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Aggressive technology scaling in the nano-scale regime makes chips more susceptible to fail-

ures. This causes multiple reliability challenges in the design of modern chips, including man-

ufacturing defects, wear-out, and parametric variations. By increasing the number, amount,

and hierarchy of on-chip memory blocks in emerging computing systems, the reliability of

the memory sub-system becomes an increasingly challenging design issue. The limitations

of existing resilient memory design schemes motivate us to think about new approaches con-

sidering scalability, interconnect-awareness, and cost-effectiveness as major design factors.

In this thesis, we propose different approaches to address resilient on-chip memory design

in computing systems ranging from traditional single-core processors to emerging many-core

platforms. We classify our proposed approaches in five main categories: 1) Flexible and low-

cost approaches to protect cache memories in single-core processors against permanent faults

and transient errors, 2) Scalable fault-tolerant approaches to protect last-level caches with

non-uniform cache access in chip multiprocessors, 3) Interconnect-aware cache protection

schemes in network-on-chip architectures, 4) Relaxing memory resiliency for approximate

computing applications, and 5) System-level design space exploration, analysis, and opti-

mization for redundancy-aware on-chip memory resiliency in many-core platforms. We first

propose a flexible fault-tolerant cache (FFT-Cache) architecture for SRAM-based on-chip

cache memories in single-core processors working at near-threshold voltages. Then, we ex-
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tend the technique proposed in FFT-Cache, to protect shared last-level cache (LLC) with

Non-Uniform Cache Access (NUCA) in chip multiprocessor (CMP) architectures, proposing

REMEDIATE that leverages a flexible fault remapping technique while considering the im-

plications of different remapping heuristics in the presence of cache banking, non-uniform

latency, and interconnected network. Then, we extend REMEDIATE by introducing RES-

CUE with the main goal of proposing a design trend (aggressive voltage scaling + cache

over-provisioning) that uses different fault remapping heuristics with salable implementation

for shared multi-bank LLC in CMPs to reduce power while exploring a large design space

with multiple dimensions and performing multiple sensitivity analysis. Considering multi-

bit upsets, we propose a low-cost technique to leverage embedded erasure coding (EEC) to

tackle soft errors as well as hard errors in data caches of a high-performance as well as an

embedded processor. Considering non-trivial effect of interconnection fabric in memory re-

siliency of network-on-chip (NoC) platforms, we then propose a novel fault-tolerant scheme

that leverages the interconnection network to protect the LLC cache banks against perma-

nent faults. During a LLC access to a faulty area, the network detects and corrects the

faults, returning the fault-free data to the requesting core. In another approach, we propose

CoDEC, a Co-design approach to error coding of cache and interconnect in many-core archi-

tectures to reduce the cost of error protection compared to conventional methods. Proposing

a system-wide error coding scheme, CoDEC guarantees end-to-end protection of LLC data

blocks throughout the on-chip network against errors. Observing available tradeoffs among

reliability, output fidelity, performance, and energy in emerging error-resilient applications

in approximate computing era motivates us to consider application-awareness in resilient

memory design. The key idea is exploiting the intrinsic tolerance of such applications to

some level of errors for relaxing memory guard-banding to reduce design overheads. As an

exemplar we propose Relaxed-Cache, in which we relax the definition of faulty block de-

pending on the number and location of faulty bits in a SRAM-based cache to save energy.

In this part of thesis, we aim at cross-layer characterization and optimization of on-chip

xvi



memory resiliency over the system stack. Our first contribution toward this approach is

focusing more on scalability of memory resiliency as a system-level design methodology for

scalable fault-tolerance of distributed on-chip memories in NoCs. We introduce a novel re-

liability clustering model for effective shared redundancy management toward cost-efficient

fault-tolerance of on-chip memory blocks. Each cluster represents a group of cores that have

access to shared redundancy resources for protection of their memory blocks.
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Chapter 1

Introduction

1.1 Nano Era Design Trends and Challenges

We categorize the general trends and challenges of design in the Nano era in three major

groups of Technology, Chip Design, and Application that we briefly describe in below.

1.1.1 Technology Trend

Aggressive technology scaling in Nano era coupling with environmental issues make CMOS

circuits more susceptible to various sources of failures from soft errors to hard errors [118].

Hence, there are major trends and challenges in circuit reliability with many evolving tech-

niques for dealing with them [48]. The main sources of hard faults in deep sub-micron

technology nodes include manufacturing defects, process variation, and wearout induced

failures [48].

1



1.1.2 Chip Design Trend

As semiconductor manufacturers continue to push for Chip-Multiprocessor technology in

recent platforms such as IBM cell processor [70], Intel’s 48-core IA-32 processor [72], In-

tel Larrabee many-core [140], Teraflops Research Chip [151], Single-chip Cloud Computer

(SCC) [64], Intel Xeon Phi [78], NVIDIA Tesla [97], and Tilera TILE64 processor [31], many-

core architectures are become one of the major design options of next-generation large-scale

systems. Since reliability and efficiency are challenges of large-scale system design [149], new

challenges emerge in terms of effective and reliable design of different components in recent

platforms [37]. Furthermore, since memory system constitutes a majority of the silicon in a

large-scale system, the memory subsystem has become vulnerable to a host of manufactur-

ing, environmental, and operational failure/degradation mechanisms that affect the overall

resiliency of the system. By increasing the number, amount, and hierarchy of on-chip mem-

ory blocks in emerging large interconnected many-core architectures, reliability of memory

sub-system becomes an increasingly challenging issue in the design of such platforms [69].

1.1.3 Application Trend

On the other hand, most of the applications in emerging domains such as big data, cyber

physical systems, social networks and so on are memory-intensive. Also, there exist some

class of applications such as embedded, multimedia, and Recognition, Mining and Synthesis

(RMS), are inherently resilient to some level of errors [92]. Traditional fault-tolerant ap-

proaches which try to protect the memories against all existing faults and errors, are not

efficient for such applications. Hence, techniques for effective memory protection needed to

be addressed in the design of emerging computing systems. (From this point forward, an

emerging computing system is a large-scale platform such as many-core which is running

new class of applications such as memory-intensive benchmarks.)

2



1.2 Memories and Errors

Figure 1.1 shows the typical hardware/software abstraction layers for computing systems.

Each row of Figure 1.1 describes the system abstraction layer, the memory abstraction

at that level, and typical manifestations of memory errors that can compromise system

resiliency. The last column of Figure 1.1 describes mitigation schemes in the face of mem-

ory error manifestations at that level of abstraction. Memory errors manifest themselves

in different ways across abstraction stack. For instance, an unstable memory cell at the

circuit/device level can cause a bit failure at the memory logic level, which in turn might

propagate up the abstraction stack as a faulty memory access at the architecture level, a

wrong function call or system halt at OS-level, and finally an output error or an exception

at application layer. Figure 1.1 represents a symbolic abstraction of memory errors over the

entire hardware/software system stack. Traditionally, memory resilience has been addressed

via disparate techniques at each level of design abstraction, while newer efforts attempt to

couple strategies across layers with the goal of improving system efficiency for energy, heat

dissipation, lifetime, cost, etc. Furthermore, efforts in relaxed and approximate computing

attempt to create designs that can trade off application quality for these system efficiency

goals. To understand memory faults, we can classify them by their temporal behaviors

(persistence) as well as their causes. With respect to persistence, a memory fault can be

permanent or transient. Permanent faults persist indefinitely in the system after occurrence,

while transient faults manifest for a relatively short period of time after occurrence. Fur-

thermore, causes of memory faults can be hard or soft. Hard faults are static and caused

by device failure or wear-out failure. In contrast, soft faults are dynamic and are typically

caused by the operating environment.

In general, memories suffer from different sources of unreliability that can be classified into

three main groups:
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Figure 1.1: Memory Abstractions, Errors, and Opportunities.

1. Manufacturing. Worsening manufacturing imperfections in nanoscale technologies result

in increasing variability of device and circuit-level parameters. This process variation par-

ticularly affects transistor threshold voltages through random dopant fluctuation (RDF),

increasing the likelihood of memory cells failing permanently due to insufficient noise

margins at a given supply voltage.

2. Environmental. Alpha particle radiation coming from the operating environment can cause

single event upsets (SEU). Combined with weakened noise margins from manufacturing

effects, memory cells are also becoming more susceptible to SEU, impacting their soft

error resilience [2]. Noise stemming from variations in the supply voltage and thermal

effects can also cause memory faults exhibiting dynamic and random behavior.

3. Aging and Wearout. Depending on the type of technology used, memory cells can age,

reducing their performance, data retention capability, and power consumption. Aging can
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lead to memory wearout, resulting in permanent faults.

Different memory technologies suffer from various sources of unreliability. Volatile memories

such as SRAM and DRAM mostly suffer from manufacturing defects and environmental

issues that lead to hard and soft errors, respectively. Endurance is not an issue in SRAM

and DRAM. In contrast, different nonvolatile memories (NVMs) have their own sources of

unreliability. For flash and phase change memory (PCM), wearout is the primary source of

unreliability due to limited write endurance. PCMs also suffer from hard and soft errors [162].

Other emerging NVMs such as MRAM and its newer cousin STT-RAM also suffer from hard

and soft errors. However, for these devices, wearout is not as great of a reliability threat,

because they have large write endurances similar to that of SRAM.

The design of reliable computer systems has a rich history spanning several decades: variants

of spatial, temporal, and information redundancy have been exploited to improve reliability.

Memory systems also deploy these forms of redundancy to achieve resilience across various

layers of system abstraction. Additionally, memory designers have leveraged a variety of

other memory-specific techniques.

In next section, we provide a sampling of common techniques used for reliable memory design

at the architectural level. A significant body of research exists on the design of a reliable

memory hierarchy comprising multiple levels of caches and main memory.

1.3 State-of-the-art Research Efforts

A significant amount of literature targets the memory reliability concerns due to different

aspects of vulnerability including transient errors, manufacturing defects, process variation,

wearout, and stability in near/sub-threshold operation [54]. We briefly review the prior

related work in three major categories including: Reliable and fault-tolerant cache design,
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memory reliability concerns in multi/many-core platforms, and techniques for approximate

computing on memories or application-aware memory resiliency.

Reliable and Fault-tolerant Cache/Memory design A significant body of research

exists on the design of a reliable memory hierarchy comprising multiple levels of caches and

main memory [54]. We can categorize resilient SRAM cache design efforts into three main

groups of Cell/Circuit-Level Techniques, Error Coding Techniques, and Architecture-Level

Techniques. Many of these have the common property of fault-tolerant voltage-scalable

(FTVS) design, because low voltage operation while critical for achieving power and energy

savings is the primary driver behind unreliable memories. In general, regardless of whether

the fault-tolerant design is done at the cell, circuit, coding, or architecture level, there is a

trade-off in terms of memory capacity and area. This may be due to larger memory cells,

spare or redundant cells, error correction logic, or a reduced amount of reliable memory

available for use by the application.

Fault-tolerant memory designs have often used simple techniques such as adding redundant

rows/columns to the memory array [139] or applying memory down-sizing techniques by dis-

abling a faulty row or cache line (block) [122]. Many recent architecture-level schemes deploy

more complicated redundancy or capacity downsizing techniques to improve the reliability

of cache memories. Information redundancy via error coding is also commonly used to im-

prove the reliability of memory components. Wide ranges of error detection and correction

codes (EDC and ECC, respectively) have been used [96]. Typically, EDCs are simple parity

codes, while the most common ECCs use Hamming [67] or Hsiao [73] codes. ECC is proven

as an effective mechanism for handling soft errors. For NVMs that have limited write en-

durance, various wear-leveling approaches have been proposed to mitigate aging and extend

memory lifetime. In the domain of embedded systems, design of reliable software-controlled

scratchpad memories (SPMs) has also received great attention recently, including efforts that

address the reliability of SPMs for chip-multiprocessors (E-RoC [25] and SPMVisor [27]), or
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for hybrid memories (FTSPM [110]).

Memory reliability in multi/many-cores There is a large body of previous work on

fault-tolerant design of on-chip memories and caches, mostly focused on either single bank

or multi-bank caches with uniform access latency in single-core processors [54]. However,

they face severe limitations when applied to emerging multi-core/many-core architectures

where the number of access points (cores) and memory banks are increasing, large on-chip

memories are shared and distributed via interconnected network among all cores, memory

access latencies are not unified, interconnect backbone is also erroneous and affects memory

resiliency, and cost of uniform fault-tolerance is very high [19]. Hence, most of the current

fault-tolerant schemes are not modular, scalable, and cost-efficient enough to be applied to

these architectures. Only a few efforts somehow addressed on-chip memory reliability in

CMP or NoC platforms [7, 154, 25, 5, 16].

Memory Reliability Relaxation A significant amount of work has proposed different

hardware and software techniques that trade-off reliability or application fidelity to gain

benefits in energy, performance, lifetime, or yield for applications that can tolerate some

level of error in exchange for loss of quality (e.g., RMS applications). Many studies on

approximate computing era have shown that a variety of applications have a high tolerance

to errors [51, 45, 92, 109, 95]. While most of the previous efforts on approximate computing

have focused on the computational part, there exist only a few works that have addressed

relaxing reliability in memories which mainly focused on off-chip memories [100, 135].

1.4 Motivation

In this section, we first define some general as well as introduced terminology we leverage

throughout the thesis.
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• Resiliency: The power or ability to recover from or adjust easily to a bad/unlikely

situation.

• Reliability: The ability to be relied on or depended on, as for accuracy, honesty, or

achievement.

• System Reliability: The ability of a system or component to perform its required

functions under stated conditions for a specified period of time.

• System Resiliency: The ability of a system to continue to function correctly, sometimes

in a degraded fashion, in the presence of faults, errors, or other variation.

Resilience is a measure of a system’s ability to bounce back from a failure to continue

to offer some level of performance (possibly not the original level of performance).

Design for Resiliency is a way of achieving Reliability by trading off other system metrics

like performance. The reliability issues and limitations of common schemes mentioned above

motivate us to think about new approaches that address cost-efficient resilient design of on-

chip memory in emerging multi/many-core platforms. We consider all limiting factors of

traditional and current approaches as well as emerging technology/architecture/application

requirements and challenges in design of our new approaches. Some of the key resiliency

design features that are either missed or addressed inefficiently in previous approaches, con-

sidered in design of our novel approaches and include: flexibility, scalability, interconnect-

awareness, multi-layer design, cost-efficiency, non-uniformity, redundancy-awareness, and

application-awareness.

By reviewing the previous approaches as well as current efforts and design trends, we gain

multiple important observations. We summarize the key observations as follows:

• Inefficiency of previous fault-tolerant cache/memory design approaches for emerging

applications and platforms
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• Cost-efficient resilient memory design becomes a major challenge in design of emerging

platforms

• For many application domains, it is acceptable to trade some design metrics (perfor-

mance, yield, fidelity, etc.) to increase the efficiency.

• New approaches required to provide memory resiliency in emerging computing systems

The key missed resiliency features as well as our observations mentioned above, motivates

us to approach to memory resiliency in a different way. Our key idea in this thesis is that we

propose novel approaches with the goal of Design for Memory Resiliency or Resilient Memory

Design other than traditional design for Reliability or fault-tolerance memory design. That

is, we try to address most of the key required resiliency features in our new approaches

to memory resiliency to make it more efficient and reduce the costs by considering different

design parameters such as possible design trade-offs, multi-layer design possibilities, platform

features (resources and constraints), and application features (requirements and constraints).
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1.5 Thesis Contributions

In this thesis, we make multiple contributions and propose novel approaches in different

layers of system hierarchy to address resilient memory design issues in computing systems

ranging from traditional single-core processors to emerging many-core platforms as indi-

cated in Figure 1.2. We classify our proposed approaches in five main categories: 1) Flexible

low-cost Cache Design (Chapter II), 2) Scalable Resilient Cache Design (Chapter III), 3)

Interconnect-aware resilient cache design (Chapter IV), 4) Application-aware Memory Re-

siliency (Chapter V), and 5) System-level Memory Resiliency Design Space Exploration and

Optimization (Chapter VI).

In this thesis, we make the following contributions:

• Proposing two flexible and low-cost approaches to protect cache memories in single-core
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processors against permanent and transient faults, respectively.

– FFT-Cache, a flexible cache architecture, presented to protect regular SRAM

structures against high degree of process variation, wearout induced failures, and

manufacturing defects. Furthermore, we propose a methodology to model the

collision pattern in the cache as a graph problem. Given this model, a graph

coloring scheme is employed to minimize the amount of additional redundancy.

– EEC, an embedded erasure coding approach to protect cache memories against

multi-bit upsets. The EEC scheme employs fast bit-interleaved parity coding as

error detection in combination with optimal parity-based erasure coding as error

correction over set-associative cache memories. Reserving a part of cache (e.g.,

one way) as erasure storage, EEC trades cache capacity for fast and low-cost error

correction.

• Proposing two scalable fault-tolerant approaches to protect last-level cache (LLC) with

non-uniform cache access (NUCA) in chip multiprocessors (CMPs).

– REMEDIATE to protect shared NUCA caches in tiled-based multicore plat-

forms. REMEDIATE achieves fault-tolerance through redundancy from multiple

banks to maximize the amount of fault remapping, and minimize the amount of

capacity lost in the cache when the failure rate is high.

– RESCUE extends REMEDIATE to enhance fault-tolerant voltage-scalable de-

sign of shared NUCA caches in multi/many-core core platforms. While the main

goal in REMEDIATE is to develop a remapping-based fault-tolerant scheme for

protection of shared LLC in Tile-based CMPs while operating in low voltages,

the main goal in RESCUE is to propose a design trend (aggressive voltage scal-

ing + cache over-provisioning) that uses different fault remapping heuristics with

salable implementation for shared multi-bank LLC in non-tiled-based CMPs to

reduce power while exploring a large design space with multiple dimensions and
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performing multiple sensitivity analysis.

• Proposing two interconnect-aware LLC protection schemes in many-core platforms.

– FT-LLC, NoC-based fault-tolerance of LLC in mesh-based CMPs. This approach

leverages the NoC fabric to implement a remapping-based fault-tolerant scheme

protecting the LLC cache banks against permanent faults in a scalable and ef-

ficient way with minimal overhead. In this approach, during an LLC access to

a faulty block, the components inside the network (routers) are responsible for

detecting and correcting the faults and then returning the fault-free data to the

corresponding core.

– CoDEC, a Co-design of error coding in cache and interconnect in many-cores.

CoDEC deploys a united error coding scheme that guarantees the end-to-end

protection of LLC data blocks throughout the on-chip network against both hard

and soft errors. CoDEC integrates strong multi-bit ECC in cache banks with s2s

error coding of interconnect while removing their overlapped redundancy.

• Introducing Partially-Forgetful Memory (PFM) as an application-aware Memory Re-

siliency relaxation approach.

– Relaxed-Cache as an exemplar to address memory variability and approximate

computing challenges for employing partially-forgetful SRAM caches. Relaxed

Cache lets the application programmer adjust the cache guard-banding knobs

and therefore adapt its reliability and capacity to the application’s demands.

Accordingly, the application programmer needs to identify critical memory objects

as well as major criticality and computational phases of the application.

• Proposing approaches to system-level Design Space exploration, analysis, and opti-

mization for on-chip memory resiliency.
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– System-level Memory Resiliency, We propose a system-level design method-

ology for scalable fault-tolerance of distributed on-chip memory blocks in many-

core platforms.

– Reliability Clustering, to model distribution of shared redundancy resources.

A novel approach to manage shared redundancy resources for distributed fault-

tolerance of on-chip memory components in many-cores. Each cluster represents

a group of cores that have access to shared redundancy resources for protection

of their own memory blocks which include LLC banks in our approach.
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1.6 Thesis Organization

The rest of this thesis is organized as follows. First, Chapter II presents FFT-Cache and

EEC as two flexible and low-cost approaches that trade performance for energy efficiency

and reliability, respectively. FFT-Cache is a high-defect tolerant on-chip cache architecture

that combines redundant data array elements with a permutation network for providing a

higher degree of freedom on replacement. EEC leverages embedded erasure coding to tackle

multi-bit upsets in caches. In Chapter III, we introduce RESCUE, a highly flexible fault-

tolerant and energy-efficient cache design that by reconfiguring its internal organization can

efficiently tolerate the large number of NUCA LLC failures that arise when operating in the

near-threshold region in CMP architectures. In Chapter IV, we consider the effect of intercon-

nect in design of fault-tolerant LLC in NoC-based architectures in two different approaches.

Next, in order to perform an application-aware resilient memory design, in Chapter V, we

introduce Partially-Forgetful Memory approach to propose a relaxed reliability cache design,

Relaxed-cache, that relaxes the memory guard-banding to save energy in SRAM-based cache

memories. Next, in order to perform a system-level design space exploration, in Chapter VI,

we propose a novel system-level design methodology by introducing the reliability clustering

approach to explore the effective management of shared redundancy resources for on-chip

memory protection in many-core platforms. Finally, Chapter VII presents the summary of

thesis and our directions for future work.
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Chapter 2

Flexible and Low-Cost Fault-tolerant

Cache Design

2.1 Introduction

On-chip caches are known to consume a large portion (about 30%-70%) of total processor

power [158, 164] and their size will continue to grow due to device scaling coupled with

performance requirements. Therefore, it becomes critical to manage the power and reliability

of the caches in order to reduce total power consumption while maintaining the reliability

of the entire processor system. Traditionally, voltage scaling has been used to reduce the

dynamic and the leakage power consumption of the cache. However, aggressive voltage

scaling causes process-variation-induced failures in the SRAM cells. An SRAM cell can fail

due to an access time failure, a destructive read failure or a write failure [2, 133]. Figure

1 represents the failure rate of an SRAM cell based on the operational voltage in a 90nm

technology [113]. To save power while achieving an acceptable manufacturing yield of 99.9%

for 64KB L1 and 2MB L2 caches, a minimal operational voltage must be selected. From
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Figure 1 we can see that the probability of failure for each cache array must be kept at less

than 1 out of 1000 to achieve this yield. Based on this assumption, we estimate the minimum

operational voltage for a 64KB L1 is 620 mV and for a 2MB L2 660 mV, and we are not

able to further reduce the operational voltage without incurring cell failures.

Since applications may not be tolerant to even a single bit error, typically caches must be

operated at a high Vdd to ensure a very low probability of failure, leading to high energy

consumption. However, by exploiting mechanisms that allow a cache to become inherently

resilient to a large number of cell failures, we can operate the cache at a lower Vdd and thus

gain significant energy savings. There is a large body of previous work on fault-tolerant cache

design at different layers of abstraction that we review in next section. However, most of

them are not efficient for high fault rates arising from operation in the near-threshold regime,

and these techniques incur significant overheads. To address these issues, in this chapter we

first propose an approach that aims to: 1) design a low power and flexible fault-tolerant

cache architecture that can detect and replicate SRAM faults arising from operation in the

near-threshold voltage region; 2) minimize non-functional or disabled cache area to lessen

impact on processor performance; and 3) tolerate cache faults as much as possible when the

fault rate is high or voltage is very low.

On the other hand, exponentially growing number of devices per chip along with a gradual

reduction in operating voltage lead to an increase in the effective Soft Error Rate (SER) of

circuits over the past few years [76, 53]. Additionally, it has been shown that the SRAM

arrays are the major contributor to the overall system SER (by more than 95% [56]), hence,

applying an effective technique to mitigate the errors in these components is of decisive

importance.

In previous technology nodes, a soft error caused by a single particle strike in an SRAM

array was very likely to only affect a single cell. This kind of errors are called Single Event

Upsets (SEUs) and could be corrected by a low-cost single error correction technique [53, 29].
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With smaller device geometries in nanoscale technology nodes, a single high energy particle

strike might affect several adjacent cells resulting in Multiple Bit Upsets (MBUs). Recent

experiments show that not only the ratio of MBUs to SEUs increases, but also the average

number of affected cells by an MBU incident grows [76, 103]. Therefore, an effective MBU

correction technique has to be used in memory arrays to ensure their reliability with minimum

cost.

A variety of error-correction-codes (ECC) have been proposed to protect SRAM cache mem-

ories against soft errors [43, 82, 117, 155, 132, 106, 84]. However, the majority of existing

MBU correction techniques are only able to correct a predefined number of errors per word.

The area, latency, and power overheads of these techniques exponentially grow by increasing

the MBU size. Moreover, due to high complexity and overhead of ECC encoding/decoding,

it is hard to implement such techniques in current processors with affordable cost [82, 132].

Hence, to protect caches against MBUs, it is essential to reduce the complexity and overheads

of the error protection techniques.

In this chapter, we first present Flexible Fault-Tolerant Cache (FFT-Cache) [22, 23], a cache

architecture that uses a flexible defect map to efficiently tolerate the large number of faults

when operating in the near threshold region. FFT-Cache specifies a portion of faulty cache

blocks as redundancy and remaps other faulty cache word-lines and blocks to them. This is

accomplished by using either block-level or line-level (set-level) replication in the same set or

between two or more sets. In the remainder of this chapter, we refer to every physical cache

word-line, which may contain multiple cache blocks as a line or set. FFT-Cache leverages

its flexible defect map to configure the remapping of faulty data blocks either inside the

same set or among different sets. FFT-Cache configuration is done in two phases: first

we categorize the cache lines based on degree of conflict between their blocks, and then

we use a graph coloring algorithm to optimize the faulty block remapping and reduce the

granularity of redundancy replacement. Using this approach, FFT-Cache initially attempts
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to replicate faulty blocks inside each line; and otherwise it attempts to replicate faulty blocks

among different lines. Our FFT-Cache approach significantly saves power consumption,

while incurring only a small (5%) performance degradation and a small (13%) area overhead

when operating in near-threshold voltages.

In the second part of this chapter, we propose an error protection approach for cache memo-

ries using an erasure coding technique [18]. In this approach, considering the fact that error

detection can be done at much lower cost than error correction [112], we employ interleaved

parity codes per-word to detect errors in each cache word or block. The interleaving distance

is set based on the distribution of actual MBU patterns and their respective probabilities

obtained from a detailed technology dependent analysis. For error correction, we adapt the

notion of traditional erasure coding to define an Embedded Erasure Coding (EEC) approach

that performs coding across multiple cache blocks in the same row. Therefore, it reserves a

cache way to store erasure check bits for the remaining ways. Moreover, it is implemented

in a configurable way that depending on the desired performance/reliability, the last way in

different parts (banks) of a cache can be used as erasure storage or normal data storage. We

evaluate the proposed scheme for both L1 and L2 cache of a high-performance processor and

also for the L1 cache of an embedded processor. Our simulation results for L1 and L2 caches

of the high-performance processor show that EEC detects and corrects 100 % of injected

MBUs with less than 3 % performance and 4 % energy overheads. We also compare the re-

liability and area overhead of our scheme against common 1-dimensional and 2-dimensional

error coding approaches. Our simulation results show that EEC provides higher reliability,

faster error recovery, and less area and energy overheads compared to the state-of-the-art

techniques.

In summary, three main advantages of our proposed technique over existing ones are:

• Cost-efficient and easy to implement in current processors.
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• Configurability to trade performance versus reliability by using more/less cache ways

as error correction storage.

• Much lower error recovery time compared to similar techniques.

These features make it scalable to larger caches in multicore processors and also for protecting

against permanent faults. For example, in adaptive low power systems where the voltage is

aggressively scaled to trade performance versus energy efficiency, our proposed technique is

extremely useful.

2.2 Related Work

Several fault-tolerant techniques have been proposed at multiple levels of abstraction to

improve the cache yield and/or lower the minimum achievable voltage scaling bound. In

general, we can categorize resilient SRAM cache design efforts into three main groups as we

explore blow.

2.2.1 Circuit-level Techniques

The root of most SRAM reliability problems is the cell noise margin. At low supply voltages,

noise margins are reduced, increasing susceptibility to data corruption caused by environ-

mental factors described earlier. Furthermore, variability in cell noise margins requires a

statistical approach to designing a reliable memory array and choice of minimum supply

voltage, which must be increased to maintain yield under large variations [2]. Engineers

have designed larger memory cells using more transistors and/or larger transistors to in-

crease mean noise margins and/or reduce margin variability, but these come at the cost of

reduced area efficiency and sometimes power. Besides the conventional 6T SRAM cell, sev-
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eral other designs, including 8T SRAM cell [42, 44], 10T SRAM cell [38], and 11T SRAM

cell [111] have been proposed. All of these SRAM cells improve read stability, though the

stability of the inverter pair remains unchanged. Most of these cells incur a large area over-

head that poses a significant limitation for performance and power consumption of caches.

For instance, [90] proposed a Schmidt trigger based 10T SRAM cell with inherent tolerance

towards process variation using a feedback-based mechanism. However, this SRAM cell re-

quires a 100% increase in the area and about 42% increase in the access time for low voltage

operation.

2.2.2 Error Coding Techniques

A wide range of ECC techniques have been proposed to protect memory arrays against

soft errors [112]. Single-error correction double-error detection (SECDED) is proven as an

effective mechanism for handling SEUs [43]. However, in a high-failure rate situation, simple

coding schemes like SECDED [43] are not practical because of the strict bound on the number

of tolerable faults in each protected data chunk [82]. As technology advanced, a variety of

more complex coding schemes with higher level of protection have been proposed to protect

memories against multi-bit errors [117, 46, 161, 155, 141]. Double error correction triple

error detection (DECDED), two-dimensional ECC (2D-ECC) [82], multiple-bit segmented

ECC (MS-ECC) [46], Hi-ECC [155], variable-strength ECC (VS-ECC) [4], and Memory

Mapped ECC [161] are some of the more notable schemes. Besides common codes such as

Hamming [67] and Hsiao [73], other strong codes such as BCH [155], OLSC [46], and Reed

Solomon [96] have also been used to gain strong error detection. However, ECC techniques

generally come at high cost due to significant memory storage and encoding/decoding logic

overheads [82, 132]. Despite this, ECC remains a popular method for memory resilience

due to its effectiveness against soft errors, and the lack of involvement from other layers of

abstraction. In addition, another approach to reduce memory vulnerability to soft errors is
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to use a bit-interleaved memory with SECDED to correct small-scale physically-contiguous

multi-bit errors [104, 121, 55]. However, power, area, and delay overheads grow significantly

as the interleaving factor increases beyond four, depending on the memory design [6].

Typically, ECC schemes used in caches and memory rely on codes that detect and correct

errors since the positions of the errors are not known a priori. On the other hand, Era-

sure coding is a well-known technique for correcting errors when the position of an error is

known [128]. By separating error detection from error correction in common error coding

approaches used in memory arrays, erasure codes can be leveraged to recover erroneous parts

as an alternative to common error correction technique. Some schemes inspired by erasure

coding have been recently proposed to protect cache memories against soft errors [82, 106, 84].

2.2.3 Architecture-Level Techniques

Several architectural techniques have also been proposed to improve reliability of on-chip

cache by using either redundancy or cache resizing. Earlier efforts on fault-tolerant cache

design use various cache down-sizing techniques by disabling a faulty line or block of cache.

Ozdemir et al. [122] proposed Yield-Aware cache in which they developed multiple tech-

niques that turn off either cache ways or horizontal regions of the cache which cause de-

lay violation and/or have excessive leakage. Agarwal et al. [2] proposed a fault tolerant

cache architecture in which the column multiplexers are programmed to select a non-faulty

block in the same row, if the accessed block is faulty. Similarly, PADed cache [143] uses

programmable address decoders that are programmed to select non-faulty blocks as replace-

ments of faulty blocks. Sasan et al. [138, 137] proposed a number of cache architectures in

which the error-prone part of the cache is fixed using either a separate redundancy cache or

parts of the same cache. RDC-cache [138] replicates a faulty word by another clean word

in the last way of next cache bank. Other efforts, such as In-Cache Replication (ICR) [166]
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and Multi-Copy Cache (MC2) [41], use data replication to improve reliability. Schemes such

as Replication Cache [165] and ZerehCache [10] use external spare caches. Similarly, vari-

ants of fault-grouping and fault remapping have been used to tolerate faulty cache blocks

without adding any spare elements, but by using other parts of the cache, such as GRP2

[131], RDC-Cache [138], Abella [1], Archipelago [9], and FFT-Cache [22]. Wilkerson et

al. [156] propose two schemes called Word-disable (WDIS) and Bit-fix (BFIX) that also

could fall under this category. The buddy cache [87] pairs up two non-functional blocks in a

cache line to yield one functional block. A similar idea was proposed independently in [131].

The salvage cache [86] improves on this technique by using a single non-functional block

to repair several others in the same line. However, all of these methods are not efficient in

the near-threshold region with high fault probabilities. Indeed at such a low voltage, the

cache would be effectively downgraded to just a fraction (e.g., 30%) of its original size, which

results in a large performance degradation in terms of IPC across standard benchmarks.

Some hybrid schemes combine multiple techniques mentioned earlier to minimize the costs

of memory protection. [169] minimizes area overhead through joint optimization of cell size,

redundancy, and ECC; and Ndai [119] performs circuit-architecture co-design for memory

yield improvement. More recent architectural schemes for cache resilience address newer

challenges for multi and many-core platforms, such as scalability [24, 19], variation in fault

behaviors [46], non-uniform memory access latency [24], limited shared redundancy [20],

low overhead multi-VDD support [63], and reliability-driven error protection [126].
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2.3 FFT-Cache

2.3.1 Proposed Architecture

In this section, we first describe the proposed FFT-Cache architecture that uses a Flexible

Defect Map (FDM) to efficiently tolerate SRAM failures. Next, we present the cache config-

uration that includes FDM generation and configuration stages to configure the architecture

for fault-tolerant data access.

FFT-Cache Organization

The FFT-Cache architecture has two banks of data that can be accessed concurrently, and

they include multiple cache lines, with each line including multiple blocks. FFT-Cache

achieves fault-tolerance by using a portion of the faulty cache blocks as redundancy to

tolerate other faulty cache lines and blocks. Using this approach, FFT-Cache tries to sacrifice

a minimal number of cache lines to minimize performance degradation and tolerate the

maximum amount of defects at near-threshold operating voltage. This is done by using either

block-level or line-level replication in the same set or between two sets. The information of

faulty locations is kept in a Flexible Defect Map (FDM) which is then used to configure the

faulty block remapping. To replicate the faulty subblocks in a line (called a host line), our

scheme tries to find a faulty block in the same line or in another line that has no conflict

with other blocks in the host line. We refer to such a block as a Target block. Depending

on whether the Target block is in the same line (host line) or in another line, it called Local

or Global Target block, respectively. FFT-Cache always tries to find a local target block. If

FFT-Cache cannot find a local target block, it searches for a global target block. Finally,

if it fails to find either a local or global target block, it tries to find another faulty line

(called a target line) that has no conflict with the host line. It then sacrifices the target
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line to replicate all faulty blocks of the host line. Thus, based on the earlier discussion, the

sacrificial target line/block could be one of: 1) Local Target Block, 2) Global Target Block,

or 3) Target Line. Note that a local target block can be accessed in the same cycle as the

host line, and does not require any additional access overhead. This is not true for a global

target block or a target line, for which two consecutive accesses are required if the global

target block or target line are in the same bank as the host line. In order to access the host

line and global target line/block in parallel, and to minimize the access latency overhead,

the host line and target line should be in different banks. Also, since target blocks/lines do

not store any independent data, they are considered non-functional. Therefore, the target

lines are not addressable as data lines and thus they are removed from the address scope of

the cache. This could impact performance as it reduces the effective size of the cache. A

major advantage of FFT-Cache over other fault-tolerant methods is that we minimize the

number of non-functional and target lines by initially attempting to find a local target block

to sacrifice. If a local target block is not found, FFT-Cache then attempts to find a global

target block. Finally if the first two attempts are not successful, FFT-Cache sacrifices a

different cache line as a target line, as other fault-tolerant methods do. In our fault-tolerant

cache architecture, each cache access in low power mode first accesses the FDM. Based on

the fault information of the accessed line, the target block/line may be accessed from another

bank (in case of a global target block or target line). Then based on the location of target

block/line retrieved from the FDM, one or two levels of MUXing are used to compose a

fault free block by choosing appropriate subblocks from both host and target blocks (lines).

Figure 2.1 outlines the flowchart for accesses using the FFT-Cache.

FFT-Cache Configuration

We now describe the configuration process for FFT-Cache. Initially, a raw defect map is

generated at boot time: using the cache memory Built-In Self-Test (BIST) unit, the L1
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Figure 2.1: FFT-Cache Access Flowchart.

and L2cache(s) are tested under low voltage conditions. The output of the BIST is used

to initialize the FDM. If there are multiple operating points for different combinations of

voltage, temperature and frequency, the BIST operation is repeated for each of these settings.

The obtained defect map is then modified and processed to be usable with FFT-Cache.

Updating the FDM is done at full voltage, using a simple algorithm that we explain next.

The configuration information can be stored on the hard-drive and is written to the FDM

at the next system boot-up. In addition, in order to protect the defect map and the tag

arrays, we use the well-studied 8T SRAM cell [152] that has about 30% area overhead for

these relatively small arrays in comparison with 6T SRAM cells. These 8T SRAM cells are
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able to meet the target voltage in this work for the aforementioned cache structures without

failing. An example of an FDM entry for a cache with associativity of 4 is represented in

Figure 2.2.
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Figure 2.2: Details of a row of FDM.

Each FDM entry includes multiple configuration bits, the defect map of each way (block),

status of each block and the address of the Target line. Each bit in the defect map section

represents the faulty state of a subblock. Way Status bits represent the status of each way

or block in a cache line. The status of each cache block can assume one of the following: 1)

Non-Faulty, 2) Faulty, 3) Local Target, and 4) Global. Initially the status of all blocks in the

cache is Non-faulty, representing the absence of any faulty subblocks. If a block contains at

least one faulty subblock, its status will be Faulty. A block that is used as a target block for

other blocks in a line gets the status of Local Target. A block that has a conflict with other

blocks in same set cannot be used as a local target block. It gets the status of Global and

might be used as a Global target block. We define the Max Global Block (MGB) parameter

as the maximum number of blocks in each line that can be sacrificed (set as global blocks)

for replication to achieve fault tolerance. For example, in an 8-way set associative cache, if

we set MGB=4, then in the worst case we can sacrifice (set as global block) up to 4 blocks

of each faulty line for replication. If we extend it to the whole cache, in the worst case we
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sacrifice at most half of the cache for fault-tolerance. We present the algorithms for FDM

initialization and configuration in Algorithms 1 and 2.

Algorithm 1. FDM initialization algorithm 
Input:  
 FDM: empty defect map array  
Output:  
 FDM: initialized defect map array  
  1:  // Step1: Run BIST and find faulty cache lines at a subblock level and fill defect map sections of each entry; 
  2:  for i = 1 to |FDM| do 
  3:    FDM[i].Faulty = False; 
  4:    FDM[i].SameSet = True; 
  5:    FDM[i].tLineAddr = i; 
  6:    for j = 1 to nAssoc do 
  7:      if FDM[i].block[j].nFSblocks > 0 then 
  8:      FDM[i].WayStatus[j] = Faulty; 
  9:      FDM[i].nFblocks++; 
10:     else 
11:      FDM[i].WayStatus[j] = NonFaulty; 
12:     end if 
13:      end for 
14:      if FDM[i].nFblocks > 0 then 
15:     FDM[i].Faulty = True; 
16:     end if 
17:     if FDM[i].nFblocks < MGB then 
18:     FDM[i].SameSet = False; 
19:     end if 
20:     if FDM[i].nConflicts > 1 then 
21:     FDM[i].SameSet = False; 
22:     else 
23:     if FDM[i].nConflictingBlocks <= MGB then 
24:             set the status of conflicting blocks as Global Block 
25:                group other blocks and set one of them as Target Block  
26:     else 
27:      FDM[i].SameSet = False 
28:     end if 
29:     end if 
30:  end for 
31:  return FDM;  
 

After completion of the FDM initialization algorithm, we run the FDM configuration algo-

rithm.

We use graph coloring to optimize the selection algorithm of both remote target block and

remote target line, for the Step 2 and Step 3 of the FDM configuration algorithm [85].

Graph coloring is a NP-complete problem and there are many heuristics and transformations

available to generate a feasible solution. Accordingly, we use a heuristic graph-coloring

algorithm that is a modification of the Saturation Degree Ordering (SDO) algorithm [120].
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Algorithm 2. FDM configuration algorithm 
Input:  
 FDM: initialized defect map array  
Output:  
 FDM: configured defect map array  
  1:  // Step1: Traverse the faulty rows of FDM and based on the conflicts between faulty blocks       inside 
each row, categorize the FDM entries in different groups; 
  2:  for i = 1 to |FDM| do 
  3:    FDM[i].Faulty = False; 
  4:    FDM[i].SameSet = True; 
  5:    FDM[i].tLineAddr = i; 
  6:      if FDM[i].Faulty then 
  7:      if FDM[i].nFblocks < MGB then 
  8:      FDM[i].SetStatus = Min_Faulty; 
  9:    set the status of faulty blocks to Global Block; 
10:      else 
11:       if FDM[i].nConflicts == 0 then 
12:             FDM[i].SetStatus = No_Conflict; 
13:            set the status of one of the faulty blocks to Local Target Block; 
14:       else if FDM[i].nConflicts == 1 then 
15:             FDM[i].SetStatus = Low_Conflict; 
16:            make the status of the block that has conflict with other blocks as Global Block;  
17:       else  
18:             FDM[i].SetStatus = High_Conflict; 
19:       end if 
20:      end if 
21:     end if 
22:  end for 
23:  // Step2: Assign the lines in Low_Conflict group 
24: For the lines in Low_Conflict group, run the graph coloring algorithm to find a Global Target Block for 
each line. 
25:  // Step3: Assign the lines in High_Conflict group  
26: For the lines in High_Conflict group, run the graph coloring algorithm to find a similar line from other 
bank to make it as the Global Target Line. 
31:  return FDM; 

 

We name a graph coloring problem solvable, if for a graph G we can find an integer K 0

such that the nodes of G can be colored with K colors while no edge exists between the

same colored nodes. We construct a graph based on the conflicts between lines of different

entries in the FDM. Each node in this graph represents either a Global Block (Block Node)

or a faulty entry (representing an entire line) from low conflict or high conflict groups (Line

Node) in the FDM. The edges represent a conflict between a pair of blocks or between a

block and a line. For example, two nodes connected by an edge represent two blocks, two

lines, or one block and a line that have conflict. Of course a pair of nodes connected by an

edge represents a conflict, thus it is not possible to set one of these nodes as a Remote target

block for the other one.
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We modify the above graph coloring algorithm based on the following constraints: 1) We force

the algorithm to color nodes from at least two different banks. 2) We force the algorithm to

first pick up block nodes and try to color them with line nodes of other banks. Now, we apply

the modified graph coloring algorithm to our graph to find a solution such that neighboring

nodes are not assigned the same color. Therefore, after completion of the coloring algorithm,

nodes with the same color are guaranteed to have no edges between them; implying that the

corresponding cache lines/blocks have no conflicts between them. We set all nodes with the

same color in a group and try to set one of them as a Remote Target for other nodes in the

group. As a result, if a block node has the same color as one or more set nodes in other

banks, we set it as their Remote Target Block. If a line node has the same color as one or

more line nodes in other banks, we set all of its blocks as a Remote target block for the blocks

in other lines. Since the graph coloring algorithm is run during boot time, the algorithms

overhead is amortized within the boot time overhead and is not incurred during run-time.

Based on our measurements on a machine with Intel CoreTM2 Duo 2GHz processor and

2GB memory, the overhead varies from 1 ms up to 10 ms, depending on cache configuration

and fault rate.

Figure 2.3 shows an example of the FDM configuration for a given distribution of faults in 10

sets of a 2-banked 4-way set associative cache with 4 sub-blocks in each block and MGL=1

. As shown in the figure, Set 1 is clean, without any faulty blocks. Set 2 is a member of the

min-faulty group while its faulty block is configured as a Remote Target Block for Set 9. Set

7 is another member of this group and its single faulty block is set as a Global Block. Set 3

is an example of a no-conflict group in which the first block (Way 1) is set as a Local Target

Block to be sacrificed for fault-tolerance of the other faulty blocks in the set. Set 6 is another

member of this group with one of its blocks (Way 4) set as a Local Target Block. Set 4 is a

member of the low-conflict group which one of its Blocks (Way 1) is set as a Global Block,

since it has a conflict with other blocks. The first block of Set 9 is set as Remote Target

Block for this set (Set 4). Set 5 is a member of the high conflict group with two conflicts
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between its blocks (Way 0 has conflict with Way 2 and Way 1 with Way 3). All blocks of

this set are configured as Remote Target Block for both low-conflict Sets 8 and 10.
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Figure 2.3: An example of FDM configuration and remapping for a given distribution of
faults in a 4-way set associative cache.

Architecture Details

We now present the architecture of the FFT-Cache. We begin with the architecture of a

conventional 4-way set associative cache with two banks (labeled CC) in Figure 2.4(a). Based

on the tag match results, one of the blocks from Way0 to Way3 from either Bank0 or Bank1 is

being selected. The data is transferred to/from cache arrays using multiplexers as indicated

in the figure. Figure 2.4(b) shows the architecture of the proposed FFT-Cache. Lets assume

the cache is divided into two banks, with each bank containing four ways (blocks) that

are further divided into 2 subblocks. The new modules (MUXs and FDM) added to the

conventional cache are highlighted in the figure. The additional multiplexer network would

allow the cache to compose the final fault-free line from any of the sub-blocks in any of the

cache ways in each one of cache banks, based on its FDM data. The FFT-Cache requires two

additional levels of multiplexing to compose the final fault-free line, based on either multiple

lines within a set or between two or more sets in different banks. The first multiplexing layer

(In-Cache MUXing) is added on the cache side to perform the remapping within a set. Note
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that this layer replaces the original block-level multiplexer available in set-associative caches

with multiple smaller subblock-level multiplexers. The second multiplexing layer (In-Core

MUXing) is added on the core side to perform remapping between sets in original (local)

and target (remote) banks.
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Figure 2.4: Architecture details of (a) a conventional 4-way set associative cache, (b) the
proposed FFT-Cache with FDM and 2 sub-blocks per block.

The total number of n− to− 1 subblock-level multiplexers on the cache side is: k× b where

k is the number of subblocks in a block, n is the number of ways (set associativity) and b

is the number of banks. For instance for a 2 bank, 64KB, 4-way set associative cache, with

each way with 2 subblocks, a total of 4 4-to-1 multiplexers are required on the cache side.

The size of FDM equals to the multiplication of number of cache lines by the FDM entry
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size.

Hardware Implementation

For a quantitative comparison, we synthesized the MUXing layer and output logic for FFT-

Cache as well as the multiplexer and output driver of the conventional cache (CC) using

Synopsys Design Compiler for TSMC 90nm standard cell library for both L1 and L2 caches.

The area and delay of various multiplexers (MUX2, MUX4,MUX32) are used to estimate the

overall area/delay overhead of the MUXing network in FFT-Cache and the CC in nominal

Vdd. We found that the delay of FFT-Cache output logic increased by only 5% compared

to CC output MUX network while area and power consumption are increased by only 2%

compared to a CC MUX network. Recall that the FFT-Cache architecture replaces CCs

output MUX with FFT-Cache MUXing layer and output logic; thus we expect that the

proposed mechanism will only result in a minimal increase of the cache delay (estimated at

< 5%).

2.3.2 Evaluation

This section evaluates the effectiveness of the FFT-Cache architecture in reducing power

consumption of the processor while keeping overheads as low as possible. Before presenting

the experimental results, we describe our methodology and experimental setup, and outline

the exploration space for our experiments.

Simulation Setup

Table 2.1 outlines our experimental setup for the baseline processor configuration. The

processor is configured with a 64K 4-way set associative L1 cache. The architecture was
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Table 2.1: Processor Configuration

Parameter Value

Core Alpha, 4-way issue OOO, 96-entry ROB
Load/store queue 32

L1 I/D Cache 64kB split I/D, 2 banks, 4-way assoc, 64B
lines, 2 cycles, LRU

L2 Cache 2MB, 2 banks, 8-way assoc, 128B lines, 20
cycles, LRU

Memory 300 cycles
Technology 90nm

simulated using an extensively modified version of Simplescalar 4.0 [14] using SPEC2K

benchmarks. Benchmarks were compiled with the -O4 flag using the Compaq compiler

targeting the Alpha 21264 processor. The benchmarks were fastforwarded for 3 billion in-

structions, then fully simulated for 4 billion instructions using the reference data sets. We

used CACTI6.5 [116] to evaluate area, power and delay of both L1 and L2 caches and their

related FDMs. The Synopsys standard industrial tool-chain (with TSMC 90nm technology

library) was used to evaluate the overheads of the MUXing layer components (i.e., MUXes,

comparators, MUXes selection logic, etc.). The load/store latency of 2 cycles is assumed to

be broken into actual cache access taking place in cycle 1, while the bus access takes only

a part of the next cycle. From our discussion in Section 2.3.1, the cache delay is increased

only slightly (< 5%) for nominal Vdd. However, considering the increase in logic delay due

to Vdd scaling, we conservatively assume that in the worst case, the latency of the cache

would be increased by one full cycle for L1 and two cycles for L2. These extra cycles are

considered based on our timing analysis for both muxing layer and FDM access which are

on the critical path of the cache access.

Design Space Exploration

We study the impact of various FFT-Cache configuration parameters including subblock size

and MGB on the number of target lines/blocks (non-functional cache part). In addition, we
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study the impact of cache associativity on FFT-Cache functionality. Note that since MGB

is decided by cache associativity (i.e., half of cache blocks in a line can be a global block

candidate), it makes a lot of sense to study the impact of cache associativity on the size of

non-functional cache part. For a given set of cache parameters (e.g., associativity, subblock

size, MGB, etc.), a Monte Carlo simulation with 1000 iterations is performed using our FDM

configuration algorithm described in Section 2.3.1 to identify the portion of the cache that

should be disabled while achieving a 99% yield. In other words, probability of failure of the

cache must below 0.001 when operating in low-power mode.

Figure 2.5 and Figure 2.6 present the design space exploration of FFT-Cache for L1 and

L2 caches, respectively. We present the results for different associativity (4 and 8) and

various subblock sizes (4, 8, 16 and 32) in these figures. As evident in Figures 8 and 9,

decreasing Vdd increases the size of cache non-functional part. It is notable that for very

low voltage (below 400mv), the number of global blocks decreases. Overall, the effective size

of cache (cache size non-functional part) decreases as the voltage is lowered. We can also

observe from the figure that decreasing the size of subblocks, increases the area overhead

of the FDM. Decreasing the size of subblocks also reduces the size of cache non-functional

part. Increasing MGB, increases the number of non-functional blocks only slightly while it

significantly reduces the number of non-functional lines. In fact increasing the MGB helps

the FDM configuration algorithm to find a global target block rather than sacrificing a target

line. During the process of finding the FFT-Cache minimum achievable operating voltage

(Vdd-min), we limit the size of cache non-functional part and the overhead of the FDM

table as described below. The number of target lines/blocks (i.e., the size of non-functional

cache part) determines the performance loss of FFT-Cache. To limit the performance loss

we assume the relative size of non-functional part to be less than 25% of cache size. To

minimize the implementation overhead we assume the FDM size to be less than 10% of

cache size. This assumption requires the subblock size to be 16 bits or higher (32 bits and 64

bits). Based on these assumptions we find the minimum achievable operating voltage. This
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(a)  Percentage of disabled lines and global blocks for 4-way L1 (Max global block = 1) while varying Vdd and subblock size

(b)  Percentage of disabled lines and global blocks for 8-way L1 (4b subblocks) while varying Vdd and Max global block

Figure 2.5: The effect of changing one design parameter of L1 FFT-Cache while fixing other
parameters for different Vdd values.

is shown in Fig. 8 and Fig. 9. Using FFT-Cache scheme the minimum operating voltage for

L1 and L2 caches is 375mv.

Performance Overhead

In Figure 2.7 we report the impact of FFT-Cache on processor performance when running

SPEC2K benchmarks. The relative performance degradation in terms of IPC (instruction

per cycle) is reported for a 64KB, 4-way set associative L1 FFT-Cache (Fig. 14.a) and

2MB, 8-way set associative L2 FFT-Cache (Fig. 14.b). We also report the performance

degradation when the FFT-Cache scheme is deployed simultaneously in L1 and L2 (Fig.

14.c). Furthermore, we report the breakdown of performance drop, either due to increasing

in cache access delay (from 2 to 3 cycles for L1 and 20 to 22 cycles for L2) or reduction

in cache effective size. The results are acquired for the minimum voltage configuration

(MGB=1, subblock size=16 for L1 and MGB=4, subblock size=16 for L2). On average,

performance drops by 2.2% for L1 cache and 1% for L2 cache. For L1 cache the additional
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(a)  Percentage of disabled lines and global blocks for 8-way L2 (Max global block = 4) while varying Vdd and subblock size

(b)  Percentage of disabled lines and global blocks for 8-way L2 (4b subblocks) while varying Vdd and Max global block

Figure 2.6: The effect of changing one design parameter of L2 FFT-Cache while fixing other
parameters for different Vdd values.

delay of accessing the cache is responsible for the majority of performance loss. The impact

of additional delay on performance is lower for L2 cache mainly due to the large L2 cache

access delay (2 cycles delay overhead compared to 20 cycles L2 cache access delay). The

results also indicate that the performance degradation for both L1 and L2 varies significantly

across different benchmarks. The highest performance loss is observed in bzip2 and gzip

benchmarks (more than 5% IPC loss). In fact these are high IPC benchmarks. In these

benchmarks 1 cycle additional delay of L1 cache access in addition to reduction of L1 cache

effective size by 20% is not tolerated. In many benchmark almost no performance loss is

reported. These benchmarks include facerec, galgel and lucas. Our investigation indicated

that while in these benchmarks the cache miss rate increased slightly due to cache effective

size reduction, the nature of out-of-order execution helped the benchmark to maintain the

performance. For L2 cache the performance degradation is lower. The largest performance

drop is 8% and is for ammp benchmark. Finally a 3% performance loss is observed when

FFT-Cache scheme is deployed in both L1 and L2 caches.
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Figure 2.7: Processor performance degradation when applying FFT-Cache for (a) L1 (b) L2
and (c) L1 and L2 at the same time.

Power and Area Overhead

Figure 2.8 summarizes the overhead of our scheme for both L1 and L2 caches. The power

overhead in this figure is for high-power mode (nominal Vdd). We account for the overheads

of using 8T SRAM cells [152] for protecting the tag and defect map arrays in low-power mode.

To reduce the effect of leakage and dynamic power consumption of FDM in high-power mode,

we assume clock gating and power gating is applied in the FDM array. Therefore, the main

source of dynamic power in nominal Vdd relates to bypass MUXs. As it showed in this figure
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Figure 2.8: Power and Area overheads of FFT-Cache.

it is less than 3% for L1, but is trivial for L2. As evident in Fig. 15, the defect map area is

a major component of area overhead for both L1 and L2. The total area overhead for L1 is

13% and for L2 is less than 10%. Also, the defect map is the major component of leakage

power in both L1 and L2. Based on our CACTI results in both nominal Vdd (660 mV) and

Vdd-min (375 mV), we achieve 66% dynamic and 48% leakage power reduction in L1 cache

and 80% dynamic and 42% leakage power reduction in L2 cache.

Comparison to State-of-the-art Methods

In order to illustrate the effectiveness of FFT-Cache, first we compare the efficacy of our

methodology in fault re-mapping against multiple state-of-the-art remapping-based fault-

tolerant techniques proposed in recent years. Then, we perform a quantitative comparison

of FFT-Cache to four well-known alternative cache protection schemes.

1. Comparison to Recent Remapping Techniques: In this section we compare FFT-Cache

against three state-of-the-art remapping techniques include RDC-Cache [138], Salvage

Cache [86], and Ansaris work [10]. Figure 2.9 shows the effective cache size for each of

these techniques across various voltage points. We use the failure rates reported in [137]
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Figure 2.9: Comparison of effective cache size for different fault-tolerant techniques.

for 65nm technology node. The results reported in this figure are based on a 1000-run

Monte Carlo simulation for a 8MB 8-way set associative LLC cache with two banks and 64

bytes block size. To have a fair comparison, for all these techniques including FFT-Cache,

we assume fault map area overhead is at most 9% of the cache size (the area overhead of

FFT-cache with 16-bit sub-blocks). Based on this assumption and to meet the overhead

limit, the Ansaris method selects 16-bit sub-block size. The sub-block size for RDC-cache

and Salvage-cache are 128-bit and 64-bit, respectively. The results show that in ultra-low

voltage region (below 400mv) as the failure rate increases, FFT-Cache results in much

smaller cache capacity loss.

2. Quantitative Comparison to Alternative Methods: In this section we compare our scheme

to four state-of-the-art works including ZerehCache [8], Wilkerson et al. [156], 10T

SRAM cell [38], and Ansari et al. [10]. This is just a quantitative comparison to compare

the overheads of different schemes while has a rough comparison of their min-Vdd. We

obtained these overhead results either directly from the related papers (when a direct

comparison was possible), or by trying to recalibrate the results to enable a fair comparison

for the same technology node. We calculated the Vdd-min for ZerehCache and updated

the Vdd-min of Wilkersons scheme using our cache configuration and fault model in 90
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Table 2.2: Comparison of different cache protection schemes

L1 Cache L2 Cache
Scheme Vdd-

min
(mV)

Area
over.
(%)

Power
over.
(%)

Area
over.
(%)

Area
over.
(%)

Norm.
IPC

6T cell 660 0 0 0 0 1
ZerehCache[8] 430 16 15 8 12 0.97
Wilkerson [156] 420 15 60 8 20 0.89
Ansari [10] 420 14 19 5 4 0.95
10T cell [38] 380 66 24 66 24 1.0
FFT-Cache 375 13 16 10 8 0.95

nm. All other overheads are obtained directly from the papers. Note that, except 10T

cell and Wilkersons work that use 65 nm technology, all other schemes including FFT-

Cache use 90 nm. A 380mVdd- min for the 10T cell was derived in 65nm and it is clear

that in 90nm this value would be higher. Table 2.2 summarizes this comparison based

on the minimum achievable Vdd, area and power overheads for both L1 and L2 caches,

and normalized IPC. In this table, different techniques are sorted based on the minimum

achievable Vdd-min, when targeting 99.9% yield.

Overall, our proposed FFT-Cache achieves the lowest operating voltage (375mv) and the

highest power reduction compared to all other techniques. The closest techniques to ours

are 10T cell, Ansari, and Wilkerson. 10T cell achieves almost similar power reduction

to FFT-Cache but incurs a 66% area overhead. Wilkersons work has a significant power

overhead and also it suffers an 11% performance degradation. The Ansari technique incurs

slightly lower power and area overhead just for L1 cache compared to FFT-Cache but it

does not reduce operating voltage below 420mw and thus achieves lower power reduction.

Overall, the flexible defect map of FFT-Cache along with high configurability and high

flexibility allow it to tolerate higher failure rates compared to other similar techniques.
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2.4 EEC: Embedded Erasure Coding

2.4.1 Preliminaries

This section provides a general background on MBUs, introduces erasure coding, and reviews

related work on ECC schemes.

Multiple Bit Upsets

A realistic quantification of the proposed MBU correction technique requires detailed infor-

mation on possible MBU patterns and their occurrence rate over the SRAM array. In order

to achieve this, a 3D-TCAD simulation is performed using a commercial soft error evaluation

tool (similar to the one presented in [55]). In this experiment, the neutron-induced MBU

patterns and their occurrence probabilities are obtained for a 45 nm SRAM memory working

in a terrestrial environment. The distribution of MBU sizes is demonstrated in Figure 2.10.

As shown in this figure, almost half of the soft errors in the employed 45 nm SRAM mem-

ory are MBUs. It also depicts particular MBU patterns with high occurrence probabilities.

The experiment shows that the largest MBU pattern affects 24 bits. Moreover, the ratio

of MBUs as well as the largest MBU size will further increase in smaller technology nodes

[76]. Hence, depending on the employed technology in SRAM memories, an effective coding

technique with appropriate correction capabilities is required to be able to detect and correct

the largest possible MBU incidents in the target memory.

Erasure Coding

At system level, erasure coding [128] has been very successful in disk error protection [125],

error correction in FPGA configuration frames [130] as well as providing reliable data storage
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Figure 2.10: MBU size distribution and particular patterns with high occurrence probabilities
in a 45 nm SRAM Array

for the storage/distributed systems domain [66, 74]. A variety of erasure coding techniques

with different properties such as recovery coverage, encoding/decoding complexity, and area

overhead are proposed in the literature [128]. In general, an optimal erasure code is a coding

technique which transforms m blocks into m+n blocks by adding n redundant blocks. This

transformation or coding is done in a way that in case of erasure (loss of data), the original

blocks can be recovered from each possible set of arbitrary m blocks among the m+n coded

blocks (see Figure 2.11). The recovery coverage of an erasure code is specified by the number

of erasures that could be tolerated. For an optimal erasure code, the recovery coverage is

equal to the number of redundant blocks, called erasure blocks (i.e. n). The area overhead

of an erasure code is defined as the ratio of redundant blocks to original data blocks which

equals to n/m for the optimal erasure codes.

The erasure codes are designed to recover the original blocks when a subset of blocks is not

available (i.e. erased). Although this coding approach is not designed to detect or correct

errors, once an error is localized in particular blocks using a detection technique, the original

blocks could be reconstructed using an erasure code.
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Figure 2.11: Basic erasure coding technique.

In contrast with all previous approaches, we first perform a detailed technology dependent

analysis to extract MBU patterns and their respective probabilities. Then, based on our

observation we try to minimize the overheads of MBU protection by optimizing the inter-

leaving distance of parity checking and making the error recovery process less complicated

and faster compared to similar approaches to reduce system-level costs in case of high error

rates.

2.4.2 Proposed EEC

To enable correcting a larger ratio of MBUs with affordable complexity and latency over-

heads, we propose the EEC approach. The main idea behind this work is to use the concept

of erasure coding for error correction by reconstructing the contents of the erroneous cache

blocks within each cache set. The light-weight interleaved per-word parity codes are applied

for error detection. For error correction, we adapt the notion of traditional erasure coding

to define a technique that performs coding across multiple cache ways in a set-associative

cache. It reserves a cache way to store erasure check bits for the remaining ways. In this

technique, we trade off cache capacity for a low-cost MBU correction with fast error recov-

ery without any significant hardware modification and overhead. Moreover, the proposed

technique is implemented in a reconfigurable way that depending on the desired level of

performance/reliability, the reserved way in different parts (banks) of the cache can be con-

sidered as either erasure storage or normal data storage. In contrast to similar schemes
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[82, 106, 84], our proposed scheme does not require any significant change to the existing

cache architecture of processors to add redundant rows.

Parity-based Erasure Coding

There are a variety of erasure codes with different attributes in the literature. In the context

of on-chip memories, an appropriate erasure code should be selected that meets the memory

constraints. Since the soft error occurrence rate is relatively small and read/write operations

in cache arrays are continuously performed during the runtime, it is less likely to have more

than one erroneous cache block per cache row at the same time [94]. On the other hand, the

encoding time of the erasure code is critical in our design as it affects the write delay. Also a

high decoding latency delays the error recovery process. Thus, depending on the granularity

of error coding and the number of erasure blocks, there are multiple trade-offs between area,

reliability, and performance.

In this work, we consider a parity-based erasure code [128] with only one redundant (parity)

block. This coding technique satisfies our requirements as it has short decoding and encoding

latencies. The parity based erasure code is an optimal erasure code which has only one

redundant block (n = 1; m + 1 erasure code). This technique can recover the erasured

(erroneous) block from all cases with only one erasure. Figure 2.12 represents a sample

erasure code with m = 4. As depicted in this figure, the redundant block contains the parity

of data stored in all other blocks. In case of an erasure, the redundant block can be used

as the parity of other m blocks to recover the contents of the erasured block. Note that

the factor m determines the trade-off between the encoding/decoding time and the area

overhead. In this work, for a k-way set-associative cache, m is equal to k − 1.
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Figure 2.12: A sample parity-based erasure code with one redundant block.

Parity-based MBU detection

We employ a light-weight bit-interleaved parity code for error detection. We consider n-way

interleaved parity bits per word which is computed by XORing the bits whose distance is n

(e.g., for n=8 Parity bit[i] = data bit[i] ⊕ data bit[i+8] ⊕ data bit[i+16] ⊕ ...). In this way,

we can detect up to n-bit contiguous errors (MBUs) in each cache word. The optimal value

of n will be extracted based on the technology dependent MBU patterns (see Section 2.4.1).

EEC Operation

Figure 4.17(b) depicts the architecture of a 4-way set-associative L1 cache equipped with

EEC and the process for updating the erasure codes on writes. It keeps an 8-way interleaved

parity per block using 8 parity bits per word. It also reserves the last way of the data array

for storage of the erasure codes. Note that the latency and area overhead of this parity coding

is similar to byte-parity coding (common in timing-critical L1 caches) as well as SECDED
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Figure 2.13: A 4-way L1 cache architecture protected with EEC that shows the updated
write operation in three steps.

coding [82].

During normal operation (no error is detected), every cache read checks the parity bits

associated with the accessed word. On every write, parity and erasure codes are updated.

As depicted in Figure 4.17(b), the update of the erasure codes is a three-step process that

requires first reading the old data and erasure code, XORing them with the new data, and

then writing both the new data and updated erasure code back to the cache. Thus, every

write operation is converted to a ”read-before-write” operation to read the old data before

writing the new data. These three steps are pipelined and the update of the erasure code is

done either along with cache data write or after that depending on the cache architecture.

Depending on the architecture of the cache (i.e. sequential or parallel) and the number of

cache ports, this operation can be done as fast as a single cache access and as slow as four

cache accesses.

As shown in Figure 4.17(b), the L1 cache has a fast and parallel access, so both data and
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erasure code can be accessed in parallel. But in case of caches with a sequential architecture,

we need to first read the old data, then read the erasure data during the next access. In

this case, the XOR operation (step 2 in the figure) is done in two steps and an additional

register is required to keep the intermediate value. Finally, it writes back the new data and

updated erasure code consequently. So to have the minimum impact on performance, we

apply this approach to fast L1 caches with parallel access and/or lower level caches with

sequential access.

In case the processor has two separate read and write ports, those read and write operations

can be performed in parallel. However, this may cause some read port contention in out-of-

order processors that leads to an increased load latency. This problem can be addressed to

improve the performance penalty by using different techniques such as cache port stealing

[93] or cycle-stealing [106]. For in-order processors with a single port, the extra read increases

the cache write latency. However, there exist some approaches such as port stealing [93] or

thread scheduling [88] to hide the extra access latency for the L1 cache.

Error Recovery

Once an error is detected by checking the parity bits, the cache controller initiates the

recovery process. The controller reads all data blocks in the set of the accessed block including

the erasure block. Then, it XORs the value of all blocks except the block that contains the

erroneous word. The result of the XOR operation is the correct value of the faulty block,

which is then written back to the accessed block. Note that the recovery operation requires

accessing every cache block in the set. In fast L1 caches, since all blocks of the set are

accessed in parallel, the recovery is very fast. However, L2 caches usually have a sequential

architecture in which tag checking is done first and then only one block is accessed at a time.

In this case, the cache controller needs to access the blocks of each set one by one which

increases the latency of error recovery up to the latency of accessing all the blocks in the
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set. During each cache write-back, the controller also checks the dirty bit of the block. If

the evicted block is clean, it does not call the recovery process.

Reconfigurability

In contrast to conventional erasure coding approaches, EEC does not need to add extra re-

sources as redundant (erasure) blocks (mentioned in Section 2.4.1). Instead, by changing the

configuration of the cache, EEC can reserve a part of the cache (i.e one way) as redundancy.

The primary benefit of the EEC reconfigurability is that cache capacity cab be easily reduced

to suit the required erasure blocks, while only minor modifications to the cache controller

and/or software layers are needed. So reliability can be improved with small performance

impact. Hence, we add an extra bit to the tag bits of each row which indicates whether that

row reserved a block for erasure codes. On the other hand, if the reliability requirements are

low, the reconfigurability allows the processor to use all cache ways for the normal operation,

and by that means to minimize the performance degradation.

2.4.3 Evaluation

In this section we present different sets of results to demonstrate the evaluation of three

major contributions of our approach – simplicity, configurability, and lower error recovery

time – mentioned in previous Section, compared to similar approaches.

RTL Implementation

We implemented the EEC approach by modifying the HDL source code of the Leon3 pro-

cessor [60]. Leon3 is a simple embedded in-order processor that has only L1 data and

instruction caches with the same read and write latency of 1 cycle. We modified its data
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cache controller and cache array modules to configure the last way for erasure code storage.

We also modified the cache controller to implement the ”read-before-write” operation. Since

the Leon3 L1 cache has only one data port, we needed to modify the cache controller to

perform an extra read before each write operation. Also, since Leon3 has a single cycle

load/store operation, we considered one extra cycle to update the erasure code and write it

back. For error recovery, since Leon3 has a fast cache, all the blocks are accessed in parallel.

Hence, it takes only two cycles to recover the erroneous block. Table 4.5 shows the details

of the simulated processor. We simulated the modified Leon3 processor by running multiple

MiBench benchmarks including stringsearch, basicmath, bitcount, and qsort. The execution

time results showed no more than 1 % performance overhead. We also synthesized it using

the Nandgate 45 nm technology. The synthesis results showed less than 5.8 % logic area

overhead and an increased latency of 0.4 %.

Cycle-accurate Simulation

We used the Gem5 cycle-accurate simulator [34] to model EEC for a single-core high-

performance processor. We added EEC to both the L1 data and L2 cache of the Alpha

processor which is an out-of-orther processor running at 3 GHz. In this processor, for both

cache levels, read and write latency are independent and can use different values. Thus, if

our proposed EEC technique is employed, the read access latency remains the same as the

normal value, while the write latency is doubled (due to the additional read operation for

every write access). In case of L1, we considered a fast cache in which both tag check and

data access are performed in parallel. So all data blocks including erasure check bits are

read in parallel and the error recovery latency is equal to two cache accesses. In contrast,

the L2 cache has a sequential architecture, so the tag checking and data access are done

separately. In this case, the cache blocks inside a set can be accessed one by one. So the

write latency is equal to the latency of two writes and two reads. However, since the rate
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Table 2.3: Simulated System Parameters

Parameter Processor

Core Out-of-order Leon3 (in-order)
ISA ALPHA SPARC
Functional units 2 integer ALUs, 2 FP

ALUs
1 integer ALU, 1 FP
ALU

Issue width 4 instructions / cycle 1 instructions / cycle
L1 I/D Cache 32kB split I/D, 4-way

assoc, 64B blocks, 3
cycles, 1-port

4KB I$, 16KB D$,
32B blocks, 1 cycle, 1-
port

L2 Cache 512kB unified, 8-way
assoc, 64B blocks, 7
cycles, 1 port

no L2 cache

Clock Frequency 3 GHz 800 MHz

Technology 45nm

of write to L2 is much lower than L1, the extra L2 write latency has a negligible impact on

performance and dynamic energy overheads. Also, the duration of error recovery is longer

and is equal to the latency of one L2 cache access times the degree of associativity. However,

it is still much faster than similar approaches which require access to multiple cache rows.

We added a block-size register to L2 to keep the intermediate data due to XOR of different

cache blocks.

We selected six benchmarks from SPEC2000 suite to evaluate the proposed EEC approach

on the Alpha processor. The benchmarks are fast-forwarded for one billion instructions as

warm-up, then simulated for five billion instructions. Table 4.5 shows the details of the

simulation systems.

Performance and Energy Analysis

Since our proposed technique not only reduces the number of available cache ways by one,

but also increases the cache write latency, it affects the processor performance, as shown in

Figure 2.14. However, as only the latencies for the write accesses are affected and not those
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for read operations, the overall performance impact of our proposed technique is very small.

This is due to the fact that the number of writes are much lower than the reads and not in

the critical path of the application. Also, EEC trades cache capacity and associativity which

mainly affects the miss rate in highly memory-intensive applications. On average, over all

benchmarks the performance is only reduced by less than 2 % for the L1-Cache and less than

3 % for the L2-Cache of the Alpha microprocessor simulated by Gem5.
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Figure 2.14: Performance overhead of EEC for L1 and L2 caches on Alpha processor

Based on these results, we also evaluated the energy impact of the EEC technique for the

Alpha processor. To this end, we employed CACTI [116] to extract the per-access energy for

read and write operations as well as leakage power. We obtained the overall energy consump-

tion of the microprocessor with and without EEC according to the Gem5 statistics about

the number of cache accesses and runtime. Here, similar to other approaches, we consider

a cache equipped with SECDED as the baseline. Since all the overheads are normalized to

the baseline, the major contributors to the power and performance overheads are due to the

extra read access for L1 and read/write for L2. According to this evaluation, the dynamic

energy consumption increases by 3.9 % and 1.7 % for applying ECC on L1 and L2 caches,

respectively. In both cases, the reason for the increase in energy consumption is the fact

that EEC adds a read operation for each write access in L1 and two reads and one more

write for L2. However, as leakage is dominant in nowadays technology nodes and the ratio

of write operations to the total number of cache accesses is just around 20 %, the increase

in write energy has just a small impact on the overall energy consumption. Here, we do not
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consider the leakage power of erasure data storage as explicit overhead, because our scheme

does not impose extra resources to the system and the cache ways that used for erasure data

directly affect the performance of the system. However, if we consider the reduced capacity

cache with reserved ways as the baseline, we may have up to 25 % leakage power overhead

for the 4-way L1 and 12.5 % for the 8-way L2.

Comparison with other schemes

We obtained the MBU correction coverage of different schemes including the proposed EEC,

2D parity cache [82], and SECDED considering the actual MBU patterns of the employed

45 nm SRAM technology. In this regard, we injected one million MBUs in an SRAM array

equipped with these coding techniques and then computed the error detection and correc-

tion probabilities. When an MBU pattern spans across multiple words, it is considered as

detected/corrected if all affected words are detected/corrected by the employed coding tech-

nique. Table 2.4 shows the results of this experiment. In this table, 2D parity cache (i)

means that this technique is equipped with i horizontal and i vertical interleaved parity bits.

Also, EEC(j) indicates that j horizontal interleaved parity bits are used for error detection.

As it can be seen in this table, all errors detected by EEC are successfully corrected by this

technique, while some of the detected errors by 2D parity cache cannot be corrected as they

affect more than one word affiliated with one redundant vertical parity line. On the other

hand, the amount of Detected Unrecoverable Errors (DUE) in EEC is independent of the

number of parity bits and is always zero. However, in case of the 2D parity cache, it depends

on the number of parity bits used and can be up to 17 %.

The area overhead of each technique is also compared in terms of the coding area which

is defined as the amount of extra code bits that is required by each scheme. As it can be

observed from the table, the coding area overhead of EEC is less than 2D coding in all cases

and less than SECDED in first four cases. Note that the amount of code storage in EEC
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Table 2.4: Reliability and coding area comparison of different techniques

Technique Detection Correction DUE Coding Area

SECDED 97.34% 65.95% 31.39% 12.5%
2D Parity Cache (1) 69.23% 52.33% 17.10% 3.22%
2D Parity Cache (2) 91.43% 78.27% 13.16% 6.44%
2D Parity Cache (3) 99.68% 97.37% 2.31% 9.67%
2D Parity Cache (4) 99.98% 99.37% 0.61% 12.89%
2D Parity Cache (5) 99.99%< 99.69% 0.3% 16.11%
2D Parity Cache (6) 100.00% 99.98% 0.02% 19.34%
2D Parity Cache (7) 100.00% 100.00% 0 22.56%
EEC (1) 69.23% 69.23% 0 3.12%
EEC (2) 91.43% 91.43% 0 6.25%
EEC (3) 99.68% 99.68% 0 9.37%
EEC (4) 99.98% 99.98% 0 12.5%
EEC (5) 99.99%< 99.99%< 0 15.62%
EEC (6) 100.00% 100.00% 0 18.73%

depends on the cache associativity, EEC configuration, and level of protection. For example,

in a 4-way cache with fully EEC block protection, the area overhead can be as high as 25 %.

Since we trade the cache capacity instead of adding any extra elements (spare cache/rows)

to prepare the code storage, this is an implicit area overhead with much less cost compared

to similar approaches that impose explicit costly overhead to the system.

Applicability to Permanent Faults

The promising features of EEC such as reconfigurability, short recovery time, and ability to

correct sparse errors, give the ability that EEC can also be easily applied for protecting cache

memories against permanent faults. Here, we consider the high bit rate faults due to process

variation in caches working at near-threshold operation voltages. Using our analytical models

and the derived fault model and bit error rates similar to [63], we were able to compare our

approach with similar approaches such as 2D error coding. Our analytical results show that

while 2D error coding can correct a bit error rate of 10−5, EEC corrects up to 10−3 without

degrading the yield. Moreover, the EEC error correction is much faster than 2D coding (i.e.,
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about ten times) which minimizes the impact on performance and dynamic energy. Due to

the lack of space, we consider any further detailed discussion and analysis in this regard as

future work.
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2.5 Summary

In first part of this chapter, we proposed FFT-Cache, a fault-tolerant cache architecture

which has a flexible defect map to configure its architecture to achieve significant reduction

in power consumption through aggressive voltage scaling, while maintaining high error relia-

bility. FFT-Cache uses a portion of faulty cache blocks as redundancy to tolerate other faulty

cache lines and blocks. This is accomplished by using either block-level or line-level replica-

tion in the same set or between two or more sets. FFT-Cache has an efficient configuration

algorithm that categorizes the cache lines based on degree of conflict between their blocks,

to reduce the granularity of redundancy replacement. Using our approach, the operational

voltage of the cache is reduced down to 375mV in 90nm technology. This achieves 66% and

80% dynamic power reduction for L1 and L2 caches, respectively. FFT-Cache reduces the

leakage power of L1 and L2 caches by 48% and 42%, respectively. This significant power

saving comes with a small 5% performance loss and 13% area overhead.

In second part of this chapter, we presented embedded erasure coding to protect cache

memories against MBUs at low latency and power overheads. This scheme employs fast bit-

interleaved parity coding as error detection in combination with optimal parity-based erasure

coding as error correction over set-associative cache memories. This technique reserves a part

or the whole of a cache way to store the redundant check bits. Its promising features including

simple architecture, reconfigurability, and fast error recovery make it also an appropriate

technique for protecting against permanent faults in voltage-scalable caches. We evaluated

the proposed approach via architecture-level simulation of a high-performance out-of-order

processor (Alpha) as well as RTL implementation of an embedded in-order processor (Leon3).

Our experimental results on both L1 and L2 of Alpha processor showed that EEC provides

same reliability with faster error recovery compared to similar approaches while incurs less

than 3 % performance and 4 % dynamic energy overheads. Also, the results on L1 cache of

Leon3 showed no more than 1 % performance and less than 5.8 % logic area overhead.
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Chapter 3

Scalable Fault-tolerant Cache Design

in CMPs

3.1 Introduction

Moore’s Law scaling continues to provide increased transistor counts available to each pro-

cessor generation. In recent generations, those transistors are primarily devoted to increased

core counts. However, the increase in transistors is not accompanied by an increased power

budget. Thus, we are approaching an architectural era that some have labeled the dark

silicon era [58], because we can configure more transistors than we can afford to turn on

and power at once. We prefer to think of this as an era where the tradeoff between area

(transistor count) and power is fundamentally changed – transistors become all but free,

while power is critically precious. Thus, optimizations that trade area for power are easily

justified.

In modern designs, the last level cache (LLC) is typically a shared cache, configured to be

large enough to effectively cover the data of all private caches, and store enough data to
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protect the off-chip memory and interconnect from the vast majority of on-chip accesses for

all cores. As a result, the LLC is typically the largest single consumer of silicon area and one

of the largest consumers of power on the processor. This makes it a prime target to apply

the new power/area tradeoff. This chapter describes a technique to sacrifice a moderate

amount of cache area for dramatic decrease in power.

Aggressive voltage scaling is one of the most effective techniques to reduce processor power

consumption. However, aggressive voltage scaling exponentially increases the impact of pro-

cess variation on SRAM cells, resulting in an exponential increase in the fault rate. This

introduces a trade-off between cache yield and minimum achievable voltage Vcc[2]. In the

absence of robust error correction strategies (e.g., beyond ECC), we can tolerate few errors

and have little opportunity to push down the voltage. In order to improve the cache yield

and/or lower the minimum achievable voltage scaling bound, several fault tolerant mecha-

nisms have been suggested [9, 156, 155, 46, 138, 86]. An effective fault hiding mechanism,

then, can enable much more aggressive cache voltage scaling. If that mechanism keeps the

cache capacity loss due to failures small, we can increase the raw capacity of the cache to

keep the effective capacity the same as the original (nominal voltage) cache, enabling a dra-

matic decrease in power with the primary cost being increased cache area – thus, we fully

exploit the new area/power tradeoff.

We show in this chapter that the efficacy of the cache fault masking strategy can have

a significant effect on LLC performance and effective capacity, particularly in the case of

NUCA LLCs, an inevitable direction as the number of cores and size of LLC grow [58, 68].

However, prior fault protection efforts have focused mostly on private L1/L2 caches in uni-

core processors and explore policies that do not scale well to a large multi-bank, non-uniform

latency design. In a NUCA design, access latency, network bandwidth, network power, and

effective capacity are all sensitive to the exact location of the spare block (redundancy) used

for fault-tolerance of a faulty block, relative to the requesting core and the original requested
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block.

We present RESCUE, a scalable fault-tolerant design to improve the reliability of a large

multi-banked NUCA cache with non-uniform latencies, distributed banks, and multiple ac-

cess points in a multi-core/many-core architecture. The RESCUE architecture uses a scal-

able and flexible fault remapping technique to ensure that all cache space not being used for

redundant remapping is available for storing useful data.

In RESCUE, each faulty line either serves as a repair line (target line) for one or more other

lines, or retains its original mapping and is paired with a repair line to be used to store

and reconstruct a complete line. We examine a number of cache line remapping policies

that attempt to manage the sometimes conflicting goals of minimizing latency, minimizing

network traffic, and maximizing cache hit rate (minimizing lost capacity). It is critical that

the remapping policy be sensitive to the NUCA architecture, since access time scales with the

maximum distance to each of the source lines, while network traffic scales with the combined

distance from the requesting core and the two lines. The effective cache capacity, conversely,

is maximized when we place few restrictions on the mapping policy, creating tension between

our goals. Overall, however, if we can minimize lost capacity and performance overheads in

the presence of frequent failures, we can moderately over-provision the cache (and possibly

the interconnect) while still maintaining significant power reduction via aggressive voltage

scaling.

This chapter extends REMEDIATE, our scalable fault-tolerant architecture for low-power

design of shared NUCA LLC in Tiled CMPs that was first introduced in [24]. While the main

goal in REMEDIATE is to develop a remapping-based fault-tolerant scheme for protection of

shared LLC in Tile-based CMPs while operating in low voltages, the main goal in RESCUE

is to propose a design trend (aggressive voltage scaling + cache over-provisioning) that uses

different fault remapping heuristics with salable implementation for shared multi-bank LLC

in non-tiled-based CMPs to reduce power while exploring a large design space with multiple

58



dimensions and performing multiple sensitivity analysis. Moreover, we proposed two new

remapping policies optimized for NUCA caches in RESCUE which have various sensitivity

analysis based on them. Also, we modified the LLC access flow in RESCUE to remove the

access to fault map from the critical path of non-faulty block accesses.

This chapter examines the effectiveness of the proposed design under a wide variety of as-

sumptions, examining different technology targets, multicore design points, cache configura-

tions, and workload makeups. Applying RESCUE for different core-cache configurations over

various technology nodes results in 5 to 60% power reduction. Also, by applying RESCUE

we can scale the voltage below 400 mV and reclaim more than 55% of lost cache capacity

(without RESCUE remapping, all cache space is lost at that voltage level).

3.2 Related Work and Motivation

As we discussed in previous chapter, there is a large body of work on fault-tolerant and

error-resilient cache design. However, most of these techniques are proposed for single-core

processors which rely on two banks and a single fault map that tracks the fault-tolerance

information of both banks. Hence, these existing techniques fail to remain efficient at high

failure rates in NUCA caches with a large number of banks. Wang et. al [154] proposed

a utility-driven address remapping technique at a coarser-grain (bank level) to tackle the

capacity loss in NUCA cache of NoC-based CMP architectures.

Unfortunately all these previous efforts are neither scalable nor flexible to be leveraged

for protection of NUCA caches with distributed banks in CMP architectures. Since CMP

architectures have more than one core that can access one or different distributed banks

simultaneously, fault mapping and protection needs to be scalable and distributed. Further-

more, existing fault-tolerant techniques typically use a single fault map and a centralized
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fault protection scheme which cannot be scaled for large NUCA CMP architectures: as a

result each access needs to go through the fault map first, and no parallel cache accesses

are allowed. Another difference for NUCA architectures is that the access latency, failure

rate, and criticality of distributed banks are different depending on the location of each cache

bank and type of NUCA (SNUCA or DNUCA). Therefore, the fault-tolerant technique needs

to be scalable and configurable to address these issues. However, all previous fault-tolerant

methods have been designed for at most two banks within a UCA architecture which are not

configurable. Moreover, they use a unified remapping technique to protect all faulty blocks

without considering differences among different banks.

In contrast to previous efforts, RESCUE leverages a scalable architecture allows efficient

remapping across multiple banks in a NUCA CMP. It uses a flexible fault mapping and

fault protection scheme which results in higher cache reliability. RESCUE uses a flexible

fine-grained remapping technique, using graph coloring to match the repair blocks/lines to

a group of original sets. It allows the implementation of multiple heuristics to remap in

a non-uniform multi-bank cache architecture, and this flexibility enables the architect to

effectively trade off power, performance, and energy efficiency.
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3.3 RESCUE

3.3.1 Baseline Architecture

Before we outline the details of the RESCUE architecture, this section describes our baseline

architecture. This is because the technique is tightly connected to the actual cache and

interconnect configuration. We study various core and cache configurations in different

technologies to understand the limits of aggressive voltage scaling as we face ever-increasing

power constraints. Each parameter is chosen to represent current design trends or project

future design trends as the technology scales.

Esmaeilzadeh, et al. [58] study the limits of core scaling and have derived an optimal number

of cores that fit in the chip’s area and power budget for below 22nm technologies. We use

the outcome of their studies to configure our experiments across technologies (Table 3.1).

For the number of cores in each technology generation, we use the results in [58], reporting

the number of optimal cores for power/performance trade-off in each technology node. The

optimal number of cores we assume in this work and for each technologies is 4, 6, 8, 16,

and 32 for 65, 45, 32, 22, and 16nm, respectively. For the technology scaling model we use

the ITRS road maps projection [77] and the Predictive Technology Model (PTM) [13] that

provides the voltage, area, power, and frequency scaling factors at technology nodes from 65

nm to 16nm.

Our baseline LLC architecture is a tiled, shared, non uniform access cache. We focus on the

NUCA design as it is an inevitable design choice in order to reduce the effects of wire delays

in future technologies. We assume total LLC capacity scales with the number of cores. To

study cache scaling and the appropriate size of LLC for future designs, we consider empirical

data from a large set of processors. As shown in figure 3.1, an average projection for the size

of cache is 2MB per core. We study the average case as well as an over-provisioned cache
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Figure 3.1: Empirical data for the cache size per core across various CMP architecture.

size with 4MB per core.

The baseline design assumes a Non-Uniform Cache Architecture (NUCA) last-level cache.

We considered exclusive caches with parallel LLC access. Each LLC bank includes multiple

cache lines, within a set (lines with the same index) all mapped to the same bank. As shown

in Figure 3.2, the processors and cache banks are organized into a two-dimensional mesh

topology. We assume that there are I/O pads (connecting to the off-chip memory) along

the two vertical sides. L1 and L2 caches are kept consistent using a directory coherence

mechanism.

We consider two NUCA baseline designs, modeling both static (CMP-SNUCA) and dynamic

(CMP-DNUCA) policies [30]. The former is derived from Kim, et al.’s SNUCA-2 design [81].

CMP-SNUCA statically partitions the address space across cache banks, which are connected

via a 2D mesh interconnect. In static mapping, a fixed hash function uses the lower bits

of a block address to select the bank. L2 access latency is proportional to the distance

from the issuing L1 cache to the L2 cache bank. By allowing non-uniform hit latencies,

static mapping can reduce hit latencies of traditional monolithic cache designs, which fix the

latency to the longest path [81]. Because a block can be placed into only one bank, its L2
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Figure 3.2: Baseline 8 processor CMP structure.

access latency is essentially decided by its address. Dynamic mapping (CMP-DNUCA) [75]

addresses the weakness of static mapping by allowing a block to go to one of multiple

candidate banks. With proper placement and migration policies, D-NUCA enables the cache

to place frequently accessed blocks in the banks closest to the CPU.

Table 3.1: Architectural Specification

Parameter Value

Integrated Technology 65nm,45nm,32nm,22nm,16nm
Cores 2,4,6,8,16,32
Issue,Commit width 4 (out-of-order)
Functional units 4 int/ldst 2 fp
L1 cache 32KB, 4-way assoc, 2cyc access
L2 cache (priv) 512KB, 4-way assoc, 15cyc access
L3 cache (shared) NUCA, 1MB/Bank, 2MB/core, 8-way assoc, 30cyc
L3 miss penalty 250 cyc
Memory Three 1GB DDR3, 4 128-bit channels

2-DIMMs/channel, 2-ranks/DIMM
Interconnect 2D mesh NoC (NxN) 32-byte links (2 flits/access)

1-cycle link latency, 2-cycle router, XY routing
Frequency 3GHz
Vdd 0.9V-0.3V
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3.3.2 RESCUE Overview

We now present the RESCUE hardware framework for remapping of faulty cache sub-blocks

to increase available cache capacity, which extends in several ways prior work on cache block

remapping [9, 22, 86, 10]. The prior remapping techniques are mainly proposed for, and

evaluated on, a uniform access cache in a single core architecture, and thus do not address

several challenges arising from a large multi-bank NUCA LLC.

RESCUE divides each line of the LLC into multiple sub-blocks, which define the granularity

at which failures are identified and remapped. A sub-block is labeled faulty if it has at least

one faulty bit, as determined by Built-In Self Test (BIST) analysis during boot-up of the

system. Thus, a small sub-block minimizes the number of bits lost due to a single fault, but

increases the hardware overhead of reconstructing blocks. Instead of maintaining explicit

additional cache space to replace faulty lines, we exploit lines already marked as faulty

to provide redundant storage to mask faults in other lines. This has a critical advantage.

While a static redundancy technique is based on worst-case estimates of faults, our approach

sacrifices no more space than is absolutely needed for redundancy. This is particularly useful

for a cache that might be used at multiple voltage levels, as we automatically adjust the

level of redundancy to the errors manifested at a particular voltage.

RESCUE attempts to sacrifice the minimal number of cache lines and tolerate the maximum

amount of defects. This is done by using line-level replication in the same set or among

multiple sets. In RESCUE, the information of faulty locations in each LLC bank is kept in

a Distributed Fault Map (DFM) which is then used to configure the address mapping. If

two lines have faults in the same sub-block, we say they conflict and one cannot be used to

mask faults in the other. When a line is detected as faulty (e.g., at boot-up using BIST),

the system attempts to remap non-faulty portions of the line (Original line) to another line

(called the Target line) that has already been marked as faulty and does not conflict with the
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original line. It then sacrifices and disables the target line to replicate all faulty sub-blocks

of the original line. Thus, the correct line can be reconstructed from a combination of the

two lines (original and target).

Even without the additional complexities of the NUCA remapping introduced in this chapter,

the selection of which lines to leave as original lines, which lines to scavenge as targets, and

which target lines to assign to a faulty original line is a difficult optimization problem. Every

time a line is disabled and marked for scavenging, it reduces the total capacity of the cache.

Note that if a line has 4 sub-blocks, and assuming one faulty sub-block per faulty line, a

target line could serve as a target for up to three original lines. In many cases, a good choice

of the target is another line in the same set (referred to as a Local target line), since both

original and target lines can be read in a single access. Barring this case, we should always

select target lines from a different bank, so that both lines can be read without two serialized

accesses to the same bank. We refer to this target line as a Remote target line. Because

the two lines (original line and target line) are known to not have sub-block conflicts, and

we know which sub-blocks contain errors, the cache controller can always reconstruct the

original line using single bank remapping MUXing techniques. Figure 3.3 shows both the

conventional and modified architectures of a 2-way set associative cache with four banks. One

or two levels of multiplexing is used to compose a fault free block by choosing appropriate

sub-blocks from both original and target lines, as shown in Figure 3.3(b). Note that the

highlighted blocks are added to the original design. We now describe the configuration

process for RESCUE-Cache.

In a RESCUE cache architecture, each cache access in low power mode (e.g., at a voltage level

expected to be prone to errors) accesses both the original bank and DFM simultaneously.

Figure 3.4 outlines the flowchart for accesses using the RESCUE-Cache. Based on the fault

information of the accessed line, we either read one or two lines from one set in one bank

(within set remapping), or one line from the original bank and one line from the target bank
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Figure 3.3: Architecture details of (a) a conventional 4-banked 2-way set associative cache,
(b)the proposed RESCUE with DFM and 2 sub-blocks per line.

(remote set remapping). In the latter case, the latency of the access is the maximum of the

two bank access latencies. The DFM lookup is only in the critical timing path when the

original line is faulty and is repaired with a remote line. In case of a faulty line access, one

or two levels of multiplexing is used to compose a fault free block by choosing appropriate

sub-blocks from both original and target lines, as shown in Figure 3.3(b). Note that the

highlighted blocks are added to the original design. The configuration process is described

in the next section.
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Figure 3.4: RESCUE cache access flowchart.

Rescue DFM configuration

Initially, a raw defect map is generated at boot time; using the memory BIST unit, the

LLC is tested under low voltage conditions. The output of the BIST is used to initialize the

DFM for each LLC bank. If there are multiple operating points for different combinations

of voltage, temperature and frequency, the BIST operation is repeated for each of these

settings. The obtained defect map is then modified and updated with remapping data to

enable the RESCUE operation. Updating the DFM is done at full voltage, using a graph

coloring algorithm that we explain next. In addition, in order to protect the defect map and
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the tag arrays, we use the well studied 8T SRAM cells [44] which scale Vdd down to 300

mV without failing, but incurs about 30% area overhead for these relatively small arrays.

The DFM of each bank has one entry for each cache set inside that bank. Each DFM entry

includes multiple configuration bits, the defect map of each line in the set, status of each

line, and the address of the target line, if any. Each bit in the defect map section represents

the fault state of a sub-block. Line status bits represent the status of each line in a cache set.

The status of each cache line can assume one of the following: 1) Non-Faulty, 2) Faulty, 3)

Global, 4) Local Target, and 5) Remote Target. Initially, the status of all lines in the cache

is Non-Faulty, representing the absence of any faulty sub-blocks. If a line contains at least

one faulty sub-block, its status will be Faulty. A line used as a target line for other lines in

the same set gets the status of Local Target. A line that has a conflict with other lines in a

set and cannot be used as a local target line, gets the status of Global. A Global line can be

used as a target line of another set, and then becomes a Remote Target. We define the Max

Global Line (MGL) parameter as the maximum number of lines in a set that can be set as

Global lines; the remaining lines can then be composed as a group of lines without conflict

(no-conflict), which allows them to find a Global line and set it as their Remote Target line.

We use graph coloring to optimize the selection algorithm of a remote target line, for the

stage 3 and 4 of the above algorithm [85]. Graph coloring is an NP-complete problem and

there are many heuristics and transformation algorithms to make its solving feasible. We use

a heuristic graph-coloring algorithm which is a modification of Saturation Degree Ordering

(SDO) [120]. We name a graph coloring problem solvable if for a graph G we can find an

integer K > 0 such that the nodes of G can be colored with K colors while no edge exists

between the same colored nodes. We construct a graph based on the conflicts between lines

of different entries in all DFMs. Each node in this graph represents either a Global line (line

node) or a faulty entry (representing an entire one set) from low conflict or high conflict

groups (set node) in the DFMs. The edges represent a conflict between a pair of lines or
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Begin DFM initialization algorithm
            1. Run BIST and find faulty cache lines at sub-block 

level and fill defect map sections of each set (DFM entry).
            2. For lines with at least one faulty sub-block, set the status 

of line as Faulty and for other lines with no faulty sub-
block, set their status as Non-faulty.

            3. For sets with at least one faulty line mark their status 
as faulty.

            4. Based on the conflicts between faulty lines in 
each set, categorize them into four groups:     
    - min-faulty if the number of faulty lines in a set is 
    lower than the predefined MGL 
    - no-conflict if there is no conflict between faulty lines 
    in the set 
    - low-conflict if the number of conflicts between the 
    lines within a set is lower than the predefined MGL
    - high-conflict if the number of conflicts between      
    lines within a set is higher that the predefine MGL

End DFM initialization algorithm

Figure 3.5: DFM initialization algorithm.

between a line and a set. For example, the two nodes connected by an edge represent two

lines, two sets, or one line and a set that have conflict. Note that it is not possible to set

one of these nodes as a Remote target line for the other one.

We modify the above graph coloring algorithm based on the following constraints: 1) We

force the algorithm to color nodes from at least two different banks. 2) We force the algorithm

to first pick up line nodes and try to color them with set nodes of other banks.

We apply the modified graph coloring algorithm to our graph to find a solution such that

neighboring nodes are not assigned the same color. Therefore, after completion of the coloring

algorithm, nodes with the same color are guaranteed to have no edges between them, implying

that the corresponding cache sets/lines have no conflicts between them. We set all nodes

with the same color in a group and try to set one of them as Remote Target for other nodes

in the group. As a result, if a line node has the same color as one or more set nodes in other

banks, we set it as their Remote Target line. If a set node has the same color as one or more
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Begin DFM configuration algorithm
Traverse the faulty entries of the DFM:
  1. For the entries in the min-faulty group just set the 
    status of faulty lines to Global.
  2. For the entries in the no-conflict group make one of 
    their faulty lines as Local Target for other faulty lines 
    in the same set.
  3. For the entries in the low-conflict group, make the     
    status of the line that has conflict with other lines as 
    Global. For the remaining lines in the set (that have 
    no conflict) find a Global line from a remote bank and 
    set it as their Remote Target.
  4. The entries in the high-conflict group are divided   
    into sub-groups (according to the graph coloring  
    algorithm). For the entries in each sub-group,   
    select one of them and make all of its lines as Remote 
    Targets for other entries in the sub-group.  

End DFM configuration algorithm

Figure 3.6: DFM configuration algorithm.

set nodes in other banks, we set all of its lines as a Remote target line for lines in other sets.

Reconstructing Cache Lines

Figure 3.3(b) illustrates the architecture of the RESCUE-Cache controller which is respon-

sible for reconstructing correct lines. The new modules (MUXs and DFM) added to the

conventional cache are highlighted in the figure. The additional multiplexer network would

allow us to compose the final fault-free line from any of the sub-blocks in any of the cache

ways in each one of four banks, based on its DFM data. Note that two levels of multiplexing

are added to compose the final fault-free line, based on either multiple lines within a set or

between two or more sets in different banks. The first layer is added on the cache bank side

to perform the within-set remapping (Bank-level Multiplexing). Note that this layer replaces

the original block-level multiplexer, available in set-associative caches. The second layer is

added on the core side to perform remapping between sets in different banks (Cross-bank

Multiplexing).
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The total number of n-to-1 and 2-to-1 multiplexers required to compose the final fault-free

line are k×b and k×c, respectively, where k is the number of sub-blocks in each line, n is

the number of ways (set associativity), b is the number of banks, and c is the number of

cores. For instance, for an 8-core processor with a 4-bank, 4-way set associative cache, with

64-byte blocks composed of 32 16-bit sub-blocks, a total of 384 (128 4-to-1 and 256 2-to-1)

16-bit multiplexers are required. For the described cache, the total DFM size will be less

than 7% of total cache area. For a quantitative comparison, we synthesized the multiplexing

layer and output logic for the RESCUE, as well as the multiplexer and output driver of a

conventional cache (CC) using the Synopsys Design Compiler for TSMC 45nm standard cell

library, for a 16MB cache. The area and delay of various multiplexers are used to estimate

the overall area/delay overhead of the multiplexing network in RESCUE and the CC under

nominal Vdd. We found that the delay of RESCUE-Cache output logic increased by only

5% compared to the conventional cache output multiplexing network while area and power

consumption are increased by only 2%. These overheads are all modeled in our results.

Remapping Comparison with Recent Techniques

In order to illustrate the effectiveness of RESCUE remapping for fault recovery, we compare

its fault remapping ability against other state-of-the-art remapping techniques proposed to

improve the fault tolerance of on-chip cache in low voltage operation. These techniques

include RDC-Cache [138], Salvage Cache [86], Ansari’s scheme in [10], and Archipelago [9].

To compare these techniques with RESCUE we report in Figure 3.7 the effective cache size

for each of these techniques across various voltage points. We use the failure rates based on

PTM models in 45 nm [13]. The results reported in Figure 3.7(a) are based on a 1000-run

Monte Carlo simulation for an 8MB 8-way set associative LLC with two banks and 64 byte

block size. To have a fair comparison, for all these techniques including RESCUE, we assume

fault map area overhead is at most 7% of the cache size (the area overhead of RESCUE with
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16b block size). Based on this assumption and to meet the overhead limit, Archipelago

algorithm selects 32-bit sub-block size. The sub-block size for RDC-cache and Salvage-

cache are 128-bit and 64-bit respectively. The results show that in ultra-low voltage region

(below 400 mV) as the failure rate increases, the more flexible methods like Archipelago and

RESCUE result in smaller cache capacity loss.

Figure 3.7(b) presents the results for the same cache configuration but double the number

of banks (total four banks) to evaluate the effect of increasing the number of banks on

the effective cache size. Some of the techniques, like RESCUE, benefit from increasing the

number of banks while others like RDC do not. In fact, for the RDC-Cache and Salvage

cache the effective cache size for the two bank and four bank cases are fairly similar. For the

Salvage cache this is mainly due to intra-bank remapping, where additional banks do not

provide any more opportunity for remapping. Note that Salvage cache only relies on intra-

bank remapping. The RDC-cache relies on a chain topology among banks, and therefore can

at most apply remapping between two banks. For Ansari and Archipelago the improvement is

small when moving from two to four banks, only a 5% effective cache size improvement across

different voltage points. For the RESCUE we achieve up to 13% improvement in effective

cache size compared to the two banks case. In addition, in the Ansari and Archipelago

techniques, the fault map size depends on the fault rate and it would be increase noticeably

as we reduce the voltage below 375mV.

At voltage points below 375mV, to achieve the same effective cache size as RESCUE, Ansari

and Archipelago need to rely on a sub-block size of 4-bit or lower, which incurs an overhead

of more than 20%. This is due to the fact that Archipelago and Ansari’s fault map size

is proportional to the number of original sets in a group that have the same target set.

Because of such overheads, Archipelago places an upper bound on the maximum clique size.

This makes Archipelago less effective for large caches with more than two banks. However,

RESCUE addresses Archipelago scalability issues. The fault map is independent of fault
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rate and is distributed to support multiple access point in a NUCA LLC with distributed

banks.

RESCUE provides noticeably improved flexibility, allowing all banks to participate in remap-

ping. This has an additional benefit – it also allows us to tune RESCUE to account for the

difficult tradeoffs presented by a multi-banked non-uniform access cache. Running the LLC

at an aggressively low voltage and frequency can have significant power advantages, but

there is a cost (both in latency and capacity lost). When errors are frequent, bank accesses

increase, interconnect traffic increases, and cache access latency increases as well. A good

block remapping strategy should minimize these costs. This is the topic of the next section.

3.3.3 RESCUE Remapping Policies

RESCUE leverages already faulty cache lines for redundancy to replace faults in other lines.

In this way, the RESCUE cache automatically adapts the level of redundancy (and as a

result, the amount of lost cache space) to the actual rate of failure. In a uniform cache

architecture (UCA) with multiple banks and uniform latency, the baseline fault-tolerant

cache configuration method presented in the previous section would work well. In such a

scenario the choice of the RESCUE cache location (specifically, the bank for the target line)

would have little impact on latency or interconnect bandwidth. However, as core counts and

LLC sizes continue to grow, unified LLC designs become unrealistic. A NUCA design allows

access time to scale with the average (or better) distance to cache banks, rather than the

maximum distance, and enables use of a scalable interconnect to reach the cache banks.

There are several challenges to applying RESCUE in a distributed multiple-access-point

NUCA environment. The mapping of lines to cache banks in a NUCA architecture has a

significant impact on performance. Adding RESCUE remapping on top of that adds yet

another dimension to the problem. Thus, the RESCUE remapping policy must balance
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Figure 3.7: Effective cache size for different techniques with the (a) two banks and (b) four
banks LLC.

several conflicting goals, including the desire to:

1. Minimize the maximum distance from core to bank. Cache latency will be determined

by the maximum distance to the original and repair (target) banks. We cannot always

predict what core will access the data, but if the repair bank is near the original bank,

then it is more likely the maximum distance will not be inflated significantly.

2. Minimize the total distance from core to banks. Power and traffic congestion (and, as a

result, latency) are minimized by minimizing the total number of hops from the requesting

74



core to each of the two banks. If we assume good NUCA mapping (bank close to requesting

core), then remapping to a nearby bank likely minimizes the total hop count. When the

NUCA mapping is not highly effective (e.g., SNUCA), remapping to a central bank can

minimize the average hop count to the target line.

3. Maximize total cache capacity. The more freedom we have to select target lines, and the

original lines that map to those repair (target) lines, the fewer total lines will be sacrificed.

Since the cache bank access pattern depends on the application that each core is running and

dynamically changes with program behavior at run-time, a one-solution-fits-all approach may

not deliver optimal results. Instead, we propose several heuristics for RESCUE remapping

policies aimed at achieving a different balance of these goals. First, we design two algorithms

that recognize the difference between SNUCA and DNUCA architectures – namely, the fact

that with DNUCA you can assume the current mapping is a good one, while with SNUCA

you cannot. The third policy attempts to minimize traffic by exploiting adjacency and the

fourth places highest priority on preserving cache space.

DNUCA Optimized Policy (Minimum Latency - Moderate Capacity - Moderate

Traffic)

This remapping scheme is targeted at the Dynamic NUCA architecture. If the baseline

DNUCA cache placement strategy is effective, data will be gradually promoted to banks

closer to the cores that access it. We refer to these banks as core-neighbor banks and they

are highlighted in Figure 3.8(a). As a result, the current location of a cache line becomes an

indicator of what core is likely to access it. More importantly, the banks that are nearest the

cores are more critical to performance than those in the middle. Therefore, in this scheme,

we give highest priority to finding a repair (target) line in banks other than the core-neighbor

banks. This preserves space in the edge banks, sacrificing space in the center.
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Figure 3.8: Example showing the (a)DNUCA optimized scheme with remapping limited to
one bank with 1 hop (b)SNUCA optimized scheme with remapping limited to one bank with
1 hop (c)Adjacent mapping scheme (d)Global mapping scheme.

Figure 3.8(a) shows an example of remapping carried out using this scheme where the faulty

lines in the core-neighbor banks are remapped to a target line in other (central) banks. In

addition, for banks other than the core-neighbor banks, the priority is given to remap their

faulty lines to each other as shown in the figure (preferably with one hop to minimize the

latency).
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SNUCA Optimized Policy (Moderate Latency - Moderate Capacity - Moderate

Traffic)

This remapping scheme assumes a Static NUCA architecture. In SNUCA the original map-

ping of data into banks is statically determined, based on the block index. In such architec-

tures, access to the address space and all memory banks are the same for all cores. Therefore,

unlike DNUCA, we have no information to indicate which core is likely to access a cache line.

But there is an asymmetry which we can exploit in an n-by-n grid, as the average distance

from all cores to a bank are not the same. So, the central banks shown in the figure that

have minimum average distance from all cores are more important than the peripheral ones.

Thus, we seek to preserve cache space in the center of the cache in this scheme.

Adjacency still matters in this scheme, because the average max distance to two banks

is always minimized when those two banks are adjacent. However, this policy is more

focused on minimizing the total number of hops (decreasing power and interconnect traffic).

Figure 3.8(b) shows an example of remapping carried out using this scheme, with adjacency

defined as 1 hop. As shown in the figure, in this scheme the preference is given for remapping

the faulty lines in the central 8 banks to their adjacent outer banks. In addition for banks

other than the central banks, the priority is given to remap their faulty lines to each other

as shown in the figure (again preferably with one hop).

Adjacent Mapping Policy (Moderate Latency - Moderate Capacity - Minimum

Traffic)

In this remapping policy, the highest priority for placing the target line is given to adjacent

banks. By doing so, it minimizes the maximum latency to either bank. Otherwise, it is less

constrained than the prior heuristics. Figure 3.8(c) shows a simplified example involving

only one bank, and again defining adjacency as one hop.
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Global Mapping Policy (Maximum Latency - Maximum Capacity - Maximum

Traffic)

All of the other remapping policies potentially sacrifice cache capacity (i.e., prevent the

technique from finding the optimal mapping by constraining it) for latency or traffic con-

siderations. However, when lost capacity induces a miss, it can have far greater impact on

both performance and power than a suboptimal line repair mapping. This remapping policy

thus imposes no location restrictions that would constrain the mapper. However, this policy

gives the priority to the adjacent banks and if the target line is not found in adjacent banks,

it examines other banks. Figure 3.8(d) shows that any bank can be a source for a repair

line of any bank.

3.3.4 Evaluation

Simulation Setup

We use the M5 simulator [35] for our performance simulations. The M5 simulator sup-

ports four different CPU models to provide simulation platforms for detailed cycle accurate

simulations. The memory instructions are modeled through the detailed memory hierar-

chy and network model mentioned in Table 3.1. The memory hierarchy uses a two-level

directory-based MESI cache coherence protocol. To simulate accurate behavior of NUCA

architecture and memory network we have extended M5 to include the HORNET [98] NoC

simulator which simulates NoC architectures with high accuracy and detailed latency, net-

work traffic, and power results. To enable power analysis, HORNET combines a dynamic

power model based on ORION 2.0 with a leakage power model. This tool-set configura-

tion provides a detailed memory-system model that enables us to model the NUCA cache

architecture. Furthermore, it accurately models the network contention introduced by the
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simulated mechanisms.

For the choice of core we study a high-end architecture which is an aggressive out-of-order

Alpha ISA superscalar processor with issue width of 4, deep pipelining, and a complex branch

predictor. Each core contains a split first-level (separate data and instructions) and a private

second-level cache. The third level of the memory hierarchy is the NUCA cache. Table 3.1

summarizes the configuration parameters used in our studies.

We need a model of process variation, otherwise our SPICE models would show every cell

failing at the same voltage level. To model the read/write time distribution as a result of

process variation, we model an independent Gaussian distribution characterizing the Vth

fluctuations of each transistor [133]. The circuit under test is a standard six transistor

SRAM memory bit cell. The SPICE models used for the simulation were obtained from the

Predictive Technology Model (PTM) [13]. Due to the random and uniform distribution of

Vth, it is expected and verified by Monte-Carlo simulation that the read/write time to the

cache follows a ”Gaussian like” distribution. However as the supply voltage to the memory

changes, the characteristic of read/write distribution is expected to change. We repeated

1K Monte-Carlo Simulation for each voltage point. By fitting the obtained iteration points

at each voltage to the closest Gaussian distribution, we produce the expected mean and

standard deviation.

The access latencies of the memory components are based on models made with the CACTI

6.5 [116] modeling tool, this being the first version of CACTI that enables NUCA caches to

be modeled. We also used CACTI 6.5 to obtain the static power and dynamic energy per

cache bank access. The dynamic energy consumed by the NUCA cache within the chip was

modeled with the HORNET tool-set which uses the Orion simulator to determine the energy

per bank access, the energy required to transmit a flit on the network link and the energy

required to switch a flit through a network switch. The extra network traffic introduced by

our proposal is also taken into account and accurately modeled in the simulator.
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Table 3.2: Workload Mix, Spec2006 benchmarks are denoted with 06

8-Thread Workloads Benchmarks

WL1 art 470, sjeng 06, perlbench 06 checkspam, mesa
povray 06, omnetpp 06, eon rushmeier, swim

WL2 bwaves 06, leslie3d 06, omnetpp 06, mesa, libquantum 06
vortex 3, crafty, perlbench 06 checkspam

WL3 crafty, h264ref 06 sss encoder main, hmmer 06 nph3
gap, lbm 06, parser, gcc 06 typeck, libquantum 06

WL4 galgel, apsi, lucas, gzip log, bwaves 06, leslie3d 06
mgrid, namd 06

WL5 milc 06, gcc 06 typeck, gzip log, cactusADM 06, gap
lbm 06, gromacs 06, povray 06

WL6 soplex 06 ref, fma3d, art 470, eon rushmeier, h264ref 06
facerec, vpr route, lucas

WL7 sphinx3 06, bzip2 source, mgrid, parser, gobmk 06 nngs
galgel, equake, astar 06 rivers

WL8 sphinx3 06 - facerec - mcf 06 - sixtrack - astar 06 rivers
applu - fma3d - gromacs 06

WL9 vortex 3 - milc 06 - equake - bzip2 source - vpr route
cactusADM 06 - gobmk 06 nngs - soplex 06 ref

Workload characterization

We compose multi-program workloads with P threads. P is equal to the number of cores

in each CMP architecture we study (2 to 32 core CMP architectures). The applications are

selected from among the SPEC2K and SPEC2006 benchmark suites, selecting representative

sets of memory-intensive, compute-intensive and mixed workloads as shown in Table 3.2. A

total of 32 different workloads are selected for each CMP architecture. For each application

in the workload we fast-forward 2 billion instructions to skip the initialization phase and

then simulate until all threads execute 2 billions instructions.

Design Space Exploration

We study various LLC NUCA network design parameters and configurations and show how

RESCUE can be effective in improving the fault tolerance for various configurations. The
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main design parameters considered in our study include: remapping policy, memory cell

SRAM bit failure rate for various operating voltage levels, and memory network configura-

tion. The major network configuration parameters we considered include: the number of

virtual channels (VC), number of crossbar ports (CP), and bandwidth (BW) of router links.

We assume XY routing and study three network configurations based on the router pa-

rameters: 1) Low-Performance (VC=2, BW=1X, CP=1), 2) Moderate-Performance (VC=4,

BW=2X, CP=2), and 3) High-Performance (VC=8, BW=4X, CP=4). We run our simula-

tion process for six different fault rates, four proposed remapping policies, and three different

network configurations. For each technology node the configuration with optimal number of

cores is studied. We also examine multiple cache sizes. We show results for both SNUCA

and DNUCA LLC architectures.

RESCUE Overheads

Figure 3.9 summarizes the overheads of RESCUE for an 8-core CMP architecture with 16

MB (16 banks) LLC in 45nm technology, relative to an LLC without redundancy support.

The power overhead in this figure is for the nominal Vdd (700mv). We account for the

overheads of using 8T SRAM cells [44] for protecting the tag and defect map arrays in

low-power mode. We assume clock gating and power gating is applied in the DFM array.

Therefore, the main source of dynamic power in nominal Vdd relates to bypass MUXs.

As shown in this figure it is less than 1%. The fault map area is the major component

of area overhead. The total area overhead is less than 9%. In RESCUE, the DFM and

MULTIPLEXING layer are on the critical path of LLC cache access. Based on our discussions

in Section 3.3.2 and our timing analysis, we consider 2 additional cycles for LLC access

latency overhead in low-power mode.
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Figure 3.9: Area, leakage, and dynamic power overheads of RESCUE for an 8-core CMP
with 16 LLC banks in 45nm.

3.3.5 Quantitative Comparison to Alternative Techniques

In order to illustrate the benefits of our design, we quantitatively compare RESCUE with

the baseline 6T SRAM cell, two recent multi-bit ECC-based techniques (2D-ECC [82] and

MS-ECC [46]), three recent remapping-based techniques (Ansari [10], FFT-Cache [22], and

Archipelago [9]), and three other state of the art schemes (Bit-fix [156], 10T SRAM cell

[38], and ZerehCache [8]). Table 3.3 summarizes this compariso - in 45nm - based on the

minimum achievable Vdd, area overhead for the caches, power overhead, normalized IPC,

and normalized power. In order to have a fair comparison, the remapping configuration and

coding granularities are set so that the coding overheads of the ECC-based techniques are

equal/comparable to disabled capacity of other methods (i.e 25%). In this table, different

techniques are sorted based on their minimum achievable Vdd, when targeting 99.9% yield

for on-chip caches.

Overall, RESCUE achieves the lowest operating voltage (360mv) and the highest power re-

duction compared to all other techniques. The closest techniques to ours are Archipelago,

FFT-Cache, and 10T cell. However, 10T cell incurs a 66% area overhead and 24% power

which are much more than our method overheads. Comparing to FFT-Cache and Archipelago,
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Table 3.3: Comparison of different cache protection schemes

Scheme Vdd-
min
(mV)

Area
over.
(%)

Power
over.
(%)

Norm.
IPC

Power
Norm. to
RESCUE

6T cell 660 0 0 1.0 4.51
2D-ECC 470 6.5 15 0.96 1.82
MS-ECC 440 6 10 0.90 1.61
ZerehCache 430 10.7 12 0.97 1.48
Bit-Fix 420 8 20 0.89 1.41
Ansari 410 15 8 0.96 1.33
10T cell 380 66 24 1.0 1.24
FFT-Cache 375 10 8 0.95 1.21
Archipelago 370 12 7 0.95 1.18
RESCUE 360 9 8 0.95 1.0

RESCUE can achieve a lower Vdd and higher power saving while its overheads are less. Over-

all, the scalability of RESCUE for large shared NUCA caches along with efficient remapping,

high configurability, and inherent flexibility allow it to tolerate higher failure rates in large

CMPs compared to other similar techniques.

3.3.6 Experimental Results

In this section we evaluate the impact of multiple RESCUE remapping implementations

on performance, power, and energy in the presence of aggressive voltage scaling. We also

study whether cache over-provisioning can further change the power/performance trade-offs

when RESCUE is being applied. We consider three types of workloads including Memory-

intensive (MEM-WL), CPU-intensive (CPU-WL), and Mixed (MIX-WL). Our design space

includes 26 different CMP core-cache configurations from 2-core to 32-core over five tech-

nology nodes from 65nm to 16nm. For each workload we report performance in terms of

weighted speedup [147], normalized arithmetic mean IPC, and LLC network traffic statis-

tics. For weighted speed up measurement we use the CMP architecture in which the LLC is

operating at nominal VDD with no fault-tolerant mechanism, as a baseline. We also report
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total power consumption (leakage+dynamic) of LLC memory and NoC structures. In the

figures of this section we abbreviate different RESCUE mapping techniques as: AR = Adja-

cent Remapping, GR = Global Remapping, SN = SNUCA Optimized, and DN = DNUCA

Optimized.

Sensitivity to Voltage

In this section we study different design points on an 8-core high-performance processor

at 32nm with a 16MB SNUCA LLC which uses Moderate-Performance (MP) routers for

its cache network (we refer to this as the base CMP model). We study a voltage range

of 0.7V to 0.3V. We refer to the voltages between 0.7V and 0.5V as high-range voltage,

0.5V to 0.4V as middle-range voltage, and 0.4V to 0.3V as low-range voltage. RESCUE

remapping creates complex interactions and trade-offs between network traffic, useful cache

size, and cache hit rate, power, energy, and performance. This section details a large suite

of experiments aimed at understanding those trade-offs and identifying where RESCUE is

most effective. Figure 3.10 shows the effective cache size after applying RESCUE. As shown

for high probability of failure (low operating voltage), GR Policy is far more effective than

all other policies in preserving cache capacity. For instance, at 0.4V, GR Policy reclaims

more than 55% of lost cache capacity (without remapping, all cache is lost). GR mapping

imposes no location restrictions that would constrain the RESCUE mapper. Therefore more

cache capacity can be saved as more candidates for remapping are available to the RESCUE

mapper.

RESCUE Policies

Figure 3.11 shows the sensitivity of the RESCUE policies to different workloads for the

base CMP model, and reports results along several dimensions of interest. The figure shows
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Figure 3.10: Effective cache size after applying RESCUE policies.

multiple performance and power results in terms of LLC number of accesses (1st row),

average packet latency (2nd row), weighted speedup (3rd row), normalized IPC (4th row),

total power consumption (5th row), and energy-delay product or EDP (6th row). A clear

trend seen in the 1st two rows is the increasing LLC access rate and average packet latency as

the voltage scales down below 0.60V. For high-range voltages, remapping is rarely necessary,

while for low-range, so much of the cache is disabled that remapping is not much help. In the

middle range, we see that remapping is active, resulting in higher traffic rates and a small

increase in average latency. Note that while LLC latency is unaffected for very low voltage,

the average memory access time is significantly increased, as the number of LLC misses is

severely increased. In the 2nd row of figure 3.11, the SN policy, in general, has the lowest

average packet latency over all three types of workload and across all voltages.

The 3rd and 4th row show the effect of RESCUE policies on performance parameters in

terms of Weighted Speedup and IPC. A trend that can be seen in the 3rd and 4th rows is

that as the voltages drops below 0.5V, the IPC and Speedup drop sharply as the voltage

scales down. At these voltages, a large percentage of the LLC accesses are now misses and

require main memory access. The 0.5V point is particularly interesting, because performance

does not drop off considerably, despite the fact that this is the range where cache block
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Figure 3.11: Sensitivity studies of RESCUE policies across various workloads.

failures become common and remapping activity starts becoming high. The GR policy gives

the highest performance in this important mid-voltage range, and effectively extends the

range over which high performance loss is avoided. Since the GR policy achieves the lowest

capacity lost among RESCUE policies, it has the lowest impact on performance parameters

like Speedup and IPC.

A clear observation from the 5th and 6th rows is that, once again, the power and the EDP

are sensitive to the RESCUE policies mainly in the middle range voltages. Compared to all
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other policies, GR consumes the most power in the middle-range voltages, since it incurs

higher LLC access rate. Despite this, because of its strong performance, the GR policy

maintains the lowest EDP. In fact, we see that this policy enables us to maintain EDP near

its minimum value even as we extend into aggressive voltage scaling regions.

Network Configuration

By trading off aggressive voltage and cache failures with increased network traffic, the effec-

tiveness of RESCUE mapping will be sensitive to the available bandwidth. To analyze the

impact of network configurations on RESCUE, we report the results of our base CMP model

with three different router configurations: HP, MP (our baseline), and LP as explained in

Section 3.3.4. Figure 3.12 shows the effect of router configuration on performance and power

results for the GR policy with the MEM-Wl workload. As we lower the voltage, we ob-

serve smaller performance impact in HP and MP network configurations (Figure 3.12b). For

middle-range voltage the gap in average packet latency between low performance and high

performance network is widening. This is expected, since in this voltage range, applying

RESCUE remapping policies results in the highest network traffic (Figure 3.12a). Hence

a low performance network can degrade performance. The power and EDP results are re-

ported in Figures 3.12c and d respectively, and indicate the high performance router has

higher power dissipation and EDP across all voltages. Despite giving up network latency

due to contention, the power advantages of the least aggressive network outweighs the overall

performance loss, resulting in a low EDP, and a much wider range of near-optimal EDP even

into low voltage levels.
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Figure 3.12: Sensitivity studies of network configuration with MEM-WL; Average Packet
Latency (a), Normalized IPC (b), Total Power (c), and EDP (d).

NUCA Policy

We expect remapping to be sensitive to the actual LLC configuration, which is why in fact we

examine policies targeted at both SNUCA and DNUCA. We consider the base CMP model

with two different NUCA policies (SNUCA and DNUCA) with MEM-WL. Figure 3.13(a) and

(b) shows the efficiency of NUCA-sensitive policies of RESCUE. It shows that for the model

with SNUCA the SN (SNUCA-Optimized) remapping policy of RESCUE has the lowest

average network packet latency among other policies. Also, for the SDNUCA configuration,

the DN policy (DNUCA-Optimized) has the lowest average latency among other policies.

Another observation is that the latency of all policies across all voltages in the DNUCA

configuration is less than the SNUCA configuration. By comparing figures 3.13 (e) and (f)

we find that power consumption of all policies in SNUCA is slightly higher than DNUCA,

across all voltages. Figures 3.13(g) and (h) show the effect of NUCA-sensitive policies on

EDP. It shows that SN and DN policies are closer to the best performer for the middle

and low range voltages for SNUCA and DNUCA configurations, respectively. Despite the

traffic advantages of SN and DN, we find that GR still achieves the best performance in
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Figure 3.13: Sensitivity studies of NUCA policies with MEM-WL; Average packet latency
(1st row), normalized IPC (2nd row), total power consumption(3rd row), EDP(4th row).

terms of weighted speed up and mean IPC. Our results continue to indicate that maximizing

cache capacity is more important than minimizing traffic, whether we are considering raw

performance or performance/energy.

Cache size

RESCUE cache remapping creates interesting trade-offs between cache size, power, and per-

formance. If we are designing a processor in a power-constrained environment (the common

89



9

10

11

12

13

14

0.3 0.4 0.5 0.6 0.7A
v

g
. P

a
ck

e
t 

La
te

n
cy

 (
cy

cl
e

)

2x cache 1x cache

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7

N
o

rm
a

li
ze

d
 I
P

C

(b)(a)

0

10

20

30

40

50

0.3 0.4 0.5 0.6 0.7

P
o

w
e

r 
(W

)

(c)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.3 0.4 0.5 0.6 0.7

E
n

e
rg

y
 D

e
la

y
 P

ro
d

u
ct

 (
J*

µ
s)

Vdd(V)

(d)

Figure 3.14: Sensitivity studies of Cache size over-provisioning with MIX-WL; Average
packet latency (a), normalized IPC (b), total power consumption (c), and EDP (d).

case in this era), there may be little cost to over-provisioning the cache if it allows us to

further scale down voltage. To study the effect of Cache over-provisioning on performance

and power results we study two architecture; one is our baseline CMP with LLC cache size

of 16MB (1X cache) and the second has the same architecture as our baseline with double

LLC cache size; i.e. 32MB (2X cache). Figure 3.14 shows the results of our study for the GR

policy with the MIX-Wl workload. Figure 3.14(b) compares the effect of voltage scaling on

the IPC of 1x and 2x caches. It shows that the large cache allows us to maintain reasonable

performance at more aggressive voltage scaling.

Figure 3.14(d) shows that for the high-range and the middle-range voltages the EDP of

2X cache is larger than 1X. The break-even point is 0.45 volt where the EDP of the two

architecture are almost the same. The trend changes for the voltage below 0.45 volt, where

the EDP of 2X cache is smaller than the 1X cache. Most importantly, an over-provisioned

cache allows us to maintain near-optimal EDP at more aggressive voltage levels.

These results display exactly the area-power tradeoff that becomes increasingly attractive
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Figure 3.15: Power reduction across process technology nodes over all organizations and
policies with MEM-WL, MIX-WL, and CPU-WL when applying RESCUE (left) and RES-
CUE+COP (right).

in future technology designs. By choosing a cache with twice the maximum capacity (twice

the area), we are able to push voltage scaling from .5V to .4V with no performance loss,

and actually hit a lower power point with the larger cache than the smaller cache. This

architecture also gives us more flexibility. By configuring the over-provisioned cache at 0.4

V rather than the original cache at .5V, we pay no real power or performance cost in the

common case (low voltage operation), but have the option of increasing voltage and getting

full benefit of the larger cache when performance demands it.
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Technology

Figure 3.15 summarizes the power results to show the amount of power saving when ap-

plying RESCUE and RESCUE+COP (Cache Over-Provisioning) compared to the baseline

architecture with no power savings mechanism. The figure shows that we gain the lowest

amount of power saving in MEM-WL workloads and highest amount in CPU-WL in almost

all core-cache configuration nodes. For CPU-intensive workloads, we can scale the LLC volt-

age and rarely pay the cost, but the more LLC accesses we observe in the workload, the more

we pay a cost for the scaling. Comparing the figures in each row shows that for most of the

core-cache nodes in all technology nodes, applying RESCUE and COP techniques together

achieves 5 to 30% more power reduction than applying just RESCUE.
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3.4 Summary

The design of NUCA LLC in CMP architectures is challenging due to the often conflicting

tradeoffs of reliability, manageable power, and performance. In this chapter, we proposed

RESCUE, a fault-tolerant scalable cache architectures for shared NUCA LLC in CMPs.

This enables very aggressive voltage scaling to reduce the power dissipation of large last

level caches in CMPs. RESCUE trades off cache capacity for power, a tradeoff that becomes

increasingly attractive as we continue to follow Moore’s Law. RESCUE leverages address

remapping to replicate faulty blocks of shared LLC banks with blocks from other banks. In

remapping of faulty cache blocks, a single fault-free line can be reconstructed from multiple

faulty lines. This chapter presents four different remapping policies with different primary

goals. The proposed remapping policies leveraged for efficient selection of redundancy from

different cache banks considering design challenges in a NUCA memory organization. In

general, performance and energy-efficiency are highest when the mapping policies are un-

constrained, minimizing the number of sacrificed cache lines. In future large, multi-bank,

non-uniform cache access architectures, performance and routing power can be very sensitive

to the remapping policy. Our experimental analysis shows that as cache operating voltage

scales down, RESCUE increases available cache capacity and hence maintains performance

even in the presence of high failure rates. We show that RESCUE is more effective in low-

ering power and EDP in the mid-range voltages (0.375 – 0.450 V). Our results indicate that

it saves up to 60% power consumption of LLC cache in a 4x4 CMP architecture operating

below O.4V while recovering up to 55% of the faulty cache capacity with only modest perfor-

mance degradation. RESCUE also shows that the trade-off of capacity vs. power can be very

effective. An over-provisioned cache that is twice the original size can be more aggressively

voltage scaled without sacrificing performance, resulting in a power point that is actually

lower than the original cache.
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Chapter 4

Interconnect-aware Resilient Cache

Design

4.1 Introduction

Many-core platforms have become mainstream for the ever-increasing core count multicore

systems where Last-Level Cache (LLC) is the largest shared on-chip memory component.

LLCs are comprised of multiple distributed memory banks interconnected by a sophisticated

communication fabric, often a Network-on-Chip (NoC). By increasing the complexity of such

platforms, reliability becomes a major design challenge. A significant increase in both per-

manent faults and transient errors is expected due to advanced technology nodes, higher

integration, voltage scaling, parametric variations, and higher power density that threaten

the reliability of many-core platforms [118, 160]. Hence, both the cache banks and intercon-

nect fabric (NoC) in LLC significantly suffer from potential fault occurrences. As the number

of cores, cache layers, and memory banks increase in such platforms, there is a critical need

to develop efficient, scalable, and modular fault-tolerant schemes to cope with the resultant
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complexity.

There is a large body of previous work on fault-tolerant design of cache memories which have

mostly focused on either single-bank or multi-bank caches with uniform access latency in a

single-core architecture as explained in previous chapters. However, such schemes face severe

limitations with increasing the number of cores and cache banks in emerging NoC-based

multicore/manycore architectures. On one hand, most of them are not efficient, modular,

and scalable enough to be leveraged for protection of shared caches with nonuniform access

latency and distributed banks in such architectures. Since CMP architectures have more than

one core that can access one or different distributed banks simultaneously, fault mapping

and protection need to be scalable and distributed. Furthermore, existing fault-tolerant

techniques typically use a single fault map and a centralized fault protection scheme which

cannot be scaled for large CMP architectures: as a result each access needs to go through

the fault map first, and no parallel cache accesses are allowed.

On the other hand, most of the proposed solutions are not applicable to LLC in emerging

many-core platforms with error-prone interconnect [19]; they either consider reliable inter-

connects or assume their impact is trivial and therefore ignore them. There are only a few

research efforts that address LLC fault tolerance in NoC-based CMP architectures [154, 19].

However, research on reliability of memory components in NoCs is still in its infancy [107].

In case of NoC, different fault-tolerant approaches such as Forward Error Control (FEC),

Automatic Repeat Query (ARQ) [32], and multi-path routing [114] have been proposed in

literature for reliable on-chip transmission. Error correcting code (ECC) approaches are

very common in NoCs as well as memories to protect interconnect fabric and cache banks

against errors, respectively [82, 32]. In particular, ECC schemes applied to caches suffer from

high power/performance cost and lack of scalability when applied to the large LLC blocks

with multiple errors. In NoCs, switch-to-switch (s2s) and end-to-end (e2e) ECC schemes are

common practices [115, 123]. The choice of either an e2e or s2s ECC scheme in NoCs has
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power, area, and performance trade-offs that vary with the fault rate, size, and topology of

the system [141]. Another category of techniques are based on retransmission of data which

impose higher packet latency and power consumption [115].

Our first observation is that almost all emerging CMPs are based on NoC platforms that

provide a scalable interconnection fabric for connecting the cores, cache banks, and on-chip

memory controllers. On-chip routers and links constitute this scalable communication back-

bone. Considering the limitations of available fault-tolerant schemes and power challenges

of emerging CMPs beside NoC capabilities motivates us to leverage the interconnection fab-

ric available in NoC-based CMPs to implement the fault-tolerant approach. Hence, the

efficient use of the interconnect backbone in CMPs helps designers develop more efficient

fault-tolerant schemes for protection of on-chip memories using its high flexibility, regu-

larity, parallelism, and scalability to detect faults, correct them, and manage redundancy

among different distributed memory banks.

We also observe from related work that all previous approaches consider protection of cache

and interconnect in isolation of each other. Another observation is that to minimize the cost

of LLC protection, cache and interconnect need to be considered together and ignoring one

part makes the protection of other part inefficient. Moreover, in many-core architectures

with distributed shared LLC banks where a large fraction of cache accesses are from remote

cores, it is necessary to protect data blocks against errors throughout the interconnect net-

work. Existing approaches use a direct integration of conventional error protection schemes

available for both cache and NoC interconnect together in current multicore architectures.

However, since such schemes are designed in isolation of each other, this approach leads to a

high level of redundancy with overlapped blocks which makes it inefficient. Consequently, a

unified approach that guarantees the end-to-end protection of shared cache blocks without

imposing a conspicuous overhead is essential for future many-core architectures.

Our observations we mentioned above motivate us to propose two novel interconnect-aware
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approaches to on-chip memory resiliency in NoC-based many-core platforms. While the first

approach considers the scalability of interconnect, the second approach considers the impact

of erroneous interconnect in design for memory resiliency.

As the first major contribution in this chapter, we present a novel solution at the interconnec-

tion network level for fault tolerance of LLC in NoC-based CMP architectures [19, 21]. We

leverage the NoC fabric to implement a fault-tolerant scheme protecting the LLC cache banks

against permanent faults in a scalable and efficient way with minimal overhead. During an

LLC access to a faulty block, the components inside the network (routers) are responsible for

detecting and correcting the faults and then returning the fault-free data to the correspond-

ing core. We propose four different policies that leverage the NoC fabric in different ways

to implement the basic fault-tolerant method. We then perform cycle-accurate simulations

using well-known NoC benchmarks to evaluate our solutions. Our results show that some of

these policies take advantage of the intrinsic parallelism of the communication mechanism

in different ways, leading to a trade-off regarding the constant use of the NoC (increasing

energy consumption) and lower latency. To help evaluate these trade-offs, we also perform

sensitivity analysis on different policies by improving some aspects of the network-on-chip

such as number of virtual channels and the use of an adaptive routing algorithm. Our results

show that some policies react better than others to these modifications, which shows that

different policies take advantage of the communication parallelism in different ways, allowing

system designers to tune the use of specific policies. To the best of our knowledge, this is

the first work that leverages the on-chip network fabric to facilitate fault-tolerant design of

on-chip memory (cache) in NoC-based CMPs.

The second major contribution of this chapter is CoDEC, a Codesign approach to unify the

error coding of cache and interconnect in many-core architectures in order to minimize the

overhead of error protection. CoDEC deploys a united error coding scheme that guarantees

the end-to-end protection of LLC data blocks throughout the on-chip network against both
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hard and soft errors. CoDEC integrates strong multi-bit ECC in cache banks with s2s

error coding of interconnect while removing their overlapped redundancy. It partitions each

LLC block into multiple equally-sized segments, extends each segment with a low-cost ECC,

and transmits each extended segment as a flit in NoC. The main advantage of the CoDEC

approach is eliminating the overlapped redundancy of ECC logic in cache bank and that of

interconnect by integration of multi-bit ECC in cache banks and single bit s2s ECC of NoC.

Using this approach, CoDEC eliminates the large ECC encoder/decoder blocks from the

critical path of LLC global access through the network. Our technique minimizes latency in

the common case of accessing a shared LLC bank over the network, and potentially accessing

a local LLC bank, while providing almost the same error protection as strong multi-bit ECC

in cache blocks using a segmented per flit ECC. Our evaluation on a 4×4 platform with mesh

NoC shows that compared to a conventional approach, CoDEC improves the performance

by up to 14% and around 5.5% on average. Also, our implementation results show that with

respect to the baseline architecture, CoDEC improves cache access latency for global and

local accesses by around 50% and 20%, respectively, with only a minimal overhead of less

than 1% area and 2.5% ECC storage. To the best of our knowledge, this is the first Codesign

approach to protect both cache and interconnect against errors in a NoC-based many-core

platform.

4.2 Related Work

Our work represents a convergence of three main bodies of related research: fault-tolerant

cache design, fault-tolerant NoC interconnect, and memory reliability in multi/many-core

architectures.
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4.2.1 Fault-tolerant Cache Design

There is a rich body of literature on design for error resiliency in cache memories as discussed

in previous chapters. Several architectural techniques have also been proposed to improve

reliability of on-chip caches by employing relatively sophisticated fault tolerance mechanisms,

such as block/set pairing [2, 156, 131], address remapping [9], block/set-level replication

[22], etc. In sum, since most of these techniques are designed for a single-core processor

with one or two cache banks and uniform cache access designs, none of them considers

the scalability and erroneous issues of interconnect on their approach, unlike our proposed

approaches in this chapter.

4.2.2 Fault-tolerant NoC design

Reliability and fault-tolerance are outstanding research challenges in NoC design [107]. There

are many efforts to investigate the robustness of NoCs, mostly in the areas of routing algo-

rithms [129, 127], communication infrastructure [36, 115, 123, 141], or micro-architecture [83,

7, 71]. A fault-aware IP-core mapping to NoC routers is proposed in [105]. They address

the problem of transient link failures by means of temporally and spatially redundant trans-

mission of messages. A stochastic communication paradigm is proposed in [36] to provide

a fault-tolerant communication. This approach is based on probabilistic broadcast where

packets are forwarded randomly to the neighboring nodes. However, none of them protect

faulty datapath inside routers. In [32], the authors deploy some error correcting schemes

to achieve combined energy minimization and reliability optimization design goals. A fault-

tolerant router architecture is proposed in [57] to guarantee the functionality of the NoC in

the presence of faults. They detect the most tenuous components of router against different

sources of faults first and then tolerate them to save power and area overhead of employing

fault-tolerant techniques.
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4.2.3 Memory Reliability in Multi/Many-cores

There are some recent efforts addressing memory resiliency in NoC-based CMP architectures.

Angiolini et al. [7] presented a mechanism to maintain a reliable integrated memory subsys-

tem for a NoC-based system. The idea is to have a reliable backup memory (in addition to

the main memory) to store all the critical data. The NIs are responsible for redirecting the

critical data access in case of a failure in the main memory. Although, this scenario provides

some percentage of reliability to the memory, it has drawbacks like redundancy of data and

not being transparent to the programmer. In another work [154], Wang et al. addresses

fault-tolerance of NUCA cache in NoC-based CMPs. They proposed a utility-driven address

remapping technique to tackle the capacity loss in NUCA cache of NoC-based CMP archi-

tectures. However, their address remapping technique is at the bank-level, and they have

not leveraged the NoC fabric for fault-tolerance of the cache.

Our approach is different from all the related work as follows. Our approach is orthog-

onal to all previous work in different categories mentioned earlier. We neither propose a

new cache fault-tolerant technique nor a NoC fault-tolerant technique. Here, we propose

interconnect-aware approaches to LLC protection in two different ways. In first contribu-

tion, we describe how to leverage the NoC fabric to implement an available fault-tolerant

cache technique in a scalable and efficient way with minimal overheads for emerging NoC-

based multicore/manycore platforms. In second contribution, we consider the impact of

an erroneous interconnect fabric in LLC protection and propose a codesign error coding

technique to consider both cache and interconnect.
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4.3 NoC-based Fault-tolerance of LLC

4.3.1 Basic Idea and Baseline Architecture

Unlike traditional fault-tolerant cache schemes, our approach migrates all of the fault-tolerant

bookkeeping from the cores to the NoC fabric by modifying the network routers to perform all

the required tasks of a fault-tolerant scheme. As an exemplar of a fault-tolerant scheme, we

use a remapping-based technique to demonstrate the effectiveness of our proposed approach.

Remapping-based schemes address permanent faults by remapping faulty blocks to other

faulty/non-faulty blocks, thereby ensuring delivery of fault-free blocks. We propose four

policies to configure the NoC, implement the fault-tolerant scheme, and based on each policy

we add a fault map and a multiplexing layer to the appropriate NoC components. The

fault map keeps information about the location of permanent faults and remapping data in

the local cache bank connected to each router. The multiplexing layer performs the fault

matching.

Using the NoC interconnection paradigm enables us to implement any fault-tolerant method

in an efficient, modular, and scalable manner for several reasons. First, it supports modular

and scalable implementation of fault-tolerant methods for emerging multi/manycore archi-

tectures. Different policies and configurations are possible with the minimum overhead and

design change. Second, using the NoC paradigm, it is easy to control access and management

of redundancy resources. Also, redundancy for fault tolerance can be provided easily via the

available interconnection network for any entity in the NoC. Third, adaptive and dynamic

fault tolerance of memory banks can be supported via NoC components. Since the routers

have a key role in communication and management of data between all core and cache nodes

in a NoC-based CMP architecture, by using their network information and modifying their

routing algorithm, we can easily provide adaptive fault tolerance of cache banks.
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Figure 4.1: Baseline NoC architecture.

CMP and NUCA LLC

We consider a nontiled CMP architecture as our baseline. The architecture is similar to

Oracles SPARC T3-1B processor composed of 8 cores and 16 shared LLC banks [142]. Cores

and cache banks are interconnected as a 2D mesh via a Network-on-Chip (NoC) architecture

as shown in Figure 4.1 where the L2 cache is located in the middle (CIM) [80, 49]. Each

core is composed of a processing element and private L1 data and instruction caches. Based

on our cache organization, each LLC bank is a portion of a larger distributed shared LLC

cache.

The baseline design assumes a Non-Uniform Cache Architecture (NUCA) [81] LLC cache.

With multiple banks within the LLC cache, we have the choice of either always putting

a block into a designated bank (static mapping) or allowing a block to reside in one of

multiple banks (dynamic mapping).We consider static mapping in our baseline design and

model a static NUCA policy for CMP architectures (CMP-SNUCA) [30]. Similar to the
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original proposal (S-NUCA for unicore processors in Kim et al. [81]), CMP-SNUCA statically

partitions the address space across cache banks connected via a 2D mesh interconnection

network.

In static mapping, a fixed hash function uses the lower bits of a block address to select the

target bank. LLC access latency is proportional to the distance from the issuing L1 cache

to the LLC cache bank. By allowing nonuniform hit latencies, static mapping reduces hit

latencies of traditional monolithic cache designs, which fixes the latency to the longest path

[3]. Because a block can be placed into only one bank, the LLC access latency is essentially

decided by the accessing block address.

NoC Architecture

Networks-on-chip are based on conventional computer networks, and have emerged as an

alternative to buses to deal with the issue of scalability and to provide a regular architecture

in order to provide reusability. Indeed, because of their regular architecture, NoCs are very

suitable for platform-based design. The NoC exemplar used in this work is a cycle-accurate

SystemC implementation based on SoCIN (SoC Interconnection Network) [163]. SoCIN is

a mesh topology scalable network based on a parametric router architecture conceived with

the goal of instantiating a low-cost NoC. The main modules of this implementation of the

SoCIN router are the input buffers, the arbiter, the crossbar, and the links as depicted in

Figure 4.2(a). SoCIN is a wormhole packet-switched network, where each packet is divided

into small units called flits (flow control unit). Each flit contains n + 2 bits where n is the

payload and the 2 bits are flags for begin of packet (bop) and end of packet (eop). When a

flit arrives in the router it is stored in the input buffer. Once the arbiter reads the first flit

(identified by the bop flag) it can determine through which output port the packet must go.

At this point, when multiple packets need to use the same output, the arbiter must choose

which one must go first. This is decided by using a simple round-robin scheduling. This

103



information is passed to the crossbar. If the crossbar determines that the output request is

available, it begins to transmit the packet. The condition that defines the availability of the

output is that the input buffer of the router connected to it needs to have enough space for

at least one flit.

SoCIN implements a deterministic XY routing that avoids deadlocks. The routing is deter-

mined by the NoC address of the destination specified in the very first flit of the packet (the

n/2 most significant bits are the destination NoC address and the n/2 less significant are the

source NoC address). Once the first flit is routed through an output, the handshake protocol

between the routers defines when there is enough space in the input buffer to send the next

flit. This happens until the flit with the eop flag is routed. Therefore, all flits are routed

in a pipeline fashion. Figure 4.2(b) shows the packet format in SoCIN. The flow control in

SoCIN is handshake based. When the sender writes the data on the link, it signals a valid

(val) bit. When the receiver is ready to read the data it activates the ack signal. Figure

4.2(c) depicts the link structure with two unidirectional channels (to send and receive) each

one of them has n + 2 bits and val and ack signals.

Base Fault-tolerant Method

In general, all fault-tolerant schemes leverage some form of redundancy to tolerate the faulty

components. As an exemplar for fault-tolerant caches, we consider remappingbased tech-

niques as our base fault-tolerant method from the work in [22]. This method leverages a

portion of faulty blocks as redundancy to mask faults in other blocks in cache memories.

Here, we present a brief description of this fault-tolerant method. This method uses a BIST

module during boot-up to detect permanent faults (hard errors) in cache blocks and keeps

the information of the location of faulty blocks in a fault map. Then, based on this infor-

mation, it configures the address remapping for faulty blocks. This method divides each

block of the cache into multiple subblocks that define the granularity at which failures are
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(a) Router

(b) Packet fromat (c) Link signals

Figure 4.2: SoCIN component details.

identified and remapped. A subblock is labeled faulty if it has at least one faulty bit, as

determined by BIST analysis. If two blocks have faults in the same subblock, it means they

have a conflict and one cannot be used to mask faults in the other. During the configuration

process if a block is labeled as faulty, the system attempts to remap faulty portions of that

block (host block) to another block (called the target block) that has already been marked

as faulty and does not conflict with the host block. It then sacrifices and disables the target

block to replicate all faulty subblocks of the host block. Thus, the fault-free block can be

reconstructed from a combination of the two blocks; that is, the host block together with

the target block via leveraging a multiplexing layer.

In many cases, a good choice of the target is another block in the same set (referred to as

a local target block), so both host and target blocks can be read in a single access. Barring

this case, we should always select target blocks from a different bank (a target bank), so

that both blocks can be read without two serialized accesses to the same bank. We refer to
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this target block as a remote target block. Note that the target block can be selected from

any bank in the LLC address space. Here, for each bank we limit the remapping policy to

select target blocks from the adjacent banks that are within a one-hop distance in the NoC.

4.3.2 Proposed Architecture

We extend the base fault-tolerant method to be leveraged for a shared multi-bank NUCA

cache in a CMP architecture using the NoC backbone. Recall that the basic idea is that we

distribute the fault map and multiplexing layer over routers of the NoC architecture. There

exists one entry in a fault map for each set.We divide each entry to two sections: map of

faulty subblocks and remapping data. The first section keeps the map of faulty subblocks

in the set. The second section represents the remapping data of all blocks in the set. We

keep the fault map of each bank in two separate blocks. We keep the first section of the

fault map in a Fault Map Block (FMB). The second block is composed of the remapping

data of the fault map which is named Remapping Data Block (RDB). RDB includes one bit

that indicates the faulty status of each block. We need the FMB data only to configure the

address remapping and initialize the RDB. Therefore, there is no need to access this FMB

data during the operation of the system, and we can keep it in main memory or the hard

drive. We only need to keep the RDB data at the cache level. Note that we employ a reliable

8T SRAM cell [38] to protect RDB and also tag arrays. To implement our approach, we

perform modifications in three levels to a cache access algorithm, the NoC routers, and cache

banks to support the fault-tolerant method, as described in the next sections.

Fault-tolerant Cache Access

We modify the LLC access algorithm to support the fault-tolerant method. In our fault-

tolerant cache architecture, each LLC access first accesses the RDB of the fault map. Based
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Figure 4.3: Three phases of a fault-tolerant LLC access.

on the fault status bit of the accessed block, if it is a faulty block it needs to have an extra

access to a target block. In our model, we consider that this reading process from the RDB

creates an overhead of one clock cycle but this only happens one time during the L2 access

and only when there is an L1 cache miss. The target block can be a local one within the same

set or may be accessed from another bank (in case of a remote target block). Then, based

on the location of the target block retrieved from the RDB, one or two levels of multiplexing

are used to compose a fault-free block by choosing appropriate subblocks from both host

and target blocks.

Based on our modified cache access, we define a fault-tolerant LLC access in three phases.

1. Issue: Send access to both host and target blocks.

2. Receive: Wait until receiving both host and target blocks.

3. Match: Match both host and target blocks via a multiplexing layer to tolerate faulty
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subblocks.

Figure 4.3 represents three stages of a fault-tolerant LLC access in our scheme. Since the

proposed fault-tolerant cache architecture increases the number of accesses to the LLC banks,

it has a direct impact not only on the network traffic but also on the LLC access latency.

In fact, efficient implementation of a fault-tolerant cache architecture needs to consider its

impact on both network traffic and latency while trying to minimize its performance and cost

overheads. Considering such design tradeoffs, we propose four scalable policies to implement

a fault-tolerant cache architecture based on a NoC paradigm.

We define an entity as a NoC component (core, router, or cache bank) that can perform

a phase of the fault-tolerant LLC access. Based on this definition each one of the cores,

routers, or cache banks can be an entity. Therefore, different phases of a fault-tolerant LLC

access can be performed by different components (entities) in the NoC architecture. Based

on the type and location of entities that perform different phases of a fault-tolerant LLC

access, we can have different policies. However, in this architecture we assume all phases of a

fault-tolerant LLC access are done in one entity (issue entity) and based on this assumption

we define the four following policies.

1. Core-Based: This is the basic policy, where all three phases of a fault-tolerant LLC

access are done by the core which sends an access to the LLC bank. In this policy, we

dont perform any changes to the NoC architecture. The NoC architecture is used to send

access to both host and target banks and return the host and target blocks to the issuer

core. One advantage of this policy is that it potentially minimizes the network latency by

sending access to both host and target block in parallel.

2. Parallel-Issue: In this policy, the local router of the core performs all three phases of

issue, receive, and match. In this policy, we dont change the cores. Only the local routers

of the cores are changed. One advantage of this policy is that only a section of routers have
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to be modified. Also, it reduces the traffic between cores and NoC routers in comparison

to the base policy.

3. Host-Centric: In this policy, the local router of the host bank performs all three phases

of issue, receive, and match and then sends the final fault-free block back to the requester

core. One advantage of this policy is that it minimizes the network traffic in comparison

with other policies. However, its network latency highly depends on the distance between

the host and target banks.

4. Third-Node: For this policy, an intermediary node as the third node is chosen to perform

the three phases. The idea is to have a middle-way point that receives the request from

the core and issues both requests to the host and target nodes in parallel. Eventually,

host and target blocks will arrive at this same node. This would potentially decrease

the amount of latency where both host and target blocks are concurrently accessed and

route through the network in parallel; it does not serialize and lengthen the latency of the

process as much as the host-centric policy. The method used to choose the intermediary

node is explained in the next section.

Figure 4.4 represents different policies based on the issue entity and shows the differences

between them.

Fault-Aware Router

As mentioned earlier in previous Section, the router has the arbiter that reads from the

input buffer in order to determine the direction to which the packet must go (namely, north,

south, east, west, or local). Then it informs the crossbar which input buffer it must read

from. This process is depicted in Figure 4.5(a). In order to support the fault-tolerant LLC

access and the parallel-issue and host-centric policies presented in the previous section, we

need to change the router. We therefore propose a novel fault-aware router to support our
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Figure 4.4: A general view of the NoC with different fault-tolerant mapping policies.

fault-tolerant LLC access via the NoC architecture, which is detailed in Figure 4.5(b). This

new router has new components like an RDB, an extra buffer, and a multiplexing layer. In a

situation where a data request arrives, the arbiter verifies (using the RDB) if that particular

address is a faulty access (access to a faulty block). In case of a faulty access, it checks if the

target block is local (within the same set) or remote (another set in another bank). In case

of local target block, the cache bank handles the local remapping (more details in the next

section). In case of a remote target block, the arbiter itself generates another request packet

to be sent to the target bank. It keeps three pieces of information after that: (1) a flag that

indicates that a matching operation is pending; (2) the direction from which the host and

target blocks are expected; and (3) the address of the core that originally requested the data.

When a reply packet arrives, the arbiter checks whether this is an expected packet, as part

of the original data (host block) request that is pending. If so, it stores the block in the extra

buffer. When the target data packet arrives, the arbiter sends it and also the contents of

the extra buffer to the multiplexing layer for fault matching. The output of the multiplexing

layer will be the final fault-free data packet (block) to be sent to the core that requested the
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Figure 4.5: Router architecture: (a) Conventional router; (b) fault-aware router.

data. It is important to note that for regular non-faulty data requests, the multiplexing layer

is bypassed. Note that based on different policies, we replace none, some, or all of the NoC

routers with the new fault-aware one to implement the fault-tolerant method. In case of

the core-based policy, there is no need to use the fault-aware router and all of the processes

mentioned before are performed inside of the cores. For the parallel-issue policy, we replace

all local routers of the cores (the routers directly connected to the cores) by the proposed

fault-aware router. In case of host-centric and third node, since every router in the NoC can

be an issue entity, we replace all of the routers by the fault-aware router. Additionally, for

the third node, the first router (the one connected to the core) is responsible for choosing the

intermediary node. This happens by generating two lists of routers from the local router of

the core to the host router admitting the use of XY routing and YX routing (Figure 4.6(a)).

In the same way, two additional lists are generated considering the target router as final

destination (Figure 4.6(b)). Finally, the farthest router that intersects at least two of these

paths is chosen as the third node (Figure 4.6(c)).
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Figure 4.6: Choosing the intermediary node in the third node policy.

Figure 4.7: Cache bank architecture: (a) A conventional 4-way set-associative cache bank;
(b) modified cache bank with three subblocks in each way.

Fault-tolerant Cache Banks

We perform some changes in the LLC banks to support our fault-tolerant method. As

mentioned earlier in Section 4.3.1, we divide each block into multiple, equally-sized subblocks.

Since our LLC is a set-associative cache, each bank already has a large block-level multiplexer.

We replace that multiplexer with a set of smaller ones with subblock size scale. Figure 4.7

shows a conventional 4-way set associative and the modified one with three subblocks in each

way. The number of required multiplexers in each bank is equal to the number of subblocks

per block.
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Table 4.1: Simulation Configuration

Processor Core 8 SPARC V8
L1 I/D Cache 2 Banks, 32KB each, 4-Way, 32B Block Size,

2 cycle, LRU
L2 Cache (LLC) shared 16MB, 16 banks, 16-way assoc, 64B

lines, 10 cycle, LRU
Coherence protocol Directoy-based
Memory Latency 250 cycles

Interconnect NoC of 2D mesh (4×4 for 16 banks and 16
cores) , 32-byte links (2 flits per memory ac-
cess), 1-cycle link latency, 2-cycle router, XY
routing, Wormhole Switching, 4 phit buffer
size

Frequency 1.0 GHz
Technology 45nm

4.3.3 Evaluation

This section describes the methodology used to obtain relevant results in order to evaluate the

impact of different policies of the proposed approach on performance, energy, and network

metrics. In this work we have focused on the fault tolerance of on-chip memory banks using

an ideal, fault-free NoC infrastructure.1

Simulation Setup

We use a cycle-accurate SystemC model of a NoC used in previous works [61, 91] which is a

mesh-based implementation that uses an XY routing and wormhole switching with a 4-phit

buffer size. Each router of this NoC is connected to a 1MB L2 cache bank. All L2 cache

banks share the same address space of 16MB. Additionally, for each router in the first and

last rows, there is amodule generating data and instruction requests based on memory traces

1Of course the NoC itself also is vulnerable to both permanent and transient errors (and there is a lot
of work on fault tolerance of the NoC fabric itself as described in the related work); for this evaluation we
restrict our analysis to faults in the memory subsystem. Our future work will consider a unified approach
that simultaneously analyzes the fault tolerance of NoC fabric together with the memory banks.
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obtained from a Simics [102] simulation using 8 SparcV8 as cores. Table 4.1 summarizes

the experimental setup of our architecture.

A workload of parallel programs with very distinct behaviors is created using benchmarks

from the well-known SPLASH-2 [159], PARSEC [33], and a parallel version of MiBench [65]

suites. Table presents a brief description for each one of them. Using the Simics simulator,

we extract all memory requests (data and instructions) by executing these applications, one

at a time, with 8 threads each. With these memory traces as input of our framework, we

are able to extract performance and energy results. The performance results are the total

number of cycles to execute all 8 threads and the energy results are obtained from Cacti 6.5

[116]for the memory subsystem and from Orion 2.0 [79] for the network-on-chip.

For the sake of this study, faulty LLC banks are modeled randomly since SRAM cell faults

occur as random events. These random faults are due to the major contribution of the

Random Dopant Fluctuation (RDF) to the process variation [2]. A recent work in the

resilience roadmap reports the predicted probability of failure for inverters, latches, and

SRAM cells as a function of the technology node [118]. Based on their results the probability

of bit failure for SRAM cells can be up to 2.6e-4. Here, we use the Predictive Technology

Model (PTM) [13] that provides the voltage, area, power, and frequency scaling factors at

45nm technology node. We consider 2e-4 bit fault rate in our results which are based on the

PTM model gains due to scaling the voltage down to 500mV.

Design Space Exploration

We run the simulation process for our four proposed policies running different applications.

Additionally, we consider a baseline case based on the original NoC with a fault-tolerant

scheme similar to the one presented in Section 2.3. The restriction for this baseline is that

there are no global targets. This means that the remapping for a faulty line will occur
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Table 4.2: Benchmarks Description

Benchmark Suite Application Description

FFT A complex 1-D version of a six-step FFT al-
gorithm

SPLASH LU Factors a dense matrix in the equivalent
lower-upper matrix multiplication

Patricia A data structure used to represent routing
tables in network applications

Susan corners
MiBench Susan edges An image recognition package. It was de-

veloped for recognizing corners and edges in
Magnetic Resonance Images of the brain

Susan smoothing
PARSEC Swaptions Monte Carlo simulation is used to price a

portfolio of swaptions

only by using blocks from the same bank. As a consequence, this baseline should have

smaller opportunities for remapping, hence increasing the total number of disabled blocks

in the system. The policy results are all normalized according to the baseline. We evaluate

the impact of the proposed NoC-based fault-tolerant approach on performance, energy, and

network latency and traffic.

We consider the network latency as the amount of cycles spent between issuing of the data

request packet and receiving the data packet from the L2 cache bank. Network traffic, as

defined in Section 4.3.2, is the amount of data that passes through the network taking into

account the amount of time that the data spends passing through the NoC. The network

traffic generated by each policy could create contention leading to performance loss. We can

estimate network contention using the average buffer occupancy as a metric; in turn this

gives us an estimate of the effect of network traffic generated by each policy. The average

buffer occupancy increases as more packets are sent and also increases as more packets flow

through more routers in the network. Our overall performance metric is the number of

Instructions Per Cycle (IPC). An important observation is that since we are using a cycle-

accurate SystemC model of a NoC, all contentions are already taken into account by the
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simulator. The latency and traffic analysis shown in Section 4.3.2 did not consider the

delay and energy consumption caused by eventual contention during the execution of the

applications in the system. Thus, the results presented in the next section are much more

precise in this matter.

Our energy metrics include the LLC total energy and the energy-delay product. The LLC

total energy reflects the total amount of static and dynamic energy from the L2 cache banks

and NoC (routers and links) throughout the execution of all traces. We also consider the

energy overhead due to the extra traffic and also added blocks in the routers like muxing

logic, RDB, and an extra buffer. The energy-delay product is the product between the energy

and the total delay for each application. In this case, we consider the delay as amount of

cycles taken to finish the execution of all tasks of the application.

4.3.4 Results

Network Latency and Traffic

Figure 4.8 shows network latency of the proposed policies normalized to the baseline across

different benchmarks. As expected, due to the analysis presented in Section 4.3.2, the core-

based and parallel-issue policies present very similar results. This happens because of the

difference between these two policies in terms of traversing the NoC.

In the core-based policy, the packet must pass through one hop more than in the case of the

parallel-issue policy. The host-centric policy, in contrast with our expectation, presents less

latency than these two policies. Finally, the third node policy presents better results than

the host-centric one for most benchmarks due to the use of an intermediary point between

the core and the host and target nodes. This approach not only tries to decrease the time

to access both blocks but also tends to minimize the traffic in the system since the target
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Figure 4.8: Network latency of different policies normalized to the baseline.

and host blocks do not have to travel all the way to the core. However, for the FFT and

LU applications, the host-centric technique seems to have a slight advantage. This may be

explained by the fact that these are smaller applications and therefore theres not much space

for improvement by using the intuition behind the third node policy.

These results can be nonintuitive since the host-centric policy essentially requests the host

and the target blocks sequentially, differently from the other two policies. However, it is

important to note that the RDB configuration plays a key role in these results, especially

for the host-centric policy. In this study, by managing the allocation of host lines and target

lines in such a way that they be placed in cache banks only at most 1-hop apart each other,

we create a situation where the serialization of requests in the host-centric policy does not

affect the latency nor degrade the performance at all. Additionally as shown in Table 4.3,

the RDB configuration generated for these experiments favors the host-centric policy since

the majority of the target banks are 1-hop apart from their respective host banks. This

means that because of XY routing in NoC, in most cases, cache access request and response

packets in the core-based and parallel-issue policies flow through the network using almost
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Table 4.3: RDB Remapping Results

Global Targets 17702 (54.02%)
Lines remapped in 1-hop banks 17092 (96.55%)
Average number of hops to target banks 0.96

Figure 4.9: IPC of different policies normalized to the baseline.

the same set of routers as the host-centric policy. This directly affects the major advantage

of these policies, which is the parallel use of the network.

In order to verify the impact of each policy on the NoC and the amount of contention they

can generate, we measure the average buffer occupancy in routers. As presented in Figure

4.9 we consider the average amount of packets on each buffer in order to have an idea of the

contention in the system. Therefore, the results show not only the amount of data packets

in each case but also how long they stay in the NoC. In the end, these results show the

potential to generate contentions that each policy may have.

Since core-based and parallel-issue policies only perform the multiplexing between the host

and target lines in the last node and router of the return path, respectively, the network

becomes busier and therefore they have higher average buffer occupancy. On the other

hand, the host-centric policy matches the lines at the host node and, because of that, it

causes less traffic and less possible contention in the network overall. Finally, for the third
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Figure 4.10: Network latency of different policies normalized to the baseline.

node policy, the results show that it presents similar results to the host-centric policy due

to the fact that it tries to reduce the amount of usage of the NoC by performing the muxing

phase earlier than the core-based and parallel-issue policies.

Performance Results

Figure 4.10 represents the IPC results for different policies. It shows that with small vari-

ations in different applications, the third node policy has the best results on average but

again at smaller applications the host-centric policy presents better results. Core-based and

parallel-issue policies have almost the same IPC. This outcome is expected because of the

similar trends observed in network latency and average buffer occupancy results.

As shown in the network latency results, some applications benefit more from the fault-

tolerant method than others. This happens because some memory accesses to faulty lines

do not necessarily generate L2 misses. Now some of these memory requests will generate L2

hits thanks to the remapping method. With that in mind, we can see that applications like

FFT and LU have higher IPC, because they have lower network latency as shown in Figure

119



Figure 4.11: Energy of different policies normalized to the baseline.

4.8. Also, the amount of off-chip requests due to L2 misses harms the performance of the

baseline more than the proposed policies.

Energy Results

As mentioned earlier, the energy results for the cache banks and RDB arrays are obtained

from Cacti. Also, we use Orion to get the energy results of NoC fabric considering extra

added logic inside routers. Figure 4.11 shows the total LLC energy for different policies. As

a direct consequence of less access to an off-chip memory, all policies present better energy

results than the baseline. In the case of core-based and parallel-issue policies, this advantage

is smaller than the host-centric policy because of the network energy. The fact that the host

and target traverse through the network for more hops makes it more energy consuming in

case of the core-based and parallel-issue policies, especially with more activity in their router

buffers. Also, due to reasons explained before, the network latency for these two policies

is higher, which affects their energy consumption as shown in Figure 4.11. For the same

reasons, the energy consumption on the third node is much lower than the core-based and

parallel-issue policies and therefore presents better results in most cases. Figure 4.12 shows
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Figure 4.12: Energy-delay product of different polices normalized to the baseline.

Energy-Delay Product (EDP), which summarizes the results presented so far. The third

node policy gains the best EDP because of its lesser amount of off-chip memory access, the

lower amount of buffer occupancy, better performance, and lower energy in comparison with

other policies. However, the host centric node also presents very similar results.

Overheads

Since each policy requires some minor architectural changes, the solution presents some area

and power overhead caused by the addition of extra components in the router as explained

in Section 4.3.2. Table 4.4 summarizes the area and power overheads of the proposed ar-

chitecture for different policies.We consider the overhead of the RDB, the extra buffer, the

multiplexing layer, and miscellaneous logic in the issue entities. The RDB is the major con-

tributor to area and static power overhead. In addition, in order to protect the RDB and

the tag arrays, we use reliable 8T SRAM cell [38] which has about 33% area overhead for

these relatively small arrays in comparison with 6T SRAM data cells.

In the case of the core-based, parallel-issue, and third node policies, each entity must have
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Table 4.4: Power and Area Overhead Results

Scheme Core-Based Parallel-Issue Host-Centric Third-Node

Area 2.46% 2.46% 0.41% 2.46%
Static Power 5.53% 5.53% 0.81% 5.53%
Dynamic Power 1.05% 1.05% 0.40% 1.05%

a full RDB (with entries for every line in the LLC). This is necessary since there is no

limitation on which data request will arrive in the entity. Each core can access any line

in any bank since they form the same address space. However, the host-centric policy is a

different case. Since the issue entity is the router directly connected to the host bank, the

data to be requested can only be one of the lines in that host bank. Therefore, the RDB

in each router can have only the entries of the lines that the host bank holds. Hence, the

overhead in all routers of the host-centric policy is equal to the size of one full RDB, while

the overhead in the core-based and parallel-issue policies equals eight times (one per core)

the size of a full RDB. Overall, the overhead of all policies in the proposed fault tolerance

solution is minimal (less than 3% area and less than 7% power overhead), demonstrating the

viability of our approach.

Regarding the delay overhead, we consider the delay to access the RDB inside the entity

nodes router for both faulty and healthy lines. The delay overhead of muxing logic is negli-

gible in comparison with that delay. However, this happens only once during eachmemory

request and it takes only one extra cycle. From the gains presented in the IPC results we

can safely assume that its overhead is compensated by the fact that the approach prevents

more accesses to an off-chip memory which is very costly (typically a few hundred cycles).
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4.4 CoDEC

4.4.1 Background and Motivation

Error Coding Overview

A common solution to address errors in memory components is applying Error Detecting

Codes (EDC) and ECC techniques. Typically, EDC techniques are composed of parity bits,

while the most common ECC methods employ Hamming [67] or Hsiao [73] codes with the

capability of Single bit Error Correction and Double bit Error Detection (SECDED). More

complex codes such as DECTED, QECPED [82] and also BCH [155] are considered once

higher error detection is needed. However, they are rarely used in large cache memories

because the area, delay, and power overheads of ECC grow rapidly as correction capability

is increased [82]. Depending on the level of error detection/correction and complexity of

implemented coding algorithm, there are multiple reliability, performance, power and area

trade-offs [132].

For interconnected architectures using NoCs, if the data paths are infected by any faults,

instantaneous fault detection can be provided by a combination of forward error correction

(FEC) and error detection codes. ECC schemes can be implemented in the data link layer as

s2s or in transport layer as e2e scheme [115]. In the s2s approach, the encoders (decoders) of

the ECC are implemented in the output and/or input ports of the routers of the NoC, while

in the e2e scheme, the encoders and decoders of the ECC are implemented in the network

interface (NI) of the cores. When faults rates are low, robust s2s encoding schemes consume

excess power which is unnecessary and can be avoided by e2e schemes. At the same time,

s2s schemes can provide better fault coverage than e2e schemes when fault rates are high,

especially in large hop networks. The choice of either e2e or s2s fault detection scheme in

NoCs has power, area and performance trade-offs that vary with the number of CMPs and
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Figure 4.13: Percentage of LLC remote vs local accesses in a 16 MB shared LLC.

fault rate in the system. However, due to lack of scalability, the e2e scheme is inefficient in

emerging large many-core platforms with high error rates.

Motivation

In current multicores with large LLCs, the LLC access latency has a great impact on sys-

tem performance, with many efforts to minimize the average cache access latency [75]. In

such platforms LLCs are usually shared with non-uniform cache architecture (NUCA) [30].A

majority of the accesses to each LLC bank are global(remote) accesses transmitted through

the network from non-local cores. Figure 4.13 shows the percentage of remote and local

Figure 4.14: The ratio of ECC logic latency to total global LLC access Latency.
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Figure 4.15: Motivational example of LLC and NoC error coding integration

accesses to a 16-MB shared LLC with static NUCA when multithreaded workloads form the

PARSEC suite are run on a 4x4 tiled CMPv(refer to Section 4.4.3 for the detailed experi-

mental setup). As demonstrated in this figure, remote accesses to LLC banks through the

interconnect are significantly more than the local ones. To see the effect of ECC latency on

LLC access latency, Figure 4.14 depicts the latency contributions of the ECC logic in the

LLC global access latency over different platforms. In this figure, the Best case considers

the total LLC access time as the least global distance latency between the requester and the

accessed LLC bank which is always one hop. For the Average case, the average hop count

for each network size is considered as the distance between the requester and the accessed

bank. For the Worst case, the network diameter of a mesh network with dimension order
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routing (DOR) algorithm is considered. We can observe that a tangible amount of global

LLC access latency is imposed by LLC cache ECC logic; especially if the requesting core is

closer to the target LLC cache. Although the ECC latency contribution becomes smaller

in larger platform, it is still non-trivial, e.g., almost 10% for the largest platform with 256

cores. The observation from both Figures 4.13 and 4.14 demonstrates that there is a great

opportunity to improve the performance of the system by reducing the latency of the ECC

logic which is in the critical path of each LLC access.

Figure 4.15 depicts a cartoon demonstrating a conventional versus a codesign approach to

error coding in both LLC banks and NoC interconnect. Since the ECC encoder/decoder

blocks of LLC bank and NoC have redundancy overlaps, they can be integrated together

with smaller overheads in the codesign approach as shown in Figure 4.15(b). The common

error coding scheme in current multicore platforms is the independent integration of error

protection in both cache banks and NoC fabric as shown in Figure 4.15(a). We consider

this scheme as our conventional approach and will explain it in more detail in next Section.

This approach is not applicable to large emerging manycore platforms because of the high

power/performance overhead due to unnecessary ECC logic redundancy. Since the ECC

encoder/decoder blocks for conventional fault-tolerant LLCs are in the critical path of each

LLC bank access [82], a significant number of global LLC accesses in manycores will impose

high latency and energy overhead to the system (refer to Section 4.4.4 for more details).

Moreover, using stronger ECC to protect against multi-bit errors magnifies such overheads.

On the other hand, the choice of using different ECC schemes in both cache and NoC has a

large design space with different power consumption, area, and performance trade-offs. To

address these limitations, we propose a new system-level integrated error coding approach

that co-designs error coding jointly for the LLC and NoC as depicted in Figure 4.15(b).
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Figure 4.16: A multi/many-core architecture with a mesh NoC interconnect.

4.4.2 CoDEC Overview

In this section, we introduce the target platform and the conventional error coding approach

that we consider in our experimental results. In the conventional approach, we apply sepa-

rate ECCs across LLC banks and NoC interconnect to protect global LLC accesses, passing

through the NoC, against unexpected errors. On the other hand, our CoDEC approach com-

bines the error coding of cache side and NoC side together. In contrast with the conventional

approach, we replace the cache line-level ECC extension with segmented flit-level ECC. In

this case, there is no need to have encoder/decoder blocks on the path between LLC bank

and NI. Finally, we present design space exploration of the proposed approach parameters

and possible design trade-offs.
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Target Platform

To illustrate our approach, we experiment on an exemplar tiled NoC-based multi/many-core

architecture, where each tile comprises a processor core, private L1 data and instruction

caches, a shared L2 cache (LLC) bank, network interface (NI), and router. Figure 4.16

shows our target 16-core architecture with a 4x4 mesh NoC interconnect. Based on our

cache organization, each L2 bank is a portion of the larger distributed shared LLC. A MESI

protocol is implemented in order to maintain cache coherence. The target design assumes

a NUCA LLC [81]. In general, with multiple banks within the NUCA LLC, we have the

choice of either always putting a block into a designated bank (static mapping) or allowing a

block to reside in one of multiple banks (dynamic mapping). In static mapping, a fixed hash

function uses the lower bits of a block address to select the target bank. In our platform

we consider static mapping called static NUCA (SNUCA) [30]. SNUCA statically partitions

the address space across cache banks connected via the NoC. In this architecture, the LLC

access latency is proportional to the distance from the issuing L1 cache to the target LLC

bank.

Conventional Approach

Figure 4.17(a) shows the architecture of a conventional approach with integrated NoC-LLC

error coding that leverages multi-bit ECC for LLC protection and s2s ECC for interconnect.

On the cache side, each cache block is extended with an ECC, and every read or write requires

error detection/correction coding, respectively. On the NoC side, each flit is extended with

s2s ECC to protect data packets in transport layer against errors over the interconnect fabric

including links and network routers. As shown in Figure 4.16, an encoder/decoder is applied

on each port of all routers in the NoC. For LLC banks we consider a block-level multi-bit ECC

which is a 2-bit error correction scheme (DECTED), that is common for fault-tolerant cache
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Figure 4.17: The architecture of an ECC-protected LLC bank in the Conventional and
CoDEC approaches.

designs [132]. As depicted in Figure 4.17(a) each bank has its own encoder/decoder (shown

as ENC/DEC) that are in the critical path of both core (local) and network (global) accesses.

Consequently, for each LLC access, no matter whether it is local or over the network, the

accessed cache block goes through encoder/decoder blocks. Since in shared NUCA LLCs

most of the accesses to LLC banks are from non-local cores [75](as depicted in Figure 4.13),

the cache blocks need to be protected over the network too. Hence, we leverage s2s ECC

over the whole NoC and modify the NI and routers to include encoder/decoder blocks in

each port, as shown in Figure 4.17(a). Figure 4.18(a) shows an example to demonstrate how

a cache block is protected from the cache through the network in conventional approach. In

this example, a 64-byte cache block extended with 40 ECC bits, is fragmented into four flits

via the NI. Each flit is also protected with 8 ECC bits. On each LLC access, both the cache

block and its corresponding ECC bits (40 bits in our example) are read and then the cache

block is transferred through the cache decoder block for possible error detection/correction

and then passed to the NI to be fragmented to multiple flits. Each flit will be encoded by
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Figure 4.18: Data flow of LLC block through the network in Conventional vs. CoDEC
approach.

the encoder inside NI and then transmitted to the router.

Proposed CoDEC Approach

In C oDEC, we propose a Codesign of cache and interconnect error coding using segmented

multi-bit ECC in LLC banks and s2s ECC in NoC. Using this approach, we reduce the latency

and power of shared LLC protection while meeting the same level of reliability compared to

conventional approaches. CoDEC replaces the block-level strong ECC (i.e., DECTED) in

LLC banks with a segmented low-cost ECC (i.e., SECDED) and sends the ECC bit chunks

along the block through the network as represented in Figure 4.17(b). Using this approach,

CoDEC removes the large encoder/decoder of cache banks from the critical path of LLC

access via the network. Compared to the conventional approach, CoDEC incurs a small

ECC storage overhead.

As depicted in Figure 4.17(b), LLC controller and NI blocks inside each tile need some

modification to implement the CoDEC. Note that the modified components are highlighted
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in this figure. In LLC banks, the data array needs to store all flit-level ECC bits alongside

each cache line. The large cache-level encoder/decoder blocks are replaced by multiple

parallel, but smaller ones and only on the path between LLC and core. Furthermore, there

is no large cache-level encoder/decoder blocks in the critical path of network access as shown

in Figure 4.17(b). The encoder/decoder blocks inside NI are also removed and its internal

logic is modified to pass the ECC bits of each cache segment during flit generation process.

Figure 4.18(b) represents the fragmentation process of each cache block and construction of

data flits in the proposed architecture.

Figure 4.19 illustrates a complete data path of CoDEC design in interconnected many-core

architecture with distributed shared LLC banks from network-level point of view. This

figure provides an example to show how CoDEC guarantees end-to-end protection of LLC

data blocks from source to destination over the network using s2s error protection capability

over the interconnect. In summary, each cache data block is virtually divided into smaller

segments as shown in Figure 4.18(b). Then, each of these partitions plus the generated ECC

for each segment are passed through the NoC as a flit as shown in Figure 4.19. The figure

also shows how a cache block becomes faulty through the network and how it can be fixed

via different routers in the path.

4.4.3 Evaluation

In this section, after introducing the simulation setup, we discuss the effects of various design

parameters and possible trade-offs in the design of CoDEC approach.
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Figure 4.19: CoDEC LLC data protection over the network form source to destination.

Experimental Setup

We leverage Sniper [40], a parallel, high-speed, and cycle-level x86 multicore simulator to

evaluate the performance impact of our approach. Nine benchmarks from the PARSEC suite

are selected and run on the modified simulator. The details of the simulation setup are listed

in Table 4.5. Also, the RTL model of both conventional and CoDEC routers are implemented

in Verilog to evaluate the implementation overheads. The routers contain eight-flit buffers

for each ports. The accuracy of the NoC model is verified by tracing the packet routes

through the network with the help of SystemVerilog language for Splash traffic patterns.

Synopsys Design Compiler with TSMC 32nm standard cell library is used to synthesize and

report accurate timing and area overhead of routers including encoder/decoder (ENC/DEC)

blocks of both conventional and CoDEC designs. Power consumption is also measured by

performing post-synthesis gate-level simulation with Synopsys PrimeTime. Each router is

designed to operate at its maximum frequency with the assumption that processor tiles

operate on their own frequency domain asynchronously with respect to the interconnection

network, which is popular in industrial many-core chips [151]. CACTI 6.5 [116] is used to

evaluate area, power and delay of LLC banks and their related components.
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Table 4.5: Simulation Configuration

Core 2.66 GHz, 4-way issue, 128-entry ROB
L1 I/D Cache 32kB split I/D, 4-way assoc, 64B lines,

4 cycle, LRU
L2 Cache shared 16MB, 16 banks, 16-way assoc,

64B lines, 8 cycle, LRU
Coherence protocol MESI

Interconnect NoC of 2D mesh (4×4 for 16 banks and
16 cores) , 1-cycle link latency, pipeline
router, XY routing

Technology 32nm

Design Space Exploration

Each cache block entry is supposed to be divided into a fixed number of segments. The size of

each NoC flit is chosen equal to the segment size in CoDEC design. We assume a fixed number

of flits are dedicated for each buffer component of a NoC design; larger flits need bigger

buffers. Flit size is a tuning parameter in choosing the segment size (number of segments)

for the CoDEC approach, which is the major configuration parameter in CoDEC design.

Different flit sizes are compared in Figure 4.20(a) in terms of various segment numbers. A

512-bit cache block is considered for this experiment. As expected, smaller flits are needed

by dividing each cache block entry into smaller segments. On the other hand, as the number

of segments increases higher ECC capability is provided by imposing more redundancy bits

inside the cache. Note that more complex encoder/decoder blocks are needed in CoDEC for

larger buffer components, resulting in higher power consumption, area overhead, and latency.

Since the flit size of 64-128 bits is accepted by the NoC community [124], a cache block with

4 to 9 segments is acceptable for CoDEC design based on Figure 4.20(a). However, as

the number of segments increases (flit size decreases), the whole packet is transmitted with

higher delay. So, the minimum number of segments in the accepted range of NoC bandwidth

is chosen for this experiment to be 4.
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Figure 4.20: Impact of segment size on conventional versus CoDEC design.

Reliability analysis

This section discusses the trade-off between overhead and reliability coverage in the proposed

CoDEC method. The probability of a single bit error occurrence in a memory device with n

bits is represented by Equation 4.1.

Q =
FIT

n
(4.1)
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where FIT refers to failure in time error/billion device hours. Typical FIT rates for latches

and SRAM cells at sea level vary between 0.01 and 0.001 FIT/bit [148]. Recent development

in cache physical fabrication has resolved the correlated multiple-bit error issue. Interleaving

approach has been used in SRAM/DRAM cells in [146] to generate logical check bits from

physically dispersed areas of the memory array. With this solution, the multi-cell upset will

lead to multiple single-bit errors, rather than a multi-bit error. Consequently, in this work

we assume that the probability of a single bit error is independent of any other bits in a cache

block; the probability of E errors present in a cache block is calculated by Equation 4.2, the

error rate uniform throughout the cache:

P (E) =

(
N

E

)
qE(1 − q)N−E (4.2)

where N represents the number of bits in cache block and q is the probability of single soft

error occurrence in a single bit (Q for n=1). Therefore the probability of exactly a single bit

error in a cache block is extracted from Equation 4.1 and 4.2 is shown as Equation 4.3.

P (E = 1) = N(FIT )(1 − FIT )N−1 (4.3)

The robustness probability of a fault-tolerant cache block with at least Ecov bit error correc-

tion capability is shown in Equation 4.4.

Ecov∑
E=0

P (E) (4.4)

However, the failure probability of a fault-tolerant cache block with at least Ecov bit error

correction capability in segmented ECC method depends on the number of segments as
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shown in Equation 4.5.

1 − (
Ecov∑
E=0

P (E))S (4.5)

where S represents the segment numbers. The partitioning process is tuned by the flit size

definition as discussed earlier. The failure probability and ECC overhead bits of conventional

and proposed methods are reported in terms of error correction capability per segment in

Figures 4.20(b) and 4.20(c). Choosing a reasonable number of segments depends on the flit

size limitation with similar failure probability to the conventional method. Larger flit size

imposes higher data bandwidth of NoC designs while smaller flit sizes increases the latency of

the packet transmission through the network. Furthermore, according to the accepted rage

of NoC bandwidth higher ECC bit correction in the proposed method needs more ECC bits

as shown in Figure 4.20(c). The failure probability of conventional method with Ecov = 2

has the most equivalent failure probability of proposed method with Ecov = 1 and 4 segments

for smaller number of EEC bits as shown in Figure 4.20(b). So, each cache block entry is

divided into 4 segments in our proposed method with Ecov = 1.

4.4.4 Experimental Results

In this section, at first, the impact of CoDEC on system performance is presented. Then,

the power consumption and area overhead of different design configurations are compared

separately for both cache and NoC. The LLC global and local access time is also reported to

show the improvement of the CoDEC method over baseline. We compare the results of pro-

posed CoDEC with two common single-error correction double-error detection (SECDED)

and double-error correction triple-error detection (DECTED) approaches [43]. We also con-

sider a Non-Fault-Tolerant (Non-FT) design without any error protection as a reference to

compare the overheads of different approaches.
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Figure 4.21: Performance (IPC) improvement of a system with CoDEC LLC, normalized to
the baseline.
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Figure 4.22: Cache experimental results normalized to DECTED results.

Performance Results

We evaluate the performance impact by measuring the aggregate user instructions committed

per cycle (IPC). Figure 4.21 shows the IPC improvement of CoDEC normalized to the IPC
137



of the conventional approach (refer to Section 4.4.2) running nine PARSEC benchmarks.

The system with CoDEC experiences up to 14% and on average 5.5% improvement in the

performance compared to the system with conventional LLC protection approach.

Cache Results

Figure 4.22 depicts the latency, power, and area breakdown of different LLC protection

approaches. Note that the reported values are normalized to DECTED which is considered

as the conventional approach. In this figure, Global access time of each cache bank (dark

bar) is the access time from the router to the LLC data array. Since CoDEC removes the

ENC/DEC blocks from the critical path of LLC bank Global access, it has almost the same

latency as NonFT as depicted in Figure 4.17. The latency of ECC logic in SECDED and

DECTED (shown in light gray color) are added to the latency of cache data array, resulting

in slower cache accesses. Although the local cache access latency of CoDEC method is higher

than both of Non-FT and SECDED methods, it is still less than the conventional (DECTED)

approach as shown in Figure 4.22(b). This is because larger error control block are replaced

by multiple smaller ones on local cache access path. However, as discussed earlier in Section

4.4.1, the percentage of global cache access are much more than local cache access justifying

the negligible latency overhead of CoDEC method comparing to the other approaches. The

power consumption of the cache bank for all of the fault-tolerant approaches are higher than

Non-FT method. But the power consumption of CoDEC techniques is less than DECTED

while it supports more protections as shown in Figure 4.22(c). This is because smaller

encoders have fewer inputs with simpler gate-level implementations. Note that the area

overhead of CoDEC method is negligibly (< 1%) higher than the conventional approach

since it needs to store more number of EEC bits to support a better protection, as depicted

in Figure 4.22(d).
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Figure 4.23: Power consumption of NoC router’s major blocks for various ECC sizes

NoC Results

Figures 4.23 and 4.24 demonstrate the power and area of fault-tolerant routers in terms of

different flit sizes while each flit is protected by the help of Hamming code. The number

of EEC bits varies according to the flit sizes. Data flit sizes in range of 32 -256 bits are

examined in this experiment which are shown through horizontal axis of Figures 4.23 and

4.24. All the reported values are normalized to the absolute value of CoDEC method with 4

segments. For a 512-bit cache block and 4 segments in CoDEC method, each flit is composed

of 128 bits with 8 extra bits as shown by FT-H(136,128) term in Figures 4.23 and 4.24. Flit

size and consequently the bandwidth of each port of routers (assuming equal flit and phit

sizes), are determined by adding the extra redundant EEC bit to the actual data bits. For

example the NoC router bandwidth for FT-H(136,128) method is 136. Power consumption

and area overhead of NoC routers follow a descending trend by choosing smaller flit sizes.

This is because smaller flit sizes need lower bandwidth and smaller buffer sizes.

Finally, Table 4.6 summarizes the comparison of SECDED, DECTED, and CoDEC methods.

In this table, the overhead and improvement values are normalized to the Non-FT values.

Note that the results in last column represent the reliability improvement with respect to

the Non-FT which has not any error protection. Comparing CoDEC to DECTED, the local
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Figure 4.24: Area of NoC router’s major blocks for various ECC sizes

Table 4.6: Overhead and improvements comparison.

Overheads (%)
Methods Local Global Area Dynamic Total ECC Reliability

access access Power Power Storage Improvement (%)
Non-FT 0 0 0 0 0 0 0
SECDED 24.8 24.8 7.9 45.2 16.5 2.1 77
DECTED 2 50 50 10.7 50.6 19.9 3.9 96
CoDEC 31.6 2.4 11.4 49.0 19.7 6.3 93

and global cache access time latencies are reduced from 50% to 31.6% and from 50% to 2.4%,

respectively. While the CoDEC design imposes a minimal overhead (less than 1% area and

2.5% ECC storage overhead) over DECTED, it has almost similar power consumption and

protection capability. Note that except Non-FT approach, for other approaches we consider

a s2s single bit ECC to protect interconnect NoC.
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4.5 Summary

In this chapter, we proposed two interconnect-aware approaches to error-resilient design of

LLC in NoC-based multi/many-core platforms which are orthogonal to all previous efforts

in fault-tolerant cache design as well as reliable NoC design.

First, we proposed a novel approach for efficient implementation of fault-tolerant design of

NUCA LLCs in CMP architectures. Our solution is based on modular extension of NoC

routers to support fault-tolerant schemes that also scale with increasing CMP sizes. We

proposed four different policies for implementing a remapping-based fault-tolerant scheme

leveraging different configurations of NoC. Our experimental results on an 8-core CMP with

16 shared LLC banks show that leveraging the on-chip interconnect fabric in design and

implementation of the fault-tolerant scheme is an efficient and scalable solution that comes

with a small overhead (less than 3% area and less than 7% power overhead). We studied the

effects of four different fault-tolerant policies on the NoC, and showed that the parallelism

of communication directly affects the results. In order to explore the impact of different

parameters of a NoC we also presented results showing that some of these policies are more

positively affected by some architectural changes like the number of virtual channels and

adaptive routing. More virtual channels improve some of the policies that had previously

presented worst because of a particularly bad use of the communication parallelism. However,

results also show that this improvement reaches a saturation point very quickly. As for

the experiments with an adaptive routing, results show that policies that created more

contention now perform particularly better. Also, it is very important to consider the effect

of a fault-tolerant method configuration on NoC parameters. In the cases presented here,

we perform exploration on the distance between the host and target LLC banks in the NoC.

Our experiments show that enabling the target blocks to be further away from the host

blocks does not decrease much the number of disabled blocks. Also, we showed that there is

a sweet spot where the overall IPC can be improved.
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As a second contribution, we proposed CoDEC, a novel codesign error coding of cache and in-

terconnect for many-core architectures to improve the performance by reducing cache access

latency with minimal area and robustness impact. CoDEC guarantees the e2e protection of

LLC data blocks by integrating strong multi-bit ECC in cache banks to s2s error coding of

interconnect, providing a unified system-wide ECC policy. Our experimental results showed

that with respect to the conventional DECTED approach, CoDEC improves LLC access time

for global and local accesses as 50% and 20% respectively, that leads up to 14% performance

improvement, with a negligible overhead of only 1% area and 2.5% more ECC storage. Po-

tential directions for future work include adaptive interconnect error coding, improvements

to the proposed architecture, a broader design space exploration involving different system

configurations and coding algorithms.
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Chapter 5

Relaxing Error Resiliency in On-chip

Memories

5.1 Introduction

As the semiconductor industry continues to push the limits of sub-micron technology, the

ITRS expects hardware variations to continue increasing over the next decade [157]. The

power consumption of the memory subsystem, which is a major contributor to the overall

power consumption of the system, is very vulnerable to the effects of variations. Device

manufacturers have masked the presence of variability by expensive over-design and “guard-

banding” in order to guarantee data integrity. However, 100% correctness may not be re-

quired for all applications. This chapter proposes the idea of relaxing or reducing the typical

memory guard-banding for systems running applications that can tolerate some level of error

in their computations. We refer to such class of memories with relaxed guard-banding as

Partially-Forgetful Memories (PFMs). Potential advantages of deploying PFMs include: (i)

Better energy efficiency for memory accesses, (ii) Increased lifetime of the memory subsys-
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tem, and (iii) Reduced memory access latency. In the following, we overview some of the

overheads of guard-banding in memories and briefly mention the application domains that

can benefit from PFMs.

5.1.1 Cost of Guard-banding

Guard-banding leads to over-design with suboptimal power and/or lifetime for different

memory technologies. SRAM studies [153] show that masking all variabilities in 90nm SRAM

requires an increase in data retention voltage from nominal value of 0.35V to 0.7V, resulting

in higher power consumption. Similarly, DRAM studies [99] show that 103 leaky cells in

a 32GB DRAM module force the use of 64ms refresh interval while other cells can work

with a refresh interval that is four times longer, increasing increases refresh power overhead.

Likewise, studies on PCM [167] report a 96% increase in the programming power and 50X

endurance degradation due to process variation.

5.1.2 Approximate Computing

Recently, researchers [134, 92, 50, 58, 136] have shown that a system can save energy by

exposing faults to a variety of applications that are resilient to hardware errors during their

execution [51]. In particular, embedded, multimedia and Recognition, Mining and Synthesis

(RMS) applications could still process information usefully with error-prone elements [45].

This motivates the opportunity to deploy PFMs in systems executing approximate computing

applications.
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5.1.3 Challenges for Effective Use of PFMs:

The following challenges need to be addressed to effectively exploit PFMs for approximate

computing:

1. Data Partitioning Data structures can be defined as critical (i.e., any corruption leads to

catastrophic failure or significant quality degradation) or non-critical (i.e., quality degra-

dation resulting from corruption may be acceptable). This concept has been used before

in [100]. A simple partitioning of data – into critical and non-critical – has been shown to

improve DRAM energy efficiency [100]. Further categorization of the non-critical data can

lead to even more energy efficiency. For example: (i) integer data can be partitioned based

on the magnitude of tolerable error, and (ii) floating point data can be partitioned based

on a limit on precision. These categorizations can be reflected in the program by annotat-

ing different data structures. One approach [134][39] defines type qualifiers and dedicated

assembly-level store and load instructions for this purpose. We present another approach

for PFMs that uses dynamic declarations which are enforced by a run-time system, as

shown by an example in Section 5.3.

2. Data Mapping: The data partitioning annotations in the previous step should guide map-

ping of each data category to an appropriate part of memory based on its reliability

characteristics. Depending on the type of memory, this mapping can be done by the hard-

ware, application/compiler, or operating system. For caches, the cache controller decides

where to map a new incoming cache block. In case of software-controlled memories (e.g.,

scratchpads), the compiler aggregates data with the same reliability requirement in tagged

groups, and then a run-time system (having knowledge about underlying hardware) does

the actual mapping based on this tagging. For main memories, the operating system

should do the mapping during logical-to-physical mapping.
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3. Controlling Exposed Error Rate to Program: Most of the previous attempts at utilizing

relaxed-reliability memories [100][135] lack the ability to dynamically adjust the exposed

error-rate to the program. A recent work [150], has shown how the DRAM timing margin

can be dynamically changed to make a precision-performance trade-off. We believe this is

necessary because different applications have different levels of tolerance to errors. Even

within an application, one execution phase may have more tolerance to errors (i.e., less

criticality) than another phase. Therefore, it is important to enable adjustment of the

guard-banding knobs based on the characteristics of application. Examples of these knobs

are: DRAM Refresh Rate, SRAM Voltage, STT-RAM Retention Time, IRESET Current

in PCM, etc.

4. Adaptation to Phasic Behavior of Applications: There are three main reasons to change

memory guard-banding knobs during run-time: (i) Depending on the (set of) applications

that are executed, we might tolerate different levels of error, (ii) We may need to change

the ratio of reliable to unreliable memory capacity to prevent performance degradations

for specific situations (e.g., where most of the working set objects should be mapped to

reliable parts of memory), and (iii) The programmer can save power by disabling idle parts

of the memory for computation-bound application phases (this works even for applications

that do not tolerate any errors).

5.1.4 Contributions

In this chapter, we explore how Partially-Forgetful Memories can be used by exploiting the

intrinsic tolerance of a vast class of applications to some level of error for relaxing this

guard-banding in memories [145]. We briefly discussed the challenges to be addressed above.

While the notation of PFMs is applicable across the entire memory hierarchy, in the following

we first introduce Relaxed Cache as an exemplar to address these challenges for partially-

forgetful SRAM caches. Preliminary results show how adapting guard-bands to application
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characteristics can help the system save significant amount of cache leakage energy (up to

74%) while still generating acceptable quality results.

5.2 Related Work

This work represents a convergence of two main bodies of research: variability-aware memory

management and approximate computing.

5.2.1 Exploiting Memory Variability

There are several efforts on exploiting variations in both off-chip and on-chip memories for

power saving. Some of these efforts elevate exploiting memory variability through the soft-

ware stack and let the programmer to manage variability but none of them considers phasic

behavior of an application. The work in [26] virtualizes on-chip and off-chip memory space

to exploit the variation in the memory subsystem. They exploit this variability through a

Variability-aware Memory Virtualization (VaMV) layer that allows programmers to partition

their application’s address space into regions and create mapping policies for each region.

Bathen et al. proposed ViPZone [28], an OS-level solution to exploit DRAM power variation

through physical address zoning for Energy Savings. ViPZonE is composed of a variability-

aware software stack that allows developers to indicate to the OS the expected dominant

usage patterns as well as level of utilization through high-level APIs. While Relaxed Cache

is similar to such approaches in the sense of exploiting the memory variability, our proposal

differs in two aspects. First, Relaxed Cache considers also phase behavior of application

and criticality of data in its mapping policy. Second, Relaxed Cache intentionally relaxes

the guard-bands under programmer control to gain more energy saving through matching

different phases of application to the underlying hardware.
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5.2.2 Approximate Computing

A significant amount of work has proposed different hardware and software techniques that

trade-off application fidelity or correctness to gain benefits in energy, performance, lifetime,

or yield. Many studies have shown that a variety of applications have a high tolerance to

errors [51, 45, 92, 109, 95]. ERSA proposes collaboration between discrete reliable and

unreliable cores for executing error resilient applications [92]. Esmaeilzadeh et al. proposed

Truffle [59], a dual-voltage microarchitecture to support mapping of disciplined approximate

programming onto hardware. Some software-based approaches use language extensions to

give the ability to programmer to perform relaxations [134, 39]. EnerJ [134] uses type

qualifiers to mark approximate variables. Using this type system, EnerJ automatically maps

approximate variables to low power storage and uses low power operations to save energy.

In contrast with EnerJ, Relaxed Cache lets the programmer change the criticality type of

variables through the application to match its phasic behavior. Rely [39] is a language that

allows specification of computations that execute on unreliable hardware and the analysis

that ensures that the computation that executes on unreliable hardware satisfies its reliability

specification. Rely considers an abstract model of the underlying hardware with a simple

hardware reliability specification. It specifies the reliability of arithmetic/logical and memory

operations by some probabilistic values. So it is limited to only soft errors.

Relax [50] is a compiler/architectural framework for exposing hardware errors to the software

in specified regions of code for saving computational power. Relax allows programmers to

mark certain regions of the code relaxed, and decrease the processor’s voltage and frequency

below the critical threshold when executing such regions. While Relax focuses on error

recovery and hardware design simplicity, our Relaxed Cache approach emphasizes energy-

efficiency over error detectability and supports a wider range of power-saving approximations.

Moreover, Relax explores a code-centric approach, in which blocks of code are marked for

failure and recovery while Relaxed Cache employs data-centric type annotations. Green
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[15] trades Quality-of-Service (QoS) for energy efficiency in server and high-performance

applications respectively. Green allows programmers to specify regions of code in which the

application can tolerate reduced precision. Based on this information, the Green system

attempts to compute a principled approximation of the code-region (loop or function body)

to reduce processor power.

While most of the previous efforts on approximate computing have focused on the com-

putational part, there exist only two works that have addressed unreliable off-chip main

memories. Liu et al. proposed Flikker [100], a software/hardware technique which utilizes

the low-refresh rate part of DRAM for storing non-critical data. A programmer using Flikker

doesn’t have control on the refresh rate of the unreliable part of the DRAM. So s(he) won’t

be able to adjust this rate to the application’s tolerable level of error. Sampson et al [135]

proposed two unreliable writes to solid-state main memories, based on Multilevel-cell (MLC)

phase change memory (PCM) technology, for improving performance. Unlike prior work on

memory, with Relaxed Cache, the programmer can adjust the dynamic knobs to the required

capacity/reliability for each phase of program to achieve energy saving.

149



5.3 Relaxed Cache

This section presents Relaxed Cache as an exemplar to address the challenges outlined in

the previous section for employing partially-forgetful SRAM caches. Relaxed Cache lets

the application programmer adjust the cache guard-banding knobs and therefore adapt its

reliability and capacity to the application’s demands. Accordingly, the application program-

mer needs to identify critical memory objects as well as major criticality and computational

phases of the application. Although in the current prototype, most of this identification is

done manually by the programmer, but some of this burden can be removed by developing

automated analysis methods to give hints to the programmer for identifying: (i) critical

memory objects [108], and (ii) sensitivity of application’s computational phases to cache

capacity [89].

Figure 5.1 shows the high-level overview of the Relaxed Cache scheme. Our scheme requires

some small modifications to both the traditional hardware and software components of a

system (shaded component of Figure 5.1). In the following, we briefly describe the changes

required for hardware and software support; more details are in our technical report [144].

5.3.1 Hardware Support

Here, we outline the changes needed for traditional cache hardware (shaded hardware blocks

of Figure 5.1):

Tuning Relaxed Ways Based on Architectural Knobs

Consider a cache that has N ways. A fixed small number (e.g., logN) of these ways are

protected, by using a combination of high voltage and error correction codes that assure
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Figure 5.1: High-level diagram showing HW/SW components of Relaxed Cache and their
interactions.

their fault-free storage(Protected Ways). The remaining cache ways in a cache set work

with a lower dynamically adjustable voltage. The operation of the SRAM array for relaxed

ways is controlled by two architectural knobs: (i) Supply voltage (VDD), and (ii) Number of

acceptable faulty bits (AFB) per each cache block. Every block with more than AFB faults

is disabled. The definition of AFB allows us to relax the guard-bands for a majority of cache

ways while controlling the level of error that is exposed to the program. The combination

of AFB and VDD also determines the active portion of the cache, hence can be tuned for

required performance. According to these definitions, we can have four types of cache blocks

for each (VDD, AFB) setting:

• Protected Block (PB): All blocks in the protected ways.

• Clean Block (CB): All fault-free blocks in the relaxed ways.

• Relaxed Block (RB): All blocks in the relaxed ways that have at least one but no more

than AFB number of faults.
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• Disabled Block (DB): All blocks in the relaxed ways that have more than AFB number

of faults.

Figure 5.2 demonstrates these terminologies using a sample 4-way cache when AFB=4.

0 1 3 0

7 0 5 0

0 2 0 0

0 6 5 0

4 0 0 0

way 3 

low power/relaxed ways

(configurable Vdd-low)
high power/protected way

(fixed Vdd-high)

# of faulty bits 

Protected Block (PB)

Relaxed Block (RB)

Disabled Block (DB)

Clean Block (CB)

way 4 way 2 way 1 

Figure 5.2: A Sample 4-way Cache with VDD=580mV and AFB=4.

Defect Map Generation and Storage

Disabling those blocks that have more than AFB number of faults requires a defect map for

bookkeeping as in previous fault-tolerant voltage-scalable caches (e.g., [22]). To populate the

cache defect maps, we can use any standard Built-In Self-Test (BIST) routine that can detect

memory faults (e.g., March Tests). The defect map bookkeeping requires a few additional

bits in the tag array of each cache block. However, if the number of AFB and VDD levels

are limited, this overhead is negligible. For instance, assume that we have four levels of AFB

and three levels of VDD. We can show that in this case the defect map overhead is about

1.5% for a cache with block size of 64-byte. Assume that our VDD levels are V0 ¿ V1 ¿ V2.

Similarly we have A0 ¡ A1 ¡ A2 ¡ A3 for AFB levels. Figure 5.3a shows the result of running

a march test on four blocks of a set in a 4-way cache for three different VDD levels. The

digits inside blocks represent number of faulty bits for each block at that VDD. Note that
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Figure 5.3: Encoding and decoding defect map info in Relaxed Cache

blue blocks belong to a protected way, therefore they are fault-free for all VDDs. The fault

inclusion property [63] states that the bits that fail at some supply voltage level will also fail

at all lower voltages. Therefore by decreasing the voltage, number of faulty bits increases

monotonically. We use this property and for each AFB=Ai encode the lowest voltage level

that results in Ai number of faults or less (Figure 5.3b). In this manner, for each 64-byte

block we use 8 bits to capture defect status of that block in all available (VDD, AFB) pairs,

resulting in a 1.5% area overhead for a traditional cache.

Non-Criticality Table

A dedicated piece of on-chip memory is used to store the application’s virtual addresses

that can be approximated (a sample is shown in Table 5.1). Before replacing a block with
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an evicted block, this table is searched by hardware comparators to check if the block’s

address is contained in any of the address ranges in this table. Accordingly the block is

tagged. The number of entries in the table is a design choice, and our experiments show

that approximately 30 entries are sufficient. Thus the storage overhead is 30 * (32+32+1)

bits ≈4 cache blocks, which is less than 1% of cache capacity.

Table 5.1: A sample criticality table for Relaxed Cache

Valid Start End

1 0x100ef310 0x100ef79c
1 0x100ec940 0x100efdcc
0 ... ...
0 ... ...
0 ... ...

Hardware comparators check if the block’s address is contained in one of the table entries.

While the data is being fetched from L2 or main memory, these comparators sequentially

search for the address inside the table. One comparator checks if the block’s start address

is greater than Start and the other one checks if the block’s end address is less than End.

The output of both comparators are ANDed to determine if the block is found in the table.

The number of comparators is also a design choice. To keep the performance overhead of

tagging low, more than 1 pair can be used. Note that since the access latency of L2 cache is

in the order of 10 cycles, for a 30-entry table, the delay of the table searching can be masked

using 3 pairs of comparators that would effectively make the performance overhead zero.

These comparators will be activated only during cache misses (¡10% of accesses). Our power

analysis using Synopsys Design Compiler shows that total (dynamic and leakage) power

consumption of this comparators will be about 1% of the total leakage power in baseline

mode. This means any leakage saving of more than 1% would effectively compensate this

power overhead.
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Making Cache Controller Aware of Block’s Tag

Relaxed Cache’s replacement policy needs to discriminate between critical and non-critical

blocks. Whenever a miss occurs and the missed data block is tagged as a non-critical

block the replacement policy should select a victim block from the relaxed ways of the

corresponding cache set. However, a critical block is always allocated in a protected way.

Because block replacement logic is not in the critical path for hit read/write accesses, this

minor modification does not affect cache access latency.

5.3.2 Software Support

We now describe changes to software components in Figure 5.1:

Programmer-Driven Application Modifications

Data Criticality Declaration: In order to utilize relaxed ways, the software programmer

should identify non-critical data structures in the program to be mapped to those re-

laxed ways. We believe a software programmer can easily make this distinction since

(s)he is aware of the functionality and semantics of different parts of the application and

related data structures. The constructs DECLARE APPROXIMATE(Start-VA, End-VA) and

UNDECLARE APPROXIMATE(Start-VA, End-VA) are used to declare and undeclare data non-

criticality dynamically within code. Start-VA and End-VA are the virtual address boundaries

of target region. The additional capability of undeclaring a data region becomes important

in two cases: (i) When an error bounding procedure should be performed on non-critical

data object before passing it to the next stage of program in order to reduce the propagated

error magnitude; here, it is usually desirable to stop introducing any further errors in data
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after error bounding. (ii) When a critical procedure should be done on a piece of non-critical

data (e.g., computing checksum of pixels at the end of image compression).

Cache Configuration: To utilize the capabilities offered by Relaxed Cache, the software

programmer can annotate the code regions with cache configuration hints. These hints are

then used by the system to dynamically control the VDD and AFB knobs to adjust the guard-

banding to the current phase of execution. The programmer, with in-depth knowledge of the

software is in the best position to identify application phases with different criticality and/or

memory-insensitivity and based on that guide the adaptive guard-banding in hardware.

To accommodate programmers with different levels of hardware familiarity, we can abstract

the Relaxed Cache knobs as shown in Figure 5.4. An embedded system programmer, with

fairly good understanding of hardware details, can explicitly set Relaxed Cache’s knobs to

fully exploit its capabilities. On the other hand, for a traditional software developer (with

little knowledge of hardware), we can abstract the hardware knobs settings into discretized

“levels” allowing the programmer to qualitatively set the knobs based on their effects (e.g.,

low power setting, or high-fidelity setting), as shown in Figure 5.4.

Language extensions then let the programmer use CONFIG CACHE(VDD-LEVEL, AFB-LEVEL)

for configuring the cache knobs. Since this reconfiguration incurs a penalty of several cycles,

it should be done only in certain phase transitions of an application.

Figure 5.5 shows an image resizer code fragment that uses declarations and cache configura-

tion to save energy. In this example, two large regions of data that can tolerate some level

of errors are the original image’s data structure (pointed to by src), and the data structure

for storing up-scaled image (pointed to by dest); the programmer has declared both regions

as candidates for relaxed caching. After returning from the scale() function, and before

moving to the next program phase, (s)he has undeclared both regions.
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applicable.

Run-time System

We assume a run-time system uses the programer’s declarations to keep and update a table of

virtual addresses that contain non-critical data objects for each application. During a miss,

while the data is fetched from the lower level of memory (L2 data cache or main memory),

the comparators in the table seeker sequentially search for the block’s address inside the

table; the table seeker then tags the block as critical/non-critical. This tagging is used by

cache controller’s replacement mechanism to find an appropriate cache way for replacement.

Note that, in order for a block to be tagged as non-critical, the entire data block should hold

non-critical data. A data block with mixed critical/non-critical data would still be tagged

as critical. Further optimization is possible through criticality-aware data placement during

compilation to avoid having mixed criticality blocks, which is out of the scope of this chapter.
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#include “Approximations.h” // Enables approximation declarations
#define INT_SIZE sizeof(int);

int main(int argc, char**argv){ 

// Capturing Raw Image on Camera
// Compress Raw Image

/*-------------------------- Image Scaling -------------------------*/
CONFIG_CACHE(MEDIUM VDD, MILD AFB);

int *src, *dest;
dest = (int*) malloc(*num_elmnts*INT_SIZE);    
#ifdef SRC 
  DECLARE_APPROXIMATE((uint64_t)&src[0], 

         (uint64_t)(&src[*num_elmnts]+INT_SIZE-1));
#endif 

#ifdef DEST 
  DECLARE_APPROXIMATE((uint64_t)&dest[0],

       (uint64_t)(&dest[*num_elmnts]+INT_SIZE-1));
#endif 
         
src = read_image(in_filename,&sw,&sh,&src_dim);
dest = allocate_transform_image(scale_factor,sw,sh,&dw,&dh,&dest_dim);
scale(scale_factor, src, sw, sh, dest, dw, dh);

#ifdef SRC 
  UNDECLARE_APPROXIMATE((uint64_t)&src[0], 

           (uint64_t)(&src[src_dim]+INT_SIZE-1)); 
#endif  
#ifdef DEST 
  UNDECLARE_APPROXIMATE((uint64_t)&dest[0],

           (uint64_t)(&dest[dest_dim]+INT_SIZE-1));
#endif 

free((void *) src);
/*------------------------------------------------------------------*/
// Other Image Transformations/Editing
}

Figure 5.5: A sample code showing programmer’s data criticality declarations and cache
configurations to be used by Relaxed Cache.

5.4 Experimental Evaluation1

5.4.1 Experimental Setup

We modified the cache architecture in the gem5 framework [34] to implement our scheme in

detail and used gem5’s pseudo-instruction capability for implementing the required language

extensions. The common gem5 parameters used in all our simulations are summarized in

Table 5.2. We used the Random block replacement policy that is commonly used in embedded

processors [11, 12] due to its minimal hardware and power cost.

We injected errors into different cache blocks randomly, with uniform distribution over dif-

1More details can be found in our Technical Report [144].
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Table 5.2: gem5 Common Parameter Settings

Parameter Value Parameter Value

ISA Alpha Replacement Policy Random
CPU Model Detailed (OoO) Cache Block Size 64B
No. Cores 1 L1$ Size, Assoc. 32KB, 4-way

Cache Config. L1 (Split), L2 L2$ Size, Assoc. 256KB, 8-way

ferent bit positions. We used bit error rate (BER) and leakage power data from [63] which

are for a commercial 45nm technology. Using these BERs, we found the distribution for the

number of faults for each data array voltage, thus allowing us to compute the expected cache

capacity and energy saving for each AFB.

5.4.2 Benchmarks

We selected a number of multimedia benchmarks to examine the energy savings enabled by

Relaxed Cache. 1) Scale: Scale is an image resizer application. We use Peak-Signal-to-

Noise Ratio (PSNR) as the fidelity metric for this application. A value larger than 28dB

is considered acceptable. 2) Susan: Susan is an image recognition package from MiBench

[65]. We used Image-Smoothing and Egde-Detection kernels from this package. PSNR

is used as the fidelity metric for Image-Smoothing. For Edge-Detection, accuracy metric is

defined as the fraction of detections that are true positives rather than false positives. A

value of 0.8 or more is usually considered acceptable. 3) x264: This application is an H.264

video encoder [33]. PSNR of 32dB can provide satisfactory video quality for many types of

videos.
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5.4.3 Results

Leakage Energy Savings

Figure 5.6 summarizes the achievable leakage energy savings for different Relaxed Cache

knob settings (VDD, AFB). The baseline cache is assumed to use 700mV for supply voltage.

We assume power-gating for disabled blocks. Consequently, if we keep voltage constant

and increase AFB (effectively reclaiming faulty memory blocks), the leakage energy saving

decreases. Also note that for voltages ≥ 540mV increasing AFB does not reduce energy

savings. This is due to the low number of faulty blocks at those voltages. This analysis

shows that we can decrease leakage energy up to 74% by adjusting the Relaxed Cache knob

settings.
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Figure 5.6: Leakage energy savings for a 4-Way L1 cache with 3 relaxed ways. (energy
savings are normalized to a baseline cache that uses 700mV.)

Fidelity Analysis

Figure 5.7(a) shows the PSNR difference between the images up-scaled using Scale bench-

mark running on a system with energy-efficient Relaxed Cache versus a system that uses a

guard-banded baseline cache.

The PSNR values for Image-Smoothing kernel of Susan package are reported in Figure 5.7(b).
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Figure 5.7: Fidelity results for (a) Scale and (b) Image-Smoothing benchmarks.

Same as Scale benchmark, many of the (VDD, AFB) settings result in an acceptable output.

However, it is interesting to note that on average the PSNR values are larger than the ones

reported for Scale. This shows that the Image-Smoothing is more error-tolerant and therefore

the programmer can use a more aggressive policy for that kernel. This observation confirms

that different applications have different levels of error-tolerance which can be exploited for

energy saving.

Susan/Edge-Detection is the most error-tolerant application that can produce good results

even at high error rates. Figure 5.8 shows the result of Susan/Edge-Detection on the Lena

test image with different AFBs while VDD is set to 480mV. We can see that even AFB=6

(which reclaims 99% of the Relaxed Cache faulty blocks at that voltage) can result in an

acceptable output.

Performance Analysis

Operating at low voltages effectively disables cache regions affected by errors. Reduced cache

capacity has minor impact on the performance of programs with small working set size. The

degradations in total execution times are bounded by 3% for Scale and Edge-Detection

benchmarks and 2% for Image-Smoothing benchmark over all (VDD, AFB) settings in our
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Figure 5.8: Fidelity results for Edge-Detection benchmark (VDD=480mV).

experiments. However, for applications with big working set size, the increased cache miss

rate due to reduced cache capacity considerably degrades the performance. But, Relaxed

Cache’s AFB knob allows us to reclaim parts of the lost cache capacity, thereby increasing

performance of the application. This is particularly useful for application instances where

a partial/less-accurate result generated within a deadline is more valuable than a late-but-

perfect result. Relaxed Cache provides the means for a programmer to explore this trade-off

space, by deciding when higher performance is desirable and when higher output fidelity is

preferable. For instance, Figure 5.9 shows the adverse effect of reducing the voltage for the

H.264 encoder: x’s correspond to PSNR loss and circles mark FPS loss. Due to the reduced

cache capacity, a normal cache (Baseline in blue) would see 38% decrease in FPS, while

maintaining the PSNR quality. On the other hand, Relaxed Cache (in red) trades off the

PSNR quality for less degradation in FPS (up to 9.5%). However, in all the experiments the

PSNR of degraded-quality video is still above 32dB threshold, yielding acceptable quality

for the user.
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Figure 5.9: FPS-PSNR trade-offs w/ and w/o Relaxed Cache scheme (AFB=4)

5.5 Summary

In this chapter, we outlined challenges for utilizing partially-forgetful memories for approxi-

mate computing applications. We illustrated how to address this challenges for SRAM caches

using the Relaxed Cache exemplar, and demonstrated significant cache energy savings (up

to 74% in leakage) with acceptable degradation in the output quality.

As a future work, we consider the challenging issues of write operation –high write energy and

limited write wearout– in emerging Non-Volatile Memories (NVMs). The idea is to propose

an application-driven mechanism that reduces the number of writes to NVMs by discarding

unimportant data stores to trade QoS for energy saving and lifetime improvement.
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Chapter 6

System-wide Memory Resiliency

Design Space Exploration

6.1 Introduction

The ongoing trend towards single-chip many-core systems is to deploy simple processing

elements (e.g., in-order or RISC-like processors) and exploit task-level and application-level

parallelism to maximize system performance by deploying hundreds or thousands of smaller

cores, rather than dozens of bigger cores. Additionally, the data-centric nature of several

emerging applications creates a demand for larger on-chip memories such as shared Last-

Level Caches (LLCs). Hence, the memory subsystem is the fundamental performance and

energy bottleneck and is likely to dominate reliability as well as energy concerns for future

many-core computing systems [37]. Indeed, increasing failure rates (due to advanced tech-

nology nodes, higher integration, voltage scaling, and parametric variations) in many-core

platforms, make reliability a major design challenge for both memory and computing com-

ponents [48]. The design of memory subsystems becomes even more challenging in the face
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of user requirements and system constraints like Quality of Service (QoS) and yield, be-

side possible trade-offs among usually conflicting design metrics (objectives) like reliability,

power, and performance.

There is a large body of work on reliable and fault-tolerant memory and cache design in

various systems from single-core processors to complex many-core platforms. These ap-

proaches mainly allocate redundant resources such as spare rows or error correcting codes

(ECC) uniformly over the chip at design time. To maximize the fault coverage, the num-

ber of redundant resources may grow proportionally with the increasing number of faults.

However, in practice only a limited amount of redundancy can be deployed due to addi-

tional overhead incurred in power and area. Even in this case, non-uniform distribution of

failures over the chip due to manufacturing defects and variations causes inefficient use of

uniformly distributed redundancies. Moreover, non-uniform access latency in shared LLCs

as well as varying memory access patterns over different LLC banks, create a complicated

resource management problem. To the best of our knowledge, there have been no previous

system-level efforts that model and analyze redundancy management and fault-tolerance of

distributed on-chip memories in large NoC-based platforms. Therefore, it is necessary to

find an approach to efficiently manage distributed redundancies and then search the design

space for the best solutions that optimize multiple design objectives in a bounded search

time.

A number of Design Space Exploration (DSE) approaches have been proposed at the system-

level, for effective design of embedded systems [62] where the search space is huge and

systems are optimized for one or more disparate objectives. However, none of the previous

approaches for reliable and fault-tolerant design of memories, considers redundancy analysis

and optimization. These observations motivate us to first propose a model for effective

redundancy management and then leverage the design space exploration approaches for

optimizing the problem of effective redundancy management for reliable on-chip memory
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design in many-core platforms.

In this chapter, we propose a novel system-level approach to improve the efficiency of reli-

able on-chip memory design in many-core platforms by sharing the redundancy resources to

optimize the system costs.

In particular, this chapter makes the following contributions:

• We propose a system-level design methodology for scalable fault-tolerance of dis-

tributed on-chip memory blocks in many-core platforms.

• We introduce a novel Reliability Clustering model for efficient fault-tolerance analysis

and shared redundancy management of on-chip memory blocks. Each cluster represents

a group of cores that have access to shared redundancy resources for protection of their

memory blocks.

• We develop analytical models for analysis of reliability, latency, and area overhead

leveraging reliability clustering, and use these for design space exploration of fault-

tolerant distributed memories in many-cores.

• We perform extensive design space exploration applying the proposed reliability clus-

tering on a block-redundancy fault-tolerant scheme to evaluate the tradeoffs between

reliability, performance, and overheads.

We believe that our proposed design methodology will engender emerging many-core archi-

tectures capable of efficiently responding to the multiple challenges of increasing fault rates,

variation in fault behaviors, local interconnects, non-uniform memory access pattern and la-

tency, limited shared redundancy, and susceptibility to transient variations. To the best of our

knowledge, ours is the first work to comprehensively analyze and explore the design space for

redundancy-aware resiliency of distributed on-chip memory banks in many-core architectures.
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6.2 Background

6.2.1 Reliable Memory Design

Both off-chip and on-chip memories are vulnerable to different sources of faults and er-

rors that degrade their yield and reliability. In general, different kinds of redundancy from

physical-level (e.g., spare elements) up to application-level (e.g., information redundancy) are

used to improve the reliability of memory components. These redundant resources are usu-

ally distributed uniformly over the chip and allocated mainly at design time. Consequently,

the non-uniform distribution of permanent faults as a result of manufacturing defects and

variability are neglected [24]. Therefore, some memory units may not use their entire al-

located redundant resources while other memory units may require more redundancy due

to higher failure rates. Thus the traditional approach of over-provisioning redundant re-

sources to guarantee high reliability and high performance may result in excessive costs for

many-core platforms with large distributed memories. Hence, it is necessary to minimize

the amount of redundant resources used for error protection. One approach is to share them

among all the memory units (LLC banks), so that cache banks with higher failure rates can

borrow the unused redundant resources from other banks [20].

This problem can be cast as allocating the shared redundant memory resources over the chip

and binding them to the faulty cache blocks to gain required reliability while minimizing

other design objectives like power and cache access delay. The search space of allocation and

binding problem is vastly increased due to non-uniform distribution of variability-induced

permanent faults and also non-uniform memory access patterns to different cache banks due

to varying behavior of different applications running on the system. Therefore, it is necessary

to find an efficient approach to model this problem and search for the best solutions that

optimize the design objectives in a bounded search time.
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Figure 6.1: A general system-level design space exploration problem [101].

6.2.2 Design Space Exploration

In system-level design, Design Space Exploration (DSE) refers to a (semi)automatic system-

level approach that explores the search space to identify implementations which satisfy the

requirements of the designer. Then, the task of design space exploration problem is to find

the set of optimal feasible implementations for a given specification. Figure 6.1 depicts the

system-level design flow. The specification consists of the architecture, the application, and

the relation between these two parts [101]. An implementation or solution of the problem

which is deduced from the specification consists of two main parts including allocation of

resources and binding of tasks to allocated resources. For multi-objective problems, where

usually one objective cannot be improved in one dimension without worsening another, DSE

does not seek a single optimal solution but rather a set of equally good solutions called

Pareto-optimal (or near Pareto-optimal, often also called quality) set. We deploy this DSE

approach for redundancy management of memory reliability in many-core platforms.
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Figure 6.2: Exemplar Many-core Architecture with an 8x8 mesh NoC.

6.2.3 Exemplar Many-core Architecture

We illustrate our DSE approach using an exemplar tiled interconnected many-core, where

each tile comprises a processor core, private L1 data and instruction caches, a shared L2 cache

bank, and network router/switch. Tiles are interconnected as a 2-D mesh via a network-

on-chip (NoC) infrastructure. Figure 6.2 shows our baseline 64-core architecture with an

8x8 mesh NoC. Based on our cache organization, the L2 bank is a portion of the larger

distributed shared last-level cache (LLC). The baseline design assumes a Non-Uniform Cache

Architecture (NUCA) [81] for LLC. A directory-based protocol is implemented in order to

maintain cache coherence. In this platform, redundancy resources in the form of spare cache

blocks that uniformly distributed over all LLC banks.

6.2.4 Motivation

As an example, Figure 6.3 shows a 2×2 NoC with four LLC banks, a fixed amount of redun-

dancy per bank (highlighted) and a random set of faulty blocks (cross dots). Figure 6.3(a)

shows a sample mapping of four tasks (T1-T4) to the cores. As indicated in Figure 6.3(b),

the distribution of faults is non-uniform and some banks (e.g., B1) have many more faulty

169



Application Layer

Interconnect Layer

Physical Layer

Data dependency, variable 
memory accesses

Contention, network traffic, 
links bandwidth

Distribution of redundancy, 
variability, burst faults 

R

R

B2B1

B4B3

×
 

×
 

×
 

×
 

×
 

×
 

×
 ×

 
×
 

×
 

×
 

×
 

R

R

T2T1

T4T3

System-wide 

DSE

(a)

(b) (c) (d)

R
el

ia
bi

lit
y

Power

Delay

R
el

ia
bi

lit
y

Figure 6.3: A sample case of a 2 × 2 NoC and four tasks mapped on its cores; a)a sample
task mapping; b)uniform distribution of faults vs non-uniform distribution of faults (shaded
areas represent redundancy resources and cross signs represent faulty blocks); c)cross-layer
design methodology; d)DSE and Pareto-optimal solution.

blocks than others (e.g., B4). On the other hand, due to non-uniformity of application

memory demand or tasks mapped on different cores, some nodes become the hotspot of the

system (e.g., T2). We assume that redundant resources are shared (like LLC banks) and

can be used for protection of local faulty blocks as well as global blocks (in other banks).

However, access to redundant blocks over the network incurs higher access latency and more

traffic over the network which impacts the system power. Also, we assume it is possible to

use block-level power gating [63] to turn-off some unused redundant blocks to save power.

Even for this exemplar architecture, the design space for reliable memory organization be-

comes very complex in the face of multiple conflicting objectives (e.g., delay, power, fault

coverage, etc.) and can be cast as a complex multi-objective optimization problem. On the

other hand, none of the previous approaches to reliable and fault-tolerant memory design

have performed any redundancy analysis and optimization to minimize the cost of protec-

tion. These observations motivate us to integrate memory protection techniques with a
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system-level DSE optimization framework to optimize the problem of effective redundancy

management (sharing, allocation, and binding) in emerging many-core platforms. Note that

our approach is complementary to, and can further leverage all conventional reliable and

fault-tolerant memory design techniques to minimize the cost of memory protection.
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6.3 System-Level Fault-tolerance Modeling

A methodology for fault-tolerance of distributed memory systems for scalable NoC platforms

faces several inter-related challenges, requirements, and features: communication must be

localized to reduce interconnect overheads; fault-tolerance schemes need to be topology-

aware, and must organize and distribute redundancy based on criticality of communication

paths; redundancy needs to be managed as a shared resource across the platform; and fault-

tolerance should be addressed at higher design abstraction levels to gain more leverage over

its effects on performance, cost, power, etc. To meet these needs, we develop analytical

models and a system-level methodology for fault-tolerant design of distributed on-chip cache

memories for a tiled NoC-based CMP. This chapter focuses on shared L2 banks that need to

be protected. However, our approach can be applied to any form of on-chip memory archi-

tecture in NoCs that need reliability. To estimate design parameters we develop analytical

models include a Reliability model, Access latency model, and Area overhead model. Using

these models, we can analyze the trade-offs between yield, performance, and energy/area

overheads of a fault-tolerant design of on-chip memory subsystem. We describe details of

these models in our technical report [17]. Next, we present a novel reliability clustering con-

cept for scalable, modular, and efficient design and implementation of fault-tolerant schemes

applied to protect the memory blocks.

6.3.1 Reliability Clustering

To model fault-tolerance and organize redundancy we divide the whole NoC into clusters

comprised of multiple groups of tiles. Each cluster is a subsection of the base NoC with the

same topology but in a smaller group of tiles. The clustering is used to partition redundancy

sharing among the tiles inside the cluster. In each cluster, some specific tiles (e.g., center

tiles) contain the redundancy used for fault-tolerance of all tiles inside the cluster; these are
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labeled as redundancy nodes. These redundancy nodes can be used flexibly to accommo-

date different fault-tolerance schemes and varying forms of redundancy, such as redundant

rows/columns/blocks; exploiting sections of available clear/faulty blocks as redundancy; and

ECC codes. Furthermore, we leverage the available interconnect backbone to support im-

plementation of a variety of modular, scalable, and efficient fault-tolerance schemes. For

instance, in our exemplar tiled NoC architecture, we modify the direct router connected to

the redundancy nodes to support our selected fault-tolerant scheme. Because such clustering

organization is independent of a particular topological structure, various physical topologies

can serve as fixed-silicon but dynamically reprogrammable reliable multicore clusters on top

of NoC platforms. Meanwhile, the inherent reconfigurability allows customizing clusters

according to not only the clustered and varying fault rates but also to application com-

munication patterns and resilience needs. Therefore, clusters can be defined statically or

dynamically during runtime. For the sake of simplicity, here we consider static clustering.

Our mesh-based NoC is composed of N nodes, C clusters, with each cluster containing a

d× d mesh of tiles (d = cluster dimension size). The size and number of clusters can affect

the yield, overhead, and network latency. The cluster dimension size (d) would determine

the upper bound on latency of fault-tolerant LLC accesses. Depending on the shape and

size of each cluster, number of clusters, amount of redundancy, and distribution of redun-

dancy among clusters, we can explore different design strategies which meet various design

constraints.

6.4 Evaluation

To illustrate the flexibility and utility of our exploration methodology, we outline a sample

design space exploration study using the exemplar many-core platform.
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6.4.1 Experimental Setup

We use SoCIN, a cycle-accurate SystemC model of a Mesh-based NoC [163] that uses Worm-

hole switching with a 4-phit buffer size and an XY routing to avoid deadlocks. SoCIN router

contains input buffers, the arbiter, the crossbar, and the links as depicted in Fig. 1. Each

router is connected to a 1MB L2 cache bank. All L2 cache banks share the same address

space of 64 MB LLC. Additionally, for each router, there is a module generating data and

instruction requests based on memory traces obtained from a Simics [102] simulation using

64 sparcV8 as cores. A workload of parallel programs with very distinct behaviors is created

using benchmarks from SPLASH2 [159], PARSEC [33], and a parallel version of MiBench

[65] suites. With these memory traces as input to our framework, we are able to extract

performance and energy results. The performance results are the total number of cycles to

execute all 64 parallel tasks (for each application) and the energy results are obtained from

Cacti 6.5 [116] for the memory subsystem and from Orion 2.0 [79] for the network-on-chip.

Table 6.1 summarizes the experimental setup of our architecture.

For the sake of this study, faulty LLC banks are modeled randomly since SRAM cell faults

occur as random events due to the major contribution of the random dopant fluctuation

to the process variation [2]. Based on the results of a recent work [118], the predicted

probability of failure for SRAM cells can be up to 2.6−4. Here, since our case study is a

block-redundancy fault-tolerant scheme and the analysis is at system level, we model failures

at the block level. Based on that, the probability of block failure would be up to 7−2. To

enable a fair analysis during our evaluation, we consider 8 fault rates ranging from 10−3 to

7−2. To determine the amount of redundancy based on our reliability model, to keep the

reliability more than 99%, the redundancy (R) should be more than 2%. On the other hand,

to keep effective yield more than 95%, we should keep the redundancy less than 5%. Thus

we consider redundancy for any value ranging from 2% to 5%.
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Table 6.1: Simulation Configuration

Processor Core 64 SPARC V8
L1 I/D Cache 2 Banks, 32KB each, 4-Way, 32B Block Size, 2

cycle, LRU
L2 Cache (LLC) shared 64MB, 64 banks, 16-way assoc, 64B block,

10 cycle, LRU
Coherence protocol Directoy-based
Memory Latency 250 cycles

Interconnect NoC of 2D mesh (8×8 for 64 LLC banks and 64
cores) , 32-byte links (2 flits per memory access),
1-cycle link latency, 2-cycle router, XY routing,
Wormhole Switching, 4 phit buffer size

Frequency 1.0 GHz
Technology 45nm

6.4.2 Design Space Exploration Studies

We evaluate the impact of system-level reliability clustering on performance, energy, and

area overhead of the system using simulation runs of the experimental platform described

earlier. For different system configurations we change one design parameter such as fault

rate or amount of redundancy and study its effect on different design metrics of the memory

subsystem. We consider the design space at two levels: cluster-level and system-level.

1. Cluster-level (Intra-cluster): Here, we study the effect of redundancy distribution

(number and location of redundancy nodes) on system design metrics. In this set of

results, we consider the whole NoC as one cluster, fix either the amount of redundancy or

fault rate, and change the redundancy distribution. In these experiments we explore the

redundancy organization by changing either the number of nodes that contain redundancy

(redundancy nodes) or their location. Redundancy node distribution can be studied in

two directions, ranging from central nodes to all outward nodes or ranging from corner

nodes to all inward nodes. Redundant elements are spread equally among all nodes which

contain redundancy. Proposed distributions are selected based on a regular and scalable

pattern which is independent of the size of the cluster. Figure 6.4(a) presents some
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possible distributions for our base architecture with four redundancy nodes. Here, for

each redundancy distribution we have other variations of the distribution by spreading

the nodes from the center (Option 1) towards the corners (Option 4). Note that the label

N.X means that the configuration has N nodes with redundancy and X representing the

distribution option. Higher values of X represent redundancy nodes that are closer to the

corners.

2. System level (Inter-cluster): Here, we investigate the effect of node clustering and

shared redundancy management among clusters on system design metrics. In this set of

results, we change the number and size of clusters while fixing the total redundancy in the

system. We select the size and number of clusters based on a regular and scalable pattern.

Redundancy is spread equally among all clusters and all redundancy nodes inside each

cluster. Here, we put the redundancy nodes in the center of each cluster. The intuition

behind this approach is to guarantee that the redundancy nodes are always surrounded

by a certain number of cores. This has the goal of not only minimizing the average

distance between the cores and the redundancy nodes but also minimizing the variance in

the average distance for each case. Figure 6.4(b) presents some possible clustering and

distribution of redundancy for our base architecture with four central redundancy nodes

per cluster. Here we illustrate sample distributions for 1, 2, 4, 8, and 16 clusters with 4,

8, 16, 32, and redundancy nodes, respectively.

6.4.3 Sample Exploration Results

In this section, we summarize the normalized performance/energy results of the block-

redundancy scheme using the proposed clustering methodology, with respect to a baseline

system without fault-tolerance support (i.e., where access to a faulty memory address re-

sults in an on off-chip memory access). Detailed experimental results are in our technical

176



Option 1 (RN = 4.1) Option 2 (RN = 4.2) Option 3 (RN = 4.3) Option 4 (RN = 4.4)

(a) Cluster-level

1–Cluster (RN = 4) 2–Cluster (RN = 8) 4–Cluster (RN = 16) 8–Cluster (RN = 32) 16–Cluster (RN = 64)

(b) System-level

Figure 6.4: Possible redundancy configuration patterns in (a) cluster-level and (b) system-
level models with four redundancy nodes per cluster.

report [17].

Cluster-level Results

Figure 6.5(a) shows the gains of performance the normalized execution time to the baseline

for each configuration shown in Figure 6.4(a) with 3% of memory redundancy and also 3%

of block fault rate in the system. Note that 3% block fault rate means that 3% of all

memory blocks in the system are faulty. This figure shows the susceptibility of performance

gains varying from one application to another. While the performance improvements vary

across most applications, as expected, configurations with more redundancy nodes (e.g.,

configuration 16.2) present better results.

Figure 6.5(b) presents the average performance results over all benchmarks when using 3%

of memory redundancy and changing the block fault rate in the system. We note that

configurations using too many redundancy nodes do not present good results. This may

suggest that the best distribution must not have a small amount of redundant memory per
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node because this will spread the redundant area too much, creating a higher average NoC

distance between the nodes.

In another experiment we evaluate the effect of different amounts of redundancy for cluster

level while setting the block fault rate to 3% shown in Figure 6.5(c). Note that it is not

sufficient to have redundancy greater than the fault rate, since the faults may not be evenly

distributed, and other factors (e.g., routing and contention) may affect performance. Indeed,

Figure 6.5(c) shows an inversion from 4% of redundancy memory: configurations that were

inferior in the previous experiments start to present better performance and those that were

previously superior now appear to become worse. This suggests that at some point when

the total of redundancy memory is higher than the amount of faulty blocks in the system, it

is better to have the redundancy nodes in the corners. This could be due to the fact that as

the XY routing tends to concentrate the load in the center of the NoC [52], these packets for

redundancy memory requests (which now occur less frequently) may generate less contention

if avoiding the middle of the NoC.

System-level Results

For the inter-cluster case we put the redundancy nodes in the center of cluster and change

the size and number of clusters. Similar to Figure 6.5(a), Figure 6.6(a) presents the results

at the system-level in terms of performance gains when fixing the redundancy memory at 3%

and the block fault rate also at 3%. In this case, for all configurations except 16-cluster, there

is not much variation from one application to another. This is a configuration that spreads

the redundancy data equally throughout all the nodes and therefore is more susceptible to

different memory access rates. For lower memory accesses it works well because there are

few redundancy memories per node across all nodes. For high memory accesses it may not

work well since it has a higher chance where the redundancy nodes may be too far away.
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Figure 6.5: Normalized performance improvement of different cluster-level configurations
across different a) benchmarks, b)fault rates, c)amount of redundancy.

Figure 6.6(b) presents performance results for these configurations with a total of 3% of

redundancy memory while changes the block fault rate, ranging from 0.1% to 7%. The

figure shows that the 8-cluster configuration has the better results. This is due to the fact

that this configuration presents a low average distance between cores and redundancy area

and also because this average distance does not vary too much considering all cores.

Figure 6.6(c) presents results regarding the same exploration presented in Figure 6.5(c) but

this time with this set of system level configurations. Similarly, we observe that a few
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changes occur after the point of 3% of redundancy memory but differently from the case

of cluster level configurations, there is no clear change of scenario, i.e. the better result

remain unchanged. This could be due to the fact that in this set of configurations there is

no configuration that places the redundancy nodes in the edges of the NoC.

Overall, by looking at the results on both sets of experiments, we observe that good decisions

on redundancy organization or selecting proper cluster-level and system-level configurations

can lead up to 20% improvement in normalized performance gains over the baseline. This is

a relevant differential since it incurs no increase in overhead and only requires changing the

redundancy organization.

Energy Results

We also studied the energy saving (normalized to baseline) for both sets of experiments by

fixing the fault-rate to 3% and varying the redundancy from 0.1% to 7%, as represented in

Figure 6.7. The trends here are quite similar to the one presented in Figures 6.5(c) and

6.6(c). The difference is that since off-chip memory accesses consume more energy than

regular on-chip memory accesses, the penalty for not having a redundancy memory hits the

baseline the hardest. The results presented here show the energy savings of the redundancy

cluster approaches compared to the baseline.

In Figure 6.7(a) we present the results for the intra-cluster level approach. The energy

consumption in this experiment for the most part follows the same trend as the performance

results. Some situations can present better results depending on the average distance between

the cores and the redundancy nodes (e.g., RN = 16.2). If better distributed, the energy

consumption to reach the redundancy nodes will also be smaller. After the point where

the amount of redundancy surpasses the block fault rate, some configurations that place

the redundancy blocks far away from the center of the NoC present better results (e.g.,
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Figure 6.6: Normalized performance improvement of different system-level configurations
across different a) benchmarks, b)fault rates, c)amount of redundancy.

RN = 8.3). This could be because of the tendency of XY routing to create more contention

in the center of the NoC. In Figure 6.7(b) the inter-cluster (system-level) approach energy

savings are presented and although the trends are similar to the one presented in Figure

6.6(c), the differences between the configurations with different number of clusters seem to

be increased and therefore, the 8-cluster configuration presents the best results due to an even

distribution of redundant blocks in the NoC without reducing the amount of redundancy per

node too much. The 16-cluster results present a better result at 7% redundancy rate. This

is due to the fact that in this system-level approach if the redundancy rate is much higher
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Figure 6.7: Energy results across different amount of redundancy for (a) Intra-cluster, (b)
Inter-cluster (system-level) configurations.

than the block fault rate, the amount of redundancy per node reaches a point where fewer

and closer redundancy nodes are enough to cover the faults. With lower distance between

the nodes, lower NoC energy is consumed.

Overall, depending on different configurations the normalized energy savings can be improved

up to 47% in the cluster-level approach and 51% in the system-level approach for different

amounts of redundancy.
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6.5 Summary

To construct reliable memory architectures in emerging multi/many-core NoC platforms,

designers must consider the interconnect, distribute and utilize redundancy efficiently to

alleviate the high cost of fault-tolerance schemes, employ a hierarchical set of fault-tolerance

strategies, and create novel design paradigms that consider system-level issues. In this

chapter, we first proposed a system-level design methodology for scalable fault-tolerance of

distributed on-chip memories in many-cores. We introduced the novel concept of Reliability

Clustering for efficient redundancy management and fault-tolerant design of memory blocks.

Experimental results on an exemplar 64-core CMP with an 8x8 mesh NoC show that distinct

design strategies or reliability clustering configurations of a block-redundancy scheme may

yield up to 20% improvement in normalized performance gain and up to 51% in normalized

energy gain, uncovering many interesting design configurations. We also Future work will

explore application-aware dynamic clustering of cores and shared memory redundancy for

fault-tolerance.

As a future work, we want to define and formulate the problem of shared redundancy al-

location and binding as a DSE problem. Then, propose a system-level optimization ap-

proach to solve it. We want to exploit a cross-layer approach that combines both physical

layer variability issues as well as application-level memory access variations in design for

memory reliability. Finally, we need to integrate the proposed optimization approach in a

comprehensive Design Space Exploration (DSE) framework considering multiple system and

architecture-level design objectives such as reliability, power, and performance.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Computing systems become more vulnerable to different sources of failures from soft errors

to ever-increasing hard errors in the nano era. Reliability becomes a major design challenge,

especially for on-chip memories. The complexity of systems is increasing and there is need

to new leverage new scalable and cost-efficient approaches. We think error-resiliency is

more important than reliability. The premise of this thesis is to provide multiple solutions

in different layers of system hierarchy targeting a verity of architectures from embedded

single-core microprocessors to emerging large many-core platforms to address cost-efficient

error-resiliency of on-chip memory in Nano era.

First, two approaches were proposed for cost-efficient fault-tolerance of cache memories in

different processors. We first presented FFT-Cache, a flexible cache architecture to protect

regular SRAM-based cache memories against high degree of process variation-induced per-

manent faults. Then, we proposed EEC, a low-cost technique to leverage embedded erasure

coding to tackle soft errors as well as hard errors in data caches of a high-performance as
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well as an embedded processor.

Second, to efficiently tolerate the large number of permanent faults in the large NUCA LLCs

in CMP architectures, when operating in the near-threshold region, two highly reconfigurable

fault-tolerant cache design, REMEDIATE and RESCUE, were presented.

Third, two interconnect-aware designs were introduced to protect LLC in NoC-based ar-

chitectures. In first design, we leverage the NoC infrastructure for efficient protection of

on-chip memories against permanent faults. Then, we propose a co-design error coding ap-

proach for LLC and interconnect to minimize the overall overhead of error protection in NoC

architectures.

Fourth, the concept of Partially-Forgetful Memories (PFMs) introduced to demonstrate how

to exploit the intrinsic tolerance of a vast class of applications to some level of error for relax-

ing the guard-banding in memories. We outlined challenges for utilizing partially forgetful

memories for approximate computing applications. Then, we proposed Relaxed Cache as an

examplar to address the challenges for partially-forgetful SRAM caches.

Finally, this thesis provided novel system-level design space exploration and optimization ap-

proaches to minimize the cost of resilient on-chip memory design in many-core architectures.

First, the concept of reliability clustering for distributed fault-tolerance of on-chip memories

in NoCs was proposed. Then, Proposing a DSE optimization approach to minimize the cost

of redundancy assignment toward LLC protection in many-core platforms.

7.2 Future Work

This thesis is the first to introduce novel concepts such as reliability clustering and dis-

tributed shared redundancy and propose new approaches such as NoC-based fault-tolerance
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and Codesign error coding to resilient on-chip memory design. As a result, there are multiple

ways in which this work can be extended in the future:

• Extension of scalable cache fault-tolerance: To leverage the benefits of both remapping-

based as well as ECC-based approaches, a hybrid scheme of Remapping + ECC would

be an interesting approach. Such approach alleviates the cost of fault-tolerance in case

of low bit error rates by using ECC instead of remapping and also protects caches

against transient soft errors.

• Extension of NoC-based LLC fault-tolerance: Since this is a first of its kind piece of

work, there are multiple opportunities for further optimization of this work such as

adaptive fault-aware routing, dynamic redundancy assignment for fault tolerance, and

non-unified design for fault tolerance. Moreover, design for soft error protection is also

another promising direction of work.

• Extension of CoDEC approach for adaptive/hybrid coding: Since there are many trade-

offs in design of error coding schemes for cache memories as well as NoCs, it would be

interesting explore how to modify the CoDEC approach to make it adaptive by lever-

aging hybrid coding techniques. For example, depending on the NoC routing scheme

and hope count of accessed block, CoDEC can leverages different coding techniques to

optimize the coding overheads.

• Extension of Partially-Forgetful Memories:

– Partially-Forgetful Non-Volatile Memories: Emerging non-volatile memories such

as Phase Change Memory (PCM) and Spin-Torque Transfer RAM (STT-RAM)

suffer from high write energy and limited write wearout and there are many re-

search efforts to make their write operation more energy efficient and limit their

wearout issue [47, 168]. Considering the approximate computing applications

features, a future direction is to propose an application-driven mechanism that
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reduces the number of writes to partially-forgetful NVMs by discarding unimpor-

tant data stores to trade QoS for energy saving and lifetime improvement.

– Partially-Forgetful Software-Controlled Memories: Any system that employs software-

controlled memories (a.k.a. scratchpad memories – SPM and tightly-coupled

memories – TCM) already contains a mechanism to statically or dynamically

map application data onto these memories. This can significantly negate the

overhead induced in Relaxed Cache to manage bookkeeping of data partitioning

declarations (i.e., criticality table) and perform data mapping accordingly (i.e.,

the modifications in the cache controller). The idea of partially-forgetful memories

therefore naturally lends itself to software-controlled memories.

– Partially-Forgetful Distributed Memories for Many-core Systems: The data-centric

nature of several emerging applications creates a demand for denser on-chip mem-

ories in emerging many-core systems which makes the memory subsystem one

of the fundamental performance and energy bottlenecks in such systems. Par-

tially forgetful memories provide an opportunity for co-optimization of reliability

and energy consumption. A major challenge would be sharing on-chip partially-

forgetful memory resources between a set of applications running on the system

while adjusting memory reliability knobs according to the requirements of the

applications.

• Extension of Reliability Clustering: Since the concept of Reliability Clustering is a first

of its kind piece of work, there are many opportunities for further optimization. Future

work will explore dynamic clustering of resources during run-time. It can leverage

application-aware or cross-layer policies to create heterogeneous clusters by considering

application-level as well as physical-layer variabilities during run-time.

• Extension of System-level Memory Resiliency: Since this is the first piece of work

exploring shared redundancy in distributed cache memories, we believe that there
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are many directions for future work in the redundancy-aware reliability management

domain. As a direct extension, we want to define and formulate the problem of shared

redundancy allocation and binding as a DSE problem. Then, propose a system-level

optimization approach to solve it. We want to exploit a cross-layer approach that

combines both physical layer variability issues as well as application-level memory

access variations in design for memory reliability. Finally, we need to integrate the

proposed optimization approach in a comprehensive Design Space Exploration (DSE)

framework considering multiple system and architecture-level design objectives such as

reliability, power, and performance.

• Extension of Resiliency DSE approach with dynamic redundancy allocation: By dy-

namically allocating some parts of shared memory (LLC) as redundancy, the problem

of shared redundancy management becomes more complicated and challenging which

would be an interesting direction. Another direction is redundancy virtualization to

define redundancy blocks as virtual resources that can be managed in software level.

• In general, the application of Cross-layer memory resiliency in a real system would

bring interesting challenges and opportunities to the software stack.
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