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ABSTRACT OF THE DISSERTATION

Usage of Kernel Smoothing in Generalized Additive Models for Disease Mapping with
Individual-level Point-referenced Data: Stratified Smoothers and Generalized Additive

Mixed Models

By

Yannan Tang

Doctor of Philosophy in Statistics

University of California, Irvine, 2020

Professor Daniel L. Gillen, Chair

Epidemiologists frequently aim to quantify geospatial heterogeneity in disease occurrence

to identify relevant hidden health disparities. With the growing prevalence of individual-

level point-referenced data, generalized additive models (GAMs) are becoming increasingly

popular to map geospatial disease risk patterns while adjusting for confounding effects when

the study is a cross-sectional one with an exponential family response. In the meanwhile,

local regression smoothers are frequently adopted for spatial effects estimation in GAM

framework by researchers partially due to their intuitive ideas and adaptation to changing

population density.

However, studies with records over a (potentially long) period of time, including those with

repeated measurements on subjects, commonly come into play nowadays. For these studies,

traditional GAMs could be problematic. Firstly, since data could be recorded over a period

of time while spatial risk patterns should not be assumed to be invariant in many cases,

statistical tools to access time-varying spatial effects are required. On the other hand, if the

study is longitudinally designed, traditional GAMs could lead to incorrect inference due to

their incapability of accomodating within-individual correlation.

xi



This dissertation work sought to develop statistical methodologies to address these prob-

lems under the GAM framework with kernel smoothers, using local regression smoothers in

particular. In Chapter 3, we proposed GAMs with stratified kernel smoothers that could

be applied for time-specific spatial effects modeling. Based on the new class of GAMs, we

further designed a hypothesis testing procedure to formally detect temporal heterogeneity

of spatial effects. In Chapter 4 and 5, we incorporated random effects, as well as kernel

smoothers, into GAM, resulting in a class of generalized additive mixed models (GAMMs)

with kernel smoothers. We further elaborated the novel fitting and inference procedures for

the proposed models.

Relevant empirical results showed the utility and advantages in model fitting under some

fairly designed scenarios, with comparison to classic models. We further applied our proposed

methods in a study on birth defects in Massachusetts in Chapter 3 and a study on residents’

serum PFOA concentration in Lubeck, WV, and Little Hocking, OH region.
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Chapter 1

Introduction

1.1 Disease mapping with individual-level point-referenced

data in epidemiology studies

In epidemiology studies, geospatial disparities of certain disease risks are of common interest

since heterogenous risks over geographic areas may indicate location-related health dispar-

ities and/or risk factors. These disparities or factors may be environmental, demographic,

socioeconomic in nature. In plain language, when investigating a specific disease, epidemiol-

ogists frequently aim to identify areas where residents are more likely to develop the disease.

Based on the identified areas with high risk, it would be more probable to investigate the

underlying risk factors that are associated with occurrence rate of the disease by exploring

the difference in potentially relevant factors between high and low risk areas. Once one

or more factors are identified, corresponding actions, such as environmental treatment or

policy modification, would be possible. For instance, Bristow et al. (2015) conducted a spa-

tial analysis on advanced-stage ovarian cancer mortality in California and found significant

geospatial disparity in mortality rates. Based on these findings they were able to further
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identify the receipt of NCCN (National Comprehensive Cancer Network) guideline adherent

care and treatment at an HVH (High Volume Hospital) as potential explanations for the

observed spatial patterns. The end result of this investigation is the identification of risk

factors that impact mortality in advanced-stage ovarian cancer that may be modified by

broadening access to care and proposing that guidelines be instituted consistently across

care facilities.

Partially due to the lack of high resolution data collection and insufficient computing power,

traditional disease mapping commonly focuses on areal data where a specific area, such as

a country, a state, or a county is treated as a single sampling unit. In this case, inference

is made at the aggregate level rather than at the specific individual-level or at specific

locations. While this type of analytic approach may yield meaningful inference it is subject

to ecological bias and may not provide sufficient resolution for identifying spatially related

health disparities and risk factors.

Individual-level datasets contain outcome and covariate information on specific individu-

als. In spatial analysis, point-referenced data, or point-level data indicates a data collection

setting where items are observed at precise spots on a map. Along with advances in data

storage and measurement techniques, point-referenced data are becoming increasingly preva-

lent. The work presented in this dissertation focuses on methodology for spatial analyses

of individual-level point-referenced data. Since these data provide information on unique

individuals and locations, inference with higher resolution is possible when compared to

classic methods geared towards analyses of data at the aggregate level. In particular, with

individual-level point-referenced data, spatial epidemiologist, along with statisticians, seek

to provide model-based estimates of disease risk and inference at virtually all locations on a

spatial map of interest rather than marginal inference over an entire area.

As such, statistical tools for individual-level point-referenced data are much needed. In

general, nonparametric smoothing techniques, including freqentist and Bayesian approaches,

2



are used to estimate underlying spatial risk patterns in order to render inference on a given

disease risk at virtually every location. Further, generalized additive models (GAMs) (Hastie

and Tibshirani, 1990) with bivariate smoothers play an increasingly popular role when both

geospatial and confounding effects exist and the distribution of the response variable is

assumed to belong to the exponential family.

In the following sections we introduce two research studies that rely on the analysis of

individual-level point-referenced data. We briefly present each, but note that further infor-

mation can be found in Vieira et al. (2009) and Bristow et al. (2015).

1.2 Motivating examples

1.2.1 Birth defects study in Massachusetts

A fairly recent study of birth defects in the state of Massachusetts was conducted by Girguis

et al. (2016). In the study, all recorded births in the Massachusetts Birth Defects Registry

(MBDR) having cardiac, orofacial and neural tube defects from 2001 to 2009 were identified

as cases and 1000 live births per year without defects were sampled as common controls.

Among the recorded defects, one of the most common was patent ductus arteriosus (PDA).

PDA is a cardiovascular birth defect in which abnormal blood flow occurs between two of the

major arteries connected to the heart and is associated with high morbidity and mortality.

Residential longitude and latitude were recorded for all observations as well as potential

confounding variables including maternal age, adequacy of prenatal care, maternal race,

maternal education level and number of siblings.

A primary goal of the MBDR study is to quantify geospatial risks for PDA with adjustment

for known risk factors, thus allowing epidemiologists to further explore the underlying space-
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related risk factors. Moreover, since data are collected over 9 years and the spatial risk

pattern could possibly change over the years, statistical tools to estimate time-specific spatial

risk pattern are in need, as well as a class of hypothesis tests that formally decide if the spatial

risk patterns at each time significantly differ from each other.

1.2.2 Serum PFOA concentration study

Another recent spatial epidemiology study was conducted by Bartell et al. (2010) to in-

vestigate serum perfluorooctanoic acid (PFOA) concentration among residents in Lubeck,

West Virginia and Little Hocking, Ohio. In this study, researchers aimed to understand the

declining behavior of PFOA concentration after granular activated carbon filtration on the

public water systems in 2007. By design, 200 residents were included and 6 blood samples

were to collect from each resident from May 2007 to August 2008 so that a trend of PFOA

concentration could be observed. Besides PFOA concentration, residents’ information such

as gender, age and recent water consumption type (public or bottled water) was recorded as

well as precise residential location (recorded as longitude and latitude).

One of the objectives is to understand the geospatial distribution of residents’ serum PFOA

concentration in order to help identify potential latent space-confounded risk factors. How-

ever, the since this study is a longitudinal one where individuals get repeated measurements,

the estimation of spatial effects should be achieved with adjustment of confounding variables

as well as the within individual correlation.

1.3 Overview of this dissertation

In this chapter we briefly introduced the motivating examples that have led to the method-

ologic developments presented in the remainder of the dissertation. In Chapter 2, we present
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a background of the statistical methodology on which our approaches are based. The covered

statistical background includes frequentist and Bayesian smoothing techniques, generalized

additive models (GAMs) and generalized linear mixed models. In Chapter 3, we propose

stratified smoothers and incorporate these smoothers into a GAM framework. We further

develop a class of permuted mean squared difference (PMSD) tests to detect temporal het-

erogeneity of geospatial effects. The methods are applied to the previously discussed data

on birth defects in Massachusetts state. In Chapter 4, we generalize kernel smoothers using

variance-covariance adjustment, describe a novel additive mixed models (AMMs) framework

with kernel smoothers and further propose a new backfitting algorithm to fit AMMs that

incorporate kernel smoothers. Chapter 5 provides an extension of Chapter 4, accommodat-

ing exponential family responses via a novel fitting algorithm that relies on a combination of

penalized quasi-likelihood (PQL) and the fitting procedure introduced in Chapter 4. Both

Chapter 4 and 5 present an application of the proposed methods to data on serum PFOA

levels, identifying areas of high and low risk in Lubeck, WV and the Little Hocking, OH

area. Chapter 6 covers relevant discussion and some insights on probable future research

directions.
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Chapter 2

Statistical background

2.1 Smoothers for disease mapping

Smoothing functions, also known as smoothers, are commonly used to explore the relation-

ship between two or more variables when it is desirable to avoid assuming a parametric

function for the relationship. Popular smoothing techniques include running-mean, running-

line, K-nearest neighbors and kernel smoothers. Since flexible fitting and estimation are

provided, smoothing functions are widely used when spatial risk patterns are to be investi-

gated. Commonly used smoothers in the context of bivariate spatial smoothing include local

regression (LOESS), regression splines and Gaussian process models.

In this section, we introduce and review methods to specify and estimate a smooth function f

relating a univariate response, yi to covariate(s) xi (2.1). Note that xi could be univariate or a

multidimensional vector. When introducing smoothing techniques, we present the methods

for univariate smoothers where xi is univariate and further generalize them to bivariate
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smoothing situations.

yi = f(xi) + εi, i = 1, 2, . . . , N, (2.1)

where εi is a random error.

2.1.1 LOESS

Locally weighted regression smoothing (LOESS - LOcal regrESSion) follows the intuitive

idea that the underlying curve can be assumed to be linear in a local region. Based on this

idea, when estimation of a certain location is desired, one can consider a weighted average

of the response among k neighboring observations. Using the k nearest neighbors, instead

of a simple linear model, a weighted linear regression is adopted so that closer observations

render more weight in the fitting process. The procedure for finding the LOESS estimate of

the smoothing function f̂(x0) at location x0, when utilizing the tri-cube weight function, is

shown in Algorithm 1.

Algorithm 1 LOESS fitting procedure

Identify k nearest neighbors of x0, denoted by Nb(x0).
Find the greatest distance among the neighbors, ∆(x0) = maxxj∈Nb(x0) |xj − x0|.
Assign weights to the neighbors using the tri-cube weight function W (

|xj−x0|
∆(x0)

) where

W (z) =

{
(1− z3)3, for0 ≤ z < 1;

0 otherwise.
(2.2)

Achieve the fitted value f̂(x0) from the weighted least-squares fit of y to x confined to

N(x0) using the tri-cube weights W (
|xj−x0|
∆(x0)

).

If bivariate smoothing is of interest, as in the case of spatial smoothing for disease risk, the

above LOESS procedure can be easily generalized. In this case, when defining the nearest k

observations, Euclidean distances between every pair of points is commonly used. Analogous
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to the univariate case, local weighted linear regressions using the two covariates where weights

are decided by tri-cube weight function are generally employed.

For a simple example of univariate smoothing problem, we aim to estimate y as a function

of x, where a scatter plot is shown in Figure 2.1. Relationship between the 2 variables does

not appear to be linear and a more flexible fitting would be required to achieve a reasonable

estimation of the function E(Y ) = f(x).

Figure 2.1: Simulated data for smoother illustration.

If LOESS approach is adopted, nearest neighbors of every single estimand value of x. The

number of neighbor observations depends on a smoothing parameter span, which is defined

as the proportion of total data that are used for the local weighted linear models. In Figure

2.2, 2 examples of span sizes were illustrated while the fitted curves of these 2 span sizes,

along with an AIC optimally selected span fitting are shown in
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Figure 2.2: Neighborhood selection at x = 7 with span size 0.1 and 0.5. Blue are the
neighbor observations that are used in the local weighted linear model for fitting of the
extimand x = 7.
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Figure 2.3: Fitted lines (blue) with span size 0.1 (left), 0.27 (middle) and 0.5 (right). Black
lines are the true curve that is used in simulation. Span=0.27 results in minimal AIC value
hence 0.27 provides the “best” fit of the data, which agrees with visual judgment for most.

2.1.2 Basis expansion methods

Basis expansion smoothers assume that the relationship f associating x to response y can

be expressed as

f(x) =
M∑
m=1

βmhm(x), (2.3)

where hm(x),m = 1, . . . ,M are transformations defined on Rp → R and p stands for the

dimension of x. Hence p = 1 results in univariate smoothing while p = 2 will render bivariate
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smoothing.

As a simple example, polynomial expansions for univariate x use basis functions defined as

hm(x) = xm,m = 1, 2, . . . , d, (2.4)

where d is the chosen degree of polynomial.

Another class of basis expansion smoothers follows the spirit of piecewise regressions. While

the whole curve is flexible where no parametric form is proper, this class of smoothers

assumes a parametric relationship between response and explanatory variables such as linear

or polynomial patterns. This sounds similar to LOESS smoothers, however the difference is

that piecewise regressions place knots on the support of the explanatory variables so that

local regressions are restricted to the generated intervals. In contrast LOESS smoothers use

the nearest k observations and hence the local intervals used for regressions depend on where

the nearest neighbors are.

A widely used type of univariate piecewise regression is the natural cubic regression spline

smoother. Assume knots are placed at ξ1 < ξ2 < · · · < ξK . Natural cubic regression

splines use cubic regressions between ξi and ξi+1, i = 1, 2, . . . , K − 1. In addition, to achieve

smooth fitting, continuity of the underlying function, as well as continuous first and second

derivatives, is required. With this specification, it can be shown that a the induced basis

expansion can be expressed as

f(x) = β0 + β1x+ β2x
2 + β3x

3 + β4h(x, ξ1) + · · ·+ βK+3h(x, ξK) (2.5)
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where

h(x, ξ) =


(x− ξ)3, for x > ξ;

0 otherwise.

(2.6)

This smoother is called a cubic regression spline. One arising issue is that since the edge of

the support has data on only one side and observations are commonly sparse at edges, cubic

regressions can be vulnerable to overfitting. To address this issue, one can force the function

to be linear at the boundaries, i.e. for x < ξ1 and x > ξK . This constraints transforms cubic

regression splines to natural cubic regression splines and renders a model shown in (2.7).

f(x) = β0 + β1x+ β2h(x, ξ1) + · · ·+ βKh(x, ξK−1) + βK+1(x− ξK)+ (2.7)

Natural cubic regression splines provide an elegant way to model an unknown relationship

when researchers have a good sense of where the knots should be placed. However, the

location of knots is not trivial to decide in most cases. Model selection with respect to knots

is subjective since both number and locations of knots need to be selected, resulting in a

generally large search space for optimal not selection. To simplify the search space, evenly

spaced knots are generally adopted. Obviously if few knots are used, one cannot achieve

enough smoothing for the underlying functions. Conversely, if more knots than needed are

specified, overfitting is a problem.

To avoid issues that arise with specification of the number and placement of knots, penalized

regression splines were proposed by Wahba (1980). In this case, a knot is specified at every

observed location in the support of the predictor covariate. Obviously this would lead to

overfitting, so a term to penalize the wiggliness of the resulting function is introduced.

More concretely, penalized regressions splines seek to find the smoothing function f(x) that

11



minimizes

N∑
i=1

{yi − f(xi)}2 + λ

∫
f ′′(x)2dx (2.8)

where λ is tunable parameter for smoothness controlling. This renders a currently popular

method for univariate smoothing with smoothness controlling.

Further, when we want to smooth with respect to two or more input. For instance, in many

cases, we want to find a smooth function f(x1, x2) instead of f(x). Knots placing could be

less attractive since sparsity of data could become a serious problem when dimension grows.

Especially for geographical smoothing, observations on map are generally not uniformly

distributed hence if uniform grid is placed, there could be many small areas with no data in

there. Observed subjects in epidemiological studies are frequently people and people do not

live uniformly on map. Consequently, using knots-based basis expansion could suffer from

over parametrization. Thin plate regression splines address this problem in a basis expansion

framework (Wood, 2003).

Similar to the idea of natural cubic regression splines that minimize Eq. (2.8), bivariate thin

plate regression spline smoothers seek to minimize

N∑
i=1

{yi − f(xi)}2 + λ

∫ ∫
(
∂2f

∂x2
1

) + 2(
∂2f

∂x1∂x2

)2 + (
∂2f

∂x2
2

)dx1dx2. (2.9)

Similarly, λ acts as a tuning parameter that controls the smoothness of fitting and out-of-

sample predictive criteria such as AIC, BIC, or GCV (Golub et al. (1979)) can be applied for

selection of λ. An advantage of thin plate regression splines is that they offer a smoothing

option without specification of a fixed set of knots. In addition, Wood (2017, Chapter 5.5.1)

discussed methods to truncate the dimension of basis functions as an effort to reduce then

computational burden when data grows big.
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In spatial epidemiologic studies, if exact locations of the observations are known, thin plate

regression splines are attractive options given their advantage over knot-based methods.

Moreover, if the map of interest is not regularly shaped or there is a strong belief that

edge effects may exist, soap film regression splines are potentially preferable due to their

advantage in edge effects controlling. (Wood et al., 2008).

Here we show the fitting of natural cubic splines to the data presented in Figure 2.1 as an

example. By putting knots at x = 2, 5, 8, the fitted curve is shown in Figure 2.4.
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Figure 2.4: Fitted curve using natural cubic splines (red) with knots x = 2, 5, 8, with x =
0, 10 as the boundaries. Black solid line indicates the truth for simulation.

2.1.3 Smoothers using Gaussian processes

A Gaussian process (GP) is a stochastic process indexed by time or space. Consider a GP on

domain x. Then the GP is a distribution of function f(x). That is to say, every realization

of this GP will be a function f(x). The process is called Gaussian since given any finite

collection of {xi, i = 1, . . . , n}, the distribution of {f(xi), i = 1, . . . , n} is joint Gaussian

where the parameters, mean and variance of the Gaussian distribution, are defined by the
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parameters of the GP.

To fully specify a Gaussian process, it is necessary to specify the mean and variance function

in order to induce the parameters for the joint Gaussian distribution. Consider a Gaussian

process defined on the vector space of {x}. In formula 2.11 and 2.12, m(x) and k(x,x′) stand

for mean and covariance functions, respectively. Every realization of a Gaussian process is

continuous since the correlation coefficient between f(x) and f(x′) equals to 1 if x = x′.

Since shape of the generated curves is not restricted to any specific patterns, Gaussian

processes could be promising smoothers. In practice, m(x) is usually set to be 0 and squared-

exponential covariance function shown in Formula 2.13 is a commonly used.

f(x) ∼ GP(m(x), k(x,x′)) (2.10)

m(x) = E[f(x)] (2.11)

k(x,x′) = E[(f(x)− f(x))(f(x′)− f(x′))] (2.12)

k(x,x′) = σ2
f exp(−l2|x−x′ |2) (2.13)

The definition of GP leads to a basic understanding of Gaussian processes as following:

1. A Gaussian process has infinitely many dimensions.

2. Only mean and covariance rule are specified. In most cases, the closer two inputs are,

the higher correlation they have.

3. Every realization of a Gaussian process is a curve (surface). This result is drawn

directly from the fact that correlation coefficient of two inputs x and x′ goes to 1 as

the distance between them goes to 0.
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For estimation, the GP model can be specified as

 f
f ?

 ∼ N
0,

K(X,X) K(X,X?)

K(X?, X) K(X?, X?)


 , (2.14)

where f are training outputs while f ? stand for test outputs. Also, X stands for the observed

inputs and X? is the collection of test inputs.

The GP model is attractive in terms of the fact that on any subset of the whole support, f

follows a multivariate Gaussian distribution, allowing users to lean on vast experience with

multivariate normal random variables. This is a primary reason why GP is preferred over

other stochastic process models.

In practice, it is frequently assumed that instead of an exact GP, the observable outcome is

an additive combination of random errors and a GP. y

f ?

 ∼ N
0,

K(X,X) + σ2
nI K(X,X?)

K(X?, X) K(X?, X?)


 . (2.15)

From this setting, we draw inference on f ? by noting that

f ?|X,y, X? ∼ N (f̄ ?, cov(f ?)), (2.16)

where

f̄ ? = E[f ?|X, Y,X?] = K(X?, X)[K(X,X) + σ2
nI]−1y (2.17)

cov(f ?) = K(X?, X?)−K(X?, X)[K(X,X) + σ2
nI]−1K(X,X?). (2.18)

Since properties of multivariate Gaussian distributions are well known, with properly spec-

ified priors for the hyperparameters in GP models, posterior distributions can be easily
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derived. Markov chain Monte Carlo sampling could be further adopted to achieve poste-

rior distributions of the hyperparameters as well as point estimation at explanatory variable

locations of interest.

This idea is applicable in geospatial smoothing problems by applying two-dimensional vectors

as inputs xi to the GP models. Since we are interested in spatial epidemiologic studies with

exact longitude and latitude of each location, a spatial GP could be defined as one with

mean 0 and covariance rules defined in Formula 2.13 using x = (u, v), where (u, v) stands

for longitude and latitude, respectively. Similarly, sampling strategies could be used to

approximate the posterior distribution of model parameters as well as underlying spatial

risk patterns.

2.2 Generalized additive models

In various studies, merely smoothing over space is generally not sufficient since factors other

than space could also have effects on the response of interest or could confound the association

between space and the response. Thus, to explore the spatial risk patterns researchers would

appreciate a method that estimates the spatial effect with adjustment for those factors. For

instance, if we want to explore the spatial pattern of survival rates as in the California

ovarian cancer study, social-economic status should be considered in the analysis since it

could be a potential confounding variable in the sense that social-economic status could be

related to both spatial location and survival.

Generalized additive models, originally developed by Hastie and Tibshirani (1990), are de-

signed to achieve this goal. Based on the linear terms in the mean model defined in Eq.

(2.19), flexible functions are added, as is shown in Eq. (2.20), rendering a generalized addi-

tive models. In each case, µi = E(yi|xi), g() denotes the link function, p is the number of
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additive components and sk(), k = 1, . . . , p is an arbitrary curve and is commonly defined

to be smooth.

g(µi) = β0 +

p∑
k=1

βkxik (2.19)

g(µi) = β0 +

p∑
k=1

sk(xik) (2.20)

Maximum likelihood estimation in generalized linear models can be carried out via an it-

eratively reweighted least squares (IRLS) algorithm, which could be naturally extended to

model fitting for generalized additive models when the flexible functions sk(), k = 1, . . . , p

are fully parametrized. Spline smoothers, such as cubic regression splines and thin plate

regression splines, can be expressed using basis expansions and hence IRLS can be directly

applied to GAMs with spline smoothers.

However, kernel smoothers, such as LOESS, could not be expressed by basis expansion

hence the IRLS algorithm does not apply directly in this case. To carry out estimation,

a backfitting algorithm (Breiman and Friedman, 1985) can be used instead. The idea of

backfitting algorithm is to fit partial residuals iteratively on each additive component of the

mean model until convergence. Using a GAM with continuous outcome specified in (2.21),

Algorithm 2 is present as an example.

yi = β0 +

p∑
k=1

sk(xik) + εi, i = 1, 2, . . . , N. (2.21)
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Algorithm 2 Backfitting Algorithm

1: Initialize β̂0 = 1
N

∑N
i=1 yi and ŝk = 0 for all k.

2: while At least one of functions ŝk, k = 1, . . . , p, does not converge do
3: for k from 1 to p do
4: Fit ŝk using {yi − β̂0 −

∑
j 6=k f̂j(xik), i = 1, . . . , N} as response.

5: Center ŝk using ŝk = ŝk − 1
N

∑N
i=1 ŝk(xik).

6: end for
7: end while

2.3 Generalized linear mixed models

2.3.1 linear mixed models

Linear models provide a fundamental approach to model relationship between a Gaussian

distributed outcome variable and several explanatory variables via linear terms under the

assumption that observations are independent within the dataset in use. A typical linear

model is expressed as

yi = xiβ + εi, (2.22)

where εi
i.i.d.∼ N(0, σ2).

However, when the dataset of interest includes multiple measurements on some individuals

or the dataset is composed of multiple clusters, the independence assumption does not in-

herently hold since measurements on one particular individual or within one certain cluster

should not be considered independent in many cases. Model (2.22) does not take the prob-

able correlation into account, incorrect inference could be yielded when it is adopted to fit

longitudinal or cluster data.

To account for within-individual correlation arising from longitudinal sampling of individuals
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over time, Laird and Ware (1982) proposed a class linear mixed models (LMMs) given by

yij = xijβ + zijbi + εij, (2.23)

where bi
i.i.d.∼ N(0, D) and εi = (εi1, εi2, . . . , εiJi)

′ ∼ N(0, R), with bi and εi independent.

Typically, the fixed effects xijβ component of the linear predictor is used to model the

scientific association of interest and adjust for potential confounding covariates, the random

effects zijbi component is used to model individual-specific effects and the εij’s are assumed

to be i.i.d. conditional upon the random effects. LMMs are then fitted by a maximum

likelihood (ML) or a restricted maximum likelihood (REML) procedure.

2.3.2 Generalized linear mixed models

LMMs concentrate on scenarios where the outcome variable follows a Gaussian distribution.

However, outcomes in longitudinal studies could be more generally distributed. For example

When the response follows a Bernoulli or Poisson distribution, LMMs do not apply instantly.

Analogous to the generalization from a linear model to a generalized linear model, Breslow

and Clayton (1993) described a class of generalized linear mixed models (GLMMs) that

accommodate correlation in a linear model by incorporating random effects to model non-

Gaussian response.

Under a GLMM framework, the outcome yi follows a distribution of exponential family with

E(yi) = µi and var(yi) = v(µi), where function v() depends on the specific distribution of

yi. The mean µi is linked to the linear predictor xTi β by the link function g(). Hence the

systematic component of a GLMM is commonly written as

g(µij) = xijβ + zijbi. (2.24)
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Breslow and Clayton (1993) raised 2 potential approximate inference approaches to fit a

GLMM, penalized quasi-likelihood (PQL) and marginal quasi-likelihood (MQL). Both of the

approaches use iterative procedures with iteratively updated working response and weights.

Since our work in Chapter 5 would be based on PQL procedure, an introduction to PQL is

provided here. To perform a PQL fitting procedure, Working response ywij is defined as

ywij = g(µ̂ij) + (yij − µ̂ij)g′(µ̂ij), (2.25)

with reasonably initialized µ̂ij. The working response vector ywµ̂ could then be approximated

by a Gaussian distribution

N [Xβ + Zb, g′(µ̂)Rµ̂g
′(µ̂)], (2.26)

where Rµ̂ is the variance-covariance matrix defined by the assumed outcome distribution

given the estimated mean vector µ̂. It follows that a weighted linear mixed model

ywµ̂,ij = xijβ + zijbi + εij (2.27)

with working diagonal weight matrix

Ŵµ̂ = R−1
µ̂ [g′(µ̂)]−2 (2.28)

could be used to model the working response ywµ̂ . The PQL estimating procedure iteratively

fits weighted linear mixed model with updated working response ywµ̂ and working weight ma-

trix Ŵµ̂ based on the updated µ̂ at each iteration until the difference in parameter estimations

are sufficiently small.
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Chapter 3

GAMs with stratified smoothers and

PMSD tests

3.1 Introduction

Spatial differences in disease risk are potential indicators of space-related disease factors such

as environmental exposures or availability of sufficient health care in certain areas. As such,

quantification of heterogeneity in disease risk patterns over geographical space is of common

interest in epidemiology studies.

While traditional geographic modeling methods focus on analyzing aggregated area-level data

that treat area-defined partitions as one unit, more recent spatial epidemiology studies avoid

aggregation bias and ecological fallacy by modeling individual-level data. With accurate

records of geospatial information over a period of time, researchers seek to draw inference

on both the existence of spatial effects on risks of disease as well as potential changes in

spatial patterns of disease over time. As one example, Girguis et al. (2016) conducted a

fairly recent study of birth defects in the state of Massachusetts. In the study, all recorded
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births in the Massachusetts Birth Defects Registry (MBDR) having cardiac, orofacial and

neural tube defects from 2001 to 2009 were identified as cases and 1000 live births per year

without defects were sampled as common controls. Among the birth defects considered in

the case definition, one of the most common was patent ductus arteriosus (PDA). PDA

is a cardiovascular birth defect in which abnormal blood flow occurs between two of the

major arteries connected to the heart and is associated with high morbidity and mortality.

Residential longitude and latitude were recorded for all observations as well as potential

confounding variables including maternal age, adequacy of prenatal care (measured by the

Adequacy of Prenatal Care Utilization Index), maternal race, maternal education level and

number of siblings.

A primary goal of the MBDR study is to quantify geospatial risks for PDA, after adjusting

for known risk factors. It is not generally reasonable to assume an a priori parametric form

on spatial effects, as spatial disease patterns are often complex and require flexible modeling

techniques. Because of this, smoothers are commonly used in such settings. In spatial anal-

yses, smoothers consider the underlying spatial risk pattern as a flexible bivariate function

of (u, v), the longitude and latitude associated with a given response. Popular smoothers for

spatial risk pattern estimation generally belong to two broad categories: kernel smoothers

and spline smoothers. Hastie and Tibshirani (1990) introduced both categories and con-

sider the incorporation of the smoothing techniques into regression-based methods otherwise

known as generalized additive models (GAMs). Wood (2017) focused on spline smoothers

and offered a full introduction to knot-based splines, smoothing splines and regression splines.

Popular smoothing functions for geographical analysis include local weighted scatterplot

smoothing (LOESS) and thin-plate regression splines. LOESS was first proposed by Cleve-

land (1979) for flexible smoothing with moving weighted linear regressions. LOESS assumes

local (weighted) linearity, resulting in flexible functional estimation for the whole domain.

The method was further applied to geospatial analysis. (Brunsdon et al., 1996) One ad-
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vantage of LOESS for spatial analyses is that it intuitively adapts to changing population

density by varying the size of the smoothing neighborhood based on the local data density

given a fixed span size, which is defined as the proportion of observations used for local re-

gressions. On the other hand, for geospatial risk pattern estimation, thin-plate splines have

been used by Duchon (1977) among others. Development of thin-plate regression splines

(Wood, 2003) was further provided and well illustrated by Wood (2017).

Another widely used class of smoothing strategies considers the spatial effects as a real-

ization of an underlying spatial stochastic process (or a random field). Among stochastic

process strategies, spatial Kriging is one of the most popular in geospatial risk estimation.

The terminology, history and general ideas of Kriging were illustrated by Cressie (1990) in

a concise while comprehensive manner. Briefly, Kriging aims to seek the best linear un-

biased prediction of an underlying function given observed data and a known covariance

structure. In general, Kriging models do not specify the full distribution of the underlying

process.(Stein, 2012; Cressie, 1992) Bayesian Kriging models have further been developed

by merging prior information into Kriging models. Since a full likelihood specification is

required for Bayesian parametric models, the distribution of the spatial stochastic process

needs to be specified although uncertainty is incorporated through hyperparameters. Prior

information on mean of the underlying process were discussed by Omre and others.(Omre,

1987; Omre and Halvorsen, 1989) Handcock and Stein (1993) further incorporated uncer-

tainty into the covariance structure. Diggle and Ribeiro Jr (2002) formalized a comprehensive

“model-based” geostatistics framework which explicitly specified a stochastic model along

with corresponding model fitting strategies.(Diggle et al., 2003) A more recent and compre-

hensive work on Hierarchical Bayesian spatial modeling is provided by Banerjee et al. (2014)

while a recent review by Gelfand and Banerjee (2017) covered a variety of topics on Bayesian

geospatial data modeling in a succinct fashion.

In this manuscript, our methods are developed based on smoothers and generalized additive
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models. Using any of the available flexible smoothers, spatial epidemiologists are able to

fit flexible cross-sectional models that incorporate kernel-based or spline-based methods into

the mean model of a generalized linear model. However, in epidemiology studies, data

collected over a period of time are becoming increasingly available. Cross-sectional models

do not suffice when geospatial risk patterns are heterogeneous over time. Epidemiologists

have interest in estimating and comparing time-specific spatial risk patterns in order to

better understand diseases and related factors. A formal test to determine if the spatial risk

pattern changes over a period of time and when the change occurs would be attractive, as

the test result would offer valuable clues to identifying factors that elevate or reduce the

risk of adverse health outcomes. Although R package mgcv (Wood, 2017, 2003, 2011; Wood

et al., 2016; Wood, 2004) offers stratified regression splines, which can be used to estimate

time-specific geospatial risk patterns and a corresponding ANOVA F test, there is a dearth

of easily implementable tools to estimate time-specific spatial risks in the GAM framework

with kernel smoothers such as LOESS. Further, since the approximate ANOVA F test for

significance of LOESS smoothers renders inflated type I errors, (Young et al., 2011) there is

a lack of intuitive formal tests for temporal homogeneity of spatial risk patterns. Due to the

popular usage of LOESS in epidemiology studies, in this paper, we aim to provide intuitive

and effective methods to solve both of these problems using kernel smoothers with a focus

on LOESS.

The remainder of the current manuscript is devoted to developing an extension of GAMs

that incorporates time-stratified smoothers and an accompanying permutation-based testing

procedure for assessing geospatial risk pattern changes over time. In Section 3.2, we introduce

notation and describe our proposed time-stratified GAM and permutation testing procedure.

In Section 3.3, we perform simulation studies to assess the operating characteristics of our

proposed methods. In Section 3.4, we use our proposed procedure to test for temporal

variation in the estimated spatial risk patterns of PDA using the MBDR data. Section 3.5

provides further discussion of the proposed work and considers avenues of future research.
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3.2 Methods

3.2.1 Notation

We begin by introducing notation used throughout the remainder of the manuscript. Let

j = 1, . . . , J , denote a discrete time index and i = 1, . . . , nj, denote the observation index,

indicating that there are nj independent observations at time j. Specifically, in this study,

we focus on studies where no repeated measurements are taken on the same subject so that

independence among observations holds for the entire dataset. Thus, identical values of i at

distinct time points j’s do not refer to the same subject but simply an index of a unique

subject. Let (uij, vij) denote the geographic location (longitude and latitude) of observation

i at time j, and the function s() denotes a general (bivariate) smoothing function to be

applied over spatial location. Finally, Xij denotes a q-vector of potentially time-dependent

adjustment variables corresponding to observation i at time j.

3.2.2 GAMs with time-stratified smoothers

As it is increasingly prevalent that spatio-temporal occurrence of disease is routinely collected

at the individual level, a common scientific goal is recently to determine if spatial patterns in

disease vary over time, i.e., to determine if an interaction effect between time and space on

disease risks exists. To address this problem, we consider the use of time-stratified smoothers.

We consider the case where time is discretized into multiple time points. At each time point,

data including disease outcome, confounding variables and geographical locations of subjects

are recorded. If spatial effects are homogeneous across time, one could reasonably employ a

single smoother, s(u, v), over space in order to model the mean of response yij, denoted as
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µij. In this case, researchers could use a model of the form

g(µij) = β0 + s(uij, vij) +Xijβ, (3.1)

where data over all time points are pooled to estimate a single spatial risk pattern with

adjustment for confounding factors. However, if spatial effects vary from one time point to

another, one smoother for all observations is not sufficient to capture time-specific geospatial

risk patterns. Instead, one smoother at every time point would be preferable. Thus we

consider a class of GAMs with stratified bivariate spatial smoothers given by

g(µij) = β0 + sj(uij, vij) +Xijβ, (3.2)

where the function s(uij, vij) is now indexed by j. Importantly, the model given by (3.2) uses

a common effect of Xij over time, thereby borrowing information of confounding effects across

all observed time points. A major difference between our modeling strategy and many other

commonly seen space-time models, such as Gaussian processes with separable time-space

correlation structures, is that by stratifying the smoothing function, no assumption is made

on the temporal correlation of the geospatial risk. Our strategy may sacrifice precision when

the varying mechanism of geospatial risk is well understood, however, as the environmental

risk factors are frequently believed to be uncertain models that do not assume a specific

form of temporal correlation will be able to estimate geospatial risk patterns at each time

point without restricting how the pattern changes over time. Also, given sufficient data at

each time point, the loss of efficiency due to stratification is somewhat negligible since data

within each strata can render reasonably precise estimation of geospatial risk patterns.

To the best of our knowledge, no estimation procedures are currently available for fitting of

stratified kernel smoothers given in (3.2). In this work, we generalize backfitting algorithm

to fill this gap. For reference, we begin with the standard backfitting algorithm (Algorithm
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3) utilized in the GAM framework, using continuous response with identity link function as

an example. We modify the classic backfitting algorithm and propose Algorithm 4 which

incorporates time-stratified LOESS smoothers. Specifically, instead of regressing on the

partial residuals with a marginal bivariate smoother, we stratify the working data and fit

time-specific smoothers and then combine the fitted values. For GAMs with kernel smoothers

other than LOESS, the same procedure could be applied by replacing LOESS with the

smoother of interest. For GAMs with spline smoothers, the backfitting algorithm is also valid

but not as necessary since splines can be expressed as a basis expansion of the covariates.

Thus, for splines, classic fitting procedures for parametric models are more computationally

attractive in general.

Algorithm 3 Backfitting algorithm (continuous response)

1: Initialize β̂0 = (
∑J

j=1 nj)
−1
∑

i,j yij, l̂oij = f̂ij = 0 for all i, j.

2: (l̂oij will denote the fitted values of the bivariate spatial LOESS smoothers and f̂ij will
denote the fitted values of the parametric component Xijβ.)

3: while |SSR0 − SSR1| > 10−8SSR0 , do
4: Set SSR0 = SSR1

5: Fit linear model: (yij − l̂oij) = β0 +Xijβ + εij and get fitted values f̂ij for all i, j.

6: Centralize the fitted values using f̂ij = f̂ij − (
∑J

j=1 nj)
−1
∑

i,j f̂ij.

7: Fit LOESS smoother (yij− f̂ij) = lo(uij, vij) + εij and get fitted values l̂oij for all i, j.

8: Centralize the fitted values using l̂oij = l̂oij − (
∑J

j=1 nj)
−1
∑

i,j l̂oij.

9: Calculate residuals eij = yij − β̂0 − f̂ij − l̂oij.
10: Calculate sum of squared residuals SSR1 =

∑
i,j e

2
ij.

11: end while

More generally, in the case where the distribution of the response is a member of the expo-

nential family where the variance of response Vij = V ar(yij) may depend upon µij and the

assumed link function g(·), an iteratively reweighted least squares algorithm can be incor-

porated into backfitting Algorithm 3. (Hastie and Tibshirani, 1990) In a similar fashion, we

generalize Algorithm 4 to accommodate exponential family outcomes by iteratively reweight-

ing the proposed stratified smoother to obtain Algorithm 5. Note that the partial derivatives

∂ηij
∂µij

and the working variance V 0
ij depend on the corresponding link function, g(·).
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Algorithm 4 Backfitting algorithm for GAMs with a time-stratified LOESS smoother
(continuous response)

1: Initialize β̂0 = (
∑J

j=1 nj)
−1
∑

i,j yij, l̂oij = f̂ij = 0 for all i, j.
2: Initialize SSR0 = 1, SSR1 = 2.
3: while |SSR0 − SSR1| > 10−8SSR0 , do
4: Set SSR0 = SSR1

5: Fit linear model (yij − l̂oij) = Xijβ + εij and get fitted values f̂ij for all i, j.
6: Centralize the fitted values using
7: for j from 1 to J do f̂ij = f̂ij − (

∑J
j=1 nj)

−1
∑

i,j f̂ij.

8: Fit LOESS smoother (yij − f̂ij) = lo(uij, vij) + εij at time j.

9: Get fitted values l̂oij at time j for all i.

10: Centralize the fitted values using l̂oij = l̂oij − (
∑J

j=1 nj)
−1
∑

i,j l̂oij.

11: Calculate residuals eij = yij − β̂0 − f̂ij − l̂oij.
12: Calculate sum of squared residuals SSR1 =

∑
i,j e

2
ij.

13: end for
14: end while

3.2.3 The permuted mean squared difference (PMSD) test

In order to determine if geospatial risk patterns change over time, we consider a global test

of temporal heterogeneity of spatial effects in a GAM scheme. More formally, in a simple

case where there are two time points under investigation, j = 1, 2, we wish to test the null

hypothesis

H0 : s1(u, v) = s2(u, v), for all locations (u, v) on the map, (3.3)

where sj(u, v) stands for the geospatial risk effect at time j and location (u, v).

To construct a measure of temporal heterogeneity in geospatial patterns, we consider a mean

squared difference (MSD) statistic given by

MSD =
1

Ng

Ng∑
g=1

(ŝ1(u(g), v(g))− ŝ2(u(g), v(g)))2, (3.4)

where ŝj(u
(g), v(g)) stands for the estimated spatial effect at time j and location (u(g), v(g)).
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Algorithm 5 Backfitting algorithm for GAMs with a time-stratified LOESS smoother for
exponential family responses (e.g. binary and counting responses)

1: Initialize: β̂0 = g[(
∑J

j=1 nj)
−1
∑

i,j yij]; l̂o
0

ij = f̂ 0
ij = 0.

2: Update: Construct an adjusted dependent variable

zij = η0
ij + (yij − µ0

ij)
(∂ηij
∂µij

)
0

with η0
ij = β̂0 + l̂o

0

ij + f̂ 0
ij and µ0

ij = g−1(η0
ij). Construct weights

wij =
(∂ηij
∂µij

)2

0
(V 0

ij)
−1

3: Fit a weighted additive model with stratified smoothers

zij = β0 +Xijβ + loj(uij, vij) + εij

with Algorithm 4 using weights wij, to get estimated functions l̂o
1

ij and f̂ 1
ij, additive

predictor η1, and fitted values µ1
ij. Compute the convergence criterion

∆(η1, η0) =
||l̂o

1

ij − l̂o
0

ij||+ ||f̂ 1
ij − f̂ 0

ij||

||l̂o
0

ij||+ ||f̂ 0
ij||

A natural candidate for ||f || is ||f||, the length of the vector of evaluations of f at the n
sample points.

4: Repeat step 2 and 3.
5: Replace η0 by η1 until ∆(η1, η0) < 10−8η0.

The set of location points {(u(g), v(g)), g = 1, . . . , Ng} define the points of interest for de-

termining heterogeneity. For example, a dense and uniformly distributed grid on the entire

map could be chosen as the set of evaluation points if no specific regions are believed to be

time-varying a priori.

If spatial effects are homogeneous over time, we would expect MSD to be low. Conversely,

since MSD is a measure of disparity in spatial patterns by definition, large MSD values would

indicate temporal heterogeneity of spatial patterns.

To construct a reference distribution for the MSD statistic, we propose a permutation strat-

egy. The reference distribution will be developed based on the assumed exchangeability of
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time labels under H0. In other words, if H0 holds, i.e. spatial patterns do not change over

time, the sampling distribution of spatial effects at each time point given by the model in

(3.2) can be approximated by permuting time labels randomly. Consequently, we randomly

permute time labels among the dataset for Nperm times to obtain a set of permuted MSD

statistics (referred to henceforth as PMSD or permuted mean squared difference statistics)

{PMSDp, p = 1, 2, . . . , Nperm}. Then under H0, the observed MSD (named OMSD) would

be a regular member of PMSDp’s. In other words, OMSD and PMSDp’s would come from

the same distribution if H0 holds. On the other hand, when H0 is violated, MSD will likely

be greater than most PMSDp values, leading to a permutation test that rejects H0 when

1

Nperm

Nperm∑
p=1

I{PMSDp > OMSD} < α, (3.5)

where α is the desired level of significance for testing H0 and I{} is an indicator function.

Here we summarize the permutation test for the stratified GAM model given in (3.2) with

pseudo-code given by Algorithm 6. For context, the procedure we present here takes the

smoothing function to be a LOESS smoother hence replace s(u, v) with lo(u, v) correspond-

ingly.

3.2.4 Extension to Greater Than 2 Time Points

In the above, we have considered the PMSD test for comparing spatial effects over 2 time

points. When more than 2 time points are available, we propose an extension of (3.4) for

J > 2, where each stratified smoother is compared to a “grand mean” at each location over

all time points. Specifically, we propose the statistic

MSD =
1

NtNg

(
Nt∑
j=1

Ng∑
g=1

(ŝj(u
(g), v(g))− ŝ0(u(g), v(g)))2) (3.6)
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Algorithm 6 Permutation test for spatial heterogeneity with 2 time points

1: Fit (generalized) linear model M0 : Yij = β0 +Xijβ.
2: Extract (working) residuals Rij from M0. (remove effects other than spatial effects

from the response)
3: Split data by time and get time-stratified datasets D1 and D2. (Stratify data)
4: for j from 1 to 2, do
5: Fit Rij = lo(uij, vij) + εij using Dj.

6: Get prediction l̂oj(u
(g), v(g)). (grid prediction)

7: end for
8: Calculate OMSD using Eq. (3.4).
9: for ip from 1 to Nperm do
10: Randomly permute time labels t in dataset after Step 2. (Permute under 2 time

points)
11: Repeat Step 3-7.
12: Calculate PMSDip using Eq. (3.4).
13: end for
14: Calculate p-value using Eq. (3.5).

where ŝ0(u(g), v(g)) represents a marginal smoother utilizing data pooled over all available

sampling times. The permutation procedure in this case is a natural extension to the 2

time-point setting. Specifically, the time label t within the dataset is randomly shuffled and

hence every observation within the dataset could potentially end up having any t value while

the sample size at each time point is held unchanged.

3.2.5 Selection of locations for the MSD statistic

The MSD statistic defined in (3.6) is computed by taking the mean of the squared differences

of the estimated spatial effects at a specified set of locations {(u(g), v(g)), g = 1, . . . , Ng},

which may or may not coincide with the observed locations {(uij, vij)}. We previously

claimed that if the temporal heterogeneity of the spatial pattern on the whole map is of

interest, an intuitive and reasonable choice is to use a dense uniform grid on the entire

map. Alternatively, evaluation points could be chosen to match the observed density of

observations sampled over the map. In general, we recommend that users choose evaluation
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points according to the scientific question of interest while accounting for the sampling

scheme of the study. Specifically, a uniform grid provides equal weight over the entire

map while using the set of observed locations will give higher weight to areas with denser

observations, resulting in an estimand that is skewed towards more densely populated or

more densely sampled areas. One could reasonably argue that either choice would be more

or less scientifically important in specific settings.

Of course, another factor in the choice of grid type is the impact on the statistical properties

(type I error and power) of the proposed PMSD test. In the Section 3.3, we will empirically

investigate the impacts of grid density and location on the statistical properties of the PMSD

test using simulation studies.

3.3 Monte Carlo Studies

3.3.1 Simulation study with underlying nonlinear risk patterns

To explore the operating characteristics of our proposed methods, we consider a variety

of simulation studies based on a 2 × 2 square map. A nonlinear geospatial risk pattern,

denoted by ”truth: shift=0”, is shown in Panel (a) of Figure 3.1. The pattern is created by

Equation (3.7). We design temporal heterogeneous geospatial risk patterns by shifting the

”shift=0” pattern to left by an amount up to 0.2 in order to achieve a metric of extremity

of heterogeneity. Two examples of shifted patterns are shown in Panel (b) and (c) of Figure

3.1.

y = −u+ 0.1 log(1.3)v + 1.2 sin(3(u+ 0.1)) + 2uv + 6 log(0.6)v2 (3.7)
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Figure 3.1: Top: Patterns used in nonlinear risk pattern simulations. “shift” stands for the
shifting amount of the whole pattern to left; Bottom: Estimated spatial risk patterns using
our proposed model (in (3.2)).

Using our proposed generalized additive model in (3.2), we are able to estimate the risk

patterns at each time point. One simulation study is used to assess the performance of

the stratified LOESS smoothers. 3 time points are set up with time-varying geospatial risk

patterns where shift amounts are 0, 0.1 and 0.2, respectively. The 3 plots in the bottom

of Figure 3.1 show the estimated risk patterns at each time point. From the plots, it is

shown that the proposed time-specific LOESS smoothers are capable of recreating each of

the time-specific geospatial risk patterns.

Several simulations are conducted with 2 time points in total. Under H0, we assume homoge-

neous underlying spatial effects (”shift=0”) at both time points. For simulations under H1,

”shift=0” is used for Time 1 and a shifted pattern is used for Time 2. The amount of shift

indicates extremity of deviation from H0, hence greater shift amounts should be detected
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with greater statistical powers.

Empirical powers are defined as the proportion of simulations in which H0 is rejected. A

level of significance of α = 0.05 is used. In each simulation scenario, simulation is repeated

500 times and Nperm = 1000. As a comparison, we also consider ANOVA tests for temporal

homogeneity in the above simulation settings when a naive parametric form of spatial effects

is assumed. Specifically, consider Model (3.8) and and test H0 : β5 = β6 = β7 = 0 using a

permutation version of the F test. A permutation strategy is used in order to maintain a

correct type I error. Specifically, for each simulated dataset, the permuted ANOVA procedure

simply compares the observed F statistic and permuted F statistics, where the permuted F

statistics are calculated using dataset with randomly permuted time labels. Also, the mgcv

package offers a class of stratified thin-plate regression splines and corresponding ANOVA

tests. We applied this test as well for comparison. The resulting powers are shown in Panel

(a) of Figure 3.2.

E(Yij) = β0 + β1uij + β2vij + β3tij + β4uijvij + tij(β5uij + β6vij + β7uijvij) (3.8)

To assess the performance of the PMSD test on datasets with more than 2 time points, we

create datasets with 4 time points. No shift is used at time point 1 and a shift amount S is

applied at time point 4. For time 2 and 3, we used uniformly spaced shift amounts S/3 and

2S/3. The resulting powers under these settings are shown in Panel (c) of Figure 3.2.

The Monte Carlo results presented in Figure 2 for the PMSD test utilize a uniformly dis-

tributed 20×20 grid on the entire 2×2 map. Although a 20×20 grid is seemingly sufficient

for the risk patterns in the simulation studies we performed, we suggest a grid that is dense

enough in order to sufficiently evaluate local behaviors.
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In addition to the grid density, another decision to make when performing PMSD tests is grid

selection strategy. Intuitively, one might choose uniformly distributed locations on the entire

map or the observed locations within the dataset. Since the MSD statistic is defined as the

mean of squared differences at a chosen set of locations, the pattern of the grid intrinsically

defines the weights assigned over the map. For temporal heterogeneity detection, a uniform

grid will place equal weights on all areas of the map while observed locations put higher

weight on areas with denser observations. As a simple example, given a risk pattern where

temporal variation exists in one area of the map, using more points in the varying area in

the grid for PMSD tests would result in higher power since the test would be weighted more

heavily in the varying area due to the grid design.

To assess the impact of grid selection strategy on power, we performed simulation studies in

2 more scenarios. In Scenario 1 (shown in the plots in the top row of Figure 3.3), we use the

same pattern as the previous simulations with 2 time points where we use ”shift=0” for Time

1 and ”shift=0.1” at Time 2. The observations are designed to be uniformly distributed on

the map. We vary Ng, the number of locations used in the grid, to explore the impact of grid

density on power. For each Ng value, we simultaneously chose Ng random locations from a

uniform 20 × 20 grid on the map and another random collection of Ng locations from the

observed location set. Using the 2 sets of locations, PMSD tests were performed in order to

assess the impact of grid selection strategy on power. In Scenario 2 (bottom row of Figure

3.3), we use another design of spatial risk surface which has 2 high risk areas. We use the

pattern at Time 1 and mitigate the risk by 30% in one of the high risk areas at Time 2 to

create temporal heterogeneity. In this setting, observations are designed to be denser in high

risk areas. We performed similar grid selection and testing procedures to those of Scenario 1

and compared power with respect to grid density and selection strategy. From the empirical

power results, the denser grids tend to render higher power, which is reasonable since local

variations are more likely to be detected with more evaluated locations. In Scenario 1,

tests using observed locations yield slightly higher power than those using uniform grids.
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This result could be explained by higher precision in spatial effects estimation at observed

locations. The performance of tests using observed locations is much better than that of tests

using a uniform grid in Scenario 2, which is as expected since more locations in time-varying

areas are evaluated by MSD statistic, resulting in greater weights in the areas when the test

is performed.

3.3.2 Simulation studies with linear underlying patterns

In the previous Monte Carlo studies, we assume nonlinear underlying spatial patterns, as

is shown in Figure 3.1. In these situations, our proposed PMSD test outperformed a per-

mutation version of the F test, as is expected. In this section, we conduct a simulation

study where the true underlying spatial risk patterns are created using a linear function of

longitude and latitude and compare the finite sample behavior of the PMSD tests and the

optimal F tests. Specifically, data were generated using the following model:

yij = −2 + 3uij − 3vij + uijvij + τtij(2uij + 2vij + uijvij + 1) + εij. (3.9)

In the above model, values from 0 to 0.16 are chosen to be τ . εij’s are i.i.d. random errors

from a standard normal distribution. We apply both a classical ANOVA F test of the space-

time interaction terms (a correctly specified model) and the PMSD test. Using a similar

strategy as previous sections, we compare the performance of the 2 classes of tests and plot

the results in Panel (d) of Figure 3.2. Both tests yield correct type I errors while the ANOVA

test yields slightly higher power. However, the increased power comes at a high cost, as the

inflexible parametric model does not perform as well if the underlying risk pattern is more

realistically nonlinear.
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3.4 Application to birth defects study in Massachusetts

In this section we use our proposed methods to analyze the data achieved by the previously

introduced MBDR study. Given the severity of PDA, it is of interest to determine if space-

related risk factors place infants at increased PDA risk. Generalized additive models with a

bivariate smoother incorporated, such as the model in (3.1), estimate cross-sectional geospa-

tial risk patterns with adjustment for other potentially relevant factors including maternal

age, adequacy of prenatal care (measured by the Adequacy of Prenatal Care Utilization In-

dex), maternal race, maternal education level and number of siblings, as is applied in Girguis

et al. (2016).

Beyond the analysis of cross-sectional data in each year, we further aim to investigate the

existence of variation in spatial risk patterns over time. We applied our methods on data

collected in 2003, 2006, and 2009. Available sample sizes for the three years are 1082, 969,

and 877, respectively. Corresponding numbers of PDA cases are 111(10.3%), 90(9.3%) and

60(6.8%). The geographic distribution of the observations are shown in the top row of Figure

3.4. With adjustment for maternal age, adequacy of prenatal care, maternal race, maternal

education level and number of siblings, the estimated geospatial risk patterns are shown in

the bottom row of Figure 3.4. PMSD tests were performed to assess heterogeneity over the

3 years. The results are shown in Figure 3.5.

From the estimation in Figure 3.4, potential temporal heterogeneity of geospatial PDA risk

is observed by visual inspection. To formally determine if the spatial risk changes over the

period, we apply our proposed PMSD test and the resulting p-value is 0.028, indicating

potential time-varying and space-related factors for PDA risk other than the adjusted ones

in the model over the 7 years from 2003 to 2009. Note that since the PMSD test aims to

find any temporal change in the geospatial risk patterns, the detected heterogeneity could

be a result of either a change in the overall level of PDA rate at each time point or a change
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in the spatial disparity patterns of PDA risk.

The presented analysis utilizes all observed locations as evaluation points. The PMSD test

utilizing a uniform grid on the Massachusetts map renders a greater p-value (= 0.069) than

the one using the observed locations (consistent with our previously presented simulation

results). Corresponding PMSD and OMSD values are plotted in Figure 3.5. As discussed

previously, the choice between the two grid choice strategies should also take into account

the scientific goals of the study. The PMSD test using observed locations places weights

that are roughly proportional to the population (under a simple random sample) while the

PMSD test using a uniform grid equally weights all areas of Massachusetts.

3.5 Discussion

In this study, we brought in time-stratified kernel smoothers to the generalized additive

model framework for estimation of time-specific geospatial disease risk patterns. Based on

the proposed GAMs, we further formalized a permutation test for temporal heterogeneity of

smoothed spatial risk effects.

Using simulation studies, we showed that our proposed PMSD test performed substantially

better than the other 2 competitors in detecting underlying temporal heterogeneity given a

specific nonlinear spatial pattern. Even when the difference between spatial risk patterns

was not clearly noticeable by visual inspection, the proposed procedure yielded acceptable

power. In situations with parametric spatial risk patterns, a correctly specified parsimonious

parametric ANOVA F test only slightly outperformed the PMSD test. We did assume

smoothness of the surface in the presented simulations as well as smooth shifts over time

as there would likely not be abrupt shifts in the spatial or temporal patterns for the birth

defect data that motivates our methodology. We do, however, acknowledge that non-smooth
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patterns can exist and differential changes in hot spots may arise. In additional simulation

studies, not presented here, we considered the performance of our methods in the setting

of abrupt changes in the response surface. We found that our model managed to render

reasonably good estimation although the estimated pattern is not as accurate at the areas

where the risk changes dramatically, which is not surprising since the smoothness assumption

is violated. We also found that the type I error rate of our proposed PMSD test was

maintained and that relative power benefits compared to the F test were also maintained in

this setting.

Straightforward extensions of the proposed methods may be of interest in particular settings.

For instance, if multiple contiguous time points are assumed to share one common spatial

risk pattern, these time points could be grouped as one strata. Thus the stratified smoothers

and corresponding PMSD tests are naturally applied to multiple time stratas, rather than

to all time points. A similar strategy could be adopted for cases with continuous time,

where smoothers could be stratified at separate time intervals. Also, when researchers wish

to investigate heterogeneity in geospatial risk patterns over a categorical factor other than

time, such as sex or discretized age, the proposed methods remain applicable.

The proposed PMSD test considers a global test for temporal homogeneity of spatial effects,

as opposed to identification of specific local area differences. This is a natural first step in

the identification of changing spatial patterns over time. Note that when temporal variation

of geospatial risk pattern exists merely localized while the grid for MSD statistics is designed

on the entire map, the power may suffer from the inclusion of geographic locations where the

risk does not vary over the time period in MSD statistic. One next step, as we have done in

the MBDR analysis for cross-sectional data analysis, is to highlight areas with differential

risks. This is akin to first establishing the existence of main effects then further investigating

effect modification.

Other than what is proposed in this work, smoothing with respect to time seems to be
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an intuitive way to model space-time data, but naively including time in smoothing terms

is questionable. Using two separate smoothing terms in an additive way, one for spatial

effects and another for time effects, fails to model time-space interaction while using a 3-way

smoother including longitude, latitude and time offers flexible smoothing but suffers from

anisotropy and potentially sparseness. The proposed procedures make no assumption on

temporal correlation and put no restriction on how geospatial effects pattern varies. Some

might be concerned about loss of efficiency due to the flexibility. We would argue that for

large data sets, which is frequently the case in epidemiology studies, efficiency is maintained

at each time point. As supporting evidence, Panel (d) of Figure 3.2 shows close performance

between PMSD tests and the optimal ANOVA F-tests under parametric spatial risk patterns,

indicating little efficiency loss.

For statistical inference on smoothing components in GAMs, an approximate F-test was

introduced by Hastie and Tibshirani (1990). However, simulation studies showed that this

approximate F-test renders inflated type I error in Young et al. (2011). According to sim-

ulation results of the approximate F-test (not shown in this manuscript) on our simulation

problem, inflated type I errors are observed as well. However, due to its efficiency potential,

we will explore calibrating methods for this class of approximate F-tests in our future work.

An intuitive Bayesian counterpart of the stratified smoother could be a time-stratified Gaus-

sian process where one process is set up at each time point with or without shared hyper-

parameters. A stratified Gaussian process only requires modification of the likelihood. This

stratification does not require a specific time-space covariance structure since no specific

temporal correlation is assumed. Based on this class of models, temporal heterogeneity in

spatial patterns can potentially be tested using the Bayes factor.(Kass and Raftery, 1995)

While we appreciate the Bayesian framework in geospatial modeling, many health researchers

are not closely familiar with Bayesian methods. In contrast, local linear regressions may be

more intuitive and accessible to nonstatisticians. In particular, tuning a span size that is
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understandable as the proportion of data utilized in the local window of smoothing, is more

straightforward than choosing hyperparameters in covariance structures of a Gaussian pro-

cess. In addition, GP models tend not to scale well with respect to computation. In contrast,

the time-stratified generalized additive models proposed here are computationally cheap and

easily scale to large data sets. We compared model fitting time between GP models and

GAMs using the R package spBayes (Finley et al., 2007, 2015) and R package gam (Hastie

and Tibshirani, 1990) respectively. GP models were roughly 20 times more computationally

expensive when compared to GAMs for N = 100. Computation times were roughly 200 times

greater for N = 300, 500 time greater for N = 500 and 1000 greater for N = 700, indicating

a disadvantage of GP models with respect to scalability. Given these potential advantages,

we view the proposed procedure as providing another useful tool to spatial epidemiologists.

One key assumption we made in this paper is mutual independence of all observations. That

is to say, cross-sectional studies over multiple time points, rather than longitudinal studies,

are discussed. Since longitudinal studies where individuals have multiple measurements

over time are increasingly prevalent, in the future, we plan to further generalize stratified

smoothers and investigate the performance of the PMSD tests on longitudinal data.
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Figure 3.2: Panel (a): Power vs. shift amount based on 500 simulations at each shift value.
Increasing rejection proportion could be observed. Type I error (rejection proportion at
shift=0) is 0.046 for permutation test on F statistic, 0.032 for ANOVA F test based on thin-
plate regression splines and 0.056 for PMSD test. The proposed PMSD test has the highest
power in detecting temporal heterogeneity and permutation test based on parametric models
renders the lowest power; Panel (b): Power vs. sample size based on 500 simulations at
each sample size, given shift=0.15. Power increases along with sample size and approaches 1
near a sample size of 350 observations per time point; Panel (c): Power vs. shift amount at
time point 4 based on 500 simulations at each shift value. Increasing rejection proportion (or
greater power) could be observed. Type I error (rejection proportion at shift=0) is 0.062 for
permutation test on F statistic, 0.018 for ANOVA F test based on thin-plate regression splines
and 0.042 for PMSD test. Similarly, our proposed PMSD tests have better performance in
power in detecting temporal heterogeneity; Panel (d): Power vs. multiplier τ in (3.9) based
on 500 simulations at each value of τ . As expected, classical ANOVA F test performs better
in terms of power since it is the “correct” test hence most powerful. In the meanwhile, the
performance of PMSD is close to the F test.
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Figure 3.3: Top: Geospatial risk patterns at Time 1 and 2 with observed locations in
Scenario 1 and corresponding power v.s. density curves for PMSD tests using uniform and
observed grids. Bottom: Geospatial risk patterns at Time 1 and 2 with observed locations
in Scenario 2 and corresponding power v.s. density curves for PMSD tests using uniform
and observed grids.
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Figure 3.4: Top: Distribution of PDA cases (red) and controls (black) over selected years.
Sparsity in western Massachusetts reflects lower population density; Bottom: Estimated
geospatial risks for each year with adjustment for relevant variables. Values presented are
estimated log odds ratios. The solid lines on the estimated patterns indicate areas with
significant nonzero log-odds using α = 0.05. The significance is determined by a permuta-
tion test described in Webster et al. (2006) The idea of the test is to randomly permute the
locations of the observations and recalculate the log-odds for M times in order to achieve
a point-wise reference distribution of log-odds at each point on map. The significant areas
contain points where the estimated log-odds is outside of the 95% confidence interval con-
structed by the reference distribution. The test is applied using R package MapGAM. (Bai
et al., 2019) According to the estimated surfaces, southeast Massachusetts has potentially
significant high PDA risk in 2006 but low risk in both 2003 an 2009. In addition, a high
PDA risk appears at central-southern Massachusetts in 2009.
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Figure 3.5: Histograms of PMSD values using 2 test location selection strategies with vertical
lines indicating the value of OMSD. The p-values are 0.029 using observed locations and 0.069
using a uniform grid on the Massachusetts map.
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Chapter 4

Additive mixed models with kernel

smoothers

4.1 Introduction

Geographically heterogeneous disease rates are of common interest in epidemiology studies

since local high or low rates may serve as a surrogate for space-related risk factors such

as environmental exposures and local healthcare access or quality. Traditional geographic

modeling methods focus on analyzing aggregated area-level data that treat area-defined par-

titions as one unit. More recent spatial epidemiology studies avoid aggregation bias and the

ecological fallacy by modeling individual-level data that may be collected longitudinally over

time. With accurate records of geospatial information (frequently longitude and latitude),

researchers generally assume an underlying smooth surface for modeling the heterogeneity

of disease risk over a given geospatial region, regardless of borders of inner areas. Based

on this assumption, the estimation of the surface is an essential component in spatial data

analysis.
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Due to the complex nature of geospatial disease risk, it is not feasible to assume a parametric

form to model the underlying risk surface in most cases. As such, nonparametric methods

are popular in spatial effects modeling. Under a frequentist estimation framework, popular

nonparametric methods include kernel and spline smoothers. Kernel smoothers utilize lo-

cally weighted models while spline smoothers are defined by a basis expansion of the design

matrix over the full predictor support. In this work we consider locally weighted regression

(LOESS) as proposed by Cleveland (1979). LOESS assumes local (weighted) polynomial re-

lationship between response and explanatory variables and was applied to geospatial analysis

by Brunsdon et al. (1996) among others. One advantage of LOESS for spatial analyses is

that it intuitively adapts to changing population densities by varying the size of the smooth-

ing neighborhood based on the local data density given a fixed span size (typically defined

as the proportion of observations used for local regressions).

In addition to spatial risk pattern estimation, confounding variables, such as biomarkers

in studies on public health, should be included in spatial models. Generalized additive

models (GAMs) (Hastie and Tibshirani, 1990) offer a framework for incorporating frequentist

smoothers and confounding variables in an additive fashion by assuming a linear predictor

consisting of the sum of nonparametric smoothers and parametric adjustment covariates.

Wood (2017) further developed GAMs by incorporating various types of splines and covered

relevant topics such as computation, properties and applications.

Recently, data collection procedures such as patients revisits and health trackers have be-

come increasingly prevalent. These procedures frequently result in multiple longitudinal

measurements on individuals over time. This sampling framework results in within-subject

correlation that must be accounted for in analytic methods in order to provide valid inferen-

tial results. Linear mixed models (LME) provide one framework for modeling within-subject

correlation by adding random effects to linear models. Increased flexibility in the LME can be

accomplished by incorporating random effects into a GAM framework. The resulting models
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are commonly known as generalized additive mixed models (GAMMs). Lin and Zhang (1999)

considered one strategy for the incorporation spline smoothers into the LME framework. To

the best of our knowledge, however, no existing literature covers additive mixed models with

kernel smoothers. The current manuscript seeks to fill this gap by propoposing a class of

additive mixed models (AMM) that incorporate kernel smoothers and random effects into a

linear model for continuous outcomes.

As one example, a fairly recent study was conducted to investigate serum perfluorooctanoic

acid (PFOA) concentration among residents in Lubeck, West Virginia and Little Hocking,

Ohio. (Bartell et al., 2010) In this study, researchers aimed to understand the declining

behavior of PFOA concentration after granular activated carbon filtration on the public water

systems in 2007. By design, 200 residents were included and 6 blood samples were to collect

from each resident from May 2007 to August 2008 so that a trend of PFOA concentration

could be observed. Besides PFOA concentration, residents’ information such as gender, age

and recent water consumption type (public water or bottled water) was recorded as well as

precise residential location (recorded as longitude and latitude). One of the objectives is to

understand the geospatial distribution of residents’ serum PFOA concentration in order to

help identify potential latent space-confounded risk factors.

The remainder of this chapter is organized as follows: In Section 4.2, we introduce our pro-

posed additive mixed models (AMMs) and the corresponding fitting procedure. In Section

4.3, we present simulation studies designed to assess the performance of our new model

in geospatial risk pattern recreation and parameter estimation. In Section 4.4, we use our

proposed methods on PFOA data to estimate the geospatial pattern in serum PFOA con-

centration in the area of Lubeck, WV. Finally, Section 4.5 provides further discussion about

the proposed work and considers avenues of future research.
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4.2 Methods

4.2.1 Notations

Let i = 1, 2, . . . , N be the individual index where each i corresponds to one individual. For

each individual i, measurements are taken at times ti1, ti2, . . . , tiJi . The measurements on

individual i include the continuous response vector Yi = (yi1, yi2, . . . , yiJi) and a length-p

vector of adjustment covariates Xij at time tij, j = 1, . . . , Ji. In addition, each individ-

ual’s geographical information (i.e. longitude and latitude) is tracked, labeled by (uij, vij)

at time tij. Independence is assumed between individuals but not between the repeated

measurements within each individual in statistical analysis.

4.2.2 LOESS with variance-covariance adjustment (LOESS-VCA)

We begin with a simple bivariate LOESS smoother for i.i.d. data given by

yij = lo(uij, vij) + εij, i = 1, . . . , N, j = 1, ...Ji, (4.1)

where ε
i.i.d.∼ N(0, σ2) and lo() denotes a LOESS smoother. In (4.1), the mean response at

location (u∗, v∗), i.e. lo(u∗, v∗), is the estimand of scientific interest. The local regression

model involves k of the observed data points that are nearest to (u∗, v∗) where k is pre-

specified according to the span size and distance is generally defined as Euclidean distance

for determining nearest neighbors. Utilizing the nearest neighbor data, locally weighted

regression is used to estimate lo(u∗, v∗), where weights are assigned according to the distance

between the neighbor and the target location (u∗, v∗). A traditional choice of weight function
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is the tricube weight function given by

w(d) =


(

1− d3

[max(d)]3

)3

, for d < max(d)

0, for d > max(d)

. (4.2)

In (4.2), d denotes the distance and max(d) is the maximum of the k distances corresponding

to the nearest neighbors. Let L∗ denote the local design matrix constructed by the local

values of (u, v), W ∗
1 denote a diagonal matrix with tricube weights of the local observations,

and Y ∗ denote the response values of the local observations. Then the fitted value l̂o(u∗, v∗)

can be calculated using weighted least squares:

l̂o(u∗, v∗) = (1 u∗ v∗)(L∗TW ∗
1L)−1L∗TW ∗

1 Y
∗ (4.3)

The above estimation procedure assumes ε
i.i.d.∼ N(0, σ2). However, as we aim to estimate

spatial patterns using longitudinal data, this assumption does not generally hold since mea-

surements within each individual will tend to be correlated rather than independent. Thus,

we extend the simple LOESS smoother to accommodate correlated data with a known, or

assumed, correlation structure.

We again consider the mean model specified in (4.1) but release the i.i.d. assumption.

Rather, we assume ε ∼ N(0,Σ) where Σ is known and ε = (ε1, ε2, . . . , εN)′. With known, or

assumed, variance-covariance model Σ, the weighted least squares estimator given in (4.3)

can be modified to account for within subject clustering via incorporation of inverse-variance

weights. Specifically, let Σ∗ denote the local components of Σ defined by the span size. Then

a variance-covariance adjusted LOESS (LOESS-VCA) fit is given by

l̂o(u∗, v∗) = (1 u∗ v∗)(L∗TW
∗1/2
1 Σ∗−1W

∗1/2
1 L)−1L∗TW

∗1/2
1 Σ∗−1W

∗1/2
1 Y ∗. (4.4)
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Since Σ (and hence Σ∗) are generally not known in practice, a generalized estimating equa-

tions (GEE) approach (Liang and Zeger, 1986) that assumes a working covariance structure

and iteratively replaces Σ with a method of moments estimator could be used. We, how-

ever, are interested quantifying potential random effects variance components. In the next

section we consider a novel backfitting strategy for incorporating both random effects and

adjustment covariates into the bivariate LOESS model.

4.2.3 An additive mixed model with kernel smoothers

As discussed in Section 4.1, additive models are popular tool among spatial epidemiologists

seeking to estimate spatial disease risk patterns while simultaneously adjusting for potential

confounding factors. Specifically, the model given in (4.1).

However, when the dataset of interest includes multiple measurements on some individuals,

the independence assumption does not inherently hold. Since Model (4.1) does not take the

potential correlation among the measurements into account, inefficient or incorrect inference

could be yielded if Model (4.1) is adopted.

To account for within-individual correlation arising from longitudinal sampling of individuals

over time, Laird and Ware (1982) proposed a class linear mixed effects models (LMEs) given

by

yij = Xijβ + Zijbi + εij, (4.5)

where it is assumed that bi ∼ N(0, D) and εi = (εi1, εi2, . . . , εiJi)
′ ∼ N(0, R), with bi and εi

independent. Typically, the fixed effects Xijβ component of the linear predictor is used to

model the scientific association of interest and adjust for potential confounding covariates,

the random effects Zijbi component is used to model individual-specific effects and the εij’s
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are assumed to be i.i.d. conditional upon the random effects.

A natural extension of (4.1) to the setting of longitudinal data is given by an additive mixed

model of the form

yij = lo(ui, vi) +Xijβ + Zijbi + εij. (4.6)

While estimation procedures for generalized additive mixed models with spline smoothers

have been proposed (cf. Lin and Zhang (1999)), to the best of our knowledge, no previous

work covered model fitting procedures for an additive mixed model with kernel smoothers.

Here we consider a novel generalizing of the backfitting algorithm proposed by Breiman and

Friedman (1985) to estimate the model specified in (4.6).

We begin with the classic backfitting algorithm (presented in Algorithm 7). The basic idea

of Algorithm 7 is to fit partial residuals using one component in the mean model given the

fitted values of the rest components in an iterative way, and repeating until convergence.

Based on this algorithm, we propose Algorithm 8 to fit (4.6). Specifically, we propose mod-

ifying Algorithm 7 by replacing the linear model with a LME utilizing a specified variance-

covariance structure as determined by the specification of the random effects and the LOESS

with the previously discussed LOESS-VCA estimator utilizing the induced working variance-

covariance structre from the LME. As a result, estimation of both the non-parametric and

semi-parametric components of the fixed effects linear predictor in (4.6) incorporate the

assumed variance-covariance structure of the longitudinal data.
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Algorithm 7 Backfitting algorithm for Model 4.1 (Gaussian response)

Initialize l̂oij = 0, f̂ij = 0 for all i, j. (l̂oij will be the fitted values of the bivariate spatial

LOESS smoother and f̂ij will be the fitted values of the parametric component Xijβ.)

while at least one of the estimates l̂oij and f̂ij change by 0.01%, do

Fit linear model (yij − l̂oij) ∼ Xijβ and get fitted values f̂ij for all i, j.

Centralize the fitted values using f̂ij = f̂ij −mean
i,j

(f̂ij).

Fit LOESS smoother (yij − f̂ij) ∼ lo(uij, vij) and get fitted values l̂oij for all i, j.

Centralize the fitted values using l̂oij = l̂oij −mean
i,j

(l̂oij).

end while

Algorithm 8 Backfitting algorithm for Model 4.6 (Gaussian response)

Initialize l̂oij = 0, f̂ij = 0 for all i, j. (l̂oij will be the fitted values of the bivariate spatial

LOESS smoother and f̂ij will be the fitted values of the parametric component Xijβ.)

while at least one of the estimates l̂oij and f̂ij change by 0.01%, do

Fit linear mixed model (yij − l̂oij) ∼ Xijβ + Zijbi and get fitted values f̂ij for all i, j.

Centralize the fitted values using f̂ij = f̂ij −mean
i,j

(f̂ij).

Calculate the estimated variance-covariance matrix V from the mixed model.
Fit LOESS-VCA smoother (yij − f̂ij) ∼ lo(uij, vij) using V as the true variance-

covariance matrix and get fitted values l̂oij for all i, j.

Centralize the fitted values using l̂oij = l̂oij −mean
i,j

(l̂oij).

end while

4.2.4 Quantification of uncertainty in spatial effects

Based on our proposed models, by using local weighted regression models, the estimated

spatial effect at a specific location (u∗, v∗) can be written as

l̂o(u∗, v∗) = H∗(~α)y∗, (4.7)

where ~α = (D,R)′ stands for the variance component and y∗ would be the corresponding

local response vector, which could potentially be the local working partial residual vector

within the backfitting procedure if an AMM is being fitted. Hence the variance of l̂o(u∗, v∗)
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can be expressed as

V ar(l̂o(u∗, v∗)) = H∗(~α)V ar(Y ∗)H∗T (~α), (4.8)

where V ar(Y ∗) = V ∗(~α) is a function of ~α as well. We impute the estimated values of the

variance component based on the linear mixed model and use

V̂ ar(l̂o(u∗, v∗)) = H∗(~̂α)V ∗(α̂)H∗T (α̂) (4.9)

to quantify the uncertainty of the estimated spatial effects in a point-wise fashion.

4.3 Monte Carlo studies

To assess the performance of our proposed methods in spatial effects estimation, we con-

ducted multiple simulation studies based on a 2× 2 square map with a true spatial pattern

given by

s0(u, v) = −u+ 0.1 log(1.3)v + 1.2 sin(3(u+ 0.1)) + 2uv + 6 log(0.6)v2 (4.10)

and depicted in the top plot of Figure 4.1.

4.3.1 Spatial pattern recreation

In this section, we aimed to compare the performance of our proposed additive mixed models

in terms of spatial pattern recreation. Responses were then simulated via the model

yij = s0(uij, vij) + b0i + εij, (4.11)
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where b0i
i.i.d.∼ N(0, τ 2) and εij

i.i.d.∼ N(0, 1). We repeated the simulation with τ 2 = 0, 1.5, 2.5,

respectively.

We sought to compare our proposed additive mixed model (given in (4.12)) with a naive

model that assumes independent data (given in (4.13)):

yij = β0 + βttij + lo(uij, vij) + b0i + εij (4.12)

yij = β0 + βttij + lo(uij, vij) + εij. (4.13)

We compared the estimated spatial risk patterns between the 2 models under varying random

intercept conditions. Span sizes that minimize AIC (Akaike, 1998) were chosen for each

model. Note that if τ 2 > 0, there will be individual-specific intercepts hence the model

given in (4.13) is misspecified. It follows that the likelihood of Model (4.13) used in the AIC

calculation would be incorrect hence the chosen span size might not be the most appropriate,

however a search across different span sizes did not return qualitatively different results from

what is presented here.

The estimated spatial risk patterns are shown in the second and third rows of Figure 4.1.

It is easily seen that that with correctly specified random effects, our proposed additive

mixed models estimate the spatial patterns in each scenario (bottom row). In contrast,

since the naive additive model fails to account for within-subject correlation, results for the

model given in (4.13) tend to under-smooth the patterns using a relatively small span size

(second row). This is due to the fact that the naive additive model treats correlated data as

independent, resulting in an improper contribution to the total likelihood.

Similar simulations were conducted for scenarios where both random intercepts and random
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Figure 4.1: Top: Simulated spatial risk pattern; Middle: estimated patterns using additive
models given differing correlation structures; Bottom : estimated patterns using additive
mixed models given differing correlation structures.

slopes exist. With random slopes included, we simulated data using

yij = s0(uij, vij) + b0i + b1itij + εij, (4.14)

where b0i
i.i.d.∼ N(0, 1.5), b1i

i.i.d.∼ N(0, τ 2
1 ) and εij

i.i.d.∼ N(0, 1). We repeated the simulation

with τ 2
1 = 0, 0.04, 0.09, respectively. To these simulated data, we applied our proposed AMM

(given in (4.15)) and the same naive model that assumes independent data (given in (4.13)).
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yij = β0 + βttij + lo(uij, vij) + b0i + b1itij + εij. (4.15)

From the recreated spatial risk patterns shown in Figure 4.2, our proposed AMMs managed

to deliver better performance with respect to selection of smoothing amount and pattern

recreation when both random intercept and random slope exist and our model is accordingly

specified.

Figure 4.2: Top: estimated patterns using additive models given differing correlation struc-
tures; Bottom : estimated patterns using additive mixed models given differing correlation
structures.

4.3.2 Quantification of uncertainty of estimated spatial effects

To assess the performance of our proposed methods for quantifying the uncertainty of es-

timated spatial effects discussed in 4.2.4, simulated data were created using (4.14), where
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b0i
i.i.d.∼ N(0, 1.5), b1i

i.i.d.∼ N(0, τ 2
1 ) and εij

i.i.d.∼ N(0, 1). Two scenarios were designed with

τ 2
1 = 0/ and 0.09, respectively. Hence there was one scenario with random intercepts only

and one with both random intercepts and random slopes. 500 repetitions were performed

for each scenario. For each repetition, 95% CIs are derived using our proposed methods

(Model 4.6 and the corresponding methods in Section 4.2.4) for every location on a uni-

formly designed 10 × 10 grid on the map. Coverages of corresponding CI of spatial effects

are plotted in Figure 4.3. From the plots, empirical values of coverages could be less than

0.95 at the boundaries of the map as well as areas where the linearity assumption does not

hold well. Locations on boundaries are generally estimated with less precision due to less

available neighborhood information. Also, because not every single piece of the true pattern

could be precisely estimated with universal smoothing as defined by one single span size,

some areas were estimated with bias resulting in lower coverage probability.

Figure 4.3: Empirical coverages of 95% CI of spatial effects by locations based on correctly
specified Model 4.6. Left: scenario with random intercepts (mean = 0.90); Right: scenario
with random intercepts and slopes (mean = 0.91).
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4.3.3 Parameter estimation

Here we investigate the performance of our proposed additive mixed model in terms of

estimation of the parameters in both the fixed effects and the variance of random effects via

another set of simulation studies where responses were simulated using model

yij = s0(uij, vij) + βttij + βxxij + b0i + b1itij + εij, (4.16)

with b0i
i.i.d.∼ N(0, τ 2

0 ), b1i
i.i.d.∼ N(0, τ 2

1 ) and εij
i.i.d.∼ N(0, σ2).

On the simulated dataset, we sought to access the performance of our proposed AMM given

by

yij = β0 + βttij + βxxij + lo(uij, vij) + b0i + b1itij + εij. (4.17)

and a naively applied additive model given by

yij = β0 + βttij + βxxij + lo(uij, vij)εij, (4.18)

which assumes independence among the dataset.

The estimated values of βx, βt, τ0 and τ1 were recorded. Results presented in Table 4.1

were based upon a total of 500 simulations. The empirical mean and standard deviation of

estimated model parameters, as well as the mean of estimated standard errors, were reported.

From the results, it could be seen that our proposed AMMs managed to estimate parameters

in both the mean and variance components in a consistent fashion.
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Table 4.1: Average and standard deviation of parameter estimates across 500 simulated
datasets.

model para. truth ¯est. relative bias empirical sd ¯est.sd
AM βx 0.10 0.10 4% 0.0568 0.0535

βt -0.20 -0.20 0% 0.0157 0.0218
AMM βx 0.10 0.10 3% 0.0369 0.0359

βt -0.20 -0.20 0% 0.0157 0.0152
τ0 1.23 1.21 -1.2% - -
τ1 0.20 0.20 -0.5% - -

4.4 Application to serum PFOA study

In this section, we apply our proposed additive mixed model to estimate the spatial pattern

of residents’ serum PFOA concentration with adjustment of relevant confounding covariates.

Here we focus on an approximately square map defined within longitude 81◦30′ W - 81◦50′ W

and latitude 39◦07′ N - 39◦27′ N . The are constitutes 23×23 square miles around the Lubeck,

WV area. Within this area, 1070 records on 193 individuals are available where 140 of them

have 6 measurements of serum PFOA concentration from May 2007 to August 2008. Among

the 193 residents, 99 are female and 94 are male. Mean age at baseline is 54.6 years with a

standard deviation 14.9 years. The baseline age of participants ranges from from 19 to 92

years.

According to the individual-specific trends of serum PFOA concentration values across time,

visually significant individual-specific level of serum PFOA concentration were observed while

the reducing trends of individuals did not show much variation hence a model that incor-

porate random intercepts would be reasonable. To estimate the spatial pattern of residents’

serum PFOA concentration while controlling for gender, age and a linear trend in time, we

fitted an AMM given by

log(PFOA)ij = β0 + β1femalei + β2agei + β3tij + lo(uij, vij) + b0i + εij, (4.19)
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where b0i
i.i.d.∼ N(0, τ 2

0 ) and εij
i.i.d.∼ σ2.

The fitted spatial pattern from the model given in (4.19), along with point-wise 95% confi-

dence intervals, is shown in Figure 4.4. The estimated pattern is trimmed according to the

locations of observations. From these results, it can be seen that potentially high PFOA risk

areas exist in western and northern parts of the area. Further point-wise significance tests

are performed at each location within a trimmed uniformly designed 20 × 20 grid on the

map of interest. Specifically, 95% confidence intervals for the spatial effect at each location

is compared with the mean estimated spatial effect over the 219 locations. A location is

labeled as significant if the 95% CI at the location fails to cover the mean estimated effect.

The results are plotted in Figure 4.5, from which significantly higher risks are observed at

42 locations (19.2%) while significantly lower risks are observed at 67 locations (30.6%),

indicating significant geospatial disparity in residents’ serum PFOA concentration over the

map.

Figure 4.4: Left: pointwise lower bounds of 95% CIs ; Middle: estimated patterns using
Model 4.19; Right: upper bounds of 95% CIs.
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Figure 4.5: Significance of the grid locations on the estimated spatial effects map.

4.5 Discussion

In this work we have proposed a novel class of additive mixed models that incorporate ker-

nel smoothers into the classic LME model. To achieve this, we first extended the LOESS

smoother to adjust for a given variance-covariance structure and then proposed a new back-

fitting algorithm to fit the proposed additive mixed models using the extended LOESS

(LOESS-VCA). Using Monte Carlo studies, we showed that our proposed additive mixed

models managed to choose the proper amount of smoothing via AIC and resulted in accu-

rate estimates of underlying spatial risk patterns. The performance of the model was shown

to be superior to that of naive additive models that assume independence. Empirical results

also showed that our model consistently estimates parameter values in both the system-

atic linear predictor as well as variance components, provided that the model is correctly
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specified. Our methods were further used in a recent study of residents’ serum PFOA con-

centration in Lubeck, WV and spatial disparities in serum PFOA concentration levels were

identified.

In this work, we focused on additive models with kernel smoothers, utilizing LOESS in

particular. The motivation for this is to meet the demand of various spatial epidemiology

studies. We mentioned but did not elaborate on the use of spline smoothers in the context of

mixed models, partially because those models are relatively well investigated in the existing

literature. We did not consider Bayesian spatial estimation methods based on Gaussian

processes but do recognize their popularity, as well.

We consider this work to be a first step to a complete set of generalized additive mixed

models that incorporate kernel smoothing. In Chapter 5 of the dissertation we present

work on these relevant extensions. Specifically, we extend the approach presented here

to the setting of additive mixed models for exponential family outcomes, such as binary

and count responses, by incorporating kernel smoothing into a generalized linear mixed

model (GLMM) framework and propose a novel model fitting procedure that combined the

backfitting algorithm presented here with a penalized quasi-likelihood (PQL) (Breslow and

Clayton, 1993) approximation.
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Chapter 5

Generalized additive mixed models

with kernel smoothers

5.1 Introduction

In Chapter 4, a class of AMMs with kernel smoothers were proposed for continuous responses.

Analogous to the extension of linear models to generalized linear models, when risk of a

certain disease is to be mapped in a longitudinal study with a non-Gaussian outcome, such

as a binary outcome or a counting outcome, the class of AMMs does not apply directly. As is

mentioned in review of the existing literature in Chapter 4, using spline smoothers, Lin and

Zhang (1999) accounted for exponential family outcomes in their class of GAMM. However,

to the best of our knowledge, no existing literature covers GAMMs with kernel smoothers.

To fill this gap, this chapter seeks to incorporate kernel smoothers and random effects into a

generalized linear model and propose the corresponding model fitting and inference methods.

The remainder of the chapter is organized as follows: In Section 5.2, we introduce our pro-

posed GAMMs and the corresponding model fitting procedure. In Section 5.3, we present
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simulation studies designed to assess the performance of our new model in geospatial risk

pattern recreation and parameter estimation. In Section 5.4, we applied our proposed meth-

ods on PFOA data to estimate the geospatial pattern in serum PFOA concentration in the

area of Lubeck, WV. Lastly, Section 5.5 provides further discussion about the proposed work

and considers avenues of future research.

5.2 Methods

5.2.1 Notations

Let i = 1, 2, . . . , N be the individual index where each i corresponds to one individual. For

each individual i, measurements are taken at times ti1, ti2, . . . , tiJi . The exponential family

outcome of individual i is denoted with a response vector yi = (yi1, yi2, . . . , yiJi). xij stands

for a length-p vector of adjustment variables for individual i at time tij. In addition, each

individual’s geographical information (i.e. longitude and latitude) is tracked, labeled by

(uij, vij).

5.2.2 Generalized additive mixed models with kernel smoothers

Starting with generalized linear models (GLMs, McCullagh (2018)), in this section we provide

a brief introduction to the formulation of generalized additive models (GAMs, Hastie and

Tibshirani (1990)) and generalized linear mixed models (GLMMs, Breslow and Clayton

(1993); Wolfinger and O’connell (1993)). We will then propose our novel class of generalized

additive mixed models (GAMMs) by combining GAMs and GLMMs.

GLMs represent a ubiquitous class of regression models, used widely throughout many sci-

entific fields. The broad utility of GLMs stems from a unified estimation and theoretical
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framework that can be applied to response variables whose probability distribution function

belongs to the exponential family. This includes the Bernoulli and binomial distributions for

binary responses and the Poisson distribution for count responses. More specifically, GLMs

assume that the outcome yi follows a distribution of exponential family with E(yi) = µi and

var(yi) = v(µi), where function v() depends on the specific distribution of yi. Commonly

seen distributions of response yi include Gaussian, Bernoulli and Poisson among others. The

mean µi is linked to the linear predictor xTi β by the link function g(). Hence the mean model

for a GLM is commonly written as

g(µi) = xTi β. (5.1)

GLMs assume independence among data hence are appropriate in cross-sectional studies

where linearity suffices to model the relationship between g(µi) and the explanatory variables

x.

If the independence assumption is relaxed in GLMs by inducing random effects bi to model

cluster-specific effects, the linear predictor is then written as

g(µij) = xTijβ + zijbi, (5.2)

where bi
i.i.d.∼ MVN(0, D(θ)) and D(θ) is the variance-covariance matrix as a function of

parameter vector θ. Due to the inclusion of the random effects zijbi, this resulting model

(Model (5.2)) is termed a generalized linear mixed model (GLMM).

Other than GLMMs, another class of generalization of the classic GLM framework is achieved

by relaxing the linearity assumption io the mean model. Specifically, smooth functions sk()’s

are used to replace all or part of the linear terms. In this case the mean model can be written
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as

g(µi) =

p∑
k=1

sk(xi), (5.3)

which is termed a generalized additive model (GAM) since arbitrary functions, sk(), are

combined in an additive fashion.

As noted in Section 5.1, since we aim to build a class of models that accommodate exponential

family responses, random effects and smoothers simultaneously, combining the GLMM and

GAM frameworks would be a natural approach. Specifically, we are interested in a class of

models with mean function

g(µij) =

p∑
k=1

sk(xij) + zTijbi. (5.4)

Given our motivation of developing our methods for disease mapping in geospatial epidemi-

ology studies and our collaboration group prefer kernel smoothers (LOESS smoother in

particular) for spatial risk pattern estimation, the mean model of direct interest could be

written as

g(µij) = xTijβ + lo(uij, vij) + zTijbi, (5.5)

where xTijβ models potential confounding effects, lo(uij, vij) models a flexible underlying

spatial effect on the target disease risk and zTijbi (bi
i.i.d.∼ MVN(0, D(θ))) stands for individual-

specific random effects, such as random intercepts or random slopes.
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5.2.3 Model fitting Procedure

As we stated in Section 5.1, although Lin and Zhang (1999) proposed a double penalized

quasi-likelihood (DPQL) fitting procedure and approximate inference which considered both

random effects and smoothing terms as a penalization when maximizing the likelihood of the

full model for GAMMs with spline smoothers only, it was also recognized in their work that

kernel smoothing was not accommodated due to the fact that kernel smoothers are generally

not trivially parametrizable. Our goal is to fill this gap in current methodology by proposing

a novel fitting and inferential procedure that incorporates LOESS kernel smoothing into the

GLMM framework.

We propose a model fitting procedure based on the penalized quasi-likelihood (PQL) method

for GLMMs. Briefly, to fit a GLMM, Breslow and Clayton (1993) proposed the PQL method

to produce reasonable efficient inference in GLMM setting and Wolfinger and O’connell

(1993) further elaborated the computation in a more detailed fashion. In practice, according

to Wolfinger and O’connell (1993) PQL estimation is achieved using an iterative strategy. In

particular, when a GLMM, such as that specified in (5.2), is to be fitted, working response

ywij is defined as

ywij = g(µ̂ij) + (yij − µ̂ij)g′(µ̂ij), (5.6)

with reasonably initialized µ̂ij. Following Laird and Louis (1982) and Lindstrom and Bates

(1990), the working response vector ywµ̂ can then be approximated by a Gaussian distribution

N [Xβ + Zb, g′(µ̂)Rµ̂g
′(µ̂)], (5.7)

where Rµ̂ is the variance-covariance matrix defined by the assumed outcome distribution
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given the estimated mean vector µ̂ and conditional upon the random effects. It follows that

a weighted linear mixed effects (LME) model

ywµ̂,ij = xTijβ + zijbi + εij (5.8)

with working diagonal weight matrix

Ŵµ̂ = R−1
µ̂ [g′(µ̂)]−2 (5.9)

could be used to model the working response ywµ̂ . The PQL estimating procedure iteratively

fits weighted linear mixed model with updated working response ywµ̂ and working weight ma-

trix Ŵµ̂ based on the updated µ̂ at each iteration until the difference in parameter estimations

are sufficiently small.

Based on the PQL procedure, Lin and Zhang (1999) developed double penalized quasi-

likelihood (DPQL) by incorporating spline smoothers into the GLMM framework with an ad-

ditional penalization term to control smoothness. While spline smoothing could be achieved

using basis expansion functions of the design matrix, however, kernel smoothing could not

be achieved in such ways. Consequently, in order to fit a GAMM with kernel smoothers,

such as that specified in (5.5), the classic PQL framework must be modified to accommodate

weighted additive mixed models (AMMs) that incorporate kernel-based smoothers at each

iteration. One approach to fitting such a model is proposed in Chapter 4 of this dissertation

and further details are provided in Tang et al. (2020).

Briefly, Tang et al. (2020) proposed a class of linear AMMs with kernel smoothers for Gaus-

sian response and developed the details of a novel fitting procedure to allow for parameter

estimation and response prediction. Specifically, this work proposed a modified backfitting

algorithm which merged classical linear mixed model estimation with an iteratively esti-

mated variance-covariance adjusted kernel smoother. The algorithm iteratively updates the
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estimation of spatial effects and other parameters by fitting the partial residuals. Under the

derivation that the working response ywµ̂ is approximately Gaussian (see 5.7), their method

serves as a suitable choice when one wishes to fit the working response at each iteration

within a PQL fitting procedure.

To summarize, with the combination of the classic PQL procedure by Wolfinger and O’connell

(1993) and the algorithm for additive mixed models by Tang et al. (2020), a model fitting

procedure for our proposed GAMM (Model (5.5)) could be sketched as

1. Initialize µ̂ using a GAM g(E(yij)) = xTijβ + lo(uij, vij).

2. Update working response ywµ̂ using Eq. 5.6 and working weight matrix Ŵµ̂ using (5.9)

with the updated µ̂.

3. Fit the working response with AMM ywµ̂,ij = xTijβ + lo(uij, vij) + zTijbi + εij with weight

matrix Ŵµ̂, rendering inference on model parameters (including µ̂).

4. Repeat Step 2 and 3 until the difference in estimated parameters between iterations

are satisfyingly small.

Estimation and inference of the model parameters is based on the final iteration of the

working AMM. Since the backfitting algorithm is adopted, inference on β and θ can be

achieved from classic linear mixed model theory using ML or REML while inference on

spatial effects can be based on the kernel smoother. Specifically, using the local model, the

estimated spatial effect at a specific location (u∗, v∗) can be written as

l̂o(u∗, v∗) = H∗(θ̂)y∗, (5.10)

where H∗(θ̂) denotes the estimated variance-covariance adjusted local hat matrix and y∗

would be the corresponding local partial residuals. Using a similar strategy as in Tang et al.
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(2020), the variance of l̂o(u∗, v∗) can be estimated by

V̂ ar(l̂o(u∗, v∗)) = H∗(θ̂)V̂ ar(Y ∗)H∗T (θ̂). (5.11)

5.2.4 Out-of-sample likelihood for smoothing parameter selection

Under most smoothing frameworks, choosing the right amount of smoothing is vital to

avoid potental over- or under-smoothing. Popular smoothing techniques in disease map-

ping, including splines (Wood, 2003) and a kernel-based methods (Cleveland, 1979), use one

parameter to control the smoothness of the estimated surface, thereby making a search of

the parameter space tractable. Since we are interested in the use of kernel-based LOESS

smoothers, we focus on span size, the smoothness parameter. LOESS uses local weighted

linear models to achieve a nonparametric estimation of the underlying risk surface. Span

size (or span for short) indicates the proportion of data used in the local models.

Similar to model selection in general, span is commonly chosen according to criteria such as

AIC and GCV. In Chapter 4 and Tang et al. (2020) we considered AIC for span selection

and achieved satisfying results. However, based on the results from simulation studies in

multiple synthesized scenarios, AIC does not have a stable performance in span selection

for our proposed GAMMs. Conditional AIC, also known as cAIC, by Vaida and Blanchard

(2005) were tested as well but no satisfying span selection was observed.

The reason for the failure of AIC and cAIC in span selection is, at least partially, due to

the fact that the degree of freedom used by the LOESS smoother is merely approximated

by the trace or similar metrics of the hat matrix. When the outcome follows an arbitrary

exponential family distribution, we end up with decreased information from each sampling

unit, compared to Gaussian distributed outcomes. The result is inaccurate estimation of the

smoother degrees of freedom.
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In this section, we propose an out-of-sample likelihood Monte Carlo (OLMC) method for

span size selection. We first randomly divide the sample into 2 subsets: a training set y(t)

and a validation set y(v). Since observations from one individual or cluster would commonly

be correlated, the randomization should be performed based on individuals rather than ob-

servations. In other words, no individuals should have measurements in both the training

and validation datasets. Given candidate span values, we train our GAMM, achieve the esti-

mated fixed effects β̂(t), estimated LOESS smoother l̂o
(t)

and variance-covariance component

D̂(t). Based on the trained model, we aim to calculate the likelihood of the validation set

using

Lv|t = p1(y(v)|β̂(t), l̂o
(t)
, D̂(t))

=

∫
p1(y(v)|β̂(t), l̂o

(t)
, b(v))p2(b(v)|D̂(t))db(v),

(5.12)

where p1() stands for the likelihood of the response (from an exponential family), p2() is the

likelihood of the random effects (from a Gaussian distribution N(0, D̂(t))), and b(v) stands

for the corresponding individual-level random effects.

It worth noting that the integral in Equation (5.12) is not tractable, so we recommend a

Monte Carlo method with a simulated sample of b(v). In particular, we simulate a relatively

large sample (we used 500 in this work) from a N(0, D̂(t)) distribution, use each drawn sample

b(v),(k), k = 1, . . . , 500, to calculate the likelihood using

p
(k)
1 = p1(y(v)|β̂(t), l̂o

(t)
, b(v),(k)) (5.13)

and then calculate the Monte Carlo approximation of Lv|t using

L∗v|t = mean
k

p
(k)
1 . (5.14)
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This out-of-sample likelihood Monte Carlo approach provides approximate and convenient

evaluation of the model’s out-of-sample performance. As such, when comparing the proposed

GAMMs with differing span sizes, it is advisable to choose the model with the greatest L∗v|t

value since greater out-of-sample likelihood generally indicates less amount of over-fitting or

under-fitting of the spatial effects when span is the only varying factor.

5.3 Monte Carlo studies

To assess the performance of our proposed method, we conducted multiple simulation studies

based on a 2× 2 square map with a true spatial pattern given by

s0(u, v) = 1.7 + 0.25[1.2 sin(3u+ 0.3) + 2uv + 6 log(0.6)v2] (5.15)

and depicted in the Figure 5.1.

5.3.1 Spatial pattern recreation

In this section, we aimed to compare the performance of our proposed generalized additive

mixed models in terms of spatial pattern recreation. Binary responses were simulated via

the model

P(yij = m) = pmij (1− pij)(1−m), m = 0, 1 (5.16)

where

logit(pij) = βxxij + βttij + s0(uij, vij) + b0i, (5.17)
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Figure 5.1: Simulated spatial risk pattern.

and b0i
i.i.d.∼ N(0, τ 2

0 ). We repeated the simulation with τ0 = 0, 0.3, 0.6, 0.9, respectively.

We sought to compare our proposed GAMM (given in (5.18)) with a naive GAM that assumes

independent data (given in (5.19)):

logit(pij) = β0 + βxxij + βttij + lo(uij, vij) + b0i (5.18)

logit(pij) = β0 + βxxij + βttij + lo(uij, vij) (5.19)

We compared the estimated spatial risk patterns between the 2 models under varying random

intercept conditions. Span sizes that minimize AIC (Akaike, 1998) were chosen for classic
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GAM while our proposed OLMC method was used to choose the span size for the GAMM.

Note that if τ 2
0 > 0, there will be individual-specific intercepts hence the model given in

(5.19) is a misspecified model due to its failure to account for the random effect. It follows

that the likelihood of Model (5.19) used in the AIC calculation would be incorrect hence the

chosen span size tends not to be the most appropriate. A search across different span sizes,

however, did not return qualitatively different results from what is presented here.

The estimated spatial risk patterns are shown in Figure 5.2. It is easily seen that that with

correctly specified random effects, our proposed additive mixed models estimate the spatial

patterns in a more precise fashion. In contrast, since the naive additive model fails to account

for within-subject correlation, results for the model given in (5.19) tend to under-smooth the

patterns using a relatively small span sizes. This is due to the fact that the naive additive

model treats correlated data as independent, resulting in an improper contribution of the

correlated data to the total likelihood.

Figure 5.2: Top: estimated patterns using GAMs given differing true correlation structures;
Bottom : estimated patterns using GAMMs given differing true correlation structures.
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5.3.2 Quantification of uncertainty of estimated spatial effects

To assess the performance of our proposed method for quantifying the uncertainty of es-

timated spatial effects discussed in 5.2.3, simulated data were created using (5.17), where

b0i
i.i.d.∼ N(0, τ 2). 3 scenarios were designed with τ = 0.2, 0.4, 0.6, respectively. 500 repe-

titions were performed for each scenario. For each repetition, 95% CIs were derived using

our proposed method for every location on a uniformly designed 20 × 20 grid on the map.

Both sample mean and sample standard deviation of the coverage were reported in Table

5.1. From the results, The uncertainty in spatial effects was well estimated and the 95%

confidence intervals approximately managed to render the target coverage.

Table 5.1: Sample mean and sample standard deviation of the coverage proportion of 95%
confidence intervals of spatial effects. Coverage proportions are computed based on 500
repetitions while mean and standard deviation are calculated over 400 locations on map.

τ0 mean coverage s.d.
0.2 0.945 0.057
0.4 0.908 0.062
0.6 0.976 0.032

5.3.3 Parameter estimation

In this section, we investigated the performance of our proposed GAMMs in terms of point

estimation of the parameters in both the fixed effects and the variance of random effects via

a new set of simulation studies where responses were simulated using model

logit(pij) = βxxij + βttij + s0(uij, vij) + b0i + b1itij, (5.20)

with b0i
i.i.d.∼ N(0, τ 2

0 ) and b1i
i.i.d.∼ N(0, τ 2

1 ).

On the simulated dataset, we sought to access the performance of our proposed GAMM
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given by

yij = β0 + βxxij + βttij + lo(uij, vij) + b0i + b1itij. (5.21)

The estimates of βx, βt, τ0 and τ1 were recorded for each simulated example. The results

presented in Table 5.2 were based upon a total of 500 simulations. The sample mean and

standard deviation of estimated model parameters, along with the mean estimated standard

deviations, were reported. From the results, it can be seen that by correctly accounting for

the correlation structure, our proposed GAMMs managed to both estimate fixed effects with

less bias relative to the naive GAM model as well to estimate the model variance components

with reasonably low bias.

Table 5.2: Parameter estimation based on 500 repetitions

model parameter truth mean of estimates relative bias empirical s.d. mean of ˆs.d.
GAM βx 0.20 0.17 -16.5% 0.033 0.031

βt -0.10 -0.09 12% 0.0034 0.0032
GAMM βx 0.20 0.19 -5.5% 0.035 0.032

βt -0.10 -0.10 4% 0.004 0.0041
τ0 0.50 0.53 6.8% - -
τ1 0.07 0.07 -5.7% - -

5.4 Application to serum PFOA study

In this section, we apply our proposed GAMM to estimate the spatial risk pattern of high

serum PFOA concentration with adjustment of relevant confounding covariates. Here we

focus on a approximate square map defined within longitude 81◦30′ W - 81◦50′ W and

latitude 39◦07′ N - 39◦27′ N , which is approximately a 23 × 23 square in miles around

Lubeck, WV area. Within this area, 1070 records on 193 individuals are available where

140 of them have 6 measurements of serum PFOA concentration from May 2007 to August

2008. Among the 193 residents, 99 are female and 94 are male. Mean age at baseline is 54.6
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years with a standard deviation of 14.9 years. Age at baseline ranged from a minimum of

19 years to a maximum 92 years. Based upon prior scientific knowledge, we use 100 ng/mL

as a threshold for “high concentration” where serum PFOA concentration values that are

greater than 100 ng/mL are considered high.

According to the individual-specific trends of serum PFOA concentration values across time,

we found visually significant individual-specific level of serum PFOA concentration while the

reducing trends of individuals did not show much variation hence a model that incorporate

random intercepts would be reasonable. To estimate the spatial pattern of the odds of

residents’ high serum PFOA concentration with control of gender, age and a linear trend in

time, we fitted an GAMM given by

g(pij) = β0 + β1femalei + β2agei + β3tij + lo(uij, vij) + b0i, (5.22)

where g(·) is the logit link function, pij is the probability that individual i has a high serum

PFOA concentration at time j, and b0i
i.i.d.∼ N(0, τ 2

0 ).

The fitted spatial pattern of log-odds, along with point-wise 95% confidence intervals, is

shown in Figure 5.3. The patterns are trimmed according to the locations of observations

so that the shown estimated patterns are on the areas where residents were present. From

the results, it could be seen that potentially high PFOA exposure areas exist in western,

southern and north-eastern parts of the area. Further point-wise significance tests were

performed at each location within a uniformly designed 20× 20 grid on the map of interest.

The grid was similarly trimmed. Specifically, 95% confidence interval of spatial effect at

each location is compared with the mean estimated spatial effect over the 219 locations. A

location was labeled as significant if the 95% CI at the location did not cover the mean

estimated effect. The results were plotted in Figure 5.4, from which significantly higher risks
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were observed at 57 locations (26.0%) while significantly lower risks were observed at 84

locations (38.4%), indicating significant geospatial disparity in residents’ risk of high serum

PFOA concentration over the map.

Figure 5.3: Left: point-wise lower bounds of 95% CIs ; Middle: estimated pattern of log
odds ratio of high serum PFOA using Model (5.22); Right: point-wise upper bounds of 95%
CIs.

Figure 5.4: Significance of the grid locations on the estimated spatial effects map.
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5.5 Discussion

In this chapter we proposed a novel class of generalized additive mixed models that incorpo-

rate kernel-based smoothers. To achieve this, we combined the PQL estimating procedure

with a backfitting algorithm. To choose the proper amount of smoothing, we proposed

a novel out-of-sample likelihood Monte Carlo method in order to avoid over-smoothing or

under-smoothing. We showed that by adjusting for the correlation structure, our model

better recreated the spatial risk pattern than a naively applied GAM. Empirical results also

showed that our model managed to render estimation of parameters in both mean and vari-

ance components with less bias when the model was correctly specified. Our methods were

further used in a recent study on residents’ serum PFOA concentration in Lubeck, WV and

spatial disparity in risk of high serum PFOA concentration was identified.

In this work, we focused on kernel smoothers, utilizing LOESS in particular in order to meet

the demand of various spatial epidemiology studies. We mentioned but did not elaborate on

the use of spline smoothers in the context, partially due to the fact that those models are

relatively well investigated in existing literature such as Wood (2017) and Lin and Zhang

(1999). We did not cover Bayesian spatial estimation methods based on stochastic processes

but we do recognize their popularity, as well.

This work represents a novel extension of the work presented in Tang et al. (2020) and also

found in Chapter 4 of this dissertation. This work could also be viewed as an alternative to

Lin and Zhang (1999) when kernel smoothers are preferred over spline smoothers.

Throughout, we have considered a mixed effects modeling framework. One natural future

direction is to develop a fitting procedure using marginal quasi-likelihood (Breslow and

Clayton, 1993) for GAMM with kernel smoothers. While such an approach would be less

useful for point-wise prediction of exposure, if inference for marginal model parameters is of

scientific interest it may be preferred.
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Chapter 6

Discussion

Using disease mapping problems in spatial epidemiology studies as motivation, this work

developed in this dissertation provides multiple novel extensions of the GAM framework in

order to accommodate studies that consider individual-level data measured over space and

time. In Chapter 3, we proposed time-stratified bivariate kernel smoothers and incorporated

them into a classic GAM framework. To test the significance of time-based stratification,

we adopted a permutation strategy, resulting in a class of PMSD tests. Chapters 4 and 5

concentrated on disease mapping problems in longitudinal analysis where individual-level

identifiers are available to track subjects over time. Chapter 4 filled a critical gap in the

literature by proposing a class of AMMs that model fixed effects, random effects and spatial

effects simultaneously for Gaussian distributed responses while incorporating kernel-based

smoothers. Chapter 5 further relaxed the restriction on the distribution of response and

constructed GAMMs that incorporate kernel-based smoothers. Chapters 4 and 5 combined

could be viewed as a kernel-based alternative to the work of Lin and Zhang (1999), offering

an option for researchers who aim to use LOESS or other kernel smoothers in mixed models.

We would also like to mention that, other than a frequentist GAM framework, Bayesian dis-
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ease mapping techniques, which commonly utilize Gaussian process or other types of stochas-

tic processes for spatial effects estimation, remain popular in spatial analyses. Bayesian

methods can often be more flexible if a hierarchical structure is well adopted. Bayesian

methods also enjoy direct inference on random effects via a unified framework for inference

on the whole model without approximate derivation or backfitting procedures. Nevertheless,

Bayesian methods require good experience in model setup, prior distribution selection and

MCMC tuning, all of which are hardly trivial to non-statisticians or even statisticians who

have little expertise in geospatial analysis. In addition, when handling large datasets, the

methods presented in this dissertation are generally more scalable.

Future directions from the work proposed here are abundant and clear. The GAMMs de-

veloped in Chapter 5 utilized a PQL procedure. Hence to complete the whole framework,

similar work could be done utilizing a MQL procedure (Breslow and Clayton, 1993; Gold-

stein, 1991). Also, we noticed that in mixed models with exponential family responses,

and Bernoulli response in particular, the uncertainty in marginal trend parameter was often

under-estimated. We believe a marginal modeling approach based upon generalized esti-

mation equations are worth investigating is inference on marginal model parameters is of

direct scientific interest. Finally, this work did not consider the modeling of censored data.

Therefore incorporation of the proposed methods into a survival analysis framework, and a

Cox proportional hazard modeling framework in particular, should be further investigated.
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Appendix A

PMSD tests under correlation

In Chapter 3, we described a class of PMSD tests that identify temporal heterogeneity in

spatial effects. Since the PMSD test arises from the permutation distribution, the test relies

on the strong exchangeability assumption of time labels. Under the strong null hypothesis,

exchangeability across time is assumed in both mean and variance components and hence,

it is not guaranteed that the class of test would perform as well on data generated with

a non-exchangeable correlation structure. For instance, when only random intercepts exist

in a longitudinal dataset, the correlation structure is exchangeable across time, which is

not the case when random slopes exist. In addition, even if independence holds but the

magnitude of the variance does not stay invariant over time, the exchangeability assumption

is questionable.

A.1 Calibrated PMSD tests

In Figure A.1, 2 simulated examples violating the exchangeability assumption of the variance

components are shown. Independent errors with time-varying variance are shown in the left
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plot while random intercepts and random slopes are displayed in the right plot, resulting in

time-correlated errors with inconstant variance.

Figure A.1: Simulated random errors over time. Left: Inconstant variance; Right: Random
intercept and slope.

Simulation studies using these simulated errors instead of i.i.d. errors, as considered in the

Monte Carlo studies of Chapter 3, showed inflated type I errors if the PMSD test is naively

applied (see columns labeled with “naive” in Table A.1). To calibrate the tests under these

scenarios, we propose a standardization procedure to prepare working datasets for the PMSD

test. The modified PMSD test is sketched as follows:

1. Fit yij = Xijβ + lo(uij, vij) + εij.

2. Residuals eij.

3. ẽij = std
i

(eij).

4. Perform PMSD test using l̂oij + ẽij as response.

for non-constant variance over time. For a random effects variance structure, the following

is proposed:
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1. Fit yij = Xijβ + lo(uij, vij) + εij.

2. Fit eij = Zijbi + εij

3. Residuals e
(2)
ij = eij − Zij b̂i

4. ẽ
(2)
ij = std

i
(e

(2)
ij )

5. Perform PMSD test using l̂oij + ẽ
(2)
ij as response

Notations are defined in a similar way to Chapters 3 and 4. The key idea of the procedures

outlined above is to standardize the residuals at each time point so that approximate ho-

moscedasticity is created across time. These procedures managed to calibrate the PMSD

test in theory. This claim was further supported by the results of simulation studies (see

columns with “calibrated” in Table A.1).

Table A.1: Empirical type I errors of naive and calibrated PMSD tests under differing
covariance constructions. Correlated data were simulated using random effects (R.E.) while
independent (ind.) data were simulated to match the magnitude of variance at each time
point.

(quasi)τ 2
0 (quasi)τ 2

0 ind. naive ind. calibrated R.E. naive R.E. calibrated
1 0.05 0.09 0.06 0.02 0.02
3 0.09 0.08 0.06 0.11 0.05
3 0.15 0.10 0.06 0.13 0.08
5 0.15 0.14 0.06 0.07 0.03
5 0.25 0.09 0.05 0.17 0.08
7 0.21 0.06 0.04 0.09 0.05
7 0.35 0.11 0.08 0.24 0.07
9 0.27 0.09 0.06 0.14 0.03
9 0.45 0.06 0.04 0.13 0.06

Further simulations were performed to investigate power of the calibrated PMSD tests.

Similar to Chapter 3, shifted patterns were used to generate heterogeneity across 2 time

points. The resulting powers were are in Table A.2.
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Table A.2: Empirical powers of parametric LRT and calibrated PMSD given differing shift
amount of spatial effects. τ 2

0 = 1, V 2
1 = 0.03, σ2 = 1. Both tests delivered valid type I

errors (0.06 and 0.07). Powers becomes greater along with the shifting amount due to more
heterogeneity. Calibrated PMSD test is more powerful, though not by much, in this scenario.

shift parametric LRT calibrated PMSD
0.00 0.07 0.06
0.04 0.08 0.13
0.08 0.22 0.30
0.12 0.43 0.53
0.16 0.71 0.74
0.20 0.90 0.94

A.1.1 Performance of calibrated PMSD given various settings of

random effects

We considered multiple simulations to investigate the performance of the proposed calibrated

PMSD test. Using various values of random intercepts and slopes, we present the study

design and corresponding empirical p-values under the null hypothesis in Figure A.2.

Figure A.2: Left: simulated random effects of each simulation scenario; Right: boxplots of
p-values given each scenario. Scenario 1, 2, 4, and 5 could be potentially problematic.

As can be seen from Figure A.1, some of the scenarios could be problematic. We further

show the empirical type I errors of the calibrated PMSD test and approximate F-tests given

by Hastie and Tibshirani (1990), comparing models with a marginal smoother and a time-
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stratified smoother.

Figure A.3: Left: type I errors of calibrated PMSD tests under differing random effects
scenarios. Scenario 1, 2, 4, and 5 have high V b1

V b0
values; Right: type I errors of approximate

F tests under differing random effects scenarios. Inflated type I errors are observed.

From Figure A.3, a potential pattern emerges in that large values of V b1
V b0

(
τ21
τ20

) induced inflated

type I errors. This pattern is further confirmed by another set of simulations shown in Figure

A.4.

Further, according to a brief empirical assessment of studies where both random intercepts

and random slopes exist, we found no examples where the V b1 > 0.05V b0 (τ 2
1 > 0.05τ 2

0 ) hence

a new class of simulations were performed with control of τ 2
1 . The results were presented in

Figure A.5.

In comparison, results of the naive PMSD test and modified PMSD test with detrending

but not standardization are shown in Figure A.6, showing that our calibrated PMSD tests

appears to be the most promising when compared to these two methods.

Extended simulation studies with 4 time points rather than 2 were performed and results

are displayed in Figure A.7 and Table A.3.
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Figure A.4: More simulations to confirm the assumed pattern. Left: simulated random
effects of each simulation scenario; Right: boxplots of p-values given each scenario. Hence
it could be found that for a given V b0, greater V b1 values render greater empirical type I
errors.

A.1.2 Power of calibrated PMSD test under multiple types of sce-

narios

In this section, we present our exploration on power of the calibrated PMSD test. Mul-

tiple simulation studies are presented. Datasets were created with spatial effects, random

intercepts and random slopes. Our proposed calibrated PMSD test, a parametric LRT test

and an approximate F-test based on a GAMM with thin-plate splines were used to test for

temporal heterogeneity of spatial effects. One thing to note is that GAMM with stratified

thin-plate splines from MGCV R package failed to fit the simulated data due to convergence

issues in multiple cases.

First, we use the same spatial effects on a square map as Figure 3.1 in Chapter 3. Similar

shifting amounts were used and the corresponding results were shown in Table A.4.

Further simulations are based on the map of California (cf. Figure A.8).

We induce a mitigation parameter, referred to henceforth as a “multiplier”. The spatial
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Figure A.5: Additional simulations with controlled τ 2
1 where τ 2

1 < 0.05τ 2
0 . Left: simulated

random effects of each simulation scenario; Right: boxplots of p-values given each scenario.
Empirical p-values roughly follows a uniform distribution for each scenario and the type I
errors are reasonably controlled.

effects at Time 2 would be the products of effects at Time 1 and the parameter hence a mul-

tiplier that is less than 1 would imitate the mitigation of spatial effects. The corresponding

results could be found in Table A.5.

Another type of temporal heterogeneity was created by moving the spatial pattern rather

than mitigating. Specifically, the pattern of Time 2 was created by moving the spatial

pattern to the red point in the right plot of A.8 by a proportion of the distance between the

Gaussian centers and the destination (red point). Hence proportion 0 indicates no moving

at all while proportion 1 would result in a Time 2 pattern which is created by all 3 Gaussian

pdfs effects centered at the red point. Results were shown in Table A.6.
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Figure A.6: Boxplots of empirical p-values. Left: 1st paper method, rendering inflated type
I errors; Right: without standardization, rendering shrunk type I errors.

Figure A.7: Boxplots of empirical p-values from simulations with 4 time points.
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Table A.3: Empirical type I errors of calibrated PMSD tests under differing simulation
scenarios based on 100 repetitions. Type I errors were generally well controlled.

sim. type I Er.
101 0.05
102 0.08
103 0.05
104 0.06
105 0.05
106 0.09
107 0.05
108 0.03
109 0.07
110 0.07
111 0.08
112 0.05
113 0.07
114 0.04
115 0.07

Table A.4: Power of the 3 tests using τ 2
0 = 1, τ 2

1 = 0.05 and σ2 = 1 based on 600 repetitions.
MGCV renders NA 25 times. In this scenario, approximate F-test based on thin-plate splines
appears to be most powerful.

shift calib. PMSD para. LRT TP-F
0.00 0.03 0.02 0.06
0.04 0.13 0.09 0.14
0.08 0.19 0.18 0.32
0.12 0.39 0.37 0.57
0.16 0.73 0.71 0.92
0.20 0.86 0.90 0.96

Table A.5: Power of the 3 tests using τ 2
0 = 2, τ 2

1 = 0.08 and σ2 = 1. In this scenario,
approximate F-test based on thin-plate splines appears to be most powerful.

calib. PMSD LRT TP-F multiplier
0.08 0.10 0.05 1.00
0.20 0.05 0.13 0.97
0.13 0.08 0.58 0.94
0.15 0.08 0.82 0.91
0.30 0.17 0.90 0.88
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Figure A.8: Simulation settings using map of California. Left: spatial distribution of obser-
vations; Right: simulated spatial risk pattern (using pdf of bivariate Gaussian).

Table A.6: Powers of the 3 tests using τ 2
0 = 2, τ 2

1 = 0.08 and σ2 = 1. In this scenario,
calibrated PMSD test appears to be most powerful.

Moving proportion calib. PMSD LRT TP-F
0.000 0.02 0.03 0.03
0.005 0.11 0.06 0.13
0.010 0.37 0.16 0.32
0.015 0.82 0.27 0.38
0.020 0.90 0.53 0.73
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Appendix B

Smoothing parameter selection

criteria in Chapter 5

In Chapter 5, we introduced a novel class of model selection criteria named out-of-sample

likelihood Monte Carlo (OLMC) to choose the smoothing parameter (span size) for our pro-

posed model. It was noted in Chapter 5 that neither AIC (Akaike, 1998) or conditional AIC

(cAIC) (Vaida and Blanchard, 2005) rendered satisfying performance in span size selection.

In this section we present relevant simulation results to support this claim. We consider a

model of the form:

logit(pij) = 0.2xij − 0.1tij + cs0(uij, vij) + b0i + b0itijεij + dij, (B.1)

where notations are similarly defined as in Chapter 5, c is a parameter to control the mag-

nitude of spatial risk pattern, dij
i.i.d.∼ Unif(−h, h) and εij

i.i.d.∼ N(0, σ2). The simulation

scenarios are shown in Table B.1. For each simulation run under each scenario, 5 span sizes

(ranging from 0.1 to 0.5) were tried and all three model selection criteria (OLMC, AIC,

cAIC) were compared while the span size with the least squared spatial effects prediction
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errors was considered “optimal”. The optimal spans were generally 0.2 or 0.3 across all the

simulations (28 out of 34). AIC was calculated using

AIC = 2k − 2log(L̂|β̂, τ̂), (B.2)

where k is the model degree of freedom and L is the likelihood while cAIC was calculated

using

cAIC = 2k − 2log(L̂|β̂, b̂). (B.3)

For each simulation, the three methods were labeled as “correct” if the optimal span was

successfully chosen, “close” if the selected span differed from the optimal by 0.1 and ”in-

correct” otherwise. From the results given in B.2, our proposed OLMC rendered the best

performance in selecting the “right” amount of smoothing.

Table B.1: Simulation scenarios for span selection criteria comparison.

Index # of runs Nsubjects # of time points c τ 2
0 τ 2

1 σ2 h
1 6 600 12 2 0.3 0.0225 0.49 1.2
2 4 600 8 2 0.3 0.0225 0.49 1.2
3 6 700 20 2 0.4 0.01 0.64 0
4 6 700 20 2 0.4 0.01 0 0
5 6 700 20 1 0.25 0.0049 1 0
6 6 700 20 1 0.25 0.0049 0 0

Table B.2: Results of the 3 types of span selection criteria.

correct close incorrect
OLMC 14 12 8
AIC 9 16 9
cAIC 2 12 20
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