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A generalisation of the method 
of regression calibration
Mark P. Little 1*, Nobuyuki Hamada 2 & Lydia B. Zablotska 3

There is direct evidence of risks at moderate and high levels of radiation dose for highly radiogenic 
cancers such as leukaemia and thyroid cancer. For many cancer sites, however, it is necessary to assess 
risks via extrapolation from groups exposed at moderate and high levels of dose, about which there 
are substantial uncertainties. Crucial to the resolution of this area of uncertainty is the modelling of 
the dose–response relationship and the importance of both systematic and random dosimetric errors 
for analyses in the various exposed groups. It is well recognised that measurement error can alter 
substantially the shape of this relationship and hence the derived population risk estimates. Particular 
attention has been devoted to the issue of shared errors, common in many datasets, and particularly 
important in occupational settings. We propose a modification of the regression calibration method 
which is particularly suited to studies in which there is a substantial amount of shared error, and in 
which there may also be curvature in the true dose response. This method can be used in settings 
where there is a mixture of Berkson and classical error. In fits to synthetic datasets in which there is 
substantial upward curvature in the true dose response, and varying (and sometimes substantial) 
amounts of classical and Berkson error, we show that the coverage probabilities of all methods for 
the linear coefficient α are near the desired level, irrespective of the magnitudes of assumed Berkson 
and classical error, whether shared or unshared. However, the coverage probabilities for the quadratic 
coefficient β are generally too low for the unadjusted and regression calibration methods, particularly 
for larger magnitudes of the Berkson error, whether this is shared or unshared. In contrast Monte Carlo 
maximum likelihood yields coverage probabilities for β that are uniformly too high. The extended 
regression calibration method yields coverage probabilities that are too low when shared and 
unshared Berkson errors are both large, although otherwise it performs well, and coverage is generally 
better than these other three methods. A notable feature is that for all methods apart from extended 
regression calibration the estimates of the quadratic coefficient β are substantially upwardly biased.

Cancer risks following exposure to moderate and high levels of radiation dose are reasonably well  understood1,2. 
There are beginning to be studies yielding direct estimates of radiation risk at low dose (< 100 mGy) low-linear 
energy transfer (LET)  radiation3–6. This is particularly the case for highly radiogenic sites such as  thyroid3 and 
 leukaemia4. For most other cancer endpoints it is necessary to assess risks via extrapolation from groups exposed 
at moderate and high levels of dose. A number of recent reviews of low dose risk have been conducted, in par-
ticular those by the National Council on Radiation Protection and Measurements (NCRP)7 and by the National 
Cancer  Institute8–13. A major source of uncertainty in assessment of low dose risk concerns the extrapolation 
of risks at high doses and high dose-rates to those at low doses (< 0.1 gray (Gy)) and low dose-rates (< 5 mGy/
hour)14. Crucial to the resolution of this area of uncertainty is the modelling of the dose–response relationship 
and the importance of both systematic and random dosimetric errors for analyses of the dose response, in par-
ticular in the Japanese atomic bomb survivors, which is central to evaluations of population risks by a number of 
committees assessing radiation  risk1,15. The problem of allowing for measurement error in dose when estimating 
dose–response relationships has been the subject of much interest in  epidemiology16–31. A recent review paper 
summarises at least some of the methods that have been  used32. It is well recognised that measurement error can 
alter substantially the shape of this relationship and hence the derived population risk  estimates33. A method 
that has been frequently used to correct for the effects of classical error is regression calibration, in which the 
terms for true dose, Di , in regression models are replaced by the condititonal expectation of true dose given the 
oberved dose di , E[Di|di]

33. Regression calibration works well when the magnitude of errors is modest, and when 
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the dose response is not substantially non-linear33. When errors are larger methods that take account of the full 
error distribution such as Monte Carlo maximum likelihood (MCML)25–27,31 or Bayesian Markov Chain Monte 
Carlo (MCMC)22–24,30 are likely to perform better.

Dose measurement errors can arise in a number of different ways. In radiotherapy (RT), for example, a 
machine may be used for delivering radiation doses, Di , to a patient, and these true values are randomly distrib-
uted around the measured dial setting on the RT machine, di , with error Ui , so that Di = di + Ui , implying that 
the di ,Ui are independent, i.e., the Berkson error model. Alternatively, the measured “doses”, di can be distributed 
at random around the true “doses”, Di , so that di = Di + Ui so that the Di ,Ui are independent, i.e., the “classical” 
error model. Although these models look very similar, they are different. In particular the crucial difference is that 
in the Berkson model the nominal dose and error are independent, but in the classical error model it is the true 
dose and the error that are independent. In the atomic bomb survivors, radiation doses are estimated by using 
estimates of the position of the survivors in each city, orientation with respect to the bomb and other shielding 
structures, e.g., buildings. In this case the estimated doses, di , are thought to be lognormally distributed around 
the true doses, Di (i.e. classical error model)34. This assumption underlies many of the attempts that have been 
made to model dose error in the Japanese atomic bomb survivor Life Span Study (LSS)  data16–20,22–24,30. How-
ever, some components of assessed dose to the atomic bomb survivors may be associated with Berkson error, 
for example that associated with estimation of the atomic bomb source term. Some attempts have been made to 
model this  statistically35. Methods have been devised that allow for a combination of Berkson and classical errors 
in the LSS  data36,37; although shared errors have not been explicitly modelled in the LSS they undoubtedly exist, 
as for example in the estimates of the bomb yield in the two cities. It is known that regression calibration can 
work well in cases when dose errors are not substantial and in which there is no curvature in the dose  response33. 
However, it is also appreciated that there can be substantial bias in regression calibration when dose errors are 
substantial, also when errors are non-differential33,38,39.

We propose a modification of the regression calibration method which is particularly suited to studies in 
which there is a substantial amount of shared error, and in which there may also be curvature in the true dose 
response. We compare the performance of this and other methods for dose error correction using synthetic data 
closely modelled on the Japanese atomic bomb survivor  data40.

Methods
Synthetic data used for assessing corrections for dose error. We used the publicly available ver-
sion of the leukaemia and lymphoma data of Hsu et al.40 to guide construction of a synthetic dataset, which we 
provide in outline in Table 1. Specifically we used the person year distribution by bone marrow dose groups 
0–0.07, 0.08–0.19, 0.20–0.99, 1.00–2.49, ≥ 2.50 Gy. The central estimates of dose we assumed are close to the 
person year weighted means of these groups, and as given in Table 1, although for the uppermost dose group we 
assigned a central estimate of 2 Gy. The numbers of persons are close to the scaled sum of person years in these 
dose groups, scaling by a factor of 0.002. We assumed a composite Berkson-classical error model in which the 
true dose Dtrue,i,j and the surrogate dose Dsurr,i,j to individual i (in dose group ki ) in simulation j are given by:

The variables εj , δi,j ,µj , κi,j are independent identically distributed N(0, 1) random variables. The factors 
Dcent,ki ,Dcent,ki  are  the  centra l  est imates  of  dose,  as  g iven in  Table   1 .  The fac tors 
exp

[

−0.5(σ 2
share,Berkson + σ 2

unshare,Berkson)

]

 and exp
[

−0.5(σ 2
share,Class + σ 2

unshare,Class)

]

 ensure that the distributions 
given by (1) and (2) have theoretical mean that coincides with the central estimates Dcent,ki . This composite 
Berkson-classical error model is suggested by a similar (but purely additive) model proposed by Reeves et al.21, 
whereas the errors in our model are of multiplicative form; the model of course ensures that the simulated doses 
are always positive. The model has the feature that when the Berkson error geometric standard deviations (GSDs) 
are set to 0 ( σshare,Berkson = σunshare,Berkson = 0 ) the model reduces to one with classical error (a mixture of shared 
and unshared); likewise when the classical error GSDs are set to 0 ( σshare,Class = σunshare,Class = 0 ) the model 
reduces to one with pure Berkson error (a mixture of shared and unshared).

We generated a number of different versions of the dose data, with GSD σshare,Berkson , σunshare,Berkson , σshare,Class , 
σunshare,Class taking values of 0.2 (20%) or 0.5 (50%). We also explored 4 scenarios with pure classical error, with 

(1)Dtrue,i,j = Dcent,ki exp
[

−0.5(σ 2
share,Berkson + σ 2

unshare,Berkson)
]

exp
[

σshare,Berksonεj + σunshare,Berksonδi,j
]

(2)Dsurr,i,j = Dcent,ki exp
[

−0.5(σ 2
share,Class + σ 2

unshare,Class)
]

exp
[

σshare,Classµj + σunshare,Classκi,j
]

Table 1.  Assumed distribution of persons by radiation dose group, based in part on distribution of person 
years in the Japanese atomic bomb survivor Life Span  Study40.

Dose group Central estimate of dose (Gy) Scaled numbers of persons

1 0.01 2591

2 0.1 334

3 0.5 438

4 1.5 102

5 2 6
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the Berkson error terms set to 0. This individual dose data was then used to simulate the distribution of N = 250 
cancers for each of m = 1000 simulated datasets, indexed by j , using a model in which the assumed probability 
of being a case for individual i is given by:

the scaling constant �j being chosen for each simulation to make these sum to 1. We assumed coefficients 
α = 0.25/Gy,β = 2/Gy2 , close to the values derived from fits of a similar model to the 237 leukaemias in the 
data of Hsu et al.40.

A total of m = 1000 samples were taken of each type of dose, as given by expressions (1) and (2). A total of 
n = 500 simulations of these dose + cancer ensembles were used to fit models and evaluate fitted model means 
and coverage probability. Having derived synthetic individual level data, for the purposes of model fitting, for 
all models except MCML, the data were then collapsed (summing cases, averaging doses) into the 5 dose groups 
given in Table 1. Poisson linear relative risk generalised linear  models41 were fitted to this grouped data, with 
rates given by expression (3), using as offsets the number per group in Table 1. Models were fitted using four 
separate methods:

(1) unadjusted – using only the mean surrogate doses per group given by group means of the samples generated 
by expression (2), using a single sampled dose per individual for each of m = 500 dose + cancer ensembles;

(2) regression calibration adjusted – using the mean true doses per group given by group means of the samples 
generated by expression (1), averaged over the n = 1000 dose samples, for each of m = 500 dose + cancer 
ensembles;

(3) extended regression calibration adjusted – using the mean true doses per group given by group means of 
the samples generated by expression (1), averaged over the n = 1000 dose samples, for each of m = 500 
dose + cancer ensembles, and with additional adjustments to the likelihood outlined in Appendix A;

(4) MCML, using the full set of mean true doses per group, the mean doses per group for each simulation 
being given by group means of the samples generated by expression (1), averaged over the n = 1000 dose 
samples.

In all cases confidence intervals were derived using the profile  likelihood41. The Fortran 95-2003 program 
used to generate these datasets and perform Poisson model fitting, and the relevant steering files employed to 
control this program are given in online Appendix B.

Results
As shown in Table 2, the coverage probabilities of all methods for the linear coefficient α are near the desired 
95% level, irrespective of the magnitudes of assumed Berkson and classical error, whether shared or unshared. 
However, the coverage probabilities for the quadratic coefficient β are generally too low for the unadjusted and 
regression calibration methods, particularly for larger magnitudes of Berkson error (with GSD = 50%), whether 
this is shared or unshared (Table 2). The extended regression calibration method also yields coverage probabilities 
that are too low when shared and unshared Berkson errors are both large (with GSD = 50%), although otherwise 
it performs well, and coverage is uniformly better than these other two methods (Table 2). In contrast MCML 
yields coverage probabilities for β that are uniformly too high (Table 2). The interindividual correlations of true 
dose are generally moderate to high, ranging from 0.15 to 0.84 (Table 2). The correlations between the group 
mean true doses are generally very high, in all cases > 0.95, for obvious reasons—as a result of the averaging the 
unshared errors will become relatively much less important than the shared errors (which are unaffected by 
averaging), and it is these that drive the correlations.

Table 3 shows the coefficient mean values, averaged over all 500 simulations. A notable feature is that for all 
methods apart from extended regression calibration the estimates of the quadratic coefficient β are upwardly 
biased. There is upward bias in estimates of both α and β in the unadjusted analysis (using surrogate dose) even 
when there are no Berkson errors, for various magnitudes of classical errors, as shown by the first four rows of 
Table 3. As can be seen from Fig. 1, in this case (with shared and unshared classical errors having GSD = 50%) the 
mean ratio of surrogate to true dose is lognormal in the way one would expect, but as shown in Fig. 2 the fitted 
α̂ and β̂ are markedly skew, with pronounced upper tail, particularly for β̂ . It is this long upper tail that accounts 
for the upward bias in both α̂ and β̂ in the unadjusted analysis (using surrogate dose).

Discussion
We have demonstrated that the coverage probabilities of all methods for the linear coefficient α are near the 
desired 95% level, irrespective of the magnitudes of assumed Berkson and classical error, whether shared or 
unshared (Table 2). The coverage probabilities for the quadratic coefficient β are generally too low for the unad-
justed and regression calibration methods, particularly for larger magnitudes of Berkson error (with GSD = 50%), 
whether this is shared or unshared; by contrast the coverage probabilities for β using MCML are uniformly too 
high (Table 2). The extended regression calibration method yields generally more satisfactory coverage prob-
abilities, in most cases better than the other methods (Table 2). The reason for the coverage probabilities of the 
quadratic coefficient β being unsatisfactory may be related to the fact that for all methods apart from extended 
regression calibration the estimates of this parameter are upwardly biased, much more substantially so than for 
α (Table 3). The fact that β may not be well estimated implies that assessments of curvature may be incorrect, 

(3)�j[1+ αDtrue,i,j + βD2
true,i,j]
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and in particular may result in overestimation of the degree of curvature in the dose response, at least for the 
scenarios investigated here.

An unexpected feature of our analysis is that when there is only classical error the unadjusted analysis (using 
surrogate dose) can result in appreciable upward bias, contrary to what is often seen when there is pure clas-
sical error (Table 3). In this case the ratio of doses (surrogate to true) is approximately lognormal (Fig. 1) and 
for each simulation the ratio is generally much the same in all dose groups except the topmost one, suggesting 
that it is the shared classical error that is dominating—the unshared error averages out in general, although it 
does contribute somewhat to the topmost group (data not shown). Although the distribution of fitted α̂ and β̂ 
to some extent reflect this, as shown in Fig. 2 the distributions of both optimal α̂ and β̂ are markedly skew, with 
pronounced upper tail, particularly for β̂ . This results in pronounced upward bias in the mean estimates of α̂ 
and β̂ for the unadjusted (surrogate dose) analysis (Fig. 2). The reason for the skewness of the fitted α̂ and β̂ is 
reasonably obvious—given the range of true doses generated (up to the level of about 2 Gy), the α̂ and β̂ cannot be 
very substantially negative without the relative risk for the higher dose groups becoming negative, which would 
lead to the likelihood blowing up. It should also be noted that when there is only classical error, as implied by 
expression (1) all true doses used for regression calibration, extended regression calibration and MCML are pre-
cisely the central estimates given in Table 1. This implies that in this case regression calibration and MCML will 
yield precisely the same regression coefficients. Since the covariance term that is used to adjust the likelihood for 
extended regression calibration becomes trivial (i.e., 0), the second order likelihood adjustment term in Appendix 
A expression (A3) drops out, and extended regression calibration reduces to the standard type of calibration.

The defects in regression calibration that our modelling has revealed are not too surprising, as it is well 
known that this method can break down when dose error is  substantial33, as it is in many of our scenarios. The 
essence of regression calibration is to replace of the vector of true doses (Di) in the expression for the theoretical 
likelihood L[(yi),ϑ , (Di), (Zi)] by the vector of conditional expectations (E[Di|di ,Zi)) of true dose (Di) given the 
nominal or observed dose (di) and ancillary variables (Zi) . The method is relatively simple to apply, although it 
does require some method of determining the magnitude of dose error, as well as the distribution of true dose 
in the data. However, the distribution of true dose can be determined to some extent via deconvolution of the 
distribution of nominal dose. The method has the considerable advantage that once the conditional expecta-
tions have been derived conventional statistical software can be used to perform regressions. The method has 
been successfully applied to the LSS cohort by a number of  investigators16–20,42 and has also been used in a few 
other radiation exposed  groups26. There have also been extensive applications in the non-radiation literature, 
reviewed by Carroll et al.33 and more recently in a series of papers by Shaw et al.38,39. Calibration approaches 

Table 2.  Coverage probability of profile likelihood confidence intervals for fits of linear-quadratic model. 
Coverage probability evaluated using m = 500 dose + cancer simulations. GSD geometric standard deviation.

Magnitude of error distribution (GSD) Sample Pearson 
correlation 
coefficient between 
individual true doses

Unadjusted 
model

Regression 
calibration 
adjusted

Extended 
regression 
calibration 
adjusted

Monte Carlo 
maximum 
likelihood

Coverage % Coverage % Coverage % Coverage %

Unshared Berkson 
error (%)

Shared Berkson error 
(%)

Unshared classical 
error (%)

Shared classical error 
(%) α β α β α β α β

0 0 20 20 NA 95.0 80.8 95.2 94.8 95.2 94.8 95.2 94.8

0 0 20 50 NA 94.4 55.4 95.2 94.8 95.2 94.8 95.2 94.8

0 0 50 20 NA 94.4 79.6 95.2 94.8 95.2 94.8 95.2 94.8

0 0 50 50 NA 94.6 55.0 95.2 94.8 95.2 94.8 95.2 94.8

20 20 20 20 0.50 95.0 80.0 95.4 94.0 94.8 98.4 95.4 99.0

20 20 20 50 0.50 94.8 53.6 95.4 94.0 94.8 98.4 95.4 99.0

20 20 50 20 0.50 94.6 78.2 95.4 94.0 94.8 98.4 95.4 99.0

20 20 50 50 0.50 94.6 52.2 95.4 94.0 94.8 98.4 95.4 99.0

20 50 20 20 0.84 93.6 77.4 94.4 85.6 95.4 94.8 95.0 100.0

20 50 20 50 0.84 93.2 48.4 94.4 85.6 95.4 94.8 95.0 100.0

20 50 50 20 0.84 93.8 75.4 94.4 85.6 95.4 94.8 95.0 100.0

20 50 50 50 0.84 93.8 48.2 94.4 85.6 95.4 94.8 95.0 100.0

50 20 20 20 0.15 94.2 76.6 94.0 86.0 94.4 94.8 95.0 99.2

50 20 20 50 0.15 93.4 48.4 94.0 86.0 94.4 94.8 95.0 99.2

50 20 50 20 0.15 94.0 75.6 94.0 86.0 94.4 94.8 95.0 99.2

50 20 50 50 0.15 94.0 49.0 94.0 86.0 94.4 94.8 95.0 99.2

50 50 20 20 0.45 95.4 64.0 95.4 67.8 95.0 80.4 96.4 100.0

50 50 20 50 0.45 95.0 40.0 95.4 67.8 95.0 80.4 96.4 100.0

50 50 50 20 0.45 94.4 64.6 95.4 67.8 95.0 80.4 96.4 100.0

50 50 50 50 0.45 94.2 40.0 95.4 67.8 95.0 80.4 96.4 100.0
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that take account of mixtures of Berkson and classical error have also been developed and used to fit domestic 
radon case–control  data21.

The relatively poor performance of MCML is perhaps more surprising. MCML relies on replacing the likeli-
hood, as a function of the true dose vectors (Di) , by its expectation with respect to the nominal dose array (di) , 
E
[

L[(yi),ϑ , (Di), (di)]|(di)
]

=
∫

L[(yi),ϑ , (Di), (di)] dP(Di|di) . The marginal likelihood thus derived can then 
be used for likelihood-based inference in the usual  way43. The integration is often achieved via Monte Carlo 
samples, produced from a Monte Carlo dosimetry system (MCDS) that can simulate true doses based on often 
quite complex dosimetric models, which can incorporate uncertainties in many dosimetric and other parameters. 

Table 3.  Mean over m = 500 dose + cancer simulations of regression coefficients in fits of linear-quadratic 
model. GSD geometric standard deviation, ERR excess relative risk.

Magnitude of error distribution (GSD)

Unadjusted
Regression 
calibration

Extended regression 
calibration

Monte Carlo 
maximum likelihood

ERR/Gy ERR/Gy2 ERR/Gy ERR/Gy2 ERR/Gy ERR/Gy2 ERR/Gy ERR/Gy2

Unshared Berkson 
error (%)

Shared Berkson 
error (%)

Unshared classical 
error (%)

Shared classical 
error (%) α β α β α β α β

0 0 20 20 0.221 2.278 0.196 2.061 0.196 2.061 0.196 2.061

0 0 20 50 0.288 4.168 0.196 2.061 0.196 2.061 0.196 2.061

0 0 50 20 0.255 2.260 0.196 2.061 0.196 2.061 0.196 2.061

0 0 50 50 0.328 4.136 0.196 2.061 0.196 2.061 0.196 2.061

20 20 20 20 0.220 2.469 0.195 2.233 0.125 2.132 0.288 2.207

20 20 20 50 0.287 4.523 0.195 2.233 0.125 2.132 0.288 2.207

20 20 50 20 0.255 2.451 0.195 2.233 0.125 2.132 0.288 2.207

20 20 50 50 0.328 4.492 0.195 2.233 0.125 2.132 0.288 2.207

20 50 20 20 0.262 2.983 0.227 2.707 0.109 2.393 0.370 3.007

20 50 20 50 0.354 5.426 0.227 2.707 0.109 2.393 0.370 3.007

20 50 50 20 0.303 2.962 0.227 2.707 0.109 2.393 0.370 3.007

20 50 50 50 0.401 5.390 0.227 2.707 0.109 2.393 0.370 3.007

50 20 20 20 0.259 2.986 0.224 2.709 0.121 2.354 0.337 2.678

50 20 20 50 0.347 5.441 0.224 2.709 0.121 2.354 0.337 2.678

50 20 50 20 0.299 2.964 0.224 2.709 0.121 2.354 0.337 2.678

50 20 50 50 0.395 5.401 0.224 2.709 0.121 2.354 0.337 2.678

50 50 20 20 0.243 3.703 0.209 3.349 0.038 2.795 0.362 3.401

50 50 20 50 0.332 6.744 0.209 3.349 0.038 2.795 0.362 3.401

50 50 50 20 0.286 3.682 0.209 3.349 0.038 2.795 0.362 3.401

50 50 50 50 0.383 6.703 0.209 3.349 0.038 2.795 0.362 3.401

True value 0.25 2.0 0.25 2.0 0.25 2.0 0.25 2.0

Figure 1.  Distribution of weighted mean ratio of surrogate to true dose when there is 50% shared classical 
error, 50% shared classical error, no Berkson error (as in 4th row of Table 3). A logarithmic X-axis is used, with 
step size =  10(1/15).
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Implementation of MCML relies on specialist software, often written in high level languages such as Fortran or C/
C++, and is generally highly computationally burdensome. It may suffer from the additional problem occasioned 
by attempting to sample from very high dimensional distributions, the so-called curse of dimensionality, which 
implies that a large part of the overall distribution of true dose will not have been sampled. However, whether 
this is a problem in practice is not always altogether clear—for example the underlying set of parameters being 
sampled may be in some cases quite low dimensional. In particular, the Monte Carlo simulations inspired by the 
Mayak worker data exhibit little evidence of upward bias, at most 15% or so, arguably of little material significance 
given the  uncertainties44. Even where such problems may arise there may be ways round this, for example by 
using importance Monte Carlo sampling, as outlined by Dai et al.45. MCML has been used for analysis of nuclear 
 workers46, indoor radon  data47 and in a number of studies of Chernobyl-exposed  groups25–27,31, and in a few other 
 datasets48. The poor performance of MCML in our study may reflect the fact that there is hidden correlation 
within each group, which MCML cannot take into account, given the collapsed nature of the data that we use.

A Bayesian approach to the measurement error problem has been developed over the last 30 years which rests 
on the formulation of conditional independence relationships between different model  components49,50, following 
the general structure outlined by  Clayton51. In this approach three basic sub-models are distinguished and linked: 
the disease model, the measurement model and the exposure model. The power of this Bayesian approach, as with 
MCML, is that the dosimetric uncertainty is (in principle) reflected in the variability of the model parameters 
relating dose to health effects. An adapted Bayesian method of correction for measurement error has been fitted 
to various versions of the LSS mortality  data22–24,30, also to an older version of the LSS incidence  data23. Derivation 
of the posterior distribution is generally analytically infeasible, and relies on the MCMC algorithm, specifically 
the Metropolis sampler, which converges to the posterior distribution of the risk parameters. However, the speed 
of convergence is not known, and in practice one relies on a number of ad hoc tests of convergence such as the 
Brooks-Gelman-Rubin  statistic52,53 and other less formal methods, e.g., inspection of caterpillar plots. As such 
all one can know is when convergence has not taken place. Flexible and efficient software exists to run this on 
a number of platforms e.g.,  OpenBUGS54 or  rjags55. The method is exceptionally computationally burdensome. 
As with all Bayesian methods the choice of prior is critical.

Some other methods of more limited utility have been developed for dealing with dosimetric error, which 
we briefly review. The simulation-extrapolation (SIMEX) method was developed by Cook and  Stefanski56. It was 
originally proposed for datasets where the error is of pure classical form, and where the precise magnitude of the 
dose error is known. The method proceeds by adding classical random error with progressively larger GSD to 
the nominal dose estimates, performing regression analyses, this Monte Carlo procedure being repeated a large 
number of times to reduce sampling uncertainties. A curve is then fitted to the regression estimates as a func-
tion of magnitude of dose error, and the curve used to extrapolate back to 0 error. It is computationally highly 
intensive. R packages exist (e.g. simex57) to fit at least certain types of generalised linear  model41 although not 
the linear relative risk models in common use in epidemiological analysis of radio-epidemiological data. Quite 
apart from the computational difficulties, the method relies on a substantial extrapolation (from the given level 
of dose error to 0 error), a jump that may be difficult to justify. An attempt has been made to expand SIMEX to 
allow for a mixture of classical and Berkson errors utilising the LSS  data37. Perhaps due to the computational 
cost with the cross-tabulation and because of the limited types of error structure that can be handled it has been 
used only twice to our knowledge, in analysis of the LSS  data28,37.

Figure 2.  Distribution of fitted linear and quadratic coefficients when there is 50% shared classical error, 50% 
shared classical error, no Berkson error (as in 4th row of Table 3). The step size used for α is 0.2, the step size 
used for β is 0.5.
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The so-called two dimensional Monte Carlo using Bayesian model averaging (2DMC-BMA) method relies 
on Monte Carlo simulations from an MCDS. The key aspect is that ensembles of doses (Dijk)

N nj
j=1 k=1 are pro-

duced for all individuals for a large number of scenarios i , 1 ≤ i ≤ M . However, unlike other uses of MCDS it 
is assumed that only one of the dose scenarios i , and therefore one of the sets of dose realisations (Dijk)

N nj
j=1 k=1

 

is the correct one. Essentially this method therefore assumes something like a combination of functional and 
structural approaches—there are assumed to be random errors in the data, but certain parameters are assumed 
fixed (but unknown). The BMA approach is used to reweight the scenarios depending on the goodness of  fit29. 
So realisations where the risk-dose relationship was linear would be much more highly weighted than realisa-
tions where this was not the case. The contrast with MCML is quite pronounced—MCML works by averaging 
the likelihood in one go and then maximising the averaged likelihood with respect to the parameters of interest. 
The 2DMC-BMA method appears designed for applications where there is a substantial amount of shared error. 
This method has been applied to analysis of thyroid nodules in a dataset of persons exposed to atmospheric 
weapons tests in the former Soviet  Union58. The method has been much  discussed44. Stram et al.44 suggested that 
the method will produce substantially upwardly biased estimates of risk, also that the coverage may be poor. The 
implementation of the methodology presently relies on proprietary software, and has only been used by the group 
that developed it. Another substantial problem with the method is the use of BMA, reflecting general criticism 
made of this class of models in the  literature59,60. An implicit assumption of BMA is that one of the underlying 
models is the “true” one with convergence guaranteed to the “true”  model61. As with all Bayesian methods the 
choice of prior is critical.

Zhang et al.62 developed their corrected information matrix (CIM) method for analysis of datasets where 
there is pure Berkson error in radiation dose, a substantial part of it shared. This entails an extensive calculation, 
which requires specially written software, which the authors have developed in  Python63 specifically applied 
to the Mayak worker lung cancer data. R code has also been developed for fitting this model to US radiologic 
technologists (USRT) cataract data for relative risk and absolute risk Poisson  models64. The calculations result in 
inflation of the confidence intervals (CI) on the regression estimate—the central estimate is largely unchanged. 
Arguably the assumptions underlying the CIM method, that all dose simulations are samples from the true dose, 
may be unlikely, but this assumption is arguably less implausible than that made for 2DMC-BMA, which assumes 
that one realisation is true. The method appears to be well adapted to analysis of the Mayak  data63, where there 
is a substantial amount of shared error. In the USRT cataract data, the amount of shared error is small, and the 
method yields largely trivial adjustments to  CI64.

A relatively novel method of measurement error correction has been recently introduced, moment 
reconstruction (MR)65. The basic idea is that one substitutes for the nominal dose estimate di a new quan-
tity Mdi ,Yi which is chosen to have the same first two moments (with the outcome variable Yi ) of the joint 
distribution as (Di ,Yi) . It can be  shown65 that the solution is given by Mdi ,Yi = E[di|Yi](1− G)+ diG where 
G = G(Y) = cov[Di|Yi]

0.5(cov[di|Yi])
−0.5 . Under linear regression it is easily shown that MR is entirely equiva-

lent to regression  calibration65. It has the advantage over regression calibration that it yields consistent estimates 
even when the model is non-linear, or when the errors in dose are non-differential65. Moment-adjusted imputa-
tion (MAI) is a generalisation of MR, in which the moments of (Di ,Yi) are matched by Mdi ,Yi , usually up to at 
least the 4th  order66,67. However, both MR and MAI require knowledge of second and higher order moments of 
the true dose distribution in conjunction with the disease endpoint, information that would generally have to 
come from a gold standard sample, which is not often available in radiation studies. Although MR and MAI can 
be more efficient than regression calibration there are circumstances when efficiency is reduced compared with 
regression  calibration39. Perhaps for all these reasons, to the best of our knowledge neither method has been 
used in radiation applications.

Conclusions
We have outlined a modification of the regression calibration  method33 which is particularly suited to studies 
where there is a substantial amount of shared error, and where there may also be curvature in the true dose 
response. We have shown in fits to a number of synthetic datasets in which there is substantial upward curvature 
in the true dose response, and varying (and sometimes substantial) amounts of classical and Berkson error, that 
the coverage probabilities of all methods for the linear coefficient are near the desired level, irrespective of the 
magnitudes of assumed Berkson and classical error, whether shared or unshared. However, the coverage prob-
abilities for the quadratic coefficient are generally too low for the unadjusted and regression calibration meth-
ods, particularly for larger magnitudes of the Berkson error, whether this is shared or unshared, while MCML 
yields coverage probabilities for the quadratic coefficient that are uniformly too high. The extended regression 
calibration method yields coverage probabilities that are too low when shared and unshared Berkson errors are 
both large, although otherwise it performs well, and coverage is generally better than these other methods. A 
notable feature is that for all methods apart from extended regression calibration the estimates of the quadratic 
coefficient are substantially upwardly biased.

Data availability
The datasets generated and analysed in the current study are available by running the Fortran 95/2003 program 
fitter_shared_error_simulation_reg_cal.for, given in the online web repository, with any of the five steering input 
files given there. All are described in Appendix B. The datasets are temporarily stored in computer memory, and 
the program uses them for fitting the Poisson models described in the “Methods” section.
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