and these 

differences enable the significantly different and much more precise analysis presented in this 

paper. One difference is that the input to the DEM encoder that drives the DTC is not arbitrary; 

it is the sum of the quantization noise component of v[n] and quantization noise from the Qf 

quantizer in Fig. 18, each of which is the result of either dithered digital quantization or digital 

ΔΣ modulation in typical PLLs. The analysis presented in this paper relies on the properties of 

such DTC input sequences to accurately quantify the convergence speed of the DTC-MNC 

technique. The other difference is that the DTC-MNC logic is simpler than the noise canceler 

presented [33], which allows for much tighter error bounds than were derived in [33]. 

It follows from Fig. 21 and (17) that 

 [ ] [ 1] [ 1]
k k k

a n a n Ku n= − + −  (19) 

for each k = 1, 2, …, L, where 

 ( )
1

[ ] .
L

k k ideal l l l
l

u n s n r n s n b a n
=

 
        

        
 

= + −  (20) 

The objective of the DTC-MNC logic is to cause rc[n] = re[n] such that r[n] = rideal[n]. Fig. 21 

implies that 

 
1

[ ] [ ] [ ]
L

c k k
k

r n s n a n
=

= , (21) 

with which (17) implies that this objective would be perfectly achieved if each ak[n] coefficient 

were equal to bk. Therefore, the convergence error of each accumulator in Fig. 21b is defined 

as 
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 [ ] [ ]
k k k

z n a n b= − . (22) 

Combining (19), (20), and (22) with n replaced by n+1 gives 

 
1

[ 1] [ ] [ ] [ ]
L

k k k ideal k l l
l

z n z n Ks n r n Ks n s n z n
=

     
     + = + −   (23) 

for each k = 1, 2, …, L. Therefore, zk[n] for each k = 1, 2, …, L is specified for all n ≥ 0 by 

difference equations (23) with initial conditions 

 [0] [0]  for  1,  2,  ...,  j j jz a b j L= − = . (24) 

The system is considered to be “turned on” at time n = 0, so 

 [ ] 0 for 0 and  1,  2,  ...,  jz n n j L=  = . (25) 

The theorems presented below and discussed subsequently, which are proven in the 

appendix, apply to switching sequences given by (18) and system equations (23), (24), and (25)

. They quantify the convergence rate and noise performance of the DTC-MNC technique 

provided the switching sequences, which depend on the DEM encoder’s input sequence, and 

rideal[m] satisfy the theorem hypotheses. Simulation results that closely support the theorems’ 

results are presented in the next subsection.  

Theorem 1: For white switching sequences and n ≥ 0, if neither sj[m] nor rideal[m] depend on 

whether sk[n] is zero or nonzero for any j, k, and n > m, then 

   ( )

[ ], if [ ] 0,
E [ 1] [ ]

[ ] 1 , if [ ] 0,

k k

k k
k k

z n s n
z n s n

z n K s n







=
+ =

− 
 (26) 

where ͞zk[n] = E{zk[n]}. If, in addition, E{sk
2[n]} does not depend on n, and aj[0] = 0 for j = 1, 

2, …, L, then 
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 ( )[ ] 1
n

k k k
z n b c K= − − , (27) 

where ck = E{sk
2[m]}. 

□  

Theorem 2: For white switching sequences and n ≥ 0, if 0 < K < 2cmin/(cL) neither sj[m] nor 

rideal[m] depend on whether sk[n] is zero or nonzero for any j, k, and n > m, neither E{sk
2[n]} 

nor E{rideal
2[n]} depend on n, and E{sk

2[n]} ≠ 0 for all k, then  

  
2

2limsup [ ]
2

ideal
r

z
n min

Kc
n

c KcL




→


−
, (28) 

where 

 2 2

1

1
[ ] [ ]

L

z k
k

n z n
L


=

=  , (29) 

2[ ]
k

z n = E{zk
2[n]}, 2

ideal
r  = E{rideal

2[n]}, and cmin and c are the minimum and average values 

of ck = E{sk
2[n]} over k = 1, 2, …, L, respectively. 

□ 

Theorem 3: For first-order highpass shaped switching sequences and n ≥ 0, if 0 < K < 1/L, 

E{sk
2[n]} does not depend on n, neither sj[m] nor rideal[m] depend on whether sk[n] is nonzero 

for any j, k, and n > m, and aj[0] = 0 for j = 1, 2, …, L, then 

 
1

[ ] 1
1

n

k k k

LK
z n b c K

K

  
  

    

−
 −

−
, (30) 

where ck = E{sk
2[m]}. 

□ 

Theorem 4: For first-order highpass shaped switching sequences and n ≥ 0, if 0 < a < 1, where 



 

 

55 

 

 ( ) 2 2
2

1 2

2 1 6 8 2
1 ,

1 2 1 2

min

max

a c K

K L KL K L
K L c c L

K K

 
  
 

  
  
 

= −

− + +
+ + +

− −

 (31) 

K < min{1/L, ½}, neither sj[m] nor rideal[m] depend on whether sk[n] is zero or nonzero for any 

j, k, and n > m, and neither E{sk
2[n]} nor E{rideal

2[n]} depend on n, and E{sk
2[n]} ≠ 0 for all k, 

then  

  
2 2 2 3 3

2 22 3 3
limsup [ ]

1 1 ideal
z r

n

cK KL K L K L
n

a KL
 

→

 
 
 
 

+ + +


− −
, (32) 

where 2[ ]z n , 2

ideal
r , ck, cmin, and c are as defined in the statement of Theorem 2, and cmax is the 

maximum value of ck = E{sk
2[n]} over k = 1, 2, …, L. 

□ 

Theorems 1 and 3 quantify the convergence rates of the DTC-MNC technique for white 

and first-order highpass switching sequences, respectively, in terms of the statistical means of 

zk[n], i.e., ͞zk[n], for all n ≥ 0. Theorem 1 provides an exact expression for ͞zk[n] whereas Theorem 

3 provides a tight upper bound on the magnitude of ͞zk[n]. The theorems show that the 

convergence of the DTC-MNC technique is unbiased, which, with (22), implies that the mean 

values of ak[n] converge exactly to their ideal values, bk, for all k. The theorems also show that 

each convergence rate is exponential with a convergence speed that increases with DTC-MNC 

loop gain K. 

While Theorems 1 and 3 show that the means of zk[n] converge to their ideal values, 

they do not by themselves guarantee that the DTC-MNC logic is unconditionally stable, as they 

do not rule out the possibility that the variances of zk[n] could conceivably diverge. Theorems 
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2 and 4 address this issue by bounding the steady state variances of zk[n] for white and first-

order highpass shaped switching sequences, respectively. They state conditions which ensure 

that the variances of zk[n] are bounded, thereby ensuring unconditional stability. The bounds 

they provide are in terms of K, the variance of rideal[n], and how frequently the switching 

sequences are non-zero over time. The theorems imply that the maximum variances of zk[n] 

decrease with K and with the variance of rideal[m]. Together with Theorems 1 and 3, they 

quantify the convergence speed versus accuracy tradeoff associated with the choice of DTC-

MNC loop gain K. 

The theorems also provide insight into the tradeoffs between white and first-order 

highpass shaped switching sequences. Typically, K is small, e.g., less than 2−7, so Theorems 1 

and 3 imply that while the convergence rate is faster for white switching sequences than for 

first-order highpass shaped switching sequences, the difference is relatively small and decreases 

with K. However, Theorems 2 and 4 suggest that the variance of the convergence error is higher 

for first-order highpass shaped switching sequences than for white switching sequences. 

Nevertheless, first-order highpass shaped switching sequences suppress mismatch noise at low 

frequencies, so error from imperfect convergence introduced by DTC-MNC with these 

switching sequences tends to be suppressed at low frequencies. Consequently, the results 

suggest that white switching sequences become increasingly advantageous as the PLL’s 

bandwidth is increased whereas the opposite is true as the PLL’s bandwidth is decreased. 

 DTC Mismatch-Noise Cancellation Simulation Results   
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This subsection presents simulation results of a digital PLL enabled by the DTC-MNC 

technique, and compares them to the theoretical results presented above. The simulated PLL is 

based on that presented in [34] but with the modified PEDC shown in Fig. 22. The combination 

of the fixed divide-by-two and the multi-modulus divider can be viewed as a single multi-

modulus divider that divides by 2(N+α), so the PEDC has the general form shown in Fig. 16b. 

The time amplifier (TA), PFD, cycle counter, phase decoder, and dividers are exactly as 

described in [34]. The dual-mode ring oscillator (DMRO), which has the same topology as that 

described in [34], has 31 delay elements and its output frequencies are approximately 3 GHz 

and 250 MHz when the u output of the PFD is high or low, respectively. Quantizers Qf and Qc 

are each implemented as 2nd-order ΔΣ modulators with LSB dither [35]. 

Like the original PLL presented in [34], the modified PLL has a reference frequency of 

fref = 80 MHz and its output frequency is tunable from 6 GHz to 7 GHz. All the PLL simulation 

results described in this section correspond to fPLL  6.4 GHz with αfref  104 kHz which is 

about a tenth of the PLL’s 1 MHz bandwidth. 

The DTC has 9 bits of resolution and has the form shown in Fig. 19 with M = 20 1-bit 

DTC stages. It is driven by a segmented DEM encoder of the type presented in [32] with the 

option of either white or first-order highpass mismatch shaping, and the relative 1-bit DTC 

stage weights were chosen based on the tradeoffs presented in [31]. The ith 1-bit DTC stage has 

a nominal delay step-size of Δi = KiΔ, where Δ = 1.4 ps is the DTC’s minimum delay step-size, 

K1, K2, …, K12 equal 1, 1, 2, 2, 4, 4, …, 32, 32, respectively, and K13 = K14 =  = K20 = 64. The 

delay between the DEM encoder and p[n] is 2 reference periods, so the results presented in [32] 



 

 

58 

 

imply that re[n] is given by (17) with L = 19 and sk[n] = Sk[n−2] where Sk[n] is the DEM 

encoder’s kth switching sequence. The DTC gain calibration technique is as presented in [22]. 

The authors designed a transistor-level version of the DTC for the Global Foundries 

22FDX process, wherein each of the 20 1-bit DTC stages has the form shown in Fig. 17 except 

with a single capacitor and transistor in place of the DTC capacitor bank. Circuit simulations 

predict that the DTC’s mid-code phase noise floor relative to the 80 MHz reference frequency 

is −161 dBc/Hz and its power consumption is 1.8 mW, which is in line with state-of-the-art 

designs [6], [7]. Circuit simulations also predict that the PLL’s worst-case fractional spur 

resulting from imperfect isolation among the 1-bit DTC stages is lower than −70 dBc. 

The results presented in [31] ensure that the switching sequences satisfy (18), which is 

a requirement of the theorems presented above. By definition, rideal[m] does not depend on sk[n], 

and it represents measured PLL phase error so it is reasonable to expect that E{rideal
2[n]} does 

not depend on n once the PLL is locked. As quantified in [31], whether or not sk[n] is nonzero 

at time n is a complicated function of the DEM encoder’s input code value at time n and some 

or all the values of s1[n], s2[n], …, sk−1[n] at time n. The DEM encoder’s input sequence consists 

of quantization noise and accumulated quantization noise from the Qf and Qc ΔΣ modulators, 

respectively, and the LSB dither causes both quantization noise sequences to be asymptotically 

white and uniformly distributed prior to second-order noise shaping [35]. Consequently, it is 

reasonable to expect that sk[n] does not depend on whether future values of sj[n] are nonzero 

for any j and k, and that E{sk
2[n]} is nonzero and does not depend on n. These observations, 

which are further supported by simulation results performed by the authors, are consistent with 

the hypotheses of the four theorems presented above. 
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The authors used Cadence Spectre PNOISE circuit simulations to predict the phase 

noise of each PLL circuit block and Monte-Carlo simulations to determine component 

mismatches within the DTC. The results were back-annotated into a behavioral, event-driven 

C-language PLL simulator (along the lines of those presented in [36]-[37]) which generated all 

of the simulation results presented below. 

Fig. 23 shows simulated PLL phase noise spectra which demonstrate the individual and 

combined effects of DTC mismatches, DEM, and DTC-MNC relative to the PLL’s ideal phase 

noise spectrum. Without DEM or DTC-MNC (Fig. 23a), the DTC mismatches result in large 

spurious tones which degrade the PLL’s RMS total jitter, σTJ, (integrated from 10 kHz to 80 

MHz) to 550 fs from its ideal value of 90 fs which would have occurred in the absence of DTC 

mismatches. Enabling DEM without DTC-MNC causes the DTC mismatches to introduce noise 

rather than spurious tones, but with either white (Fig. 23b) or first-order highpass shaped (Fig. 

23c) switching sequences, the noise significantly degrades the PLL’s jitter. In both cases, 

enabling DTC-MNC cancels the noise as expected such that the simulated jitter differs 

insignificantly from its ideal value of 90 fs. 

The results shown in Fig. 23 with DTC-MNC enabled correspond to a DTC-MNC loop 

gain of K = 2−8. The theoretical results presented in Section III-B as well as the simulation 

results presented in Figures 24 and 25 imply that the corresponding DTC-MNC cold-start 

settling time — the time from when DTC-MNC technique is first enabled with uninitialized 

registers to the time at which the PLL’s phase noise profile becomes visually indistinguishable 

from that which would have occurred in the absence of DTC mismatches — is less than 2000 
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reference periods, i.e., less than 25 µs. As mentioned in the introduction, this is at least an order 

of magnitude faster than reported for the published DTC predistortion techniques [11], [12]. 

Fig. 24a shows simulated cold-start trajectories (solid curves) of the 19 ͞zk[n] sequences 

for DTC-MNC with K = 2−12 and white switching sequences along with the corresponding 

theoretical trajectories (dashed curves) predicted by Theorem 1. 

The simulated ͞zk[n] trajectories were obtained by averaging the zk[n] trajectories from 

ten separate simulation runs starting from the same initial state. As indicated in the figure, the 

simulated and calculated trajectories are extremely close, and the authors have verified that the 

simulated and corresponding theoretical trajectories become visually indistinguishable as the 

number of averages is increased. In principle, the averaging option is necessary because ͞zk[n] 

in Theorem 1 is the statistical mean of zk[n]. Nevertheless, as shown in Fig. 24b, even without 

averaging, i.e., for only one simulation run, the simulated trajectories of zk[n] are very close to 

the trajectories of ͞zk[n] predicted by Theorem 1. Other values of K yield results similar to those 

shown in Fig. 24 aside from convergence-rate and noise variances differences. 

Fig. 25 shows the simulated cold-start trajectories of σz
2[n] for DTC-MNC with white 

switching sequences and various loop gains relative to the steady-state bounds predicted by 

Theorem 2. As expected, the simulated trajectories remain below the bounds predicted by 

Theorem 2 after the initial settling transient. As can be seen in the figure, the bounds become 

tighter as K is decreased. 

Fig. 26 shows results that correspond to those shown in Figures 24a, but for the case of 

first-order highpass shaped switching sequences. Given that Theorem 3 bounds the magnitude 

of  ͞zk[n], Fig. 26 shows trajectories of the magnitudes of ͞zk[n], but otherwise the results 
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including the convergence rates are very similar those shown in Fig. 24. Furthermore, as can be 

seen from Fig. 26, the bound provided by Theorem 3 is extremely tight. 

Fig. 27 shows results that correspond to those shown in Fig 25, but for the case of first-

order highpass shaped sequences. As with the Fig. 25 results, Fig. 27 shows results for three 

values of DTC-MNC loop gain, K. The hypothesis of Theorem 4 for the parameters of this 

particular design example restricts K to be less than or equal to about 2−11, so even though the 

simulation results suggest that σz
2[n] has a steady-state bound and Theorem 3 ensures that ͞zk[n] 

converges to zero for all three cases, Theorem 4 only provides a bound for one of the three K 

values. 

IV.  CONCLUSION  

An entirely digital background calibration technique has been presented that adaptively 

measures and cancels error resulting from DTC component mismatches that would otherwise 

degrade the phase noise of digital PLLs with DTC-based quantization noise cancellation. Aside 

from virtually eliminating DTC component mismatches as a source of phase noise in general, 

the technique indirectly addresses the well-known DTC nonlinearity problem because it 

facilitates the use of inherently-linear DTCs comprised of cascades of 1-bit DTC stages. Such 

DTCs tend to introduce excessive error from component mismatches, which has heretofore 

hindered their application to low-jitter PLLs. Published digital predistortion techniques provide 

an alternate means of mitigating DTC nonlinearity, but their convergence rates are at least an 

order of magnitude slower than that of the presented technique. 
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A rigorous mathematical analysis has been presented that precisely quantifies the 

calibration technique’s settling performance and provides conditions under which it is 

unconditionally stable. Closed-loop PLL simulations are notoriously time-consuming, so it is 

generally not practical to perform simulations over all possible PLL operating conditions. 

Hence, the results of the analysis are essential to ensure that the calibration technique is robust 

and works properly over all possible PLL operating conditions. 

V. APPENDIX: PROOFS OF THEOREMS 1-4 

Proof of Theorem 1: Replacing n with n − 1 in (23) gives 

 

1

[ ] [ 1] [ 1] [ 1]

[ 1] [ 1] [ 1]

k k k ideal

L

k l l
l

z n z n Ks n r n

Ks n s n z n
=

= − + − −

− − − −
 (33) 

for all n. Recursively substituting (33) into itself shows that zk[n] is a function, fk,n, of only the 

variables rideal[m] and sj[m] for j = 1, 2, …, L and m ≤ n−1, i.e., 

 ( ),
[ ] [ ],  [ ]; 1,  2,  ...,  ,  1 jk k n ideal

z n f r m s m j L m n= =  − . (34) 

Given that sk[m] for all m is restricted to values of −1, 0, and 1, it follows that sk
2[m] = 1 when 

sk[m] ≠ 0. Hence, (23) can be written as 

 

( )

1

[ 1] [ ] 1 [ ]

[ ]

k k k ideal

L

k l l
l
l k

z n z n K Ks n r n

Ks n s n z n
=


 
 

   
   

+ = − +

− 
 (35) 

whenever sk[n] ≠ 0.  
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The theorem hypothesis states that neither sj[m] nor rideal[m] depend on whether sk[n] is zero or 

nonzero for any j, k, and n > m, so (34) implies that  

    E [ ] [ ] 0 E [ ] [ ]
k k k k

z n s n z n z n = = , (36) 

and 

    E [ ] [ ] 0 E [ ] [ ]
k k k k

z n s n z n z n= = = . (37) 

For white switching sequences, when sk[n] ≠ 0 it is independent of all other random variables 

in the system, and (34) implies that zk[n] is not a function of sk[n], so (35) and (36) imply 

   ( )E [ 1] [ ] 0 [ ] 1
k k k

z n s n z n K+  = − . (38) 

It follows from (23) that zk[n+1] = zk[n] whenever sk[n] = 0. This with (37) implies 

  E [ 1] [ ] 0 [ ]
k k k

z n s n z n+ = = . (39) 

Combining (38) and (39) yields (26). 

By definition, sk
2[n] is restricted to values of 1 and 0, so the condition that ck = E{sk

2[n]} 

is independent of n for n ≥ 0 implies that  

    Pr [ ] 0    and    Pr [ ] 0 1
k k k k

s n c s n c = = = − , (40) 

where Pr{A} denotes the probability of event A. The properties of conditional expectations 

imply 
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E [ 1] E [ 1] [ ] 0 Pr [ ] 0

E [ 1] [ ] 0 Pr [ ] 0 ,

k k k k

k k k

z n z n s n s n

z n s n s n

+ = + = =

+ +  
 (41) 

so it follows from (26) and (40), that 

 ( )[ 1] [ ] 1
k k k

z n z n c K+ = − . (42) 

If (27) holds for any particular value of n, it follows from substituting (27) into (42) that 

it must hold for n+1. It follows from (22) that if ak[0] = 0, then ͞zk[0] = −bk so (27) holds for n = 

0. Therefore, (27) must hold for all n = 0, 1, 2, … by mathematical induction. 

□ 

 

Proof of Theorem 2: The same reasoning that led to (36) and (37) implies 

 2 2 2E [ ] [ ] 0 E [ ] [ ] 0 [ ]
k k k k k

z n s n z n s n z n   
   
   

 = = =  (43) 

for all k and n. Given that that zk[n+1] = zk[n] whenever sk[n] = 0, it follows from (43) that 

 2 2E [ 1] [ ] 0 [ ]
k k k

z n s n z n 
 
 

+ = = . (44) 

This with (40) implies 

 ( )2 2 2[ 1] [ ] 1 E [ 1] [ ] 0 .
k k k k k k

z n z n c z n s n c 
 
 

+ = − + +   (45) 

Squaring both sides of (23) yields 
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( )

2 2 2 2 2

2 2

11

1

[ 1] [ ] [ ] [ ] 2 [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

2 [ ] [ ] [ ] [ ] [ ] [ ].

k k k ideal k ideal k

L L

j jk l l
jl

L

k k ideal k l l
l

z n z n K s n r n Ks n r n z n

K s n s n z n s n z n

z n Ks n r n Ks n s n z n

==

=

+ = + +

+

− +





 (46) 

As indicated by (34), zi[n] does not depend on sj[n] for any i, j, and n, and by the definition of 

white switching sequences, for each integer, i, si[n] either equals zero or it has zero mean and 

is independent of all other random variables in the system. Therefore, taking the expectation of 

(46) conditioned on sk[n] ≠ 0 and applying (43) yields 

 

( )2 2 2 2

2 2 2

1

E [ 1] [ ] 0 [ ] 1 2

[ ]E [ ] [ ] 0 .

ideal
rk k k

L

l l k
l

z n s n z n K K

K z n s n s n



=

 
 
 

 
 
 

+  = − +

+ 
 (47) 

Given that 0 ≤ sl
2[n] ≤ 1, this implies 

 

( )2 2 2 2

2 2

1

E [ 1] [ ] 0 [ ] 1 2

[ ].

ideal
rk k k

L

l
l

z n s n z n K K

K z n



=

 
 
 

+   − +

+ 
 (48) 

It follows from (29), (40), (45), and (48) that 

 ( )2 2 2 2 2 2[ 1] [ ] 1 2 [ ]
ideal

r zk k k k k
z n z n c K c K c K L n +  − + + . (49) 

This with (29) implies 

 ( )2 2 2 2 2[ 1] [ ] 1 2
ideal

z z rminn n Kc cLK K c  +  − + + . (50) 

Hence, σz
2[n] ≤ y[n], where y[n] satisfies the constant-coefficient linear difference 

equation 
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 ( )2[ 1] [ ] 1 2 [ ]miny n y n Kc cLK x n+ = − + + , (51) 

with 

 2 2[ ] [ ]
ideal

rx n cK u n= , (52) 

and u[n] is the unit step function. This implies that y[n] can be viewed as the output of a linear 

time-invariant (LTI) system with input sequence x[n], where x[n] is a step function. 

Solving the z-transform of (51) for the transfer function from x[n] to y[n] yields 

 

( )
1

1 2
( )

1 1 2 min

z
B z

z Kc cLK

−

−
=

− − +
, (53) 

where B(z) = Y(z)/X(z), and Y(z) and X(z) are the z-transforms of y[n] and x[n], respectively. 

The condition 0 < K < 2cmin/(cL) implies that |1 – 2Kcmin + cLK2| < 1, so the LTI system is 

stable. As x[n] is a step function, the properties of stable LTI systems imply that the limit of 

y[n] as n → ∞ is the zero-frequency gain of B(z) times the amplitude of x[n], i.e., 

  
2

2 2 0lim [ ] ( )
2

ideal

ideal

r

rn
min

Kc
y n cK B z

c KcL




→
= =

−
. (54) 

Given that σz
2[n] ≤ y[n] for all n, it follows that the upper bound of σz

2[n] in the limit as n → ∞, 

i.e., the limit supremum of σz
2[n], is bounded by the right side of (54). 

□ 

Lemma 1: For first-order highpass shaped switching sequences, if l ≠ k, m is an even integer, 

and 0 < K < 1/L, then 
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, , , 1,

{ [ ] [ ] [ ]} { [ ]}
k m k l m k l m k k m k

E s J s J z J K E z J
−

 . (55) 

 

Proof: Equation (55) holds by inspection if sl[Jm,k] = 0. Therefore, it remains to show that (55) 

holds when Jm,k = Jp,l for some integer p. By definition, sl[Jp,l] has zero mean and, if p is odd, is 

independent of all other contemporaneous and prior random variables in the system. It follows 

that (55) holds if p is odd. It remains to show that (55) holds when Jm,k = Jp,l and p is even, so 

for the remainder of the proof suppose that Jm,k = Jp,l and p is even. 

As zl[n] = zl[n−1] whenever sl[n−1] = 0, it follows from (33) and the definition of Jp,l 

that  

 

, 1, 1, 1,

1, 1, 1,
1

[ ] (1 ) [ ] [ ] [ ]

[ ] [ ] [ ].

l p l l p l l p l ideal p l

L

j jl p l p l p l
j
j l

z J K z J Ks J r J

Ks J s J z J

− − −

− − −
=


= − +

− 
  (56) 

By definition, sk[n] has zero mean for all n and k, the nonzero values of sk[n] are independent 

of rideal[n'] for all k and n', and sl[Jp,l]sl[Jp−1,l] = −1. Hence, (56) implies 

 

, , ,

, , 1,

, 1, 1,

, 1, 1,
1
,

E{ [ ] [ ] [ ]}

(1 )E{ [ ] [ ] [ ]}

E{ [ ] [ ] [ ]}

E{ [ ] [ ] [ ]}.

k m k l p l l p l

k m k l p l l p l

k m k k p l k p l

L

j jk m k p l p l
j

j l k

s J s J z J

K s J s J z J

K s J s J z J

K s J s J z J

−

− −

− −
=


= −

+

+ 

  (57) 

Equation (34) implies that zi[Jp−1,l] does not depend on sl[Jp,l] or sl[Jp−1,l] for any i, and, 

by definition, sl[Jp,l] has zero mean and is independent of all other contemporaneous and prior 

random variables in the system except sl[Jp−1,l]. Hence, the first term on the right side of (57) is 
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zero. Nearly identical reasoning implies that if Jm−1,k > Jp−1,l then all the remaining terms on the 

right side of (57) are also zero, and if Jm−1,k = Jp−1,l then all the remaining terms except the 

second term on the right side of (57) are zero. Furthermore, given that Jm,k = Jp,l and sk[Jp,l] = 

−sk[Jp−1,l], if Jm−1,k = Jp−1,l then the second term on the right side of (57) is −KE{zk[Jm−1,k]} if 

Jm−1,k = Jp−1,l. Hence, the lemma holds when Jm−1,k ≥ Jp−1,l. 

For the remainder of the proof. suppose that Jm−1,k < Jp−1,l. As explained above, the first 

term on the right side of (57) is zero. The second term on the right side of (57) is also zero 

because Jm−1,k ≠ Jp−1,l implies that sk[Jp−1,l] = 0. By the same reasoning followed in the first 

paragraph of the proof, the jth term in the summation on the right side of (57), i.e., is zero unless 

Jp−1,l = Jq,j for some even integer q.  If Jp−1,l = Jq,j for some even integer q, then 

 
, 1, 1,

, ,,

E{ [ ] [ ] [ ]}

E{ [ ] [ ] [ ]}.

j jk m k p l p l

j q j j q jk m k

s J s J z J

s J s J z J

− −

=
 (58) 

The right side of (58) has the same form as the left side of (55) but with different indices. 

Therefore, the results of the proof so far imply that the right side of (58) is either zero, 

K|E{zk[Jm−1,k]}|, or  

 1, 1,,
1
,

E{ [ ] [ ] [ ]}
L

u uq j q jk m k
u

u j k

K s J s J z J
− −

=


 . (59) 

As 0 < K < 1/L, it follows that K(L – 2) < 1. Therefore, (55) holds if the right side of (58) is 

either 0 or −KE{zk[Jm−1,k]} for each j not equal to l or k. The above reasoning can be applied 

recursively in each case where the right side of (58) is neither 0 nor −KE{zk[Jm−1,k]} for any j 

not equal to l or k. At each recursion step, each potentially non-zero term in the sum 
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corresponding to (59) has the form of the right side of (58), but with a reduced value of Jq,j. 

After a finite number of conversion steps, Jq,j for each term in the sum becomes small enough 

that Jm−1,k ≥ Jq−1,j, in which case the term is either 0 or −KE{zk[Jm−1,k]}. 

□ 

 

Proof of Theorem 3: By definition, sk[n] has zero mean for all n and k, and the nonzero values 

of sk[n] are independent of rideal[n'] for all k and n'. Consequently, (35) implies 

 

  ( )  

 
1

E [ 1] [ ] 0 1 E [ ] [ ] 0

E [ ] [ ] [ ] [ ] 0 .

k k k k

L

k l l k
l
l k

z n s n K z n s n

K s n s n z n s n
=


+  = − 

− 
  (60) 

By definition, sk[n] ≠ 0 for n ≥ 0 if and only n = Jm,k for some integer m. Hence, (60) can be 

written as 

 

( ), ,

, , ,
1

{ [ 1]} 1 { [ ]}

{ [ ] [ ] [ ]}.

k m k k m k

L

k m k l m k l m k
l
l k

E z J K E z J

K E s J s J z J
=


+ = −

− 
  (61) 

The right-most equation in (18) implies that for each odd value of m, sk[Jm,k] is 

independent of all other contemporaneous and prior random variables in the system, so (61) 

implies 

   ( )  , ,
E [ 1] 1 E [ ]

k m k k m k
z J K z J+ = −  (62) 
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for odd values of m. For even values of m, (62) does not hold as zl[Jm,k] depends on sk[Jm−1,k] 

and sk[Jm,k] = −sk[Jm−1,k] if m is even. 

Applying Lemma 1 and the triangle inequality to (61) gives 

 
    ( )

( )  

, ,

2
1,

E [ 1] E [ ] 1

1 E [ ] .

k m k k m k

k m k

z J z J K

L K z J
−

+  −

+ −

 (63) 

Given that m−1 is odd when m is even, it follows from (62) that when m is even |E{zj[Jm−1,k]}| 

≤ |E{zj[Jm,k]}|/(1−K). Therefore, (63) can be written as 

    , ,

1
E [ 1] E [ ] 1

1k m k k m k

LK
z J z J K

K

  
  

    

−
+  −

−
. (64) 

This inequality holds for even values of m, but given that 0 < K < 1/L and, by definition, L ≥ 1, 

it is a less restrictive inequality than (62), so it must also hold for odd values of m. 

As mentioned above, sk[n] ≠ 0 for n ≥ 0 if and only if n = Jm,k for some value of m ≥ 1. 

Hence, (64) implies  
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1
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 (65) 

This with (36), (37), (39) and (40) implies 

 

    ( )E [ 1] [ ] 0 E [ 1] [ ] 0 1

1
[ ] 1 .

1

k k k k k k

k k

z n s n c z n s n c
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z n c K
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Given that ck and 1−ck are both non-negative, it follows from the definition of ͞zk[n], (41), the 

triangle inequality, and (66) that 

 
1

[ 1] [ ] 1
1k k k

LK
z n z n c K

K

  
  

    

−
+  −

−
. (67) 

If (30) holds for any particular value of n, it follows from substituting (30) into (67) that 

it must hold for n+1. It follows from (22) that if ak[0] = 0, then ͞zk[0] = −bk so (30) holds for n = 

0. Therefore, (30) must hold for all n = 0, 1, 2, … by mathematical induction. 

□ 

Lemma 2: For first-order highpass shaped switching sequences, if K < 1/L and E{rideal
2[n]} 

does not depend on n, then for any n' 

  
2

E [ '] [ ] [ ]
1

ideal
r

i iideal

K
r n s n z n

KL




−
, (68) 

when n = Jm,i and m is a non-negative even integer, and 

  E [ '] [ ] [ ] 0i iideal
r n s n z n = , (69) 

otherwise. 

 

Proof: If si[n] = 0, then (69) holds by inspection. Otherwise, n = Jm,i for some non-negative 

integer m. If m is odd, then by the definition of the first order highpass shaped switching 

sequences, si[Jm,i] is independent of all other contemporaneous  and prior random variables in 

the system and it has zero mean, so (69) holds in case too. Therefore, (69) holds unless n = Jm,i 
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and m is a non-negative even integer, so to show that (68) holds, it is sufficient to evaluate 

E{rideal[n']si[Jm,i]zi[Jm,i]} for the case where m is even. 

For the remainder of the proof, suppose that m is even. Equation (56) holds with p 

replaced by m and l replaced by i, and the definition of the first-order highpass shaped switching 

sequences implies that si[Jm,i]si[Jm−1,i] = −1 when m is even, so 

 

( ), , , 1, 1,

1, 1,
1

[ ] [ ] [ ] [ ] 1 [ ]

[ ] [ ].

i m i i m i i m i i m i m iideal

L

m i m il l
l
l i

s J z J s J z J K Kr J

K s J z J

− −

− −
=


= − −

+ 
 (70) 

By definition, si[Jm,i] has zero mean and is independent of all other contemporaneous 

and prior random variables in the system except si[Jm−1,i], and (34) implies that zi[Jm−1,i] does 

not depend on either si[Jm,i] or si[Jm−1,i], so it follows from (70) that 

 

   

 

, , 1,

1, 1,
1

E [ '] [ ] [ ] E [ '] [ ]

E [ '] [ ] [ ] .

i m i i m i m iideal ideal ideal

L

m i m iideal l l
l
l i

r n s J z J K r n r J

K r n s J z J

−

− −
=


= −

+ 
 (71) 

The Cauchy-Schwarz inequality for random variables implies that 

   2E [ ] [ ]
ideal

rideal ideal
r p r q   (72) 

for any integers p and q [38]. This with (71) and the triangle inequality implies that 

 

 

 

, ,

2
1, 1,

1

E [ '] [ ] [ ]

E [ '] [ ] [ ] .
ideal

i m i i m iideal

L

r m i m iideal l l
l
l i

r n s J z J

K K r n s J z J
− −

=


 + 
 (73) 
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Hence, 

   ( )2
, , 1

E [ '] [ ] [ ] 1 .
ideal

ri m i i m iideal
r n s J z J K K L A + −  (74) 

where 

  1 1, 1,,
max E [ '] [ ] [ ]

m i m iideal l ll l i
A r n s J z J

− −

  
 
  

= . (75) 

As A1 has the same form as the expectation in the lemma statement, the results of the 

proof so far apply to it. Substituting (73) with a change of variables into (75) and substituting 

the result into (74) yields 

 
  ( )

( )

2 2 2
, ,

2
2

2

E [ '] [ ] [ ] 1

1 ,

ideal ideal
r ri m i i m iideal

r n s J z J K K L

K L A

  + −

+ −

 (76) 

where A2, like A1, has the same form as the expectation in the lemma statement. Recursively 

repeating this process N−2 more times yields 

 
  ( )

( )

1
2

, ,
0

E [ '] [ ] [ ] 1

1 ,

ideal

N r

ri m i i m iideal
r

N
N

N

r n s J z J K K L

K L A


−

=

 
 
 

 −

+ −


 (77) 

where AN has the same form as the expectation in the lemma statement. For a sufficiently large 

value of N, AN = |E{rideal[n']su[n'']zu[n'']}| where n'' < 0  in which case it follows from (25) that 

AN = 0. Therefore,  

   ( )2
, ,

0

E [ '] [ ] [ ] 1
ideal

r

ri m i i m iideal
r

r n s J z J K K L


=

 
 
 

 − , (78) 
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which implies (68) (in which L has been used in place of L−1 to simplify the expression at the 

expense of a slightly looser bound). 

□ 

Lemma 3: For first-order highpass shaped switching sequences, if p is even and K < ½ then 

    2 2
,1,

1
E [ ] E [ ]

1 2i i p ip i
z J z J

K−


−
. (79) 

Proof: Equation (56) can be rewritten as 

 , 1,
[ ] [ ]i p i i p i

z J z J A
−

= + , (80) 

where 

 
1, 1, 1, 1,

1

[ ] [ ] [ ] [ ]
L

i j jp i p i p i p iideal
j

A Ks J r J s J z J
− − − −

=

 
 
 
 

= − . (81) 

Therefore, 

 2 2 2
, 1, 1,

[ ] [ ] 2 [ ]i p i i ip i p i
z J z J A Az J

− −
= + + , (82) 

so 

      2 2
, 1, 1,

E [ ] E [ ] 2E [ ]i p i i ip i p i
z J z J Az J

− −
 + . (83) 

Given that p is even, p−1 is odd, so si[Jp−1,i], which has zero mean, is independent of all 

other contemporaneous and prior random variables in the system. Consequently,  

    2
1, 1,

2E [ ] 2 E [ ]i ip i p i
Az J K z J

− −
= − . (84) 

This with (83) and K < ½ implies (79). 
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□ 

Lemma 4: For first-order highpass shaped switching sequences and any integers j ≠ l and m ≥ 

1, if K < min{1/L, ½} and E{rideal
2[n]} does not depend on n, then 
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−

−
+ +

−

+
+

− 

 (85) 

Proof: By definition, si[Jr,i] for each nonnegative odd value of r has zero mean and is 

independent of all other contemporaneous  and prior random variables in the system, and (34) 

implies that zl'[Jr,i] does not depend on si[Jr,i] for any i and l'. Therefore,  

  , , , ,
E [ ] [ ] [ ] [ ] 0j jm k m k l m k l m k

s J z J s J z J =  (86) 

unless Jm,k = Jp,j  and Jm,k = Jq,l, where p and q are even integers. For the remainder of the proof, 

suppose Jm,k = Jp,j  and Jm,k = Jq,l, where p and q are even integers, so 

 
 

 
, , , ,

, , , ,

E [ ] [ ] [ ] [ ]

E [ ] [ ] [ ] [ ] ,

j jm k m k l m k l m k

j p j j p j l q l l q l

s J z J s J z J

s J z J s J z J=
 (87) 

and (70) with a change of indices implies  

 

( ), , , 1,

1, ' 1, ' 1,
' 1
'

[ ] [ ] [ ] [ ] 1
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L

p j r p j r p jideal
r
r j

s J z J s J z J K

K r J s J z J
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 (88) 



 

 

76 

 

and 

 

( ), , , 1,

1, 1, 1,
1

[ ] [ ] [ ] [ ] 1

[ ] [ ] [ ] .

l q l l q l l q l l q l

L

r rideal q l q l q l
r
r l

s J z J s J z J K

K r J s J z J

−

− − −
=


 
 
 
 
 
 

= −

− −
 (89) 

The remainder of the proof bounds the expectation of the product of (88) and (89) by bounding 

the magnitudes of the expectations of the various product terms individually and applying the 

triangle inequality. 

 The expectations of several of the product terms contain rideal. Given that Jp,j = Jq,l and 

Jq,l > Jq−1,l, the definition of the switching sequences and (34) imply that sj[Jp,j] is independent 

of zj[Jp−1,j]rideal[Jq−1,l], so 

 ( ) , 1, 1,
E 1 [ ] [ ] [ ] 0j p j p jl ideal q l

K K s J z J r J
− −

− = . (90) 

The same reasoning further implies that 

 ( ) 1,, 1,
E 1 [ ] [ ] [ ] 0

p jl q l l q l ideal
K K s J z J r J

−−
− = . (91) 

Lemma 2, inequality (72), and the triangle inequality imply that 

 
( )2 2 2 2

2 1 1
1

1 1ideal ideal
r r

K L KL
R K K

KL KL
 

 
  
    

   
 

− +
 + 

− −
, (92) 

where R is the expectation of the remaining product terms that contain rideal. 
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Equation (34) implies that zi[n] is not a function of sk[n'] for any i, k, and n' > n−1. Given 

that j ≠ l, if Jp−1,j > Jq−1,l then sj[Jp,j] is independent of zj[Jp−1,j]sl[Jq,l]zl[Jq−1,l]. Otherwise, sl[Jq,l] 

is independent of zl[Jq−1,l]sj[Jp,j]zj[Jp−1,j]. Hence, 

  , 1, , 1,
E [ ] [ ] [ ] [ ] 0j p j j p j l q l l q l

s J z J s J z J
− −

= . (93) 

Given that the switching sequences are bounded in magnitude by 1, each of the terms 

of the product of (88) and (89) that have yet to be considered satisfy 
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 (94) 
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1 E [ ] [ ] ,

r p j r p jl q l l q l

q j r p jl

K K s J z J s J z J

K K z J z J

− −−
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−

 −

 (95) 

or 

 
 2

' 1, ' 1, 1, 1,

2
' 1, 1,

E [ ] [ ] [ ] [ ]

E [ ] [ ] .

r rr p j r p j q l q l

rr p j q l

K s J z J s J z J

K z J z J

− − − −
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 (96) 

The Cauchy-Schwarz inequality implies that 

    2 2
1, 1,1, 1,

E [ ] [ ] E [ ] E [ ]u w u wp j p jq l q l
z J z J z J z J

− −− −

 
 
 

 , (97) 

for any u and w. This with Lemma 3 implies 
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K
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−

 (98) 

For any non-negative real numbers a and b, 

    
2

max , max ,a b a b a b a b
 
 
 

 =  + , (99) 

so (98) implies 
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−

 (100) 

Given that Jm,k = Jp,j  and Jm,k = Jq,l, it follows from (88)-(96), (100), and the triangle inequality 

that 
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 ,
L

l



 (101) 

which implies (85) (wherein L has been used in place of L−1 for simplicity at the expense of a 

slightly looser bound). 

□ 
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Proof of Theorem 4: Equations (40) hold by the same argument made in the proof of Theorem 

1, and (43), (44), (45), and (46) hold by the same arguments made in the proof of Theorem 2.  

By definition, n = Jm,k for some integer m if and only if sk[n] ≠ 0, so 

    , ,
Pr [ ] 0 Pr  for some odd 

k n k m k
s n d n J m = + = , (102) 

where 

  , ,
Pr  for some even 

n k m k
d n J m= = . (103) 

This and (40) imply that  

 
,

0
n k k

d c  , (104) 

and 

  , ,
Pr  for some odd 

m k k n k
n J m c d= = − . (105) 

Therefore, it follows from (45) that 
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 (106) 

Equation (46) implies that zk
2[n+1] = zk

2[n] whenever sk[n] = 0, so it follows from (46) 

and the definition of Jm,k that 
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which can be rearranged as 
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 (108) 

The next steps in the proof apply the triangle inequality to bound E{zk
2[Jm,k+1]} by summing 

bounds on the magnitudes of the expectations of the individual terms in (108). 

Lemmas 2 and 4 (using L in place of L−1 for simplicity at the expense of slightly looser 

bounds) can be applied to bound magnitudes of the expectations of several of these terms. 

Lemma 2 implies that 
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and 
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Lemma 4 with (29) and (43) imply 
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and 
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 (112) 

It follows from (29), (43), (44), (106), (108), (109), (110), (111), (112), the triangle 

inequality, and again using L in place of L−1 that 
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Summing both sides of (113) over k, dividing the result by L, and applying (29) yields 
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 2 2[ 1] [ ] [ ]z zn a n x n +  +  (114) 

where a is given by (31), 
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,

1

1 L

n n k
k

d d
L =

=  , (116) 

and u[n] is the unit step function (because the system is “turned on” at time n = 0). Hence, σz
2[n] 

< y[n], where y[n] satisfies the constant coefficient, linear difference equation 

 [ 1] [ ] [ ]y n ay n x n+ = + . (117) 

The definitions of the first-order switching sequences, Jm,k, and ck imply 

 
1, ,

1
,   where   ,

1
k k

n k k n k k
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p M p M  (118) 

and 
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m k

n k

m k

J n m

J n m

 
 
 
 
  


=


p . (119) 

The matrix Mk is a Markov matrix and π = [½  ½] is a probability vector that satisfies πMk = π, 

so it follows that all elements of Mk
n, and, hence, of pn,k converge to ½ as n → ∞ [38]. Given 

that dn,k = cPr{largest Jm,k ≤ n has odd m}, it follows from (116) that 
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 lim
2nn

c
d

→
=  (120) 

Solving the z-transform of (117) for the transfer function from x[n] to y[n], yields 

 
1

1
( )

1

z
B z

az

−

−
=

−
, (121) 

where B(z) = Y(z)/X(z), and Y(z) and X(z) are the z-transforms of y[n] and x[n], respectively. 

The properties of stable LTI systems imply that 

   ( )0lim [ ] lim [ ].
n n

y n B z x n
→ →

=  (122) 

The limit supremum of σz
2[n] as n → ∞ is less than or equal to (122) because σz

2[n] < y[n], so 

(32) follows from (31), (115), (120), (121) and (122). 

□ 
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Figure 16: a) General form of a digital fractional-N PLL driven by an fref-frequency reference 

oscillator, b) general form of a multi-modulus divider-based PEDC. 
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Figure 17: A commonly-used DTC circuit. 
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Figure 18: The PEDC of Fig. 1b with a DEM encoder, quantizer Qf, and DTC gain calibration. 
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Figure 19: A DTC implemented as a cascade of M 1-bit DTCs. 
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Figure 20: General form of a digital fractional-N PLL with the MNC technique. 
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DTC-MNC Logic
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Figure 21: DTC-MNC logic details; a) high-level view, b) details of the kth feedback loop’s 

sk[n] residue amplifier. 
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Figure 22: Details of the simulated PLL a) high-level view of the PEDC b) digital ring phase 

calculator (RPC). 
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Figure 23: PLL phase noise spectra from simulation (solid curves) and theoretical analysis 

(dashed curves). 
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(a)

(b)
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Figure 24: Cold start trajectories of ͞zk[n] for white switching sequences predicted by Theorem 

1(dashed curves) with simulated trajectories (solid curves) of a) ͞zk[n] and b) zk[n]. 
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Figure 25: Simulated cold start trajectories (solid curves) of σz
2[n] for white switching 

sequences with the bounds predicted by Theorem 2 (dashed curves). 
 

Shaped sk[n] Sequences

 

Figure 26: Simulated cold start trajectories (solid curves) of the magnitudes of ͞zk[n] for first-

order highpass shaped switching sequences with the bounds predicted by Theorem 3 (dashed 

curves). 
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Figure 27: Simulated cold start trajectories (solid curves) of σz

2[n] for first-order highpass 

shaped switching sequences with the bound predicted by Theorem 4 (dashed curve) 
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