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Figure 4.4: Poincaré mapping of electrons in the transverse electric field with κu =

5×10−5, laser polarized across to the electric field with a0 = 8 and C⊥ = 1. 57
Figure 4.5: Electron motion for C⊥ = 1, a0 = 5 and κu = 10−4. To make them readable,

the canonical coordinates have been shrunk by some factors to illustrate their
shapes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
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Figure 4.14: Poincaré mappings of electrons in the laser polarized across to the transverse
electric for a0 = 8, κ = 10−4, C⊥ = 1, and B0 = 0 (left) and B0 = 0.05 (right). 81

Figure A.1: Schematic view of g [m(H)] = K̄2/a1 versus H for different P̄x, where a = 5,
k1 = 1, and P̄y = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
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ABSTRACT OF THE DISSERTATION

Stochastic electron acceleration in laser-plasma interactions

by

Yanzeng Zhang

Doctor of Philosophy in Engineering Sciences (Engineering Physics)

University of California San Diego, 2020

Professor Sergei I. Krasheninnikov, Chair

The ability of the interaction of intense laser radiation with plasma to generate highly

energetic electrons is one of the most interesting features in laser-plasma physics that has great

potentials for many applications (including ion acceleration, X-ray generation, and positron

production). Different mechanisms of electron acceleration including the direct laser acceleration

(DLA) have been proposed and studied analytically, numerically, and experimentally over many

years. Many of these works reveal that the presence of self-generated or externally applied quasi-

static electric and magnetic (QEM) fields or a counter-propagating laser wave could significantly

increase the electron energy gained from the laser well beyond the ponderomotive energy scaling.

However, due to the multidimensional spatiotemporal characteristics of the electromagnetic
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fields and strong nonlinearity of relativistic electron dynamics, the analytic investigations of

the mechanism of electron acceleration in the earlier studies of DLA are quite limited and

complicated.

This dissertation is devoted to examining the electron acceleration in the laser waves and

QEM fields by employing the Hamiltonian approach. By using proper canonical variables, we

find a new Hamiltonian, which is time-independent when an appropriately selected perturbation

is absent. Such characteristic of the new Hamiltonian can significantly simplify the analysis of

the electron dynamics. Three different configurations of laser waves and QEM fields will be

considered: the counter-propagating laser waves, single laser and QEM fields that can confine the

electron motions (e.g., QEM fields in the ion channels), and single laser and spatially periodic

QEM fields (e.g., QEM fields in the electric and magnetic undulators). The Hamiltonians,

canonical variables, effective time, and thus the physics underlying the electron acceleration

are different for these cases, where we pay particular attention to the stochastic acceleration of

electrons. By deriving the Chirikov-like mappings, we obtain the stochastic conditions and thus

the upper limits of the electron energy depending on the parameters of the laser waves, QEM

fields, and the electron initial conditions. The universal characteristics of our approach make it

easy to be applied to many other situations and thus paves the way for notable progress in the

theoretical analysis of the laser-plasma interaction.
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Chapter 1

Introduction

1.1 Electron acceleration in laser-plasma interaction

Recent progress in laser technology has led to a dramatic increase of laser power and

intensity [1], which naturally open up new physics regimes for fundamental research. At rela-

tivistic intensity, I = 1.37×1018(1µm/λ)2W/cm2, the laser pulses readily ionize matter into a

plasma that the plasma electrons is the primary species for the energy transfer from the laser

pulse, provided that it is more responsive to the laser field than other species. As a result, the

generation of high-energy electron beams in the course of laser-plasma interaction has attracted a

great deal of attention (e.g., see Refs. [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] and references therein) for many different applications

(e.g., ion acceleration, X-ray generation, positron production, etc.).

The acceleration of electrons via the laser-plasma interaction strongly depends on the

density of the target, where the laser beam is able to go through the target plasma only if

the density is sub-critical (e.g., see Refs. [31, 32, 33, 34]). Such low-density targets enable

a higher energy gain by the electrons compared with that from the over-density target. The

sub-critical plasma layer can also naturally occur in experiments with solid-density targets where

1



a significant pre-pulse is present (e.g., see Refs. [35, 36, 37, 38, 39]). On the other hand, the

electron acceleration mechanism in the laser interaction with the sub-critical plasma depends

significantly on the laser pulse duration. Given that the ponderomotive force of the propagating

laser beam pushes electrons forward and radially outwards, it will cause cavitation of the electron

density. Then if the duration of the laser pulse is much shorter than the characteristic electron

response time (plasma wave period), the laser pulse can generate a plasma structure that is moving

together with the pulse. Such the so-called wakefield can accelerate the electrons through the

longitudinal electric field (e.g., see [40, 41, 42]). However, if the duration of the laser pulse is

much longer than the characteristic electron response time, the laser pulse can create a quasi-static

channel in the electron density that slowly evolves on an ion time-scale (e.g., see [43]). This

would be the case for typical pulse duration used in experiments on fast proton generation. The

electron acceleration in the latter case is identified as direct laser acceleration (DLA), which is

usually assisted with different configurations of quasi-static electric and magnetic (QEM) fields

(e.g., see [5, 8, 15, 16, 18, 20, 21, 22]).

Different mechanisms of DLA of electrons with these QEM fields have been proposed,

including the betatron resonance [21], parametric amplification [22], stochastic heating [25, 26,

27, 44] and other resonant heating [11, 29], where the electron is confined and thus oscillates in

these QEM fields while moving along with the beam. The stochastic heating of electrons can also

result from the counter-propagating laser beams [45, 46, 47] or adding the stochastic fields in the

transverse direction [48]. Other collisionless heating of electrons by the laser radiation can also

take place via resonance heating [30, 49], vacuum heating (Brunel absorption) [50], anomalous

skin effect [51], sheath inverse-bremsstrahlung absorption [52], relativistic J×B heating [53].

Recent simulation results have also demonstrated that the DLAcan also be important in the context

of the laser wakefield acceleration [54, 55]. Therefore, understanding the details of the DLA

process is crucial in learning the core laser-plasma interactions processes, which requires us to

at least understand single electron dynamics in configurations that include the majority of the

2



realistic features of these interactions. However, the presence of the QEM fields and multiple

laser pulses leads to a rather complicated dynamical system, which is difficult to fully understand.

1.1.1 Overview of electron interaction with laser in vacuum

Before we jump into such complicated dynamical system, we give a brief overview of

the physics of a free electron interaction with laser in vacuum, which is characterized by the

normalized laser amplitude

a0 =
eE0

mωc
(1.1)

where E0 is the amplitude of the electric field of the laser wave, ω is the wave frequency, e

is the elementary charge, m is the electron mass and c is the speed of light in vacuum (when

the normalized amplitude is equal to unity, the intensity of a linearly polarized laser wave is

I = 1.37×1018(1µm/λ)2W/cm2, where the quiver electron motion becomes relativistic). The

conventional wisdom to describe such an interaction is a Hamiltonian equivalent to the kinetic

energy of the electron. For a linearly polarized plane wave (e.g., a plane wave polarized in

x-direction which propagates along z-direction), it shows that the electron dynamics has two

constants of motion (e.g., see Ref. [10]), i.e., cx = px/mc−a and R = γ− pz/mc, where a is the

normalized vector potential describing the laser field, pi is the i-component of the momentum

and γ2 = 1+ p2/(mc)2. As a result, for an initially rest electron, the maximum electron energy

gained from the interaction with the laser wave (the so-called ponderomotive scaling energy) is

γpond = 1+a2
0/2.

1.2 Stochastic motion

On aspect of the difficulty in understanding the electron dynamics in the configurations of

multiple lasers and QEM fields is the strong nonlinearity of the relativistic electron dynamics. One

direct result of such strong nonlinearity is that there exist regimes of the parameters, where, when

3



the stochastic condition is satisfied, the local instability can lead to mixing in the configuration

space and thus the electron can undergo stochastic motion [56, 57]. Unlike the acceleration

of electrons via regular resonance, the stochastic mechanism usually leads to a slower energy

growth through diffusion of electrons in energy space described by a Fokker-Planck-Kolmogorov

equation [56, 58].

The Lyapunov exponent, characterizing the rate of separation of infinitesimally close

trajectories, can be used to distinguish a stochastic motion from the regular one. However, more

conveniently, we use Chirikov mapping to study the mixing of phase space [58]. It is characterized

by a stochastic parameter K, where K>̃1 denotes the stochastic regime. It was shown that lnK

is inversely proportional to the time for the decoupling of correlations or the time for the loss

of memory of the original conditions so that for K� 1, the electron trajectory in phase space

behaves like undergoing a series of “kicks”, occurring in an extremely short time period (on the

remaining part of the trajectory the motion is adiabatic) [56]. However, for K being order of unity,

the fraction of stable components of the motion plays an important role. Stochastic trajectories

form in this region an extraordinarily complicated structured set, the so-called fat fractals [59],

where the particle trajectories can stick for a long time in this region.

1.3 Dissertation Outline

The stochastic electron acceleration in the laser-plasma interaction has been revealed in

several cases, including in an additive small transverse stochastic field [48], in the multiple laser

waves [24, 47, 60], and in the laser radiation and an attractive longitudinal electrostatic potential

well [15]. However, due to the multidimensional spatio-temporal characteristics of the laser pulses

and QEM fields, and the strong nonlinearity of the dynamics of relativistic electrons, the analytic

investigations of the stochastic electron acceleration in the previous study are rather limited and

complicated. For example, the analysis of the electron dynamics in multiple lasers in earlier
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studies has been limited to either non-relativistic case [4, 61], or the stochastic instability near

the separatrices using quite complicated multidimensional Hamiltonian approach [24, 46, 62],

whereas, for electrons in the longitudinal electric field, the analysis was only given in a simplified

V-shape electrostatic potential [25, 26], U = E0z. Even though the numerical simulations can

shed some light on the stochastic electron acceleration (e.g., see Refs. [15, 46, 47, 60, 63]),

they are only valid within the simulated parameter range. Therefore, some scenarios where the

electron can be stochastically accelerated, and the physics underlying the stochastic motion are

still missing.

This work is devoted to investigating the electron dynamics, especially paying attention

to the stochastic electron acceleration, in different configurations of laser beams and QEM fields.

A novel approach is proposed, the main idea of which is to find proper canonical variables so

that the new Hamiltonian describing the electron dynamics is time-independent without the

appreciated perturbation. Such a approach can significantly simplify the analysis of the electron

dynamics and allow us to utilize the fundamental results of previous studies on regular and

stochastic motion in Hamiltonian systems (e.g., see Refs. [56, 57] and the references therein).

However, the perturbation, Hamiltonian, and the canonical variables are different for the electron

in different configurations of lasers and QEM fields. Three main scenarios will be considered: the

counter-propagating laser beams, single laser wave and QEM fields that can confine the electron

motions (e.g., QEM fields in the ion channels), and single laser wave and spatially periodic QEM

fields (e.g., QEM fields in electric and magnetic undulators). They will be studied in separate

chapters and outlined below.

1.3.1 Ch 2: Stochastic electron acceleration in colliding laser beams

There is a long-lasting interest to the stochastic electron acceleration in the colliding laser

beams provided that it is insensitive to the frequency differences of the two laser pulses [47] and

can work without a self-focusing ion channel that it is easier to be achieved. Underlying physics
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of such stochastic motion are poorly understood and, therefore, further theoretical studies are

necessary. In this chapter, we will examine the electron dynamics in the colliding laser beams by

employing the new approach. The threshold for the onset of stochastic motion is founded by using

the Chirikov-like mapping, which agrees with the previous results that the stochasticity occurs

when the amplitudes of lasers exceed some thresholds [46, 47]. The maximum electron energy

gained from the stochastic motion is obtained, corresponding to the boundaries of the stochastic

region in the Hamiltonian space. It is shown that the stochastic region can be separated from the

regular motion region only in the Hamiltonian space rather than the energy space. Numerical

simulations solving the Hamiltonian equations are performed, which have confirmed the very

good agreement of numerical and analytical results.

1.3.2 Ch 3: Stochastic electron acceleration in laser and quasi-static peri-

odic electric and magnetic fields

In this chapter, we will investigate the stochastic electron acceleration in the laser radiation

with the presence of a periodic quasi-static longitudinal electric or transverse magnetic field.

Such periodic electric and magnetic fields has been widely used in studies of electron dynamics,

including electric and magnetic undulators [64, 65, 66, 67] and wiggler magnetic field [68, 69].

Moreover, it was shown that the plasma wave can also be taken as a periodic electrostatic field

[7, 70, 71, 72], where electrons in laser and the plasma wave can be stochastically accelerated.

The new Hamiltonian equations have been derived, where the periodic QEM fields are

taken as the perturbations and the new Hamiltonian is the same with that of the electron in

the colliding lasers. The physics underlying the stochastic electron motion is revealed and the

stochastic condition is obtained. The maximum electron energy is estimated well beyond the

ponderomotive scaling energy, which is mainly determined by the normalized laser amplitude and

the frequency of the periodic QEM fields. The numerical simulations confirm all the analytical

results.
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1.3.3 Ch 4: Stochastic electron acceleration in laser and confining quasi-

static electric and magnetic fields

This chapter studies the electron dynamics in the laser radiation with the presence of

QEM fields like in the ion channels, which can confine the electron motion within the potential

wells (thus we call them as confining QEM fields). For relativistic electrons, the laser radiation

will be taken as the perturbation and thus the expected Hamiltonian is the total electron energy in

the quasi-static fields. The role of these quasi-static fields is to reduce the longitudinal dephasing

rate between the electron and laser beam instead of directly transferring substantial energy to the

electron.

Three different configurations of QEM fields will be considered: QEM fields both across

to the laser propagation direction, a transverse magnetic field but a longitudinal electric field, and

a transverse electric field but a homogeneous longitudinal magnetic field. In each case, both the

electric and magnetic fields depend only on the transverse or longitudinal coordinate (determined

by the electric field). The Chirikov-like mappings are derived for each case, from which we find

the upper limits of the electron energy from the stochastic motion. All the analyses are checked

by the numerical simulations.
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Chapter 2

Stochastic electron acceleration in colliding

laser beams

Electron in multiple laser pulses is an interesting topic in the course of laser-plasma

interactions and has been considerably studied (e.g., see Refs. [6, 19, 24, 45, 46, 47, 60, 63, 73]).

It was shown that a counter-propagating lasers can be slightly detuned by the electron plasma

frequency and thus drive the coherent motion of electrons [73, 74]. More importantly, it was

shown that the electrons in the multiple laser waves can be accelerated resulting from the stochastic

motion of electrons [24, 46, 47, 60, 63], which occurs when the amplitudes of lasers exceed

some thresholds (numerical simulations show that thresholds in counter-propagating lasers with

normalized amplitudes a1 and a2 are a1a2 = 1/16 for local stochastic motion [46] and a1a2 = 1/2

for global stochastic motion [47]). Given that the stochastic acceleration is insensitive to the

frequency differences of the two laser pulses [47] and it can work without a self-focusing ion

channel, it is easier to be achieved than that for coherent motion. It was shown that the most

efficient stochastic heating is achieved for the case of two counter-propagating laser waves [45, 63].

Such configuration of two laser beams can be due to the reflection of the dominant incident laser

beam from the target surface [75, 76] or Raman backscattering (the Raman backscattering wave
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of a driving pulse occurs in plasma at a few percents of the critical density). For a relativistic

incident laser pulse, Iλ2>̃1018Wcm−2µm2, the reflected wave and Raman backscattering wave

will be intense enough to trigger the stochastic acceleration. Therefore the stochastic acceleration

in counter-propagating laser waves could be dominant in certain cases in laser interaction with

underdense plasma.

However, due to the multidimensional spatio-temporal characteristics of the laser waves

and strong nonlinearity of the dynamics of relativistic electrons in these waves, the analytic

investigations of stochastic electron acceleration in the colliding laser waves in earlier studies

have been limited to either non-relativistic case [4, 61], or the stochastic instability near the

separatrices using quite complicated multidimensional Hamiltonian approach [16, 24, 46, 62]. On

the other hand, the numerical simulations, which can shed some light on the criterion for stochastic

electron motion in multiple laser waves [47, 60, 63], are only valid within the simulated parameter

range. Therefore, more complete theoretical analysis is needed to have a better understanding of

the electron dynamics in the counter-propagating laser waves.

In this chapter, we will examine the electron dynamics in colliding laser beams by

employing the Hamiltonian approach with the proper choices of canonical variables and time,

such that the Hamiltonian is time-independent in zero-order approximation [77, 78]. Following

Refs. [46, 47, 60, 62], we will focus on the case where one of the laser waves is much stronger

than others, which could be considered as a perturbation. We will show that the electron energy

gained from the stochastic acceleration due to the presence of a perturbative counter-propagating

laser wave can greatly exceed the ponderomotive energy scaling of the dominant laser, where

the essential role of the perturbation is to change the dephasing rate between the electron and

dominant laser.

The remainder of this chapter is organized as follows. The new Hamiltonian equations

will be derived in section 2.1 and the unperturbed electron trajectories are examined. Section

2.2 will investigate the conditions for stochasticity for different laser polarization directions and

9



initial electron momentum. An impact of the superluminal phase velocity will be discussed in

section 2.3. The main results will be summarized and discussed in section 2.4.

2.1 New Hamiltonian equations and unperturbed electron tra-

jectories

In this section, we will derive the new Hamiltonian equations by finding proper canonical

variables such that the new Hamiltonian is time-independent without the perturbative laser,

and then examine the unperturbed electron trajectories in this new framework. To simplify

the expressions, in what follows we will use dimensionless variables, where r is normalized

by the dominant laser wavenumber (k) and t by kc with c being the speed of light in vacuum.

The normalized parameter of laser wave, which can be described by vector potential A, is

eA/mc2, where −e and m are the electron charge and mass. In the normalized variables, we take

e = m = c = 1.

We assume that the dominant laser wave propagates along z direction and is described by

the vector potential of A(vpt− z), which is arbitrarily polarized in x and y directions (here vp is

the phase velocity). For generality, we consider the perturbative laser wave propagating in the

(y,z) plane, which is determined by the vector potential of A1(vpt + ycosφ+ zsinφ), where φ is

the angle between the perturbative laser propagation direction and y-axis; and A1 can have three

components in x, y, and z directions, but A1y/A1z =−tanφ to ensure the orthogonality between

the polarization and propagation directions. Then the electron dynamics can be described by the

Hamiltonian:

H ≡ γ = [1+(P+A+A1)]
1/2 , (2.1)

where γ is the relativistic factor and P = γv−A−A1 is the canonical momentum. Although this

Hamiltonian was widely used (e.g., see Refs. [46, 16, 62]), the analyses of electron dynamics
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accounting for both dominant and perturbative lasers were quite complicated and often incomplete.

We start our analysis with finding the proper canonical variables, Hamiltonian and effective

time, such that the new Hamiltonian will be time-independent when the perturbation is absent

(A1 = 0). Taking into account that for A1 = 0 the combination γ− vpPz is conserved, it could

be considered as a candidate for the new Hamiltonian, while the phase of the dominant laser

wave η = vpt− z can be taken as one new canonical variable. It is easy to show that for the laser

field A(vpt− z)+A1(vpt + ycosφ+ zsinφ) the canonical momentum Px is conserved so that the

Hamiltonian in Eq. (2.1) is effectively two dimensional. Then, if we treat (η,y) as new canonical

coordinates and assume that the corresponding canonical momenta are (χη,χy), while the new

Hamiltonian and time are H and τ, the canonical transformation from the point view of least

action principle [79] requires that

C(Pzdz+Pydy−H dt) = χηdη+χydy−Hdτ, (2.2)

where C is a constant given that the Lagrangian is not unique. The natural choice of τ is τ = vpt +

zsinφ. Substituting τ and η into Eq. (2.2) we find χη =−(γsinφ+vpPz), χy = vp(1+ sinφ)Py, and

H = γ−vpPz for C = vp(1+sinφ). However, for convenience, we will take χη =+(γsinφ+vpPz),

which is equivalent to choosing η as canonical momentum while treating χη as a canonical

coordinate. Then the electron dynamics can be described by H(χη,y,η,χy,τ), which in the new

canonical variables can be found from Eqs. (2.1, 2.2).

For the head-on colliding laser waves (φ = π/2), χy is a constant. As a result, we have the

following 3/2 dimensional (3/2D) Hamiltonian equations

dχ

dτ
=

∂H
∂η

, and
dη

dτ
=−∂H

∂χ
, (2.3)
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where χ≡ χη = γ+ vpPz and the Hamiltonian is

H(χ,η,τ) =
2vp

v2
p−1

√
χ2 +(v2

p−1)P2
⊥−

v2
p +1

v2
p−1

χ, (2.4)

with P2
⊥ = 1+∑i=x,y [P̄i +Ai(η)+A1i(τ)]

2 and P̄i (i = x,y) are the conserved canonical momen-

tum. This 3/2D Hamiltonian, which can also be obtained from the electron equations of motion,

will greatly simplify our analysis in comparison with the multidimensional Hamiltonian [46, 62]

based on Eq. (2.1).

For simplicity, we first consider the luminal case vp = 1, while the impact of superluminal

phase velocity, which mimics the impact of plasma on the laser wave propagation, will be

qualitatively discussed in section 2.3. The linearly polarized planar laser waves will be used in the

following analysis, i.e., A = asin(η)ex and A1 = a1sin(k1τ)ex or A1 = a1sin(k1τ)ey depending

on the relative polarization directions of the counter-propagating waves, where a1� a and k1 is

the ratio of the perturbative laser frequency (or wavenumber) to that of the dominant one. Then,

the Hamiltonian in Eq. (2.4) degenerates to

H =
1+[asin(η)+δxa1sin(k1τ)+ P̄x]

2
+[δya1sin(k1τ)+ P̄y]

2

χ
, (2.5)

where δx,y = 0 or 1 are switches to controlling the perturbative laser polarization direction. Keep

in mind that we are interested in the gain of maximum electron kinetic energy, γmax, which can be

expressed in the terms of H, for vp = 1, as follows:

γmax ≡
χ+H

2
≈ 1

2

(
Ep

H
+H

)
, (2.6)

where Ep = 1+(a+ |P̄x|)2+ P̄2
y . Note that the ponderomotive scaling for pre-accelerated electron

in the dominant laser wave only is Ep/H0, where H0 is the conserved dephasing rate between

electron and the dominant laser (which corresponds to the initial Hamiltonian in the present
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problem). Therefore, γmax can significantly exceed the ponderomotive scaling either for Hmin <H0

(which corresponds to the electron moving along with the dominant laser, where γmax/Ep ≈

H0/Hmin) or for Hmax > Ep/H0 (where the electron moves along with the perturbative laser and

γmax/Ep ≈ HmaxH0/Ep).

For the unperturbed problem (a1 = 0), the new Hamiltonian is conserved and from

Eqs. (2.3, 2.5) we find the following implicit dependence η(τ) (we note that η increases with τ

provided dη/dτ > 0):

τ =
2P̄2 +a2

4H2

[
2η− a2sin(2η)

2P̄2 +a2 −
8aP̄xcos(η)

2P̄2 +a2

]
+ const., (2.7)

where P̄2 = 1+ P̄2
x + P̄2

y ; and χ depending on time τ:

χ =
1+[asin(η)+ P̄x]

2
+ P̄2

y

H
. (2.8)

From Eq. (2.7) one can find the frequency of unperturbed oscillation of electron canonical

coordinate χ:

ω =
2π

T
=

2H2

2P̄2 +a2 , (2.9)

where T = τ(η = 2π)− τ(η = 0) is the period of electron oscillation. Therefore, the presence

of P̄x,y will decrease (increase) the frequency (period) of electron oscillation via P̄2 and alter the

electron trajectories as shown in Eqs. (2.7, 2.8).

From Eq. (2.5) we find that, for relativistic case a > 1 (which we will consider in the

following), unperturbed (or weakly perturbed) electron trajectories have characteristics of zig-zag

time dependence of canonical coordinate χ (e.g., see the upper panel of Fig. 2.1). This feature

of electron trajectories enables a long tail of the distribution of the amplitude of m-harmonics,

making high-m island overlapping and, therefore, stochastic electron motion possible. Also, from

Eq. (2.5) it follows that the strongest impact, “kicks”, on both H and canonical variables by the
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Figure 2.1: Schematic view of the electron trajectories for a = 5, k1 = 1, P̄y = 0, and different
P̄x. The curves of solid black and dash-dotted red are for P̄x = 0 and P̄x = 1 with H = 0.3, and
the dotted blue curve is for P̄x = 6 with H = 0.5.

perturbative laser occurs at a very short time near the local minimum of χ (e.g., see Fig. 2.2),

where the phase between electron and backward laser wave is locally minimized and η undergoes

jump. The positions of minima of χ depend both on P̄x and a: when |P̄x|< a, χ is minimized at

η1 = (2n+1)π+δ and η2 = 2nπ−δ, where δ = sin−1(P̄x/a) and n is an integer; whereas, for

P̄x > a (P̄x <−a), the minima of χ are obtained only at η3 =−π/2+2nπ (η4 = π/2+2nπ).

2.2 Threshold for stochastic electron motion

From Hamiltonian in Eq. (2.5) it follows that in the presence of the perturbative laser wave

but for ω > k1, the electron motion is adiabatic and no electron acceleration is possible. However,

when ω� k1 the unperturbed electron motion could resonate with the perturbative laser, mω = k1

(where m is the harmonics of unperturbed electron motion), and for the case of overlapping of the

separatrices of neighbouring resonant islands, K̄ = (δω+δω′)/2∆ω > 1, where δω and δω′ are

their widths and ∆ω is the distance between them, stochastic heating occurs [56]. However, in
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Figure 2.2: Schematic view of the diffusion of Hamiltonian (solid blue) and corresponding χ

(dash-dotted red) for a = 5, a1 = 0.2, k1 = 1, P̄y = 0, and P̄x = 1.

what follows, we will examine the condition for an onset of stochasticity for the case ω/k1� 1

by using equivalent, but more convenient Chirikov-like mapping [58] deduced from electron

equations of motion.

As discussed in the last section, the kicks due to the perturbative laser of H takes place

at a short time near the local minimum of χ (e.g., see Fig. 2.2). Except these short periods

of time τ where η ≈ η1,2 for |P̄x| < a and η ≈ η3 (η4) for P̄x > a (P̄x < −a), the electron

“sees” only fast phase change of the backward laser wave due to large χ = γ+Pz and, therefore,

undergoes adiabatic oscillation. Therefore, the Chirikov-like mapping can be formed by using

the Hamiltonian Hn and time τn, when the electron passes through the nonadiabatic region. Such

mapping corresponds to the Poincaré section of electron crossing effectively “fixed” canonical

momentum (η) plane. Let’s assume that the change of the Hamiltonian due to each nonadiabatic

interaction of electron with the perturbative wave is smaller than the Hamiltonian itself, i.e.,

∆H = |Hn+1−Hn|�Hn, then the unperturbed electron trajectory Hn(η,χ) can be used to estimate
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the variation of Hamiltonian due to each kick [23]:

∆Hn ≡ Hn+1−Hn =
∫

η≈ηi

∂H
∂τ

dτ, i = 1,2 or 3 or 4. (2.10)

However, to make the analysis easier without losing the physics of stochastic electron acceleration,

we consider P̄x = P̄y = 0, which is reasonable if electrons begin to interact with the pre-pulse of

lasers (the impacts of P̄x and P̄y on the stochastic condition of electrons in colliding lasers with

the same polarization direction will be discussed in Appendix A). As a result, the nonadiabatic

region (local minimum of χ) corresponds to η≈ nπ with n being an integer.

2.2.1 Lasers with same polarization directions

We first consider the case where the perturbative laser is polarized along the dominant

one, i.e., A1 = a1sin(k1τ)ex such that δx(δy) = 1(0) in Eq. (2.5). Under the condition of a1� a,

we could keep the leading term of ∂H/∂τ = 2aa1k1sin(η)cos(k1τ)/χ. The fact that the main

contribution to Hamiltonian variation is from η ≈ nπ enables us to do the expansion of the

integrand in Eq. (2.10) with respect to η−nπ. After some algebra, we find

∆Hn

Hn
= 2(−1)na1β

1/2sin(k1τn)
∫

∞

−∞

η̃sin
(

βη̃+
1
3

η̃
3
)

dη̃, (2.11)

where η̃ = (η−nπ)/α, α = (H2
n/k1a2)1/3 ∼ (ω/k1)

1/3� 1, and β = (k1/H2
n a)2/3. It should be

noted that the fast oscillation for η̃ >̃1 justifies the extension of the integration limits to infinity.

We also see that the nonadiabatic interaction of electron motion with backward laser occurs at

|η−nπ|< α� 1 (|η̃|<̃1).

The integral in Eq. (2.11) could be expressed with the derivative of Airy function, Ai′(β),

so we have

∆Hn = 4(−1)n+1
πa1β

1/2Ai′(β)Hnsin(ψn), (2.12)
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where ψ ≡ k1τn. Taking into account the properties of the Airy function, it follows that the

requirement of ∆H < Hn is always satisfied for a1<̃1.

The time interval between two consecutive kicks is equal to the period of the unperturbed

electron oscillation and thus the corresponding phase interval is determined by the Hamiltonian:

∆ψn ≡ ψn+1−ψn = k1T =
πk1(2+a2)

2H2
n+1

. (2.13)

As a result, rearranging Eqs. (2.12, 2.13) could form symplectic mapping conserving phase

volume. However, we are interested in the condition for stochasticity, which could be obtained

just from Eqs. (2.12, 2.13), and reads as

Kx =

∣∣∣∣ d∆ψn

dHn+1

d∆Hn

dψn

∣∣∣∣>̃1, (2.14)

where local instability leads to the mixing in phase space. If we disregard the region of phase ψ

where chaos appears, we arrive at

Kx = 4π
2aa1(2+a2)β2|Ai′(β)|>̃1. (2.15)

Similar result can be obtained from the point of view of resonance overlapping, where one can

show that Kx ≈ K̄2.

Introducing the function fx(β) = 4π2β2|Ai′(β)|, we find that fx(β) increases with β for

β < 1 as

fx(β)≈ π
2
β

2; (2.16)

reaches maximum, f x
max ≈ 8.83, at β = βx

s ≈ 1.68; and then falls exponentially at β > βx
s (e.g.,

see Ref. [80]):

fx(β)≈ 2π
3/2

β
9/4exp

[
−(2/3)β3/2

]
. (2.17)
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As a result, from Eq. (2.15) we find that stochastic acceleration is only possible for a1 > ax
s , where

ax
s =

( f x
max)

−1

a(2+a2)
≈ 0.11

a(2+a2)
. (2.18)

We notice that the threshold in Eq. (2.18) is quite different from those in Refs. [46, 47]. The

reason for this is that our analysis allows for finding the most stochastically “unstable” range of

H (and corresponding electron kinetic energy) and, therefore, gives an exact threshold value of a1

for the stochasticity onset.

However, for a1 only slightly larger than ax
s , the stochastic acceleration occurs only within

a narrow region in the vicinity of H ≈ Hx
s (β≈ βx

s), where

Hx
s ≈ 0.68

(
k1

a

)1/2

. (2.19)

For a1� ax
s stochastic acceleration becomes possible within the range of H: Hx

min < H < Hx
max,

where the lower boundary of stochasticity is due to the exponential decay of the width of resonant

islands, whereas the upper one is because the distance between the neighboring resonant islands

increases faster than their widths. Hx
max and Hx

min could be found by using asymptotic expressions

(2.16, 2.17) of the function fx(β). However, we notice that the inequalities a� a1� ax
s could be

only satisfied for a� 1, under which we obtain:

Hx
min ≈

Hx
s√

1.6+0.69ln(a1/ax
s)
, (2.20)

and

Hx
max ≈ 1.5

(
a1

ax
s

)3/8

Hx
s . (2.21)

If we consider initially rest electrons, from Eq. (2.6), we see that γmax can significantly

exceed the ponderomotive scaling Ep/2 either for Hx
min < 1 (which corresponds to the electron

moving along with the dominant laser wave) or for Hx
max > Ep (where the electron moves
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along with the perturbative laser). By using expressions (2.20, 2.21) and neglecting numerical

factors order of unity, we find that the energy of electrons moving along with dominant laser

radiation exceeds the ponderomotive scaling for the case k1 < a and reaches γmax ∼ Ep(a/k1)
1/2.

Whereas the energy of electrons moving along with the perturbative laser could exceed the

ponderomotive scaling for the case k1 > a2 > 1 and (a2/k1)
4/3 < a1/a < 1, where γmax ∼

Ep(k1/a2)1/2(a1/a)3/8. We notice that Hx
min and, therefore, corresponding value of γmax have a

weak logarithmic dependence on the ratio a1/ax
s > 1. Moreover, for the case a−2 < k1 < a and

(a2k1)
−4/3 < a1/a < 1, we have Hx

min < 1 < Hx
max and Hamiltonian H ∼ 1, corresponding to an

initially stationary electron, is in the stochastic region. As a result, the stochastic acceleration of

an electron, being initially at rest, to kinetic energy exceeding Ep is possible and such energetic

electron will move along with dominant laser radiation. Otherwise, pre-acceleration of an electron

in the direction along with (for as/a < a1/a < (k1a2)−4/3 and k1 < a) or opposite to (for k1 > a)

the dominant laser propagation is necessary to reach the stochastic region for further acceleration.

Coming back to the expression (2.15), we observe that for β < βx
s , K increases with

increasing β (which for Hx
min < 1 corresponds to increasing electron energy). It explains the

results of numerical simulations from Ref. [47], which demonstrated that the pre-acceleration of

electrons reduces the stochastic threshold value of aa1 (e.g., see Fig. 3(b) in Ref. [47]).

To verify the results of our analytical considerations, we integrate Eqs. (2.3, 2.5) numeri-

cally and present the results in the Poincaré maps of (H, ψ) or (γ, ψ), when η = nπ+π/2, where

χ and thus γ = (χ+H)/2 reaches their maximum in one unperturbed electron period. The results

for a = 5, a1 = 0.1, k1 = 1 and P̄x = P̄y = 0 are displayed in Fig. 2.3, where k1 < a is satisfied

and thus γmax ≈ Ep/2Hmin. As one can see, a stochastic “sea” is bounded by the KAM invariant

[56] at Hmin and Hmax, which are, respectively, Hmin ≈ 0.132 and Hmax ≈ 2.92, and fully agree

with Eqs. (2.20) and (2.21). Therefore, the maximum stochastic kinetic energy (γmax), which

is insensitive to a1 as proven in the simulations, is approximately seven times (1/Hmin) larger

than that without the backward wave (Ep/2). Note that the maximum electron kinetic energy is
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Figure 2.3: Poincaré mappings of (a) (H,∆ψ) and (b) (γ,∆ψ) of electrons when η = nπ+π/2
for a = 5, a1 = 0.1, and k1 = 1, where ∆ψ≡ ψ− [ψ/π]π.
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Figure 2.4: Poincaré mappings of (a) (H,∆ψ) and (b) (γ,∆ψ) of electrons when η = nπ+π/2
for a = 3, a1 = 0.3, and k1 = 100 with the same definition of ∆ψ with Fig. 2.3.

Emax = γmaxmc2 ∼ 45MeV for the choosing a = 5 and k1 = 1. In Fig. 2.4 we show the results for

a = 3, a1 = 0.3, P̄x = P̄y = 0 but k1 = 100, where Hmin ≈ 1.87 and Hmax ≈ 37.5 are, respectively,

in agreement with Eq. (2.20) and (2.21). For such large value of k1 > a2, we see that the maximum

stochastic energy satisfies γmax ≈ Hmax/2 > Ep/2.

2.2.2 Lasers with orthogonal polarization directions

In this section, we consider the case where the colliding laser waves have orthogonal polar-

ization directions, i.e., A1 = a1sin(k1τ)ey such that δy(δx) = 1(0) in Eq. (2.5). For such case, P̄y

is important since it can be the same order with a1 in ∂H/∂τ = 2a1k1 [a1sin(k1τ)+ P̄y]cos(k1τ)/χ.

Similar to the last section, we can do expansion of τ with respect to η−ηi when estimating the
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Hamiltonian variation in the nonadiabatic region. As a result, we have

∆Hn =
2πa2

1βAi(22/3β)

(1+ P̄2
y )

Hnsin(2ψn)+
4πa1P̄yβAi(β)

(1+ P̄2
y )

Hnsin(ψn), (2.22)

whereas the phase interval between two consecutive kicks is given in Eq. (2.13).

For P̄y = 0, we see that the phase in Eq. (2.22) corresponding to the Chirikov-like mapping

is twice of that in Eq. (2.12) for A1 polarized along with A. As a result, the stochastic condition

can be found from Eqs. (2.12, 2.22) as

Ky = 4π
2aa2

1(2+a2)β5/2|Ai(22/3
β)|>̃1. (2.23)

Introducing the function fy(β) = 4π2β5/2|Ai(22/3β)|, we find that fy(β) first increases with β for

β < β
y
s ≈ 1.10; reaches its maximum, f y

max ≈ 2.55, at β
y
s; and then falls exponentially at β > β

y
s

(e.g., see Ref. [80]) as

fy(β)≈ 25/6
π

3/2
β

9/4exp
[
−(4/3)β3/2

]
. (2.24)

One can show that for β < β
y
s , fy can also be approximated by the expression (2.24) with a

different factor of order of unity. As a result, from Eq. (2.23) we find that stochastic acceleration

is only possible for a1 > ay
s , where

ay
s =

[
( f y

max)−1

a(2+a2)

]1/2

≈ 0.63

[a(2+a2)]
1/2 , (2.25)

and the stochastic acceleration occurs in the vicinity of H ≈ Hy
s (β≈ β

y
s), where

Hy
s ≈ 0.93

(
k1

a

)1/2

. (2.26)

It follows that the threshold in Eq. (2.25) is larger than that in Eq. (2.18) for the case of parallel

polarized laser waves. For a1� ay
s , stochastic acceleration becomes possible within the range of
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H: Hy
min < H < Hy

max, where Hy
max and Hy

min could be found by using Eq. (2.24) of the function

fy(β) as

Hy
min ≈

Hy
s√

1.56+1.30ln
(
a1/ay

s
) , and Hy

max ≈ 1.35
(

a1

ay
s

)2/3

Hy
s , (2.27)

where we have taken the numeric factor into account when using Eq. (2.24) for β < β
y
s . Consider-

ing that ay
s is much lager than ax

s for the same parameters, Hy
min (Hy

max) is relatively lager (smaller)

than Hx
min (Hx

max). As a result, from Eq. (2.6), the maximum energy of electrons in two lasers

being orthogonally polarized is smaller than that of electrons in two parallel polarized lasers when

P̄x,y = 0.

On the other hand, if |P̄y| � a1, the variation of Hamiltonian in Eq. (2.22) is mainly

determined by the second term and the stochastic condition reads

K̄y =
4π2a1aP̄y

[
2(1+ P̄2

y )+a2]β5/2|Ai(β)|
(1+ P̄2

y )
5/2 >̃1. (2.28)

As a result, we could find the stochastic condition by using the properties of f̄y(β)= 4π2β5/2|Ai(β)|

as:

a1 > āsy =
0.12(1+ P̄2

y )
5/2

aP̄y
[
2(1+ P̄2

y )+a2
] , (2.29)

and the most unstable Hamiltonian:

H̄sy ≈ 0.66(1+ P̄2
y )

3/4
(

k1

a

)1/2

. (2.30)

It follows that the threshold in Eq. (2.29) is smaller than that in Eq. (2.25) for P̄y = 0 if a1�

|P̄y|<̃a3/8 and even comparable with ax
s when |P̄y|>̃1. However, considering that the lower

boundary of stochastic region has a weak dependence on a1/āy
s:

H̄y
min ≈

H̄sy√
1.68+0.65ln(a1/āsy)

, (2.31)
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Figure 2.5: Poincaré mappings of (H, ψ) at η = 2nπ+π/2 with ∆ψ ≡ ψ− [ψ/2π]× 2π for
a = 5, A1 = 0.2sin(τ)ey (k1 = 1), P̄x = 0 and (a) P̄y = 0; (b) P̄y = 2.

the increase of H̄sy with P̄y will make H̄y
min above Hy

min for P̄y = 0 in Eq. (2.27). As a result,

the ratio of the maximum electron kinetic energy against the ponderomotive scaling, H0/Hmin,

will decrease with increasing P̄y. The upper boundary of stochasticity in Hamiltonian space is

obtained as

H̄y
max ≈ 1.32

(
a1

āy
s

)1/3

H̄y
s , (2.32)

which is above Hy
max for the same parameters except P̄y.

The numerical simulations integrating Eqs. (2.3, 2.5) are performed for the case where

the polarization direction of the perturbative laser is orthogonal to that of the dominant one, as

shown in Fig. 2.5. It confirms that the lower and upper stochastic boundaries in the Hamiltonian

space are, respectively, in agreement with Eq. (2.27) for P̄y = 0, and with Eqs. (2.31, 2.32) for

P̄y� a1. For all the cases, the maximum electron kinetic energy is consistent with Eq. (2.6).

2.3 Impact of the superluminal phase velocity

In this section, we examine the impact of superluminal phase velocity, vp > 1, on the

stochastic electron dynamics. Here we only consider the case of parallel polarized laser beams

assuming that P̄x,y = 0. For this purpose, we should again consider the unperturbed electron
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trajectories with conserved H, which, from Eq. (2.4), reads

χ =
2vp

√
H2 +(v2

p−1)(1+a2sin2η)

v2
p−1

−
(v2

p +1)H
v2

p−1
. (2.33)

Therefore, χ reaches its maximum and minimum at, respectively, η = π/2+nπ and η = nπ as

χmax =
2vp

√
H2 +(v2

p−1)(1+a2)

v2
p−1

−
(v2

p +1)H
v2

p−1
,

χmin =
2vp

√
H2 + v2

p−1

v2
p−1

−
(v2

p +1)H
v2

p−1
. (2.34)

It follows that both χmax and χmin decrease with increasing H and so is γmax = (χmax +H)/2≈

χmax/2 (we consider k1 ∼ 1 such that γmax is dominated by χmax). Therefore, the maximum elec-

tron kinetic energy is obtained at the lower boundary of the stochastic region in the Hamiltonian

space (Hmin). Noticing that ∂H/∂τ is maximized at χmin, we know that the strongest impact of

the perturbative laser on electron motion for superluminal case also occurs at χmin corresponding

to η≈ nπ for P̄x = 0 like in the luminal case. On the other hand, the period of electron oscillation

is given by

T/2π =
v2

p +1
v2

p−1
−

4vpHK(b2)

π(v2
p−1)

√
H2 +(v2

p−1)(1+a2)
, (2.35)

where K(b2) ≡
∫ π/2

0 dη/
√

1−b2cos2η is the complete elliptic integral of the first kind and

b2 = (v2
p−1)a2/[H2 +(v2

p−1)(1+a2)].

Then when H>̃
√

(v2
p−1)(1+a2), K(b2� 1) ≈ (1+ b2/4)π/2 such that the electron

oscillation period T in Eq. (2.35) is approximate to that for the luminal case. This is also true

for the extrema of χ in Eq. (2.34). As a result, the electron trajectories and thus the variation of

Hamiltonian ∆H in Eq. (2.10) remains almost unchanged compared with those of luminal case.

Then the stochastic region in Hamiltonian space with
√

(v2
p−1)(1+a2)<̃H is not affected by
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the superluminal phase velocity. It follows that if the lower boundary of the stochastic region

Hmin for the luminal case satisfies
√

(v2
p−1)(1+a2)<̃Hmin, the impact of vp > 1 on both H and

electron kinetic energy is negligible.

However, if Hmin�
√

(v2
p−1)(1+a2), from Eq. (2.35) we see that T has an approxi-

mately linear dependence on H for H�
√

(v2
p−1)(1+a2), so that |d∆ψn/dHn+1| ≈ 12vpk1/(v2

p−

1)
√

(v2
p−1)(1+a2) is a constant where we use K(b2→ 1) = ln(4/

√
1−b2)≈ 3 (notice that the

dominant term of T is the first one on the right hand side of Eq. (2.35) such that T remains almost

unchanged with H). The variation of H in the nonadiabatic region for H�
√

(v2
p−1)(1+a2)

can be estimated as ∆H ∼ aa1(vp−1)1/6 from Eqs. (2.4, 2.33). Then the stochastic condition in

Eq. (2.14) is a constant value as Ks ∼ a1/(vp−1)4/3 for |H| �
√

(v2
p−1)(1+a2), where a factor

of order of unity has been omitted. It follows that a threshold value of vp, vps−1∼ a3/4
1 , exists

such that for vp < vps, the region of |H| �
√
(v2

p−1)(1+a2) is stochastic and the lower bound-

ary of the stochastic region in luminal case can extend to negative H�−
√

(v2
p−1)(1+a2) (for

further negative H the stochasticity is impossible since χ increases smoothly from χmin such that

the zig-zag temporal dependence of χ is eliminated); whereas for vp > vps, the stochasticity in

small H region is terminated. The maximum electron kinetic energy for the latter case is rather

limited, while for the former case (vp < vps), taking into account that χmax and thus γmax weakly

depends on H for |H| �
√

(v2
p−1)(1+a2), we have

γmax ≈ χmax(H = 0)/2 = vp

√
(1+a2)/(v2

p−1). (2.36)

It shows that the maximum electron kinetic energy for superluminal case is much smaller than

that for the luminal case, γmax ≈ Ep/2Hmin as shown in Eq. (2.6), even though the stochastic

regions in H space are almost the same. Moreover, for the superluminal case, the amplitude of

oscillation of electron in the adiabatic region, δH ∼ 2a1

√
v2

p−1, is approximately a constant,

whereas for luminal case, it decreases with decreasing H.
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Numerical results for a = 5, a1 = 0.2, k1 = 1 and different vp ≥ 1 are shown in Fig. 2.6.

We note that the lower boundary of the stochastic region in the Hamiltonian space for vp = 1 in

Fig. 2.6(a) satisfies Hmin�
√

(v2
p−1)(1+a2) and thus the threshold value of vps≈ 1+a3/4

1 = 1.3

exists for stochasticity. Comparing Figs. 2.6(b), 2.6(c) with Fig. 2.6(a) we find that, for vp < vps,

the stochastic region in H space remains almost unchanged for large H, whereas the lower

boundary of the stochastic region can extend to negative H with small magnitude. The stability

islands appear and grow with increasing vp and will finally destroy the stochasticity when

vp > vps. However, despite the change of the stochastic region in H space for vp < vps is small,

the maximum electron kinetic energy gained from the stochastic motion is significantly decreased

by the impact of the superluminal phase velocity (e.g., see Fig. 2.6(d) and 2.6(e) for vp = 1 and

vp = 1.1, respectively). Recalling that H ≈ 0 is accessible as long as the stochastic region exists

and γmax is insensitive to small H, the maximum electron kinetic energy (e.g., see Fig. 2.6(e)) can

be well predicted by Eq. (2.36). In Fig. 2.6(f) we sketched the evolution of H for vp = 1.1, which

confirms that for small H�
√

(v2
p−1)(1+a2), the electron oscillation period remains almost

unchanged unlike the luminal case shown in Fig. 2.2. All these results agrees with our analysis.

2.4 Conclusion

In conclusion, we consider the electron dynamics in the fields of colliding laser beams.

We show that the proper choice of canonical variables and effective time, such that the new

Hamiltonian is conserved for electrons in a dominant laser field, greatly simplifies the analytical

treatment of the problem. For example, for the case of counter-propagating planar laser beams

and dominant laser with relativistic intensity, a > 1, such approach allows an exhaustive analytic

analysis of electron dynamics. We find that when the amplitude of the perturbative laser (a1 < a)

exceeds some thresholds, the stochastic acceleration of electrons becomes possible within some

range of H and thus electron kinetic energy. The maximum electron kinetic energy, which could
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Figure 2.6: Poincaré mappings of (H, ψ) for a = 5, a1 = 0.2, k1 = 1 and (a) vp = 1; (b) vp = 1.1;
and (c) vp = 1.3. The mappings of (γ, ψ) for (d) vp = 1 and (e) vp = 1.1. (f) Schematic view of
the evolution of H for vp = 1.1.

be gained under stochastic acceleration, can significantly exceed the ponderomotive scaling for

the electron in the dominant laser only. Moreover, we find that regardless of the orientation of

the perturbative laser, Hmin and thus the maximum electron energy (for k1 order of unity) have a

weak dependence on the amplitude of the perturbative laser above the threshold for stochasticity.

For the case of colliding laser waves polarized in the same direction, the maximum

electron kinetic energy can exceed the ponderomotive scaling when the ratio of perturbative

to dominant laser frequencies, k1, is relatively small k1 < a (in this case, energetic electrons

move in the direction of the propagation of the dominant laser beam) and for large k1, such

that k1 > a2 > 1, providing that (a2/k1)
4/3 < a1/a < 1 (where energetic electrons move in the

direction of the propagation of the perturbative laser beam). The results of numerical simulations,

shown in Fig. 2.3 and Fig. 2.4, are in a very good agreement with the findings from our analytic

theory.

For the case where the polarization direction of the perturbative laser is orthogonal to
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that of the dominant laser, the threshold in Eq. (2.25) for P̄y = 0 is much larger than that for

lasers being parallel polarized in Eq. (2.18). However, the presence of P̄y 6= 0 could decrease the

threshold as shown in Eq. (2.29) when a1 < |P̄y|<̃a3/8 and even to the value comparable to that

in Eq. (2.18) when |P̄y|> 1.

The impact of the superluminal phase velocity vp > 1 on the stochastic electron dy-

namics is qualitatively discussed in section 2.3. It shows that the stochastic region for H >√
(v2

p−1)(1+a2) will not be affected by the superluminal phase velocity, whereas for H �√
(v2

p−1)(1+a2), both the variation of H due to the kick and the derivative of the time interval

between two consecutive kicks with respect to H are approximately constant. As a result, a

threshold of vp exists(vps). When vp < vps, new stability islands appear and grow with increasing

vp, until the stochasticity is destroyed when vp > vps. Although the change of the boundaries in

H space is small, the maximum electron kinetic energy is significantly decreased by the impact

of the superluminal phase velocity. On the other hand, when vp > vps, the electron kinetic energy

is rather limited.

The work presented in this chapter is a reprint of the material as it appears in Novel

approach to stochastic acceleration of electrons in colliding laser fields in Physics of Plasmas

26, 050702, by Y. Zhang and S. Krasheninnikov, 2019. The dissertation author was the primary

investigator and author of this paper.

28



Chapter 3

Stochastic electron acceleration in laser

and quasi-static periodic electric and

magnetic fields

In the DLA of electrons, it has also been reported that efficient electron acceleration in

intense laser can be possible if a small transverse stochastic field is added [48], where the electron

acceleration exhibits a stochastic nature. Such transverse field can be the Raman backscattered

wave or a counter-propagating laser wave with small amplitude [46, 47]. As shown in chapter

2, the essential role of these perturbative transverse fields is not to confine the electron motion

or heat the electron directly, but to dephase the electron from main laser pulse and thus allow

electron to gain more energy.

In this chapter, we will show that, in the presence of a quasi-static periodic longitudinal

electric or transverse magnetic field, electrons in intense laser pulse can also undergo stochastic

acceleration [81]. The quasi-static periodic electric or magnetic field has been widely used in

studies of electron dynamics, including electric and magnetic undulators [64, 65, 66, 67] and

wiggler magnetic field [68, 69]. Moreover, it was shown that the plasma wave can also be taken
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as a periodic electrostatic field [7, 70, 71, 72], where electrons in laser and the plasma wave can

be stochastically accelerated. Therefore, investigation of the mechanism of stochastic electron

acceleration in laser and quasi-static periodic fields are important for the physical understanding

of energetic electron generation.

The new Hamiltonian method developed in Ref. [77] will be used in this chapter, where

the goal is to find a Hamiltonian which is time-independent without the perturbation. Here,

the perturbations are taken as the quasi-static fields under some conditions (which will be later

derived), and thus the Hamiltonian is the dephasing rate between the electron and laser wave. We

will show that the quasi-static periodic electric and magnetic fields will play a similar role as

a perturbative counter-propagating laser wave in chapter 2. As a result, the physics underlying

stochastic electron motion and the scaling of maximum electron energy are also similar to that in

colliding laser beams. Therefore, in order to keep a connection to chapter 2, the variables in this

chapter are similarly defined.

The remainder of this chapter is organized as follows. In section 3.1 we will introduce

the new Hamiltonian equations and find the unperturbed electron oscillation in laser pulse only.

Section 3.2 will examine the stochastic electron motion in the presence of a periodic transverse

magnetic field, while the case for periodic longitudinal electric field will be studied in section 3.3.

Section 3.4 will conclude and discuss the main results.

3.1 New Hamiltonian equations and unperturbed electron tra-

jectories

In this section, we will derive the new Hamiltonian and then illustrate the unperturbed

electron trajectories without the quasi-static fields. To simplify the analytic expressions, the

standard normalization used in chapter 2 will be adopted, where the vector potential of the

quasi-static magnetic field, AB and the electrostatic potential of the electric field, U , will be
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normalized by mc2/e. Here we only consider the luminal case, where the superluminal impact is

similar to that in chapter 2.

We assume that the laser wave propagates along z direction and is described by the

vector potential Ã(t− z), which is arbitrarily polarized in x and y directions. Both the vector

potential AB = AB(z)ex for the quasi-static magnetic field and electrostatic potential U =U(z)

for electric field are only functions of z. As a result, the electron dynamics can be described by

the Hamiltonian in Eq. (2.1) but with A = Ã+AB + t∂U/∂zez and P = γv−A ≡ p−A. One

can show that for such configuration of EM fields, the x,y-components of canonical momentum

are conserved (denoting as P̄x and P̄y) so that the Hamiltonian in Eq. (2.1) is effectively two

dimensional. Keeping in mind of Eq. (2.1), we introduce new variables of η = t − z, χ =

γ+ pz− 2U and time τ = t + z, such that the electron dynamics can be described by a new

Hamiltonian H(χ,η/2,τ/2)≡ γ− pz, since

(η/2)dχ−Hd(τ/2) = Pzdz−H dt +dF, (3.1)

guarantees that such transformation is canonical [79], where F = χη/2−
∫

Udz+Ut. From the

Hamiltonian equations, it follows that if χ and η/2 are canonical variables with effective time

τ/2, χ and η are also canonical variables with the same Hamiltonian H but effective time τ. The

latter will be used in this chapter and thus the new Hamiltonian equations read

dχ

dτ
=

∂H
∂η

, and
dη

dτ
=−∂H

∂χ
. (3.2)

where

H =
1+
[
Ãx(η)+AB + P̄x

]2
+
[
Ãy(η)+ P̄y

]2
χ+2U

≡
P2
⊥

χ+2U
. (3.3)

Here both AB and U depend on z = (τ−η)/2. These new Hamiltonian equations can also be

obtained from the electron equations of motion. For simplicity, in what follows, we will take

31



P̄x,y = 0 and use linearly polarized planar laser wave, where Ãx = asin(η) and Ãy = 0 (as indicated

by chapter 2 and Eq. (3.3), the impact of AB is stronger for electron in laser polarized in x-direction

than that in laser polarized in y-direction). Moreover, we will assume AB = B1sin[k1(τ−η)/2]

and U = E1sin[k1(τ−η)/2].

The electron kinetic energy, γ, can be obtained from the Hamiltonian as

γ≡ χ+2U +H
2

=
P2
⊥+H2

2H
. (3.4)

Recalling that electrons primarily moves along the laser propagating direction for k1<̃1 due to

the ponderomotive force and thus H = γ− pz is small, Eq. (3.4) indicates that the maximum

electron energy is obtained at smallest H. As a result, when investigating the electron motion at

large energy (small H and thus large χ) region, the quasi-static electric field can be treated as a

perturbation when E1� χmin ≈ 1/H as seen from Eq. (3.3). Whereas the condition B1� a is

required to take the quasi-static magnetic field as a perturbation.

The Hamiltonian in Eq. (3.3) is time-independent and thus conserved when the quasi-static

fields (perturbations) are absent. As a result, for the unperturbed problem (B1 = E1 = 0) where the

electron oscillates in the laser field only, from Eqs. (3.2, 3.3) we can find an implicit dependence

η(τ) (we note that η increases with τ provided dη/dτ > 0):

τ =
2+a2

4H2

[
2η− a2sin(2η)

2+a2

]
+ const., (3.5)

and χ

χ =
1+a2sin2(η)

H
. (3.6)

Therefore, the frequency of unperturbed electron oscillation can be found from Eqs. (3.5, 3.6) as

ω =
2π

T
=

4H2

2+a2 , (3.7)
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where T = τ(η = π)− τ(η = 0) is the period of unperturbed electron oscillation.

Taking into account the fact that the Hamiltonian in Eq. (3.3) has similar structure to that

for electrons in colliding laser beams [77], we can conclude that, for a� 1, the unperturbed (or

weakly perturbed) χ will have characteristics of zig-zag time dependence (e.g., see Fig. 3.1). As a

result, the unperturbed electron motion will exhibit a long tail distribution of the amplitude of

m-harmonics such that high-m resonant islands overlapping and thus stochastic electron motion

is possible in the presence of perturbation, where the resonance between unperturbed electron

motion and the perturbation takes place when mω = k1/2 as seen from equation (3.3). From

Eq. (3.3), we can also claim that the strongest impact of the perturbation on H occurs for a short

period of time near the local minimum of χ (corresponding to η≈ nπ with n being an integer),

while, except these moments, the electron undergoes adiabatic motion. This is because γ and

pz in these nonadiabtic regions are approximately minimized for small H. Therefore, on one

hand, the effective mass γm is relatively small compared with that in the adiabatic region such

that acceleration of the electron due to the static fields is relatively large. On the other hand, by

analogy of the dephasing rate between the electron and laser wave, γ− pz, the phase changing

rate between the electron and quasi-static fields is pz such that small pz in the nonadiabatic

region increases the effective interaction time of the electron with the quasi-static fields. These

conclusions have been confirmed by numerically solving the Hamiltonian equations in Eq. (3.2)

for both quasi-static magnetic and electric fields. For example, in Fig. 3.1 we show the results

for a = 5, k1 = 2 and (a) B1 = 0.1 for the magnetic case and (b) E1 = 0.5 for the electric case.

From the upper panels of Fig. 3.1 and the definition of ∆η, we see that the “kicks” of Hamiltonian

occurs near η≈ nπ, where χ is locally minimized.

The condition for the onset of stochasticity for the case ω/k1� 1 can be found by using

Chirikov-like mapping [58], which describes the recurrence relations of electron Hamiltonian and

time when it passes through some fixed canonical plane. In our case, the fixed canonical plane

can be chosen as the nonadiabatic region, which corresponds to an effectively “fixed” η, provided
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Figure 3.1: Schematic view of the electron trajectories and diffusion of Hamiltonian for a = 5,
k1 = 2 and (a) B1 = 0.1 for the magnetic case and (b) E1 = 0.5 for the electric case. The
definition of ∆η is ∆η≡ η− [η/π]π.

that the Hamiltonian is a periodic function of η with a period of π. Therefore, in order to find

the Chirikov-like mapping, we should derive the changes of Hamiltonian and time between two

consecutive kicks

∆Hn ≡ Hn+1−Hn =
∫

τn+1

τn

∂H
∂τ

dτ, and ∆τn = τn+1− τn. (3.8)

However, if we assume the change of Hamiltonian due to each kick is small, |∆Hn| � Hn, then

the changes of Hamiltonian and time in Eq. (3.8) can be estimated using the unperturbed electron

trajectory Hn(η,χ). Moreover, recalling the fact that the main contribution to Hamiltonian

variation is from η≈ nπ, the integration in equation (3.8) for Hamiltonian variation can be first

transformed into the integration over η−nπ and then is computed by using expansion of integrand

in terms of η− nπ. In what follows, we will use these techniques to examine the stochastic

electron dynamics in periodic magnetic and electric fields, respectively.

34



3.2 Stochastic electron motion in laser and periodic magnetic

field

In this section, we consider the impact of a periodic magnetic field B(z)ey on the electron

dynamics in laser radiation. Taking into account the assumption of B1� a, we can keep the

leading term of ∂H/∂τ ≈ ak1B1sin(η)cos [k1(τ−η)/2]/χ. After some algebra, from Eq. (3.8)

we find

∆Hb
n = (−1)n22/3B1

(
k1Hn

a

)1/3

sin [k1(τn−nπ)/2]
∫

∞

−∞

η̃sin
(

βη̃+
1
3

η̃
3
)

dη̃, (3.9)

where η̃ = (η−nπ)/α, α = (2H2
n/k1a2)1/3 ∼ (ω/k1)

1/3� 1, β = (k1/2H2
n a)2/3(1−H2

n ). Here

we use superscript b to denote the quantities in the case of quasi-static magnetic field in this

section and e for those in electric field case discussed in next section. The fact that the integral

in Eq. (3.9) oscillates rapidly for η̃ >̃1 ensures that the nonadiabatic interaction of the electron

motion with the perturbation occurs at small region of |η−nπ| < α� 1 (|η̃|<̃1) and justifies

the extension of the integration limits to infinity. As a matter of fact, the integral in Eq. (3.9) is

related to the derivative of Airy function, Ai′(β), so we have

∆Hb
n = (−1)n+125/3

πB1

(
k1Hn

a

)1/3

Ai′(β)sin(ψn), (3.10)

where ψn ≡ k1(τn− nπ)/2 is the phase where nth “kick” occurs. As a result, for small H of

interest, we have |∆Hb
n/Hn| ≈ 4πB1β1/2|Ai′(β)|. Considering that 4πβ1/2|Ai′(β)| has a maximum

order of unity at β≈ 0.73 and decays to zero for both larger and smaller β, a sufficient condition

for the assumption |∆Hb
n |< Hn used in estimate of Eq. (3.8) is B1<̃1<̃a.

The phase interval ∆ψn = ψn+1−ψn = k1(∆τn−π)/2 between two consecutive kicks can

be found by using approximation of ∆τn by the period of unperturbed electron oscillation, where
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∆τn is defined in Eq. (3.8). As a result,

∆ψn ≡ ψn+1−ψn =
πk1(2+a2)

4H2
n+1

− k1π/2. (3.11)

The second term on the right hand side of Eq. (3.11) only affects the region of phase where chaos

occurs, which can be disregard when deriving the condition for stochasticity [56]

Kb =

∣∣∣∣ d∆ψn

dHn+1

d∆Hb
n

dψn

∣∣∣∣= 4π2B1(2+a2)aβ2|Ai′(β)|
(1−H2)2 >̃1. (3.12)

For electrons with small H� 1 (large energy), the stochastic condition in Eq. (3.12) is the same

with that for electrons in colliding laser beams [77]. Therefore, we can introduce a function

f b(β) = 4π2β2|Ai′(β)|, which increases with β for β< βb
s ≈ 1.68; reaches maximum, f b

max≈ 8.83,

at β = βb
s ; and then falls exponentially at β > βb

s (e.g., see Ref. [80]):

f b(β)≈ 2π
3/2

β
9/4exp

[
−(2/3)β3/2

]
. (3.13)

As a result, from Eq. (3.12) we find that stochastic motion is only possible for B1 > Bs, where

Bs =
1

f b
max

1
a(2+a2)

≈ 0.11
a(2+a2)

. (3.14)

The Hamiltonian corresponding to the threshold Bs is governed by βb
s

Hb
s = H(βb

s )≈ 0.48
(

k1

a

)1/2

. (3.15)

For B1� Bs stochastic acceleration becomes possible within the range of H: Hb
min < H < Hb

max,

where the lower boundary of stochasticity is due to the exponential decay of the widths of resonant

islands, whereas the upper one is because of the larger distance between the neighboring resonant

islands than their widths. Hb
max and Hb

min could be found by using asymptotic expressions of the
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function f b(β). As a result, we have

Hb
min ≈

Hb
s√

1.6+0.69ln(B1/Bs)
, Hb

max ≈ 1.5
(

B1

Bs

)3/8

Hb
s . (3.16)

From Eq. (3.4) we see that, without the quasi-static fields, the maximum electron energy

gained from laser only is γ0
max = (1+ a2 +H2

0 )/2H0 (where H0 is the initial Hamiltonian and

conserved), which can be regarded as the vacuum ponderomotive energy. However, in the presence

of magnetic field, when Hb
min < H0 < Hb

max, the stochastic electron motion can significantly

increase the maximum electron energy γb
max ≈ (1+a2)/2Hb

min for a� 1 as seen from Eq. (3.16).

Moreover, Eq. (3.16) demonstrates that γb
max, which corresponds to Hb

min, has a weak logarithmic

dependence on the ratio B1/Bs.

These results are confirmed by the numerical simulations, where the Poincaré mappings of

(H, ψ) and (γ, ψ) are shown in Fig. 3.2. Here, the data chosen for the Poincaré mappings are those

for η = nπ+π/2, which corresponds to the local maximum of γ. It illustrates that a stochastic

“sea” is bounded by the KAM invariants at both large and small H, where the boundaries of the

stochastic region in H agree with Eq. (3.16) for both B1 = 0.1 in Fig. 3.2(a) and B1 = 0.01 in

Fig. 3.2(d) (in order to have a close-up view of Hb
min, we have zoomed in the lower boundary

regions, e.g., see Fig. 3.2(c) and Fig. 3.2(f), respectively). Fig. 3.2(b) and Fig. 3.2(e) confirm that

the maximum electron energy weakly depends on B1.

3.3 Stochastic electron motion in laser and periodic electric

field

In this section, the electric motion in laser and quasi-static electric field will be considered

by using the same method in section 3.2. In order to take U(z) as a perturbation, we will focus on

small H such that χ�E1. From Eq. (3.3), we find that ∂H/∂τ=−k1E1cos [k1(τ−η)/2]×dη/dτ
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Figure 3.2: Poincaré mappings of (H,∆ψ), (γ,∆ψ) and zoomed-in view of (H,∆ψ) for B1 = 0.1
in (a-c) and B1 = 0.01 in (d-f), when the electron passes through η = nπ+π/2. a = 5, k1 = 2
and ∆ψ≡ ψ− [ψ/π]π.

and thus from Eq. (3.8) we obtain

∆He
n =−24/3

πE1

(
k1Hn

a

)2/3

Ai(β)cos(ψn), (3.17)

where Ai(β) is the Airy function, β and ψn have been defined in section 3.2. Therefore, we

have |∆He
n/Hn| ≈ 23/2πE1(k1/a)1/2β1/4|Ai(β)|, where 23/2πβ1/4|Ai(β)| has a maximum order

of unity at β≈ 0.29. As a result, if E1<̃(a/k1)
1/2, |∆He

n |< Hn if true for all H.

Taking into account the phase interval between two consecutive kicks in Eq. (3.11), the

condition for stochasticity is obtained as

Ke =
23/2π2E1(2+a2)(ak1)

1/2β7/4Ai(β)
(1−H2)7/4 >̃1. (3.18)

Therefore, if we focus on small H � 1, we can introduce a function f e(β) = 23/2π2β7/4Ai(β).

It increases with β for β < βe
s ≈ 1.34; reaches maximum f e

max ≈ 4.14 at βe
s; and then falls
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exponentially at β > βe
s (e.g., see Ref. [80]):

f e(β)≈ 21/2
π

3/2
β

3/2exp
[
−(2/3)β3/2

]
. (3.19)

As a result, from Eq. (3.18) we find that stochastic electron motion is only possible for

E1 > Es ≈
0.24

(2+a2)(ak1)1/2 , (3.20)

where the Hamiltonian corresponding to Es is given by βe
s

He
s = H(βe

s)≈ 0.454(k1/a)1/2. (3.21)

For E1� Es, efficient stochastic acceleration is possible, where the lower and upper boundaries

of stochastic region in H space are

He
min ≈

He
s√

1.8+0.62ln(E1/Es)
, He

max ≈ 2.2
(

E1

Es

)3/7

He
s . (3.22)

Therefore, we come to the similar conclusions to those in section 3.2: as along as He
min < H0 <

He
max, the stochastic motion can facilitate electron acceleration beyond the vacuum ponderomotive

energy and the maximum electron energy gained from laser, γe
max = (1+a2)/2He

min, has a weak

dependence on E1/Es.

Numerical simulations are performed to check these analytic results. In Fig. 3.3 we show

the Poincaré mappings of (H, ψ) and (γ, ψ) for a = 5, k1 = 2 and E1 = 0.1. The boundaries of the

stochastic region in H agree with Eq. (3.22), where the lower boundary is the same order with that

for the magnetic case in Fig. 3.2. From Eqs. (3.20, 3.21) we see Es ≈ 2.8×10−3 and He
s ≈ 0.29

for a = 5 and k1 = 2. These two quantities are confirmed by the simulations, which show that for

E1 slightly larger than Es, stochasticity occurs only in a narrow region in the vicinity of He
s .
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Figure 3.3: Poincaré mappings of (a) (H,∆ψ) and (b) (γ,∆ψ) for a = 5, k1 = 2 and E1 = 0.1
when η = nπ+π/2.

3.4 conclusion

In conclusion, we investigated the electron dynamics in laser radiation and quasi-static

periodic magnetic and electric fields by using a novel Hamiltonian method, where the Hamiltonian

is time-independent when the quasi-static fields are absent. We find that the periodic fields play

a similar role to that of a counter-propagating laser wave, which can stochastically change

the new Hamiltonian and thus enable net energy transfer between the electron and laser wave.

The stochastic electron motion occurs when the amplitudes of quasi-static fields exceed some

thresholds. We find that the maximum electron energy gained under stochastic acceleration,

which is associated with the lower boundary of the stochastic region in Hamiltonian space,

weakly depends on the amplitude of quasi-static fields. However, decreasing the wavenumber of

quasi-static fields will largely increase the maximum electron energy.

For the case of the periodic magnetic field, the assumption of B1 � a is necessary to

validate these analyses, whereas for the electric case it requires E1� χ and thus E1� 1/H as

seen from Eq. (3.3). In both cases, we mainly focus on a small H region, which is reasonable

provided that the intense laser will push the electron moving with it and thus H = γ− pz is small.

Although the physical orientations of these two periodic fields are different, the physical pictures
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of stochastic electron motion for these two cases are similar: the Hamiltonian is “periodically

kicked” by the perturbative field when χ = γ+ pz is locally minimized. Except for these short

periods of time, the impact of perturbative field is small and the electron motion is adiabatic.

Numerical simulations have been conducted to integrate the Hamiltonian equations. The

results are presented in the Poincaré mappings, which are in a very good agreement with the

findings from our analytic theory. It shows that the lower (upper) boundary of the stochastic

region in Hamiltonian (energy) space has a logarithmic dependence on the amplitude of the

perturbative field.

The work presented in this chapter is a reprint of the material as it appears in Stochastic

electron acceleration in relativistic laser pulse and stationary periodic electric and magnetic fields

in Physics of Plasmas 26, 113112, by Y. Zhang and S. Krasheninnikov, 2019. The dissertation

author was the primary investigator and author of this paper.

41



Chapter 4

Stochastic electron acceleration in laser

and confining quasi-static electric and

magnetic fields

The mechanisms of electron heating to obtain high energy have been suggested and

studied analytically, numerically, and experimentally over many years. Many of these works

(see e.g. Refs. [10, 11, 15, 18, 21, 22, 25, 29, 82, 83, 84, 85, 86, 87, 88, 89, 90]) reveal that

the presence of self-generated or externally applied QEM fields could significantly increase the

electron energy gained from the laser well beyond the ponderomotive scaling [91]. Furthermore,

the available experimental data (e.g., see Refs. [7, 20, 36, 92, 93] and the references therein) also

support these conclusions.

However, the mechanism(-s) of such synergistic effects is still under debate. In Ref. [21],

the synergy of the linearly polarized laser radiation propagating in the z-direction with only the

y-component of the vector potential, static electric field (in the y-direction) and magnetic field (in

the x-direction), was attributed to the betatron resonance. However, in Ref. [22], it was shown

that the synergy persists for arbitrary orientation of the laser vector potential and the static electric
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field, while the synergistic effect of the laser and static electric field is due to the “parametric

amplification”. In Ref. [15], it was shown that the synergistic effects, causing electron heating

beyond the ponderomotive scaling, are also present in the case where electrostatic potential,

U , depends on the z-coordinate (the direction of laser beam propagation). In Ref. [25], it was

demonstrated that in the case of a V-shape electrostatic potential, U = E0z, the electron dynamics

can be described by a Chirikov-like map [58] and a strong electron heating is due to an onset of

stochasticity which is determined by a particular relationship between normalized laser vector

potential and E0. Later on, the synergy between laser radiation and electrostatic potential U(z)

was also reported in Refs. [86, 88, 89]. In Refs. [23, 94], it was shown that an onset of stochastic

electron motion can also be triggered by the synergy of laser radiation and the constant magnetic

field perpendicular to the laser propagation direction. The impact of a longitudinal decelerating

electric field on electron acceleration in the laser and transverse electric field was investigated in

Ref. [13] where the decelerating electric field helps with maintaining high-amplitude betatron

oscillations. Moreover, the generation of strong spontaneous longitudinal magnetic field in the

laser-plasma interaction [18, 95] has made the resonant acceleration of electrons, which requires

a matching condition [11, 96, 97] between the electron gyro-frequency and laser frequency,

possible.

Although starting from different considerations, the maximum electron energy has been

estimated as a function of the parameters of the laser radiation and QEM fields through simplified

analyses and particle-in-cell (PIC) simulations (e.g., see Refs. [10, 11, 13, 22, 25]) , the identifi-

cation of the synergistic mechanism(-s) is poorly understood due to the strong nonlinearity of the

relativistic electron motion in these fields.

Recently, it was shown that the electron dynamics can be described by the 3/2 dimensional

(3/2D) Hamiltonian approach for a homogeneous magnetic field and linearly polarized laser plane

wave [9]. This approach can be extended to the cases of arbitrarily polarized laser radiation

depending only on the phase variable (vpt− z)/λ and arbitrary QEM fields in the directions both
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along and across to the laser propagation direction. Here λ is the laser pulse wavelength; vp ≥ c

is the phase velocity; t and z are, respectively, the time and coordinate along the laser propagating

direction. This method can greatly simplified the analysis of electron dynamics benefiting from

the fundamental results of previous studies on regular and stochastic motion in Hamiltonian

systems (see e.g. Refs. [56, 57] and the references therein) and thus will be used in this chapter.

In contrast to chapter 3, the electron motions will be confined within the potential wells

of the QEM fields and thus we call them as confining QEM fields. As a result, the QEM fields

cannot be taken as perturbations as in chapter 3. However, we will show that the laser wave can

play the role of a perturbation in analysis of the electron dynamics if we consider relativistic

electrons (electron energy above the ponderomotive scaling). Therefore, our new Hamiltonian

will be the total electron energy in the QEM fields, which is conserved without the laser radiation.

We will show that, in the presence of QEM fields, an onset of stochasticity can be accounted for

the electron acceleration in laser-plasma interaction.

The role of the static fields in this mechanism is to reduce the longitudinal dephasing rate

γ− pz/mec between the electron and laser beam such that the electron could stay in phase with the

laser and effectively exchange energy with laser, instead of directly transferring substantial energy

to the electron. Here γ is the relativistic factor and pz and me are the electron momentum along

laser propagation direction and mass, respectively. The smallest dephasing rate is corresponding to

the strongest interaction between the electron and laser wave which is also called the nonadiabatic

interaction or “collisions” in the rest of this chapter.

In the rest of this chapter, we will use again the standard dimensionless variables. For

the sake of simplicity, we will use plane wave of laser radiation which has been justified by

the numerical simulations (e.g. Ref. [12]) where the laser field in the ion channel has a planar

structure with superluminal phase velocity. As a result, the laser can be described by ~̃A =

Ãx(t− z/vp)~ex + Ãy(t− z/vp)~ey, where Ãx and Ãy are used to distinguish the laser polarizations

and vp here denotes the dimensionless laser phase velocity normalized by c.
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For all the cases, we start with general Hamiltonian for arbitrarily polarized laser with

superluminal phase velocity and QEM fields but the impacts of the electric and magnetic fields are

discussed separately. The rest of this chapter is organized as follows. In section 4.1 we examine

the electron dynamics in the transverse QEM fields and laser radiation. Section 4.2 will study

the role of the longitudinal electric field for general power form of U(z) ∝ ku|z|p, where p = 1

was studied in Refs. [25, 26]. However, we will show that the electron dynamics for p > 1 is

quite different from that for p = 1. In section 4.3, the electron motion in transverse electric but

longitudinal magnetic fields will be discussed. The results will discussed and summarized in

section 4.4.

4.1 Electron in transverse electric and magnetic fields

In this section, we consider electron motion in the QEM fields, both of which are across

to the laser propagation direction. These fields have been found in the ion channels, where the

charge separation is balanced by a transverse gradient of the ponderomotive pressure of the laser

beam. An electron injected into the channel would be accelerated in the forward direction by the

fields of the laser beam, where the QEM fields play an important role in the electron acceleration

via low harmonic resonance between electron betatron oscillation frequency and laser frequency

(e.g., see Refs. [21, 22]). However, here we will consider different acceleration mechanism of

electrons due to an onset of stochastic motion.

Without loosing the physics, we assume that the quasi-static electric fields is in the

y-direction while the magnetic field as a function of y-coordinate is in the x-direction, i.e.,

~A = ~̃A−~eyt∂U(y)/∂y+~ezAB(y). (4.1)

Notice that Estat = ∇U in order to denote an attractive electrostatic potential well.

Unlike chapters 2 and 3, here we derive the new Hamiltonian from the equations of motion
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of relativistic electrons
dPα

dt
=

dAα

dt
−

∂Aβ

∂xα

vβ, (4.2)

dγ

dt
=

∂Aβ

∂t
vβ, (4.3)

where Pα = γdxα/dt ≡ γvα and γ2 = 1+~P2. From Eqs. (4.2, 4.3), one can find

d(Px− Ãx)

dt
= 0→ Px = Ãx + P̄x, (4.4)

d
(
Py− Ãy

)
dt

=−∂U(y)
∂y
− ∂AB(y)

∂y
vz, (4.5)

d (Pz−AB)

dt
=−∂Ãx

∂z
vx−

∂Ãy

∂z
vy =

1
vp

∂Ãx

∂t
vx +

1
vp

∂Ãy

∂t
vy, (4.6)

d(γ+U)

dt
=

∂Ãx

∂t
vx +

∂Ãy

∂t
vy, (4.7)

where P̄x = Px− Ãx
∣∣
t=0. From Eqs. (4.6, 4.7), we arrive to the constant of motion

γ− vpPz +W B
p (y) =C⊥ ≡

{
γ− vpPz +W B

p (y)
}

t=0 , (4.8)

where W B
p (y)≡U(y)+ vpAB(y). Combining Eqs. (4.1, 4.8), we can obtain

Pz =
vp
(
W B

p −C⊥
)

v2
p−1

+
σ

v2
p−1

√(
W B

p −C⊥
)2

+
(
v2

p−1
)

P2
⊥,y, (4.9)

where σ =±1 and

P2
⊥,y = 1+

(
P̄x + Ãx

)2
+
(

p̃y + Ãy
)2
, (4.10)

with p̃y ≡ Py− Ãy. Noticing that Eqs. (4.8, 4.9) yield σ

√(
W B

p −C⊥
)2

+
(
v2

p−1
)

P2
⊥,y = vpγ−

Pz > 0, we find that σ in Eq. (4.9) should be taken positive (σ =+1). Introducing the variable
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ξ1 = t− z/vp, we have
dξ1

dt
= 1− Pz

vpγ
. (4.11)

Then from Eqs. (4.3, 4.5) we find

d p̃y

dξ1
=

[
−∂U(y)

∂y
− ∂AB(y)

∂y
Pz

γ

]
vpγ

vpγ−Pz
=−

vpγ

vpγ−Pz

∂W B
p (y)
∂y

+ vp
∂AB(y)

∂y
, (4.12)

dy
dξ1

=
vp(p̃y + Ãy)

vpγ−Pz
. (4.13)

Substitute Eqs. (4.8, 4.9) into (4.12, 4.13), we arrive to the Hamiltonian equations

dP̃y

dξ1
=−∂H p

y

∂y
,

dy
dξ1

=
∂H p

y

∂p̃y
, (4.14)

where

H p
y (p̃y,y,ξ1) =

vp

v2
p−1

{√(
W B

p −C⊥
)2

+
(
v2

p−1
)

P2
⊥,y +WU

p −C⊥

}
, (4.15)

WU
p = vpU(y)+AB(y) and P2

⊥,y is given by equation (4.10) with Ã(...) = Ã(...)(ξ1). Noticing that

WU
p −W B

p = (vp−1)W (−) and WU
p +W B

p = (vp +1)W (+) where W (±) ≡U±AB, we find that at

vp = 1 the Hamiltonian in Eq. (4.15) becomes

Hy =
1
2

{
1+
(
P̄x + Ãx

)2
+
(

p̃y + Ãy
)2

C⊥−W (+)(y)
+W (−)(y)+C⊥

}
= γ+U = E, (4.16)

where E is the total electron energy.

4.1.1 Stochastic electron motion in laser and quasi-static fields

The Hamiltonians in Eq. (4.15) and (4.16) are valid for arbitrary U(y) and AB(y). However,

to study the electron motion, in the following, we specify U = κuy2/2 and AB = κby2/2 where κu
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and κb are constants denoting, respectively, the electric and magnetic fields strength, like in the

ion channel [21] (the dimensionless parameter κu for self-generated electric field is dependent on

the ion density in the channel, κu = ω2
pe/ω2, where ωpe =

√
4πn0e2/me is the plasma frequency).

The nonadiabatic region corresponds to the minimum of the dephasing rate γ− pz =

C⊥−W B
p (y)+(vp−1)pz, which indicates that the presence of the static fields could enhance the

electron-laser interaction when W B
p (y) approaches C⊥ if κu + vpκb > 0 while the superluminal

phase velocity of laser radiation, vp > 1, would reduce it [27, 28]. For simplicity, in what follows,

we will consider the luminal case (vp = 1) in Eq. (4.16). Then in order to have strong electron laser

interactions, we would consider κu +κb > 0 and Eq. (4.16) indicates that such strong interaction

occurs at small denominator of Hamiltonian, C⊥−W (+)(y) = γ− pz. For relativistic electrons

with energy E�W (−)(ymax,min)+C⊥ ∼ (κu−κb +1)C⊥, where ymax,min ≈±
√

2C⊥/(κu +κb)

correspond to the nonadiabatic regions, the impact of the W (−)(y) is negligible in the nonadiabatic

region. As a result, the electric and magnetic fields play a similar role in the electron dynamics

and we can ignore the magnetic field, taking κu +κb as the “effective” electric coefficient. In the

rest of this section we would take κu > 0 and κb = 0.

First we consider electron trajectory without the impact of laser radiation so that the

electron energy is conserved. From Eq. (4.16), we see that the electron motion is bounded

between ymax,min ≈±
√

2C⊥κ
−1
u and we find

p̃y =−
√

2EC⊥ sinθ, y =
√

2C⊥κ
−1
u cosθ, dθ/dξ =

√
EκuC−1

⊥ sin−2
θ, (4.17)

where the angle θ goes clockwise direction (see Fig. 4.1) with θ = 0 (θ = π) corresponding to

ymax (ymin). Here ξ = t− z for vp = 1. The last expression in Eq. (4.17) reads

ζ≡ ξ−ξn =
C⊥ (2θ− sin2θ)

4
√

Eκu
, (4.18)

where ξ2n is the time of the nth passage of the electron through ymax. Substituting θ = 2π in the
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Figure 4.1: Schematic view of the ultra-relativistic electron trajectory in the transverse electric
field for C⊥ = 1, κu = 0.01 and E = 50.

above expression provides the unperturbed electron frequency over closed orbit

Ω =
2
√

Eκu

C⊥
. (4.19)

Eq. (4.19) could also be derived from the calculation of the action, I, of the electron from

Eq. (4.17), where I =
∮

p̃ydy/2π =C⊥κ
−1/2
u E1/2 and thus Ω = ∂E/∂I.

However, from Eq. (4.16) we find that an impact of laser radiation on electron trajectory

could be largely ignored (with exception rather narrow regions in the vicinity of θ = 0 and θ = π,

where p̃y approaches zero) only for the energies

E > Epond = a2
0/2C⊥, (4.20)

where Epond in our case could be considered as a ponderomotive energy scaling. For such electron

energy, the unperturbed electron orbit in Eq. (4.20) is significantly stretched along p̃y, where
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its dynamics is to some extent similar to that of oscillating particles in a “square well” [56] in

the sense that it moves freely in the adiabatic region and gets “kicked” within the nonadiabatic

regions (ymax,min). It follows that the zigzag-like dependence of y on the time ξ and “step-shape”

of p̃y would have harmonics with long tail distribution of the amplitude (the amplitude of the

nth harmonic is approximately to an ≈ 1/n for the particle in the square well). As a result, the

resonance of electron frequency Ω with laser frequency (which is unity in our normalization)

occurs at nΩ = 1 with n ≥ 1 being an integer number. The resonant islands could be largely

broadened such that their overlapping, which causes stochastic electron heating, is possible.

Thus, the requirement Ω≤ 1 sets the limit for efficient electron-laser interactions since at Ω > 1

an impact of laser field becomes adiabatic. As a result, an absolute maximum energy where

electron can be heated up via interactions with the laser radiation and the transverse electric field

is considered as

Eabs
max =C2

⊥/4κu. (4.21)

From Eqs. (4.20, 4.21), we find that in order to accelerate electrons beyond the ponderomotive

scaling, we should have

ε≡
√

2a0κ
1/2
u C−3/2

⊥ � 1. (4.22)

This parameter ε was also introduced in Ref. [22] for the parametric amplification of laser-drive

electron acceleration with ε∼ 1, and in Ref. [29] as result of time-average theory for ε<̃1 . Then

from Eqs. (4.20-4.22) we have Eabs
max = Epondε−2 and thus, in what follows, we would use Eabs

max to

scale the electron energies.

The energy variation of the electron, ∆E =
∫

∂H
∂ξ

dξ, in the vicinity of the nonadiabatic

region ymax for the polarization of ~̃A = a0 sin(ξ)~ey and ~̃A = a0 sin(ξ)~ex is given, respectively, by

Ey(ξ)−Ey(ξmax) =
∫

ξ

ξmax

a0(a0 sinξ+ p̃y)cosξ

C⊥−U(y)
dξ, (4.23)
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and

Ex(ξ)−Ex(ξmax) =
∫

ξ

ξmax

a2
0 sinξcosξ

C⊥−U(y)
dξ. (4.24)

We consider the case Ω� 1 and thus electron heating is due to the overlapping of high-n

resonances (nΩ = 1). Then the electron energy changes during relatively short time of strong

interactions of electron with laser radiation in the vicinity of y = ymax and y = ymin. We assume

that the electron energy variation during such collisions, ∆E, is small |∆E| � E such that the

unperturbed electron trajectories in Eq. (4.17) can be applied to assess the electron energy change

between two consecutive collisions in Eqs. (4.23, 4.24). As a result, we have

∆Ex =
a2

0
2
√

Eκu
sin(2ξ j)

∫
π/2

−π/2
cos
[

2Ω
−1
(

θ− sin2θ

2

)]
dθ, (4.25)

∆Ey = a0
√

2C⊥/κu sinξ j

∫
π/2

−π/2
sinθsin

[
Ω
−1
(

θ− sin2θ

2

)]
dθ+∆Ex, (4.26)

where ξ j is the time of previous collision in the vicinity of ymin.

Under the condition of Ω� 1, we notice the fact that |θ| � 1 mostly contributes to the

integrals in equations (4.25, 4.26). This enables the Taylor expansion of the terms in the brackets

as θ− sin(2θ)/2 = 2θ3/3. Moreover, the integral limits can be extended to infinity such that the

integrals in Eqs. (4.25, 4.26) are degenerated to the Airy function Ai(x) and its first derivative

Ai′(x) at zero, and after some algebra we obtain

∆Ex = 21/33−1/6
Γ(1/3)

(
Eabs

max

)4/3
ε

2E−1/3 sin(2ξ2n), (4.27)

∆Ey = 24/331/6
Γ(2/3)

(
Eabs

max

)2/3
εE1/3 sin(ξ j)+∆Ex, (4.28)

where Γ(x) is the gamma function. Then condition of |∆E| � E requires that

E� Eabs
maxε

3/2 = Epondε
−1/2. (4.29)
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Therefore, our analysis is only valid for the electron with energy of ε3/2� E/Eabs
max� 1 under

the condition of ε� 1. For electron with energy smaller than that in Eq. (4.29), the change of the

electron orbit due to the electron laser interaction is large and our estimate in Eqs. (4.27, 4.28)

using the unperturbed electron orbit is not accurate. However, from the numerical simulations we

find that the electrons with energy E < Eabs
maxε3/2 could still undergo stochastic acceleration. Here

we are interested in the maximum electron energy gain and thus we consider electrons satisfying

Eq. (4.29). One important result drawn from condition (4.29) is that the first term on the right

hand side of Eq. (4.28) is dominated over the second one such that

∆Ey ≈ 24/331/6
Γ(2/3)

(
Eabs

max

)2/3
εE1/3 sin(ξ j)� ∆Ex. (4.30)

By using the same procedure or considering symmetry of this system, we can show that

the energy variation in the vicinity of ymin is also given by expressions (4.27, 4.30) except a “-”

sign in front for ∆Ey as the work done by the laser depends on the direction of p̃y. Therefore,

we can ignore the difference between ymax and ymin and obtain the following mappings from

Eqs. (4.19, 4.27, 4.30) as

Π
x(y)
n+1 = Π

x(y)
n +Qx(y) sinψ

x(y)
n ,ψ

x(y)
n+1 = ψ

x(y)
n +Π

αx(y)
n+1 , (4.31)

where Πx
n = (2π)−8/3(En/Eabs

max)
4/3, ψx

n = 2ξn, Qx = 2−1/33−7/6Γ(1/3)π−8/3ε2, αx =−3/8 and

Π
y
n = (π)−4/3(En/Eabs

max)
2/3, ψ

y
n = ξn, Qy = (−1)n27/33−5/6Γ(2/3)π−4/3ε, αy = −3/4 are the

quantities corresponding to different polarizations. The mappings in Eq. (4.31) are rather similar

to the “Chirikov standard Map” [58] and it can be easily shown that they are symplectic and thus

conserve the phase volume.

To see the stochasticity boundary, the relation Kx(y) =
∣∣∣dψ

x(y)
n+1/dψ

x(y)
n −1

∣∣∣≥ 1 should be
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satisfied [23, 56], which yields

Kx = kx

(
Eabs

maxE−1
)11/6

ε
2 > 1, and Ky = ky

(
Eabs

maxE−1
)7/6

ε > 1, (4.32)

where kx = 21/33−1/6πΓ(1/3) and ky = 21/331/6πΓ(2/3) are the numerical factors order of

unity. The satisfaction of relation in Eq. (4.32) leads to the mixing in phase space and gives

the stochasticity criterion as a function of the electron energy E, laser field amplitude a0 and

the electric field strength κu, where we have disregarded the region of phase ψ in which chaos

appears. It follows that for both polarizations there exits upper limit of the stochastic heating

energy as

Ex
max ≈ Eabs

maxε
12/11 = Epondε

−10/11, and Ey
max ≈ Eabs

maxε
6/7 = Epondε

−8/7, (4.33)

We see that the maximum stochastic energy in Eq. (4.33) are smaller than Eabs
max but they are above

the ponderomotive scaling under the condition of ε� 1. Also it shows that Ey
max� Ex

max and thus

the electrons can gain more energy in the case where the laser electric field along the quasi-static

electric field than that across to it. This is not surprising because the electron transverse velocity

anti-parallel to the laser electric field is larger in the former case and thus if we choose large P̄x in

the latter this difference can be eliminated. Moreover, Eq. (4.33) indicates that the upper energy

boundary is relaxed for weak electric field.

4.1.2 Results of numerical simulations

In order to confirm the analyses, we have numerically solved the Hamiltonian equations

in Eq. (4.14) for different parameters of laser radiation and electric field. Note that the upper limit

of the stochastic energy would be larger for smaller electric field strength, which is not surprising

since the weaker electric field allows the electron to stay in the nonadiabatic region for longer time
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Figure 4.2: Electron motion in the transverse electric field for C⊥ = 1, κu = 0.01, y-polarized
laser amplitude a0 = 1 and initial energy E = 13.

such that it could gain more energy from the laser wave. Moreover, a weak electric field should

be employed to have ε� 1 since the stochastic heating occurs at high harmonic resonances

Ω = ε
√

E/Epond =
√

E/Eabs
max� 1 and we are interested in electron energy accelerated beyond

the ponderomotive scaling (E > Epond ). For electrons with large energy such that Ω ∼ 1, the

strong interaction of electron with laser pulse could take place along the whole electron orbit

in Fig. 4.1 (|θ| ∼ 1 ) and the analytical results in Eqs. (4.27-4.33) are not accurate and thus the

stochastic heating is hardly distinguished. For example, Fig. 4.2 (which looks like Fig. 10 in Ref.

[12]) shows the electron dynamics for C⊥ = 1, κu = 0.01, y-polarized laser with amplitude a0 = 1

(thus ε∼ 0.1) and initial energy E = 13. For these parameters, Ω∼ 1 for large electron energy

E ∼ 25 where the electron wanders near the boundary of stochasticity and its dynamics is complex.

Therefore, in order to check the result in Eq.(4.33) which only holds for Ω� 1 and thus only

|θ|� 1 contributes to the electron energy variation, we requires Ωmax =
√

Ex
max/Eabs

max≈ ε1/2� 1.

Here we take κu ≤ 10−4, a0 ∼ 1 and C⊥ = 1 such that ε∼ 0.01.

On the other hand, the laser polarization is of great importance for the electron dynamics
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since the electron motion is more stochastic for laser polarized along the quasi-static electric field

than that for laser across to the electric field. Taking into account that Ωx
max≈ ε6/11 <Ω

y
max≈ ε3/7,

the latter case is preferable to distinguish the stochastic heating. Therefore, we will present only

the numerical results for the laser polarization of ~̃A = a0 sin(ξ)~ex. All the simulations are set

to C⊥ = 1. In contrast to the low harmonic resonance [29], where “preheated” electrons are

required to obtain high energy well beyond the ponderomotive scaling due to the existence of

the threshold-type dependence of the final energy gain on ε, the stochastic motion can accelerate

electrons from very low energy even though our analysis validate only for E > Epond .

The Poincaré mappings in numerical simulations are formed in the following way: it’s on

2D energy E and laser phase ∆ξ (0 < ∆ξ < π) space where ∆ξ≡ ξn−mπ with m≡ [ξn/π]. En

and ξn are picked when electron passes through ymax,min. In Fig. 4.3 we have shown the numerical

results of the maximum stochastic energy of electrons, in unit of Eabs
max, picking from the Poincaré

mappings as a function of the parameter ε in the logarithmic diagram as well as their fitting by the

linear polynomial. The blue squares correspond to the data of κu = 10−4 and varying a0 while

the red diamonds are for a0 = 8 and varying κu. As we can see, the numerical simulations agree

well with the analytic results in Eq. (4.33).

The inaccuracy in the fitting reflects the difficulty to determine the maximum stochastic

energy from the mappings. This is because, when the stochastic parameter K closes to unity [23],

“the structure of the phase space becomes complicated where the fraction of stable components of

the motion plays an important role”. Fig. 4.4 has displayed the Poincaré mapping of electron for

a0 = 8 and κu = 5×10−5 as an example. The large excursion at high energy is the well-known

phenomenon at the boundary of stochasticity. In the simulations, the energy below the large

excursion in the transverse case has been taken as the maximum stochastic energy.

The stability island in the Poincaré mapping can be studied as following. The stationary
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Figure 4.3: The maximum stochastic energy Ex
max/Eabs

max versus ε of electrons for the laser
polarized across to the transverse electric field in the logarithmic diagram and its fittings by a
linear polynomial (the blue squares are for κu = 10−4 and varying a0, whereas the red diamonds
are for a0 = 8 and different κu).

points in the phase space are determined according to Eq. (4.31) by the solutions of

Qx sinψ
x
0 = 0,(Πx

0)
−3/8 = 2πN, (4.34)

where N is integer. As a result, ψx
0 = (2n+1)π (∆ξ = π/2) and ψx

0 = 2nπ (∆ξ = 0 or ∆ξ = π) are

stationary points. The stability of these stationary points are determined by the eigenvalues, λ1,2,

of the Jacobian of the map [23] in the neighborhood of ψx
0 and Πx

0 ∂Πx
n+1/∂Πx

n ∂Πx
n+1/∂ψx

n

∂ψx
n+1/∂Πx

n ∂ψx
n+1/∂ψx

n


 x

y

= λ1,2

 x

y

 . (4.35)

where the stability condition requires that λ1,2 < 1. As a result, we have

|2−3/8(Πx
0)
−11/8Qx cosψ

x
0|< 2, (4.36)
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Figure 4.4: Poincaré mapping of electrons in the transverse electric field with κu = 5×10−5,
laser polarized across to the electric field with a0 = 8 and C⊥ = 1.

which shows that, ψx
0 = (2n+1)π (∆ξ = π/2) are always unstable stationary points and the points

of ψx
0 = 2nπ (∆ξ = 0 or ∆ξ = π) are stable for

E > Ex
max, (4.37)

where a factor of order of unity has been omitted. Therefore, the stability island is present only

for electron energy above the completely stochastic region as shown in Fig. 4.4.

Fig. 4.5 has shown the evolution of electron trajectories and energy. As one can see, it

agrees with the analytic results including the electron oscillating frequency, electron trajectories

(zig-zag shape of y and step-shape of p̃y) which could have long tail distribution of Fourier

spectrum, and energy “kicks” for highly stochastic motion, etc.

We see that the variation of electron energy occurs primarily within a certain time interval

much smaller than its characteristic periods. The energy change mainly occurs around ymax and

ymin where |θ| � 1 corresponds to the energy jump. Except for these time moments of “kick”,
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Figure 4.5: Electron motion for C⊥ = 1, a0 = 5 and κu = 10−4. To make them readable, the
canonical coordinates have been shrunk by some factors to illustrate their shapes.

the electron motion experiences oscillations in the adiabatic region.

To confirm the role of superluminal phase velocity, numerical simulation for the same

parameters with Fig. 4.4 but vp = 1.001 is exhibited in Fig. 4.6. Compared with Fig. 4.4, it

demonstrates that the superluminal phase velocity indeed weakens the stochastic acceleration by

reducing the maximum stochastic energy.

The effect of magnetic field has been discussed before, where κu+κb acts as the “effective”

strength of the electrostatic potential for the same dependence of U and AB on the coordinate y.

Therefore, we could conclude that: if κb > 0, the magnetic field would weaken the stochastic

electron motion by increasing the “effective” electric strength; if κb < 0 but |κb| < κu, it will

enhance it; while the stochasticity no longer exists when κu +κb < 0. This has been verified by

the numerical simulations.
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Figure 4.6: Poincaré mapping of electrons for the same parameters with Fig. 4.4 but vp = 1.001.

4.2 Electron in longitudinal electric and transverse magnetic

fields

In this section, we will study the stochastic electric motion in the quasi-static longitudinal

electric and transverse magnetic fields. The longitudinal electric field can be formed inside the pre-

plasma in order to balance the increased electron pressure due to laser heating [15, 98, 99], within

which electrons can be stochastically accelerated. The mechanism underlying the stochastic

electron motion has been studied by using the simplified V -shape of the electrostatic potential

[25, 26]. It showed that the electron can be stochastically accelerated to infinite energy for

“infinite potential well” (the potential well is deep enough that the electron inside such potential

well can never escape) when the laser strength exceeds the electric field. However, the actual

shape of the potential well [15, 98] inside the pre-formed plasma may be different from the

V -shape considered in [25, 26] and thus more realistic form of U(z) should be investigated. In

the following, we will consider U(z) = ku|z|p (where p = 1 is for the V -shape of U) and show
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that the electron dynamics for p > 1 is quite different from that for p = 1. Moreover, we include

a transverse quasi-static magnetic field, which also depends only on the z-coordinate and is in the

y-direction. As a result, the vector potential including all the QEM fields can be

~A = ~̃A−~ezt∂U(z)/∂z+~eyAB(z). (4.38)

Then, from Eqs. (4.2, 4.3) we can obtain again Eq. (4.4) as well as

Py− Ãy−AB = P̄y ≡
(
Py− Ãy−AB

)
t=0 , (4.39)

dPz

dt
=−∂U(z)

∂z
− ∂AB(z)

∂z
vy−

∂Ãx

∂z
vx−

∂Ãy

∂z
vy, (4.40)

d(γ+U)

dt
=

∂Ãx

∂t
vx +

∂Ãy

∂t
vy. (4.41)

We introduce variables δ = γ−Pz, ξ = t− z and z̃ = z, and thus

Ã(...) (ξ, z̃) = Ã(...)

(
ξ+

(
1− 1

vp

)
z̃
)
. (4.42)

Then from Eqs. (4.4,4.39-4.41) and using the chain rule we obtain

dδ

dξ
=

1
2δ

∂

∂z̃
P2
⊥,z +

∂U
∂z̃

, (4.43)

where

P2
⊥,z = 1+

(
P̄x + Ãx(ξ, z̃)

)2
+
(
P̄y + Ãy(ξ, z̃)+AB(z̃)

)2
. (4.44)

Applying the expression of δ to the expressions of Pz and γ, we obtain

Pz =
P2
⊥,z
2δ
− δ

2
, and

dz̃
dξ

=
Pz

δ
=

P2
⊥,z

2δ2 −
1
2
, (4.45)
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Observing Eqs.(4.43, 4.45) we arrive to the following Hamiltonian equations

dz̃
dξ

=−∂H p
z

∂δ
and

dδ

dξ
=

∂H p
z

∂z̃
, (4.46)

where

H p
z (z̃,δ,ξ) =

1
2

{
P2
⊥,z
δ

+δ

}
+U(z̃). (4.47)

Notice that the superluminal phase velocity appears only in the vector potential in Eq.(4.42),

which depends not only on ξ but also on z̃ due to an impact of vp−1 > 0. In the following, we will

specify the electrostatic potential of electric field as U(z) = ku|z|p, where p = 1 was considered

in Refs. [25, 26]. We will first consider AB = 0 and the effect of the quasi-static magnetic field

will be discussed separately.

4.2.1 Electron motion in laser and longitudinal electric field only

Here we consider electron motion in the laser and longitudinal electric field only. As

a result, the laser polarization in Eq. (4.47) is not important so that the use of ~̃A = a0 sin(ξ−

(1−1/vp)z̃)~ex will be applied in the following and for the sake of simplicity, we shall assume

P̄x = P̄y = 0.

From Eq. (4.47) we see that the strongest electron interaction with the laser locates at small

δ = γ−Pz when the electron passes through the bottom of the electrostatic potential well z̃ = 0.

Therefore, whereas the transverse electric field reduces the electron dephasing rate from laser

directly when it departures from the bottom of the electrostatic potential well, the longitudinal

electric field seems to only confine the electrons such that they could enter the nonadiabatic region

multiple times.

By using the same method as in section 4.1, the energy exchange between two consecutive
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collisions between the electron and the laser wave is given by

∆Ez =
∫

ξn+1

ξn

dHz

dξ
dξ =

∫
ξn+1

ξn

a2
0 sin [2ξ+(1−1/vp)z̃]

2δ
dξ, (4.48)

where ξ = ξn is the time of nth passage of the electron through the nonadiabatic region δ≈ δmin

from the negative z̃ (z) side. From Eq. (4.47) we see that z̃ can be large when relativistic electrons

oscillate in the electric field. As a result, the superluminal phase velocity vp > 1 could introduce

a fast oscillation to the integral in Eq. (4.48) and thus reduce the electron laser interactions.

Therefore, in the following we will consider the luminal case (vp = 1), where the impact of

superluminal phase velocity on the electron motion will be investigated by using the numerical

simulations.

For the action-angle variables (I,ϑ) of the unperturbed particle, from Eq. (4.47) we obtain

I =
2p

π(p+1)
E1+1/pk−1/p

u . (4.49)

Therefore, the electron oscillating frequency Ω = ∂E/∂I in the electric field reads

Ω = 2−1
πk1/p

u E−1/p. (4.50)

As a result, in order to have efficient electron-laser interactions we should have the resonances

between the electron oscillating frequency with the laser frequency, i.e., nΩ = 1 where n≥ 1 is

an integer number. Therefore, we would consider Ω≤ 1 and thus E ≥ ku for stochastic motion.

Moreover, we are interested in electron acceleration beyond the ponderomotive scaling and thus

E ≥max{ku,Epond = a2
0/2} is considered.

Noting that for p = 1, from Eq. (4.46) we have δ = δmin + ku(ξ−ξn) (δmin denotes the

local minimum of the coordinate δ at the center of the nonadiabatic region), the integral in

Eq. (4.48) could be easily estimated as shown in Refs. [25, 26]. For the general case of p > 1,
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analyzing Eq. (4.46) we know that dz̃/dξ� 1 and dδ/dξ� 1 in the vicinity of (δ = δmin, z̃ = 0).

As a result, the electron will leave the vicinity of (δmin, z̃ = 0) and reach (δmin, z̃max) in an

extremely short time period, where z̃max ≈ pE1/pk−1/p
u . Therefore, the electron trajectory in the

nonadiabatic region δ<̃1 can be largely described by δ ≈ δmin + pkuz̃p−1
max (ξ−ξn) and z̃ ≈ z̃max

(notice that δ ≈ δmin + pkuz̃p−1
max (ξ− ξn) is consistent with the exact solution of p = 1). This

argument has been confirmed by the numerical simulations (e.g., see Fig. 4.9). This situation is

not surprising since the relativistic electron has speed of vz ≈ c around δmin and thus moves fast

toward z̃max, where it is significantly decelerated.

The condition of δ ∼ 1 corresponds to ξ− ξn ∼ p−1k−1/p
u E1/p−1 ≡ ζ f , which can be

seen as the boundary of the nonadiabatic region. As we can see, for p > 1, ζ f � 1 and thus the

variation of the numerator in Eq. (4.48) can be negligible. As a result, we find

∆Ez = a2
0 sin2ξn

∫
ζ f

0

1

pk1/p
u E1−1/pζ+δmin

dζ =
a2

0Λsin2ξn

pk1/p
u E1−1/p

, (4.51)

where Λ ∼ ln(E). We see that Eq. (4.43) is consistent with the result for p = 1 with a slight

difference of the coefficient [25, 26].

Eqs. (4.50) and (4.51) form the following symplectic Chirikov-like mapping

Πn+1 = Πn +Qsinψn, ψn+1 = ψn +Π
1/(2p−1)
n+1 , (4.52)

where Πn = 82p−1k1/p−2
u E2−1/p

n , ψn = 2ξn and Q = (2p− 1)82p−1k−2
u Λa2

0/p2. Therefore, an

onset of stochasticity requires

K = 8p−2k−2/p
u Λa2

0E2(1−p)/p ≥ 1. (4.53)
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We can see that for p > 1, an upper boundary of the stochastic energy exits as

EL
max ∝ k−1/(p−1)

u ap/(p−1)
0 , (4.54)

which is quite different from the p = 1 case where there is no energy limit under the stochastic

condition a0 > ku [25, 26]. Like in the case of transverse electric field, higher energy boundary

can be achieved at smaller ku. The resonant condition of Ω < 1 (E > ku) now requires a0 > ku

while electron stochastic acceleration above the ponderomotive scaling requires ap−2
0 ku < 1.

Therefore, we are interested in the region of ku < min{a0,a
2−p
0 }.

4.2.2 Impact of transverse quasi-static magnetic field

Here we consider the impact of quasi-static magnetic field AB(z). As a result, from

Eq. (4.47) we see that the laser polarization becomes important. For the laser polarized along the

magnetic field (x-direction), the stochastic electron motion would always be suppressed as shown

in the following. By analyzing Eq. (4.47) with magnetic field, we find that the electron will have

a different unperturbed orbit δB(z̃)> δ(z̃) in the nonadiabatic region, where δB(z̃) and δ(z̃) are,

respectively, the quantities with and without the quasi-static magnetic field for the same electron

energy E. Then the energy variation in Eq. (4.48) for the laser wave polarized in x-direction has

the form of

∆Ez =
∫

ξn+1

ξn

dHz

dξ
dξ =

∫
ξn+1

ξn

a2
0 sin2ξ

2δB
dξ. (4.55)

As we can see, the integrand in Eq.(4.55) is smaller than that in the expression (4.48) no matter

what form of the magnetic field is. On the other hand, dδB/dξ > dδ/dξ such that δB grows

faster out of the nonadiabatic region, i.e., δB<̃1, than that for AB = 0, which indicates that the

contributing integral region in Eq. (4.55) is smaller than that in (4.48). As a result, we can

conclude that the energy change in Eq. (4.55) is smaller than that in Eq. (4.48) and thus the

stochastic acceleration is weakened with the presence of AB(z) when the laser polarized along the
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magnetic field.

For the case where laser polarized across to the quasi-static magnetic field, the situation is

more complex. This is because the energy variation also contains, apart from the integral in Eq.

(4.55),

∆E(2)
z =

∫
ξn+1

ξn

a0AB cosξ

2δB
dξ. (4.56)

The enlarged electron momentum, Py = AB + Ãy, due to AB along the laser electric field makes

it possible to gain more energy from the laser radiation, which, during one collision, is the

combination of the integrals in Eq. (4.55) and (4.56). Assuming that the effect of the magnetic

field is finite such that the electron still gets most acceleration in the vicinity of z̃max and δB<̃1,

then if AB (z̃m) is small such that the contribution to the electron energy variation from Eq. (4.56)

is smaller than that from Eq. (4.55) and thus it is negligible, the stochasticity could be decreased

like the case where the laser polarizes along the magnetic field. However, if the magnetic field

is strong enough, i.e., AB(z̃m) > a0, the electron energy change is then mainly determined by

Eq. (4.56) and the stochastic motion could be enhanced. The study in Ref. [23] is an asymptotic

limit of this case. The numerical simulations have been performed which agrees with these

results.

4.2.3 Results of numerical simulations

We performed numerical simulations to integrate the Hamiltonian equations in Eq. (4.46)

for different parameters of laser radiation and electric field. As shown in Eq. (4.54), the upper

limit of the stochastic energy would be large for small electric field strength. Specifically, electric

field coefficient satisfying ku<̃min{a0,a
2−p
0 } could cause strong stochastic electron acceleration

beyond the ponderomotive scaling. In the simulations we specify the static electric field as

U = kuz̃2/2 and thus consider ku < min{a0,a
2−p
0 }= min{a0,1}. Although smaller ku can lead

to larger stochastic electron energy, ku ∼ 0.1 would be used in the simulations for time saving
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Figure 4.7: The maximum stochastic energy EL
max versus a2

0k−1
u of electrons in the longitudinal

electric field described by U = kuz̃2/2 in the logarithmic diagram and its fitting by a linear
polynomial (the blue squares are for ku = 0.5 and varying a0, whereas the red diamonds are for
a0 = 1 and different ku).

consideration, which is sufficient to check the results. Moreover, the laser polarization for

AB(z) = 0 is not important so we would take ~̃A = a0 sin(ξ)~ex.

The Poincaré mappings in the same way with section 4.1 will be used to exhibit the

numerical results: it’s on 2D energy E and laser phase ∆ξ (0 < ∆ξ < π), where En and ξn are

picked when electron passes through the nonadiabatic region z̃ = 0 from the negative z. In

Fig. 4.7 we have shown the maximum stochastic energy EL
max versus a2

0k−1
u of electrons in the

longitudinal electric field described by U = kuz̃2/2 in the logarithmic diagram and its fitting by a

linear polynomial (the blue squares are for ku = 0.5 and varying a0 whereas the red diamonds are

for a0 = 1 and different ku). As we can see, the numerical simulations agree with the analytic

results in Eq. (4.54).

Fig. 4.8 shows the Poincaré mapping of electron for a0 = 1 and ku = 0.5 as an example.

As we can see, it exhibits a series of stability islands not occupied by the electron trajectories.
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Figure 4.8: Poincaré mapping of electrons in the longitudinal electric field with ku = 0.5 and
a0 = 1.

Their physics can be studied by examining the mapping in Eq. (4.52), where the stationary points

in the phase space are determined by the solutions of

Qsinψ0 = 0, Π
1/3
0 = 2πN, (4.57)

Therefore we have ψ0 = 0 or ψ0 = π and Π0 = 83k−3/2
u E3/2 = (2πN)3. Again, the stability of

these stationary points are determined by the eigenvalues of the Jacobian of the map, which

requires that

|2+3−1
Π
−2/3
0 Qcosψ0|< 2. (4.58)

Therefore the stationary points at ψ0 = 2nπ (n is integer) is always unstable while for ψ0 =

(2n+1)π the stability requires Π
−2/3
0 Q < 12, which corresponds to

E > Λa2
0/2ku. (4.59)
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Figure 4.9: Electron motion for a0 = 5 and ku = 0.1. To make them readable, the canonical
coordinates have been shrunk by some factors to illustrate their shapes.

It indicates that larger stability islands occurs at higher electron energy and ψ0 = (2n+ 1)π

(∆ξ = π/2) as shown in Fig. 4.8.

In Fig. 4.9 we show the evolution of electron trajectories and energy. As one can see, it

agrees with the analytic results, where the electron trajectories will exhibit a long tail distribution

of the Fourier spectrum. The nonadiabatic interaction of electrons with the laser radiation occurs

at a short time period near the local minimum of δ, where electrons can fly from −z̃max to z̃max.

As a result, the electron energy variation mainly comes from δ� 1 and z̃≈±z̃max. Moreover,

we see that the electron motion in the longitudinal electric field as shown in Fig. 4.9 experiences

relatively smaller oscillations in the adiabatic region compared with that in the transverse electric

field as shown in Fig. 4.5. This is because the energy variation inversely depends on the dephasing

rate, where, in the transverse case, the dephasing rate γ− pz =C⊥−U is always smaller than C⊥

(order of unity) such that even |θ| ∼ 1 region could cause variation of the electron energy, while,

in the longitudinal case, the dephasing rate γ− pz = δ can be much larger than unity (see Fig. 4.9)
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Figure 4.10: Poincaré mapping of electrons for the same parameters with Fig. 4.8 but vp = 1.01.

such that the energy variation is much smaller.

Fig. 4.10 shows the numerical results for the same parameters with Fig. 4.8 but vp = 1.01 to

investigate the impact of the superluminal phase velocity. Compared with Fig. 4.8, it demonstrates

that the superluminal phase velocity indeed weakens the stochastic acceleration, which agrees with

the analyses. However, in contrast to the transverse electric field case, the impact of superluminal

phase velocity on stochastic electron acceleration is relatively small. This agrees with the analyses,

where the superluminal phase velocity significantly reduces the dephasing rate for electrons in

the transverse field via γ−Pz =C⊥−U(y)+(vp−1)Pz and thus the electron interaction with the

laser radiation, whereas in the longitudinal electric field case, it only introduces some modest

oscillations in Eq. (4.48).
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4.3 Electron in transverse electric and longitudinal magnetic

fields

In this section, we will investigate the impact of a self-generated or externally applied

longitudinal magnetic field on the electron dynamics studied in section 4.1. The problem of

a free electron interacting with a laser propagating along a static homogeneous magnetic field

has been treated before by several different authors [11, 96, 100, 101, 102, 103, 104]. It was

shown that a matching condition between the electron gyro-frequency and the laser frequency

can significantly facilitate the electron acceleration [11, 96]. Such matching condition usually

requires a strong magnetic field (for example, for a laser pulse with wavelength λ = 1µm, the

matching condition for an initially rest electron requires 10kT magnetic field), which implies

that the potential for significant electron cyclotron resonance absorption is rather limited even

though a pre-acceleration of electron or longitudinal electric field can relax the requirement [11].

However, the presence of the longitudinal magnetic field may significantly change the electron

dynamics in the transverse electric field and thus should not be neglected. This will be studied

in this section. Two cases will be considered: one is for a strong magnetic field such that the

electron gyro-frequency in the magnetic field and laser frequency are approximately matched so

that the electron dynamics will be dominated by the resonant acceleration due to the magnetic

field, which will be modulated by the transverse electric field. The second case is for a weak

magnetic field so that electrons will still undergo stochastic acceleration like in the transverse

electric field only.

We assume that both the electrostatic potential, U(y), and magnetic vector potential,

AB(y), describing, respectively, the transverse electric and longitudinal magnetic fields, depend

only on the coordinate y, while an arbitrarily polarized laser wave is denoted by the vector

potential ~̃A = Ãx(ξ)~ex + Ãy(ξ)~ey with Ãx(ξ) and Ãy(ξ) being arbitrary functions of the variable
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ξ≡ t− z/vp. As a result, the total QEM fields can be described by the vector potential

~A = ~̃A−~eyt∂U(y)/∂y+~exAB(y), (4.60)

where ~Estat. ≡ ∇U to denote an attractive potential well. Then, from Eqs. (4.2, 4.3), it is easy to

show that there are two integrals of electron motion

P̄x ≡ Px−
(
Ãx +AB

)
, C⊥ ≡ γ− vpPz +U(y), (4.61)

where Px,z are the (x,z)-components of electric momentum. Introducing the variable p̃y = Py− Ãy,

after some algebra similar to those in section 4.1, we obtain the Hamiltonian equations

d p̃y

dξ
=−∂H

∂y
,

dy
dξ

=
∂H
∂p̃y

, (4.62)

where

H(p̃y,y,ξ) =
vp

vp2−1

{√
(U−C⊥)

2 +(vp2−1)P2
⊥+ vpU−C⊥

vp

}
≡ γ+U = E, (4.63)

and

P2
⊥ = 1+

(
P̄x + Ãx +AB

)2
+
(

p̃y + Ãy
)2
. (4.64)

For the luminal phase velocity vp→ 1, the Hamiltonian in Eq. (4.63) becomes

H =
1
2

{
P2
⊥

C⊥−U(y)
+U(y)+C⊥

}
= E = Pz +C⊥, (4.65)

As we can see, the longitudinal magnetic field doesn’t affect the dephasing rate between

the electron and the laser radiation. Therefore, the strongest interaction between the electron and

the laser also occurs at local minimum of γ−Pz =C⊥−U(y)+(vp−1)Pz. This demonstrates that
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the location of the nonadiabatic interaction is determined by the quasi-static electric field, where

the electron laser interaction is enhanced when U approaches C⊥. Whereas the magnetic field has

nothing to do with the determination of the nonadiabatic regions, provided that the gyro-motion

of the electron in the magnetic field is isotropic in the transverse directions. Moreover, the

superluminal phase velocity of laser radiation vp > 1 will reduce the electron interaction with the

laser radiation. Therefore, for simplicity, in the following, we consider the luminal case, vp = 1,

as well as P̄x = 0.

To specify static transverse electric and longitudinal magnetic fields, we take U = κy2/2

and AB = B0y where κ and B0 are some constants (we take κ > 0 such that the electric field

will force the electron towards the axis). This is equivalent to the setup of constant longitudinal

magnetic field and electric field with linear dependence on the transverse coordinate. This choice

of electric field is widely used in the ion channels, while the constant longitudinal magnetic

field was used to study the resonantly matching acceleration (e.g., see Refs. [11, 97]). Taking

into account the dephasing rate is positive, γ−Pz =C⊥−U(y)> 0, such choice of electrostatic

potential guarantees that C⊥ > 0. Moreover, we will use linearly polarized planar laser wave, i.e.,

either ~̃A = a0 sin(ξ)~ey or ~̃A = a0 sin(ξ)~ex where a0 is the normalized amplitude of laser radiation.

We again consider first the electron trajectories neglecting an impact of the laser field,

where the Hamiltonian in Eq. (4.65 ) is conserved. From Eq. (4.62) we find

y =
√

2EC⊥(κE +B2
0)
−1 cosθ, p̃y =−

√
2EC⊥ sinθ, (4.66)

where the angle θ is determined by

dθ

dξ
=

(κE +B2
0)

3/2

(B2
0 +κEsin2

θ)C⊥
. (4.67)

Note that the unperturbed electron trajectory and thus θ is similar to that in Fig. 4.1 for B0 = 0.
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Integrating Eq. (4.67) one can find

ξ =
C⊥

(κE +B2
0)

3/2

[
B2

0θ+
2θ− sin(2θ)

4
κE
]
+ const.. (4.68)

It follows that the period of unperturbed electron motion is T = ξ(θ = 2π)−ξ(θ = 0) and thus

the oscillating frequency, Ω = 2π/T , reads

Ω =
(κE +B2

0)
3/2

C⊥

(
B2

0 +
κE
2

)−1

, (4.69)

which can also be obtained from Ω = ∂E/∂I, where I =
∮

p̃ydy/2π = EC⊥(κE +B2
0)
−1/2 is the

action of electron oscillation. However, an impact of laser wave on electron trajectory could

be largely ignored, from Eq. (4.65), only for the energies E > Epond = a2
0/2C⊥, where Epond is

considered as the ponderomotive energy scaling.

Recalling that according to our normalization convention, where the frequency Ω is

normalized to the laser frequency, we conclude that there are two candidate mechanisms for

efficient electron acceleration: One is the low harmonic resonance of the electron frequency

Ω with the laser frequency [11, 97], nΩ = 1 (where n>̃1 is the integer number); while the

second is the resonance broadening resulting in the overlapping of the resonances for n� 1 and

thus causing stochastic electron heating. However, no matter which mechanism is active, the

requirement of Ω≤ 1 will limit the electron acceleration considering that at Ω > 1, an impact of

laser field becomes adiabatic. From Eq. (4.69) one can see that the inequality Ω > 1 requires B0,

E or both of them are large. Especially, for

B0 >C⊥, (4.70)
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Ω > 1 is true for all E, whereas for

E > Eabs
max =C2

⊥/4κ, (4.71)

Ω> 1 for all B0. Therefore, Eabs
max could be considered as an absolute maximum energy that an elec-

tron can be gained via interaction with laser wave, and the small parameter ε≡
√

Epond/Eabs
max =

√
2a0κ1/2C−3/2

⊥ < 1 in Eq. (4.22) should be considered for electron being accelerated beyond the

ponderomotive scaling.

From Eqs. (4.62, 4.65), the electron energy variations, E(ξ) =
∫

ξ (∂H/∂ξ)dξ, due to an

impact of the laser radiation are

Ey(ξ)−Ey(ξmax) =

ξ∫
ξmax

a0(a0 sinξ+ p̃y)cosξ

C⊥−U(y)
dξ, (4.72)

and

Ex(ξ)−Ex(ξmax) =

ξ∫
ξmax

a0 [a0 sinξ+AB(y)]cosξ

C⊥−U(y)
dξ, (4.73)

for ~̃A = a0 sin(ξ)~ey and ~̃A = a0 sin(ξ)~ex, respectively. In the following we will examine the

electron dynamics in the aforementioned two regimes.

4.3.1 Low harmonics resonant acceleration

We first examine the electron dynamics for low-n resonance. If κ = 0, the resonant

(matching) condition is given by B0 = C⊥, which, independent with electron energy, usually

requires a strong longitudinal magnetic field for C⊥ ∼ 1 (e.g., for laser wavelength of λ = 1µm,

the matching condition is satisfied for B0 ∼ 10kT ). Fortunately, the pre-acceleration of electron

in the direction of laser propagating (C⊥ < 1) could relax this limitation [11]. However, in the

presence of quasi-static electric field, the acceleration of electron will lead to the departure of
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electron from the matching condition as seen from Eq. (4.69). If the electron is accelerated

κE� B2
0, the further acceleration of the electron will be terminated. Therefore, to maximize the

efficiency of electron acceleration, it is important that the frequency Ω = 1/n is dominated by the

magnetic field and we will consider the case of B2
0� κE even for the possible maximum electron

energy. As a result, we have Ω≈ B0/C⊥, and thus the initial matching condition remains still

great importance.

For the condition of Ω∼ 1, the electron laser interaction could be effective along the whole

electron orbit for E > Epond (the nonadibatic regions are not localized). Using the expansion of

eizsinθ =
∞

∑
m=−∞

Jm(z)eimθ, (4.74)

where J−m(z) = (−1)mJm(z) is the m-th Bessel function of the first kind [16], we obtain the

energy variation in Eqs. (4.72, 4.73) as following:

∆Ey ≈
πa0(EC⊥)

1/2

21/2B0
∑
m

Jm=(Ω−1
B ±1)/2(ρ)sinξ j +

πa2
0

2B0
∑
m

Jm=Ω
−1
B
(2ρ)sin(2ξ j), (4.75)

∆Ex ≈
πa0(EC⊥)

1/2

21/2B0
∑
m

Jm=(Ω−1
B ±1)/2(ρ)cosξ j +

πa2
0

4B0
∑
m

Jm=Ω
−1
B
(2ρ)sin(2ξ j), (4.76)

where

ρ = (4ΩE)
−1� 1, ΩE =

(κE +B2
0)

3/2

C⊥κE
� 1, ΩB =

(κE +B2
0)

3/2

C⊥B2
0

∼ 1. (4.77)

Considering the property of Bessel function as ρ→ 0, the efficient electron energy gain is only

possible for m = 0 (ΩB = 1 and thus C⊥ ≈ B0 for considered B2
0� κE), where the difference of

the energy change due to the laser polarization has disappeared.

From Eqs. (4.75, 4.76) we see that ∆E ∝ E1/2 and thus it will continuously increase to

infinity if the transverse electric field disappears (the exact matching condition is true for all E).

However, the presence of the transverse electric field, which induces a correction to the electron
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frequency, |∆Ω| ≈ κE/B2
0, will set an upper limit to the resonant electron energy since after

m ' 1/|∆Ω| circles of cyclotron motion the sign of the energy gain (due to sinξ j or cosξ j) in

Eqs. (4.75, 4.76) changes. Then the maximum of the electron energy for ΩB = 1 can be estimated

as

EΩB=1
max ≈

π2a2
0C⊥

23B2
0
×m2, (4.78)

Noticing that Ω depends on the electron energy, we can approximate m by using the

averaged electron energy, Ē ≈ EΩB=1
max /2, such that m ≈ B2

0/2κĒ. As a result, the maximum

electron energy obtained from Eq. (4.78) reads

EΩB=1
max ≈ (2π)2/3Eabs

maxε
2/3 = (2π)2/3Epondε

−4/3, (4.79)

It follows that, for the small parameter ε� 1, this resonant energy is smaller than Eabs
max but larger

than the ponderomotive scaling.

To confirm the energy scaling in Eq. (4.79), we numerically integrate the Hamiltonian

equations in Eqs. (4.62, 4.65), where the results are shown in Fig. 4.11. In the left, we show the

logarithmic scaling of the maximum electron energy versus ε for different B0 =C⊥, a0 and κ of

initially rest electrons in the center of channel, i.e., y = 0 and p̃y = 0, which is in great agreement

with Eq. (4.79). In the middle, we show the impact of initial conditions on the evolution of

electron energy, from which we see that the initial conditions have almost no effect on the energy

gain but only shift the profile. The typical electron orbit in the phase space is sketched in the right

figure.

4.3.2 High-n resonances and stochastic electron acceleration

In this section, we examine the case where Ω� 1 (thus κE +B2
0�C2

⊥) and thus electron

acceleration is possible via overlapping of high-n resonances (stochastic acceleration). One main

characteristic of stochastic acceleration is that the Hamiltonian (electron energy) variation occurs
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Figure 4.11: Left: Maximum electron energy scaling of low-n resonant acceleration with initial
conditions y = 0, p̃y = 0 and different parameters of B0 =C⊥, a0, and κ; Middle: Evolution of E
for B0 =C⊥ = 0.5, a0 = 2, κ = 10−4 and different initial conditions (y, p̃y); Right: Schematic
view of the electron trajectories for B0 = C⊥ = 0.5, a0 = 2, κ = 10−4 and initial conditions
y = 0, p̃y = 0, where color bar shows the evolution of time.

only in a relatively short time compared with the electron oscillation period. From Eq. (4.65),

such nonadiabatic interaction (“kick”) takes place in the vicinity of y = ymin and y = ymax. If we

assume that the electron energy variation, ∆E, during single kick is small |∆E| � E [23], the

unperturbed electron trajectories in Eqs. (4.66, 4.67) can be applied to assess the electron energy

change between two consecutive collisions in Eqs. (4.72, 4.73) yielding

∆Ey = a0

(
2EC⊥

κE +B2
0

)1/2

sinξ j

π/2∫
−π/2

sinθsin
[

θ

ΩB
+

2θ− sin(2θ)

4ΩE

]
dθ

+
a2

0

2(κE +B2
0)

1/2 sin(2ξ j)

π/2∫
−π/2

cos
[

2θ

ΩB
+

2θ− sin(2θ)

2ΩE

]
dθ, (4.80)

and

∆Ex = a0B0
(2EC⊥)

1/2

κE +B2
0

cosξ j

π/2∫
−π/2

cosθcos
[

θ

ΩB
+

2θ− sin(2θ)

4ΩE

]
dθ

+
a2

0

2(κE +B2
0)

1/2 sin(2ξ j)

π/2∫
−π/2

cos
[

2θ

ΩB
+

2θ− sin(2θ)

2ΩE

]
dθ, (4.81)
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where ξ j is the “time” of previous “collision” .

In section 4.1, it was shown that the transverse electric filed itself leads to stochastic

electron acceleration, depending on laser polarization, up to the energies

Ey
max(B0 = 0)∼ Eabs

maxε
6/7, Ex

max(B0 = 0)∼ Eabs
maxε

12/11. (4.82)

We note that for ε� 1 both of these energies are below Eabs
max and even smaller than EΩB=1

max in

Eq. (4.79), but above the ponderomotive scaling. However, the presence of B0 will change the

electron dynamics.

Taking into account that |θ| � 1 mostly contributes to the integrals in Eqs. (4.80, 4.81)

under the condition of Ω� 1, we can use Taylor expansion of the terms in the square brackets

Ω
−1
B θ+Ω

−1
E [2θ− sin(2θ)]/4≈Ω

−1
B θ+Ω

−1
E θ

3/3, (4.83)

and the integral limit can be extended to infinity. As a result, the integrals in Eqs. (4.80, 4.81) are

degenerated to the Airy function Ai(x) and its first derivative Ai′(x), i.e.,

∆Ey ≈−2πa0

(
2EC⊥

κE +B2
0

)1/2

Ω
2/3
E sinξ jAi′ (η)+

2−1/3πa2
0Ω

1/3
E

(κE +B2
0)

1/2 sin(2ξ j)Ai
(

22/3
η

)
, (4.84)

∆Ex = 2πa0B0
(2EC⊥)

1/2

κE +B2
0

Ω
1/3
E cosξ jAi(η)+

2−1/3πa2
0Ω

1/3
E

(κE +B2
0)

1/2 sin(2ξ j)Ai
(

22/3
η

)
, (4.85)

where η ≡ Ω
1/3
E Ω

−1
B = B2

0C2/3
⊥ (κE)−4/3/(1+B2

0/κE). We note that the results in Eqs. (4.84,

4.85) recover the results presented in section 4.1 for B0 = 0. Considering the exponential decaying

property of Ai(x) and Ai′(x) for x > 1, we see that efficient electron energy gain occurs for η<̃1.

Note that efficient stochastic acceleration requires the electron frequency strongly depending on

electron energy and thus we consider the case of B2
0� κE such that Ω≈ΩE .

We first consider the case where the laser radiation polarized in the y-direction. Ignoring
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the differences induced by Ai(η), Ai′(η) and Ai(22/3η) which are in the same order, the condition

of |∆E| � E and thus E � Eabs
maxε3/2 = Epondε−1/2 as seen from Eq. (4.84) guarantees that the

first part on the right hand side (RHS) of Eq. (4.84) dominates and as a result, we obtain

∆Ey ≈−27/3
πAi′ (η)(Eabs

max)
2/3

εE1/3 sin(ξ j), (4.86)

and η ≈ (B0/C⊥)
2(4Eabs

max/E)4/3. The time interval between two consecutive kicks can be

approximated by half the unperturbed electron period

∆ξ(En+1)≡ ξn+1−ξn = π/Ω(En+1)≈ π/ΩEn+1, (4.87)

for the condition B2
0� κE. As a result, Eqs. (4.86, 4.87) can form a Chirikov-like mapping,

from which the stochastic condition reads Ky = |dξn+1/dξn−1|=
∣∣d∆ξ/dEn+1 ·d∆Ey/dξn

∣∣>̃1,

where

KB
y = ky

(
Eabs

max/E
)7/6

ε > 1, (4.88)

and ky = −24/3π2Ai′ (η) is a numerical factor. It follows that the decaying of Ai′(η) with the

increase of B0 will lead to a lower boundary for the stochastic electron energy to keep η small.

The maximum energy is reduced from that without B0 in Eq. (4.82) (e.g., see the blue filled

region in Fig. 4.12, where the red curve corresponds to KB
y = 1). If we ignore the numerical

factor order of unity, then the stochastic electron motion approximately takes place in the energy

region of (B0C−1
⊥ )

3/2
< E/4Eabs

max < ε6/7 and, therefore, for B0 > Bcri ≡C⊥ε4/7 there is no room

for stochasticity.

However, for the laser polarized in the x-direction, the first term on RHS of Eq. (4.85) is

present due to the magnetic field. As a result, this part could slightly increase the energy gain

during each kick and thus increase the maximum stochastic energy shown in Eq. (4.82) for B0 = 0.

One similar figure with Fig. 4.12 can be obtained for this case except that the approximately
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Figure 4.12: Schematic view of the electron acceleration via the overlapping of the resonances
nΩ = 1 for high-n (stochasticity in the blue filled region) for laser polarized along the static
electric field and single low-n resonance of ΩB = 1 (green bar, where the width has no meaning,
and it covers the energy 0 < E < EΩB=1

max ) for both laser polarizations. The numerical factors
order of unity for these maximum energies have been omitted.

vertical line along the maximum stochastic energy has a tiny curvature toward large E for proper

B0. For both cases, the maximum stochastic electron energies are smaller than that of the low-n

resonant energy.

In order to check these analyses, we perform numerical simulations to solve the Hamil-

tonian equations and display the electron motion in the Poincaré mappings (En, ξn), where the

quantities are picked from the center of the nonadiabatic regions as p̃y = 0. Fig. 4.13 shows the

results of electron in the laser wave polarized along the transverse electric for a0 = 1, κ = 10−5,

C⊥ = 1 and longitudinal magnetic field with B0 = 0 (left), B0 = 0.02 (middle), and B0 = 0.04

(right). From the middle figure we see that a lower stochastic energy boundary appears due to

an impact of B0, while the upper boundary remains almost unchanged compared with the case

of B0 = 0 in the left figure. However, for relatively large B0 near the critical value, the upper

boundary will be slightly decreased as shown in Fig. 4.12 and in the right plot of Fig. 4.13, where
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Figure 4.13: Poincaré mappings of electrons in the laser polarized along the transverse electric
for a0 = 1, κ = 10−5, and C⊥ = 1, where ∆ξ ≡ ξn−mπ and m ≡ [ξn/π] is the largest integer
that is smaller than ξn/π. Left: B0 = 0; Middle: B0 = 0.02; and Right: B0 = 0.04.

Figure 4.14: Poincaré mappings of electrons in the laser polarized across to the transverse
electric for a0 = 8, κ = 10−4, C⊥ = 1, and B0 = 0 (left) and B0 = 0.05 (right).

the termination of the stochasticity occurs around the critical magnetic field of Bcri ≈ 0.04 (in

the simulations, we found that B0 = 0.04 is just below the critical magnetic field and any small

increase of B0 will result in regular electron motion).

Shown in Fig. 4.14 are the results for the laser polarized along the x-direction with

the parameters of a0 = 8, κ = 10−4, B0 = 0 (left), and B0 = 0.05 (right). We see a slight

increase of the maximum stochastic energy for a proper B0. For even stronger magnetic field, the

electron Poincaré mappings are similar to those in Fig. 4.13. However, the difference between

the stochastic electron motions due to the laser polarizations could be eliminated by adding

relativistic momentum component of P̄x� 1.
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4.4 Conclusion

The dynamics of electrons in the intense laser radiation and different configurations of

QEM fields have been studied. For ultra-relativistic electrons, the laser radiation can be seen as a

perturbation and thus the new Hamiltonian, which is the total electron energy, is time-independent

without the perturbation. This property significantly simplifies the analysis of stochastic electron

motion.

The Chirikov-like mappings are derived for electrons in all the cases, where the criterion

for the onset of stochasticity is obtained. It is shown that for the linearly polarized laser radiation

in the plane wave form, there exist upper limits of the electron energies gained from the stochastic

acceleration, which will be increased by using large laser intensity but weak electric field strength.

We have found that the stochastic electron dynamics in the transverse electric field are

quite different from those in the longitudinal one. In the first place, for the transverse case, the

unperturbed electron oscillation frequency is increasing with the increase of the electron energy

such that lower harmonics resonances are achieved for electron near the boundary of stability.

It was shown that the maximum stochastic electron energy depends only on the ponderomotive

scaling and a universal small parameter ε =
√

2a0κ
1/2
u C−2/3

⊥ . The situation for electrons in the

longitudinal electric field is different, where high harmonic resonances take place at large electron

energy. Secondly, the roles played by the quasi-static electric field are different. The presence of

the transverse electrostatic potential directly decreases the dephasing rate between the electron

and laser radiation such that the strong electron laser interaction occurs when the electron climbs

the potential well. However, the strong electron interaction with laser in the longitudinal electric

field locates at the bottom of the electrostatic potential well and thus the longitudinal electric field

seems to provide only the confinement which forces the electron to enter the nonadiabatic region

multiple times. Moreover, the polarization of the laser is of great importance for electrons in the

transverse electric field but not for those in the longitudinal electric field. In the Chirikov-like

82



mappings, the stability islands also behave differently as shown in Fig. 4.4 and 4.8.

The effects of transverse magnetic fields on the electron dynamics are discussed quali-

tatively. For electrons in the transverse electric field, κu +κb plays the effective role of κu for

the same dependence of U(y) and AB(y). As a result, the quasi-static magnetic field can enhance,

weaken, or terminate the stochastic electron motion depending on the sign and magnitude of κb.

Whereas for electrons in the longitudinal electric field, the effect of the quasi-static magnetic

field depends on the laser polarization direction, where the stochasticity of electron motion is

always weakened by the magnetic field if the laser is polarized along the magnetic field, whereas,

for laser polarized across to the magnetic field, the stochastic motion can also be enhanced for

relatively large magnetic field.

However, in the presence of the longitudinal magnetic field, the electron dynamics in

the transverse electric field are more complex. Two mechanisms of electron acceleration are

examined, i.e., the stochastic acceleration when the magnetic field is weak, and the low-n resonant

acceleration for a strong magnetic field. For both cases, the maximum electron energy can be well

beyond the ponderomotive scaling for the small parameter ε. In the stochastic acceleration regime,

the presence of a weak longitudinal magnetic field would slightly reduce the maximum stochastic

energy for the electron in the laser polarized along the static electric field, whereas for the laser

across to the electric field, it can also slightly increases the maximum energy. The magnetic field

also sets a lower boundary of the stochastic electron energy such that the stochasticity will be

terminated when the lower boundary meets the upper one (magnetic field exceeds a critical value

Bcrit ∼C⊥ε4/7). In the low-n resonant acceleration regime, the efficient electron acceleration is

only possible via the first harmonic resonance of Ω≈ΩB ≈ 1. The maximum resonant energy,

regardless of the laser polarization, is above the maximum stochastic energy.

Numerical simulations directly solving the Hamiltonian equations are performed, which

confirmed all the analytic results. We should note that the stochastic acceleration requires high

harmonic resonances, Ω� 1. As a result, the electron motion in the QEM fields takes a few
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laser periods to complete one oscillation so that the stochastic acceleration will lead to a slow

electron energy growth. For large stochastic parameter K� 1, the electron acceleration in the

energy space is characterized by a slower diffusion, where the averaged energy of an ensemble of

electrons with different initial conditions has a powerful time dependence. The diffusive “kicks”

of electron energy in the simulations indicate a highly stochastic motion of the electrons.

The work presented in this chapter is a reprint of the materials as they appear in Stochastic

electron heating in the laser and quasi-static electric and magnetic fields in Physics of Plasmas

25, 123110, by Y. Zhang, S. Krasheninnikov, and A. Knyazev, 2018; and in Electron dynamics in

laser and quasi-static transverse electric and longitudinal magnetic fields in Plasma Physics and

Controlled Fusion 61, 074008, by Y. Zhang and S. Krasheninnikov, 2019. The dissertation author

was the primary investigator and author of this paper.
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Chapter 5

Summary

The main objective of this thesis is to understand the electron dynamics in the laser-

plasma interactions, paying special attention to the stochastic electron acceleration in different

configurations of laser pulses and quasi-static EM fields. This was conducted through analytical

work and numerical solution methods. More specifically, the electron dynamics in counter-

propagating laser beams, in laser radiation and periodic quasi-static EM fields, and in laser and

different confining quasi-static EM fields are investigated.

The main idea is to find the proper canonical variables so that the new Hamiltonian

describing the electron dynamics is time-independent in the absence of an appropriate perturbation.

The perturbation and thus the new Hamiltonian, as well as the canonical variables, are different

for different cases. For electrons in the counter-propagating lasers, the perturbation can be taken

as the weaker laser wave so that the new Hamiltonian is the dephasing rate between the electron

with the dominant laser. The same Hamiltonian is used for the electron in the laser and periodic

quasi-static EM fields, where the latter can be treated as the perturbations. However, for electrons

in the laser and confining quasi-static EM fields, the laser is chosen as a perturbative field for the

relativistic electrons so that the Hamiltonian is the total electron energy (the sum of the kinetic

energy and potential energy in the quasi-static electric field).
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The new Hamiltonian method can significantly simplify the analysis of electron dynamics

and thus help us clearly reveal the physics underlying the stochastic electron acceleration. In

all the cases, the Chirikov-like mappings are derived, from which the conditions for the onset

of stochastic motion are obtained. For electrons in the counter-propagating lasers and in the

laser and periodic quasi-static EM fields, the stochastic conditions require the amplitudes of the

perturbative fields to exceed some thresholds as functions of the normalized (dominant) laser

amplitude. The stochastic acceleration occurs in a region in the Hamiltonian space, where the

maximum electron energy usually corresponds to the lower boundary of the stochastic region.

However, for electrons in the laser and confining quasi-static EM fields, the stochastic conditions

set some upper limits of the electron energy, where, for the transverse electric field, such limit

depends only on a universal parameter and the amplitude of the laser wave. The analyses show

that the maximum electron energy gained from the stochastic motion can significantly exceed the

ponderomotive scaling energy of the (dominant) laser. Moreover, in all the cases, the strongest

impact of the perturbative field on the electron trajectories occurs at the small dephasing rate

between the electron and the perturbative field, which is the denominator of the new Hamiltonian.

For electrons in the counter-propagating lasers, the relative polarization directions of the

lasers are important, where the threshold for stochasticity (and the maximum energy) is smaller

(larger) for the lasers being parallel polarized than that for the lasers being polarized orthogonally.

The maximum electron kinetic energy can exceed the ponderomotive scaling when the dominant

laser is relativistic (when the lasers have comparable wavelengths), where the lower boundary

of the stochastic region in the Hamiltonian space and thus the maximum electron energy has a

weak dependence on the amplitude of the perturbative laser above the threshold for stochasticity.

It shows that the perturbative laser only stochastically changes the dephasing rate between the

electron and the dominant laser (the new Hamiltonian) and thus enable net energy exchange. The

periodic quasi-static EM fields play a similar role to that of a counter-propagating perturbative

laser wave.
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However, the confining quasi-static EM fields play a different role in the electron dynamics,

where the fields confine the electron motion and thus offer an oscillating frequency to resonate with

the laser frequency. Specifically, the transverse electrostatic potential can directly decrease the

dephasing rate between electron and laser radiation such that the strong electron laser interaction

occurs when the electron climbs the potential well, whereas the longitudinal electric field seems

to provide only the confinement which forces the electron to enter the nonadiabatic region (the

bottom of the electrostatic potential well) multiple times. Moreover, the polarization of the laser

is of great importance for the electron in the transverse electric field, where the electron can

obtain higher energy for the laser polarized along the electric field than that for the laser polarized

across to the electric field.

The impacts of the superluminal phase velocity on the stochastic electron dynamics

are qualitatively discussed, which can reduce the possible maximum electron energy. All these

analytical results are confirmed by the numerical simulations, which directly solve the Hamiltonian

equations.

87



Appendix A

Impacts of P̄x and P̄y on the stochastic

condition in colliding lasers

Here we consider the impacts of P̄x and P̄y on the stochastic condition of electrons in

colliding laser beams. Here we consider only the case of lasers with the same polarization

direction. Including P̄y 6= 0, a similar result with Eq. (2.15) could be found

Kx ≡
∣∣∣∣ d∆ψn

dHn+1

d∆Hn

dψn

∣∣∣∣= 4π2aa1
[
2(1+ P̄2

y )+a2]β2|Ai′(β)|
(1+ P̄2

y )
2 >̃1. (A.1)

It follows that the presence of P̄y only provides a factor less than unity and, therefore, will increase

the threshold of a1 (Kx ≈ 1) for triggering stochastic motion, whereas it doesn’t change the basic

features of stochastic electron dynamics. This is because P̄y simply increases the effective electron

mass.

However, an impact of P̄x on the stochastic condition is more complex providing that it not

only changes the effective electron mass but also increases the energy exchange between electron

and laser through the work done by the laser electric field in x-direction. Considering that the time

interval from η1 to η2 is different from that from η2 to next η1 for 0 < |P̄x|< a (e.g., see Fig. 2.1),

the method of Chirikov-like mapping to find the stochastic condition is not convenient, but we
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could resort to the method of island overlapping. For this purpose, the unperturbed electron

motion can be expressed by using the action-angle variables (I and θ):

I =−2P̄2 +a2

2H0
,and θ = η̂− a2sin(2η̂)

2(2P̄2 +a2)
− 4aP̄x [cos(η̂)−1]

2P̄2 +a2 , (A.2)

where η̂ = η−2nπ and the electron oscillating frequency in Eq. (2.9) can be written in terms of I

as ω(I) = (2P̄2 +a2)/2I2. Given that the electron motion is periodic with θ, we can expand the

first order correction to H in Eq. (2.5) in Fourier series:

H1 = 2a1 [asin(η)+ P̄x]sin(k1ξ)/χ = ∑
m,n

Vmn(I)ei(mθ−nk1ξ)+ c.c., (A.3)

and n =±1 as seen from Eq. (2.5). As a result, the resonance, corresponding to a constant phase

of the perturbation, occurs at ω(I) = nk1/m.

The Fourier coefficients Vmn in Eq. (A.3) are given by

Vmn =
k2

(2π)2

∫ 2π/k2

0

∫ 2π

0
H1(I,θ,ξ)e−i(mθ−nk2ξ)dθdξ. (A.4)

After some algebra, we arrive at

|Vmn|=
a
2I

e−imC
∑

h=0,±1

[
ha+2δ

0
hP̄x
]
Cm−h

[
ma2

2(2P̄2 +a2)
,

4maP̄x

2P̄2 +a2

]
, (A.5)

where

CN(α,β) =
∞

∑
q=−∞

Jq(α)JN−2q(β)iN−2q, (A.6)

is the generalized Bessel function [62, 105], C = 4aP̄x/(2P̄2 + a2), and δ
j
i is the Kronecker

symbols. Notice that similar result for Vmn was obtained in [62] by using multidimensional

Hamiltonian methods.
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The width of the island is approximated [4] as

δω = 4
∣∣∣∣2Vmn

dω

dI

∣∣∣∣1/2

, (A.7)

whereas the spacing between possibly overlapping resonances is

∆ω = |ω(Im′)−ω(Im)| ≈ ω
2/k1, (A.8)

for |m| � 1. Then the stochastic condition reads

K̄2 = a1
16m2

(2P̄2 +a2) ∑
h=0,±1

[
ha+2δ

0
hP̄x
]
Cm−h

[
ma2

2(2P̄2 +a2)
,

4maP̄x

2P̄2 +a2

]
> 1, (A.9)

where m ≡ k1/ω is the resonant harmonics, δ
j
i is the Kronecker symbols, and CN(α,β) is the

generalized Bessel function [62, 105]. Notice that similar results were obtained in [62, 60] by

using multidimensional Hamiltonian methods. For P̄x = 0, one can show that Kx ≈ K̄2.

Then, we can define K̄2 ≡ a1g(m), where g(m) shows how K̄2 varies with different m

and thus H (e.g., see Fig. A.1). As a result, the threshold of stochastic instability requires

a1 > (max{g(m)})−1. As we can see from Fig. A.1, for |P̄x|<̃a, the maximum value of g(m)

increases with the presence of P̄x and thus the threshold value obtained in Eq. (2.18) for P̄x = 0

decreases. Whereas for |P̄x| � a, the peak of g(m) decreases with increasing |P̄x|, which is

eventually smaller than that for P̄x = 0 meaning that the effect of increasing the effective electron

mass becomes dominant. Notice that there could be multiple stochastic peaks for |P̄x|<̃a and from

Eq. (A.9) the result is symmetric with respect to P̄x = 0. On the other hand, we notice that both

the lower and upper stochastic boundaries in H (g∼ 1/a1) shifts toward larger H. Therefore, the

ratio of the maximum electron kinetic energy gained from stochasticity over the ponderomotive

scaling, H0/Hx
min for k1 ∼ 1, will decrease with the presence of P̄x .

To verify the results of our analytical considerations, we integrate Eqs. (2.3, 2.5) numer-
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Figure A.1: Schematic view of g [m(H)] = K̄2/a1 versus H for different P̄x, where a = 5, k1 = 1,
and P̄y = 0.

ically and present the results in the Poincaré maps of (H, ψ) or (γ, ψ), when η = 2nπ+π/2,

where χ and thus γ = (χ+H)/2 reaches their maximum in one unperturbed electron period (here

we use P̄x,y ≥ 0). Notice that even though for P̄x = 0 the unperturbed period is ∆η = π, we use

∆η = 2π instead in all the mappings considering the general case with P̄x).

Shown in Fig. A.2 are the results for counter-propagating lasers with same polarization

directions, where the parameters are a = 5, k1 = 1, and different P̄x,y and a1. As one can see,

a stochastic “sea” is bounded by the KAM invariant [56] at Hx
min and Hx

max, which fully agree

with Eqs. (2.20, 2.21) for P̄x = P̄y = 0. As seen from Figs. A.2(a) and A.2(b), the presence of

P̄y increases the lower boundary of the stochastic region and thus decreases the energy gain

ratio. Comparing Fig. A.2(a) with Fig. A.2(c) where a1 is different, we confirm that Hx
min has a

weak dependence on a1 being above the threshold value ax
s . From Fig. A.2(c) and A.2(d), we

see that both the lower and upper boundaries of the stochastic region become lager (while the

corresponding maximum electron kinetic energy gain ratio becomes smaller) with the presence of

91



0 2 4 6
0

1

2

3

4

5

0 2 4 6

1

2

3

4

5

6

0 2 4 6

0.2

0.4

0.6

0.8

0 2 4 6
0.3

0.5

0.7

0.9

Figure A.2: Poincaré mappings of (H, ψ) at η = 2nπ+π/2 for a = 5, A1 = a1sin(τ)ex and
different a1, P̄x,y, where ∆ψ≡ ψ− [ψ/2π]×2π. (a) a1 = 0.2, P̄x = 0 and P̄y = 0; (b) a1 = 0.2,
P̄x = 0 and P̄y = 2; (c) a1 = 0.005, P̄x = 0 and P̄y = 0; (d) a1 = 0.005, P̄x = 5 and P̄y = 0.

|P̄x|> 0 , which agrees with the prediction from Fig. A.1.
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