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Mustache: multi-scale detection of
chromatin loops from Hi-C and Micro-C maps
using scale-space representation
Abbas Roayaei Ardakany1,2, Halil Tuvan Gezer1,3, Stefano Lonardi2* and Ferhat Ay1,4*

Abstract

We present MUSTACHE, a new method for multi-scale detection of chromatin loops from Hi-C and Micro-C contact
maps. MUSTACHE employs scale-space theory, a technical advance in computer vision, to detect blob-shaped objects
in contact maps. MUSTACHE is scalable to kilobase-resolution maps and reports loops that are highly consistent
between replicates and between Hi-C and Micro-C datasets. Compared to other loop callers, such as HiCCUPS and SIP,
MUSTACHE recovers a higher number of published ChIA-PET and HiChIP loops as well as loops linking promoters to
regulatory elements. Overall, MUSTACHE enables an efficient and comprehensive analysis of chromatin loops. Available
at: https://github.com/ay-lab/mustache.

Keywords: Contact maps, Genome architecture, Chromatin loops, Hi-C, Micro-C, HiChIP, ChIA-PET,
Promoter-enhancer interactions, CTCF, Cohesin

Background
Recent studies have revealed that chromatin has a well-
organized structure in the eukaryotic nucleus, which is
highly regulated in accordance with the stage of the cell
cycle, environmental cues, and disease conditions [1–4].
In turn, the 3D structure of the chromatin plays a crit-
ical role in many essential cellular processes, including
the regulation of gene expression and DNA replication
[5–7]. Therefore, it is of great importance to systemati-
cally study the chromatin organization to understand how
folding properties and looping events influence the cell-
specific biological functions of distinct regulatory regions
of the DNA. To date, Hi-C has been the main assay
of choice for discovering genome-wide chromatin con-
tacts/interactions [8, 9]. More recently, Micro-C [10],
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which replaces the restriction enzyme inHi-Cwithmicro-
coccal nuclease for digestion, enabled the generation of
nucleosome-resolution chromosome folding maps from
mouse and human cells [11, 12]. With the decreasing cost
of sequencing and optimization for smaller cell numbers,
both Hi-C and Micro-C assays are expected to produce
increasingly higher resolution reference contact maps for
a diverse set of organisms and cell types [9, 12, 13].
Chromatin loops are defined as pairs of genomic

sites that lie far apart along the linear genome but are
brought into spatial proximity by a mechanism called
loop extrusion [14–16]. Several methods have been devel-
oped to detect chromatin loops or statistically signif-
icant/enriched chromatin interactions from Hi-C con-
tact maps [9, 17–20]. These existing methods broadly
fall into two groups. The first group, which we call
global enrichment-based methods, contains methods that
(i) globally fit statistical/probabilistic models to the con-
tact map data and (ii) assign p values to each individual
pixel/entry in the contact map by comparing the observed
count values to the expected values computed from the
fitted model. For instance, Fit-Hi-C [17] uses a monotonic
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spline to model the relation between contact probabil-
ity and the genomic distance of the interacting loci, then
estimates the statistical confidence of each contact with
respect to this expectation and a coverage-based correc-
tion factor, using a binomial distribution. In a similar
method, HiC-DC [18] estimates the statistical significance
of chromatin contacts fromHi-C experiments using a hur-
dle negative binomial regression to account for both the
zero inflation and over-dispersion of contact counts as
well as systematic sources of variation in Hi-C read counts
such as distance-dependent random polymer ligation, GC
content, and mappability bias. Several crucial drawbacks
common to these two methods, and to any other method
that uses only a global background [20], are as follows:
(i) the locality information in the contact map is not
taken into account in the modeling, (ii) each pixel/contact
count is considered independent of its surrounding pix-
els, and (iii) pixels that are in the vicinity of a strong
loop are also deemed statistically significant with respect
to the global background (i.e., bystander effect). As a
consequence, a large number of reported significant con-
tacts are likely to cluster around a few very strong pixels
or loops, making it difficult to interpret the large num-
ber of direct and indirect enrichment lumped together.
Recent variations of these methods employ post-filtering
strategies for discarding calls that are likely to be indi-
rect interactions [21, 22]; however, for deeply sequenced
Hi-C data, the number of resulting calls still remains very
large (e.g., in the order of hundreds of thousands). There-
fore, the global enrichment-based methods, even though
are important for discovering preferential enrichment of
proximity among functional regulatory elements such as
promoters and enhancers [22], are not for highly spe-
cific detection of the strongest structural loops, such as
those demarcating domain boundaries and in between
convergent CTCF binding sites [9].
The second group of methods, which we name local

enrichment-based (loop calling) methods, identifies 2D
peaks in contact map that are not only significantly higher
than expected from the global background, but also are
local maximawith respect to their neighboring pixels. For
example, Rao et al. developed a method called Hi-C Com-
putational Unbiased Peak Search (HiCCUPS) that detects
chromatin loops in deeply sequenced high-resolution Hi-
C maps [9]. HiCCUPS examines each pixel (locus pair)
in the contact map by comparing its contact frequency
to that of neighboring pixels. More specifically, HiCCUPS
identifies loops by finding “enriched” pixels, that is, locus
pairs whose contact counts are significantly higher than
that of (1) pixels to its lower-left, (2) pixels to its left and
right, (3) pixels above and below, and (4) a doughnut-
shaped region surrounding the pixel of interest. While our
work was under review, a method called Significant Inter-
action Peak caller (SIP) was published which also uses

image processing techniques to identify chromatin loops
in Hi-C data [19]. SIP applies a set of image processing
operations (e.g., Gaussian blurring and contrast enhance-
ment) to pre-process the contact maps and increase the
contrast of the potential loops. Then, SIP employs a local
maxima detection algorithm to produce the preliminary
list of candidate loops, which undergo several filtering
steps to produce the final set of loop calls. Both HiCCUPS
and SIP use a fixed representation of the contact map
and a fixed-size local neighborhood to model the back-
ground intensities. Therefore, chromatin loops involving
proximity of larger (or smaller) regions that lead to larger
(or smaller) blobs in the contact map, as compared to the
scale of the fixed representation, may not meet the local
filtering criteria and will not be reported.
Another recent approach called cLoops is a local-

enrichment method based on a modified DBSCAN clus-
tering algorithm (cDBSCAN) that directly works with the
paired-end tags/reads (PETs) to call loops [23]. cLoops
uses a permuted local background to estimate statistical
significance and can handle a broad range of chromatin
conformation capture assays including Hi-C, ChIA-PET,
HiChIP, and Trac-loop. While cLoops is, to some extent,
scale-free since it utilizes reads at their native resolu-
tion, cLoops is very inefficient both in terms of runtime
(> 1000× slower compared to SIP [19]) and memory
use (> 100 GB per chromosome). Another downside
is that cLoops reports loops that are not supported by
either HiCCUPS, SIP, or Mustache, whereas these three
methods have strong agreement among each other. For
these reasons, we focused on comparing the three local
enrichment-based methods, namely Mustache, SIP, and
HiCCUPS.
In this paper, we present MUSTACHE, a new local

enrichment-based method for high-resolution Hi-C and
Micro-C data. MUSTACHE uses the scale-space represen-
tation of a contact map to model and identify chromatin
loops at multiple resolutions (Fig. 1). MUSTACHE utilizes
a set of carefully designed filters to report only locally
enriched pixels as loops. Our experimental results show
that MUSTACHE detects chromatin loops that are repro-
ducible, have high support from aggregate peak analysis,
and are independently supported by other conformation
capture experiments as well as by genomic and epige-
nomic correlates of loop formation. Given the orders
of magnitude of difference in the resulting calls from
MUSTACHE and global enrichment-based methods such
as Fit-Hi-C and HiC-DC (e.g., 20k vs 1.1M and 700k,
respectively), and the problematic issues outlined above
related to cLoops, here we focus on comparing MUS-
TACHE to the most commonly used loop calling method
HiCCUPS [9] and a very recent and similar image pro-
cessing approach SIP [19]. Our comparisons show that
MUSTACHE provides better statistical power in detecting
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Fig. 1 a The initial contact map is repeatedly convolved with increasing 2D Gaussians to produce a scale-space representation of the image (shown
on the left). Pairwise adjacent Gaussian images are subtracted to produce the difference-of-Gaussian (DoG) images (on the right). bMaxima of the
difference-of-Gaussian images are detected by comparing each pixel to its 3×3×3 neighborhood in (x, y, σ) space. Note that DoG is a local
maximum at (x, y) location at scales si and si+1 but not at scale si−1, therefore passing the first filtering step criteria. c Chromatin loops can be
caused by the contact between pairs of DNA segments at different scales

loops compared to HiCCUPS and SIP while detecting the
majority of their reported loops. We present several lines
of evidence suggesting that the additional loops detected
only by MUSTACHE are not false positives, but are rather
bona fide looping events with visible enrichments in con-
tact maps and support by other conformation capture
assays. We also demonstrate MUSTACHE’s efficiency on
Micro-C contact maps leading to highly consistent loop
calls between Micro-C and Hi-C maps of the same cell
line [12]. Our scalable implementation of MUSTACHE also
allowed us to study 1 kb Micro-C maps and to include
regions less than 20 kb apart, which have traditionally
been challenging to study withHi-C data and existing loop
callers. This high-resolution analysis revealed loops that
are highly supported by CTCF binding and APA plots as
well as thousands of new loops involving promoter and
enhancer regions at a resolution that allows studying such
regulatory elements individually. Based on the results
presented here, we believe that MUSTACHE will become
an essential tool in the analysis of high-resolution Hi-C
and Micro-C contact maps, which are being produced

in large numbers by the 4D Nucleome project and other
efforts [24].

Results
Mustache detects chromatin loops from publicly available
contact maps
We ran MUSTACHE on (i) Hi-C contact maps for human
cell lines GM12878 and K562 obtained from Rao et al.
[9], (ii) Hi-C and Micro-C contact maps of HFFc6 cell line
obtained from Krietenstein et al. [12], and (iii) Micro-C
contact maps of mouse embryonic stem cell (mESC) from
Hsieh et al. [25] (Additional file 1: Table S1). For assess-
ing the consistency of loop calls at different resolutions
and for measuring reproducibility across replicates, we
also used 10 kb GM12878 Hi-C contact maps. All contact
maps were produced using a minimum read alignment
quality MAPQ ≥ 30. GM12878, K562, and HFFc6 Hi-C
data consisted of approximately 4.9B, 1B, and 3B valid
read pairs, respectively. HFFc6 and mESC Micro-C data
had 4.4B and 2.6B valid read pairs, respectively. For all
experiments at 5 kb or 10 kb resolution, we considered
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contacts within the genomic distance range of 20 kb to
2 Mb. For 1 kb resolution Micro-C analysis, we used 5 kb
to 2 Mb distance range. For all cases, we employed MUS-
TACHE with default parameters: σ0 = 1.6, s = 10 and
oc = 2, st = 0.88, where σ0 is the initial scale, s denotes the
number of scales/levels, oc denotes the number of octaves,
and st refers to the sparsity threshold as described in the
“Methods” section. We selected these datasets because
they are the most extensively studied, they are generated
with very high-depth sequencing, and these cell lines have
readily available orthogonal datasets including ChIP-seq,
ChIA-PET, and HiChIP, which we used for validating our
results. For the 5-kb resolution Hi-C map of GM12878
(obtained by combining the two replicates), MUSTACHE
resulted in 18,068 loop calls for q value < 0.05. For the 10-
kb resolution GM12878 data, we obtained 14,045 loops
from the combined contact map, and 11,872 and 10,976
loops from the primary and replicate experiments, respec-
tively, using the same q value threshold of 0.05. For the
combined 5-kb K562 Hi-C data from the same publica-
tion, we identified 8975 loops at a q value of 0.1. On the
5-kb resolution HFFc6 cell line, MUSTACHE called 16,132
loops from the Hi-C data and 36,494 loops from Micro-
C data with the q value < 0.01 (24,045 loops for q value
< 0.001). For the 1-kb resolution Micro-C data at q value
threshold of 0.01, MUSTACHE reported 50,472 loops for
HFFc6 and 11,231 loops for mESC data.
In order to assess the sensitivity of MUSTACHE to the

number of reads used for sequencing Hi-C samples, we
performed a downsampling analysis on the 5-kb resolu-
tion GM12878 Hi-C data with 3.7B intra-chromosomal
valid reads. Our results on 2B, 1B, 900M, 800M, . . . ,
100M-read downsampled maps showed that the true pos-
itive rate ofMUSTACHE’s loops (compared to the full 3.7B-
read map) was consistently high (over 80%) for all settings
suggesting that a lower sequencing depth did not lead
to false positive discoveries (Additional file 1: Figure S1).
However, the recovery rate dropped to 66% and 51% when
we used 2B or 1B reads, respectively. For 500M valid reads,
MUSTACHE detected only one third of all loops reported
on the full dataset (Additional file 1: Figure S1). Given
that MUSTACHE detects two to three times the number of
HiCCUPS loops to begin with, and also reports statistical
significance, MUSTACHE will capture a substantial frac-
tion of the strong loops on such Hi-C datasets. Regardless,
to achieve high sensitivity in loop detection at 5 kb or
higher resolution, we suggest to have at least one billion
valid intra-chromosomal read pairs per Hi-C map.

Comparison of loop calls fromMustache, SIP, and HiCCUPS
on Hi-C data
As discussed, methods that detect enrichment of contact
counts with respect to a global background model tend
to report a number of significant contacts a few orders

of magnitude higher than loop callers with local filters
such as HiCCUPS (∼ 10k) and MUSTACHE (∼ 20k) on
the same data. Even though the global background mod-
els are valuable for finding potential interactions among
functional elements such as enhancers and promoters,
most of the detected enrichments do not correspond loop
anchors demarcating domain boundaries and/or specific
loops between convergent CTCF binding sites which are
argued to occur due to loop extrusion [9, 14–16]. There-
fore, we focused our comparative analysis with what we
call here as “loop calling” methods, which are geared
towards detecting the strongest and domain-demarcating
pixels, such as the commonly used HiCCUPS method [9].
Using the publicly available Hi-C contact maps described
above, we conducted several comparisons between MUS-
TACHE, HiCCUPS, and SIP loop calls. HiCCUPS loops
were obtained directly from the GEO entry for that work
[9]. First, we performed a genome-wide comparison of
MUSTACHE results against 9448 and 13,681GM12878 and
6057 and 8323 K562 loop calls from HiCCUPS and SIP,
respectively. To compute the overlap between two meth-
ods, we defined two loop calls as matched if the ± 5-kb
area around the center of one loop overlapped the other
(inclusive of corners and edges). For this analysis, all loop
calls by MUSTACHE and SIP were reported at 5 kb reso-
lution, whereas HiCCUPS reported a mix of loops at 5 kb
and 10 kb. Figure 2a–c illustrate that there was a good
agreement among all three methods. MUSTACHE recov-
ered nearly 81% and 73% of HiCCUPS and SIP loops in
GM12878 (Fig. 2a, b) while SIP recovered 74% of HiC-
CUPS loops in the same cell line. When we compared
loop calls from GM12878 to that of K562, we observed
that MUSTACHE, HiCCUPS, and SIP reported a simi-
lar fraction of common loops between the two cell lines
suggesting that the three methods have similar cell type
specificity (Additional file 1: Figure S2).
Figure 2a–c show that MUSTACHE reported a substan-

tial number of additional loops for GM12878 cell type
compared to the other methods. In order to further eval-
uate this difference, we quantified how well each loop
set was supported by the Hi-C data using aggregate peak
analysis (APA) [9]. To generate APA plots, we aggregated
contact counts over all detected HiCCUPS loops and top-
k MUSTACHE and SIP loops (equal to that reported by
HiCCUPS). Then, among these, we only kept the loops
between 150 kb and 1 Mb distance range. The result
is illustrated as a 21 × 21 heatmap (at 5 kb resolution)
in which darker color indicates higher contact count. A
strong dark pixel at the center of the heatmap indicates
specific enrichment of Hi-C contacts for the loop calls
with respect to their local background. The enrichment
is also quantified by several APA scores, one of which is
the ratio of the value of the center pixel to the average
value of pixels 15–30 kb upstream and downstream [26].
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Fig. 2 Comparison of loops detected by Mustache, HiCCUPS, and SIP from the GM12878 cell line Hi-C data. The agreement between aMustache
and HiCCUPS, bMustache and SIP, and c SIP and HiCCUPS loops is shown as Venn diagrams for replicate-combined Hi-C contact maps. The overlap
between the two loop sets is shown in green, and the percentages of overlap with respect to each set are reported separately. d–i APA plots for
Mustache, HiCCUPS, and SIP loops in GM12878 and K562 cell lines. The APA score calculated with respect to the enrichment of (i) the center pixel
and (ii) a 3 × 3 neighborhood in the center is reported above each plot. The overlap between reported loops on two replicates of GM12878 cell line
is shown for jMustache, k HiCCUPS, and l SIP. For Mustache and SIP, a q value threshold of 0.05 was used. For j–l, when replicates are analyzed
separately, we use 10 kb resolution Hi-C contact maps

Figure 2d–i show APA plots and APA scores on GM12878
and K562 cell lines for all reported HiCCUPS loops and
top-k MUSTACHE and SIP loops (equal to that reported
by HiCCUPS). Then, among these, we only kept the loops
between 150 kb and 1 Mb distance range. These results

show that loops from all three methods exhibited compa-
rable enrichment with respect to their local background.
MUSTACHE loops had a more diffused center enrichment
and accordingly lower APA scores compared to both HiC-
CUPS and SIP (APA score; Fig. 2d–i), a feature we found
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to be related to the multi-scale nature of loops detected
by MUSTACHE. To support our claim, we recalculated
the APA scores using the average of a 3 × 3 neighbor-
hood at the center instead of the single center pixel. The
recalculated APA scores showed that MUSTACHE and
SIP perform similarly (3 × 3 APA score; Fig. 2d–i). Our
evaluation of method-specific loops also showed the com-
mon loops between a pair of methods had higher APA
scores compared to loops that are specific to a single
method. MUSTACHE-specific loops had lower APA scores
compared to loops specific to either HiCCUPS or SIP;
however, the enrichment pattern of MUSTACHE-specific
loops closely mimicked that of loops common to multiple
methods (Additional file 1: Figure S3).
To measure the agreement between MUSTACHE, HiC-

CUPS, and SIP loop calls from replicate experiments, we
compared them on two replicates of GM12878 cell line.
For MUSTACHE and SIP, we used a fixed q value threshold
(0.05). Since HiCCUPS calls for individual replicates were
at 10 kb resolution, MUSTACHE and SIP were also run
on 10 kb resolution replicate-specific maps. For assess-
ing whether two loops match each other, one from each
replicate, we used the overlap of ± 5 kb area around the
center of each loop as previously described. Figure 2j–l
show that while all methods have a considerable overlap
between replicates, MUSTACHE reported 3750 and 2682
more reproducible loops, for the fixed significance thresh-
old of q value < 0.05, compared to HiCCUPS and SIP,
respectively. These results indicate that MUSTACHE did
not compromise the reproducibility to obtain additional
loops and had better self-consistency compared to SIP and
HiCCUPS. The comparative analysis of the distribution of
genomic distances also confirmed that all three methods
lead to similar distance distributions for their loop calls
(Additional file 1: Figure S4).
We also evaluated the performance of MUSTACHE and

SIP in terms of runtime and memory utilization on two
very high-depth Hi-C maps, namely GM12878 [9] and
HFFc6 [12], both of which had over 4B valid read pairs.
Both MUSTACHE and SIP were run on a single CPU
(Intel(R) Xeon(R) Gold 5218 CPU, 2.30 GHz, 20 GB RAM
limit) with one thread (Additional file 1: Table S2). The
results indicate that both methods were very efficient
and can run on personal computers for 5 kb resolution
human or mouse contact maps without requiring special-
ized computing resources such as a compute cluster or
GPUs as needed by HiCCUPS. For example, for the largest
human chromosome (chromosome 1), MUSTACHE took
7–8 min and utilized 8–9 GB RAM to call loops on 5 kb
resolution GM12878 and HFFc6 Hi-C maps. It is impor-
tant to note that MUSTACHE’s memory consumption was
mainly driven by reading the contact map, while the core
of the algorithm utilized less than 1 GB RAM for each
case.

Mustache identifies additional loops with enrichment in
expected features of chromatin looping
Here, we first evaluated the convergence of CTCF sites on
the anchors of chromatin loops detected by MUSTACHE
(“M”), HiCCUPS (“H”), and SIP (“S”) from the combined
GM12878 Hi-C data at 5 kb resolution. When we con-
sidered the same number of loop calls from each method
(top-k, k = 9448), all three methods had similar number
of loops where the two connected loci each contained a
single CTCF binding motif (M, 2926; H, 2993; S, 2943),
and among them, they had a similar fraction of cases
where these motif pairs were in convergent orientation
(M, 88.6%; H, 89.7%; S, 89.2%). When we used the fixed q
value threshold of 0.05 (resulting in a total of 18,068 loops
for MUSTACHE and 13,681 loops for SIP), we obtained M
5318 and S 4410 loops with a unique CTCFmotifs on both
ends, out of which M 83.1% and S 85.9% had convergent
orientation. Overall, MUSTACHE detected 1734 additional
convergent CTCF loops compared to HiCCUPS and 627
additional loops compared to SIP for GM12878, suggest-
ing the existence of important structural loops that might
have been missed by these other methods.
Next, we compared the enrichment of physical binding

of structural proteins such as CTCF, RAD21, and SMC3
[26] on the anchors of detected loops for each method on
the same Hi-C data (GM12878, 5 kb resolution). First, we
determined the set of loci that were involved in at least one
reported loop for each method. Then, for each such locus,
we extended its length to 15 kb (similar to Rao et al. [9], see
Figure 6C [9]) and checked whether it “overlaps” a ChIP-
seq peak corresponding to a CTCF or cohesin (SMC3 and
RAD21) binding site. When we compared the percentage
of interacting loci overlapping ChIP-seq peaks according
to the above criterion, we observed that for each ChIP-
seq data, between 83 and 90% of interacting loci from
each method overlap with the peak calls when equal num-
bers of loops are considered (top-k setting). On the full
set of loop calls for MUSTACHE and SIP (q value thresh-
old of 0.05), these percentages were M 76.8%, S 83.9%
for CTCF; M 77%, S 84.4% for RAD21; and M 73.2%, S
81.2% for SMC3. These results suggest that interacting
loci from all three methods have significant enrichment
for overlapping peaks of known looping-related insula-
tor proteins with more stringent methods showing higher
enrichments.
We, then, performed a similar overlap analysis, but

this time using promoter and enhancer annotations for
the GM12878 and K562 cell lines as determined by
ChromHMM [27]. More specifically, we counted the
number of interacting pairs of loci, where one locus over-
lapped a promoter region, and the other locus overlapped
an enhancer region. Here, we define the notion of over-
lap similar to ChIP-seq peaks discussed above, but instead
using the ChromHMM annotation. The results showed
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that 40.9% (7389) of MUSTACHE loops in GM12878 (q
value < 0.05) and 43.5% (3904) in K562 (q value < 0.1)
connected a promoter to an enhancer (Additional file 1:
Figure S5). The corresponding percentages for HiCCUPS
and SIP were 39.6% (3741) and 37.4% (5116) of loops
in GM12878 and 38.8% (2350) and 42% (3495) in K562,
respectively. Similarly, 17.6% (3179) and 19.1% (1714) of
MUSTACHE loops, 17.8% (1681) and 17.4% (1053) of HiC-
CUPS loops, and 15.6% (2134) and 18% (1498) of SIP
loops connected a promoter to another promoter for

GM12878 and K562 Hi-C data, respectively (Additional
file 1: Figure S5). These results suggested that the propor-
tion of loops overlapping regulatory elements were simi-
lar for MUSTACHE, SIP, and HiCCUPS with MUSTACHE
reporting an overall higher number of such loops.
Lastly, we illustrate the relevance of MUSTACHE’s

improved detection power on some selected regions for
the GM12878 Hi-C data, using HiGlass for visualiza-
tion [28]. Figures 3 and 4 provide a closer look at the
regions 50.75–51.75 Mb on chromosome 1 and 12.5–

Fig. 3 A comparison between Mustache, SIP, and HiCCUPS reported loop calls in a region of chromosome 1 for the GM12878 cell line
(50.75–51.75 Mb). The Hi-C contact map is rotated 45◦ such that the main diagonal is horizontal (top). Below the contact map, we report genomic
coordinates, gene annotations (genes on the negative strand are shown in red color), CTCF motifs and their orientation, and ChIP-seq signals for
SMC3, CTCF, RAD21, H3K4me3, and H3K27ac (coverage tracks plotted by HiGlass). The bottom row demonstrates loop calls as arcs connecting two
loci labeled by the initial letter of the methods by which they are detected (“M” for Mustache, “S” for SIP, and “H” for HiCCUPS)
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Fig. 4 A comparison between Mustache, SIP, and HiCCUPS reported loop calls in a region of chromosome 1 for the GM12878 cell line
(12.5–13.3 Mb). The display order is similar to that of Fig. 3

13.4 Mb on chromosome 12, respectively. In these figures,
we included the 45◦ rotated Hi-C heatmaps, together with
gene annotations, CTCF motifs, and other relevant ChIP-
seq signals. Loops are shown by black arcs labeled by the
initial letter of the methods by which they are detected.
Figure 3 shows that MUSTACHE detected all loops called
by HiCCUPS and SIP for this locus and reported addi-
tional loops that connected ChIP-seq peaks of looping
factors such as CTCF and cohesin binding. For exam-
ple, three loops highlighted by red and green circles were
detected only by MUSTACHE, and connected locus pairs
that have CTCF and cohesin peaks and harbor convergent
CTCF motifs. Figure 4 highlights another locus for which
there were five loops that were detected by MUSTACHE
and SIP, but not with HiCCUPS, each with cohesin and

CTCF binding peaks on each end, and three of them with
a convergent CTCF pairing. For this example, MUSTACHE
missed two loops that were reported by either HiC-
CUPS or SIP and reported one loop missed by these two
methods. Overall, these results highlight that MUSTACHE
detects additional loops that are supported by the binding
of looping-related factors, convergent CTCF motifs, and
existence of regulatory elements such as enhancers and
promoters, as well as with visual and quantifiable (APA
plots) enrichments in the contact maps.

Mustache recovers a larger fraction of cell type-matched
HiChIP, ChIA-PET, and PCHi-C loop calls
In the previous section, we showed that MUSTACHE
detects additional loops (compared to HiCCUPS and SIP)



Ardakany et al. Genome Biology          (2020) 21:256 Page 9 of 17

that are supported by both genomic and epigenomic fea-
tures. Here, we comparedMUSTACHE, HiCCUPS, and SIP
loop calls using published ChIA-PET, HiChIP, and PCHi-
C loops as reference. In this experiment, we computed
the number of ChIA-PET, HiChIP, and PCHi-C loop calls
recovered by MUSTACHE, SIP, and HiCCUPS from the
5-kb resolutionGM12878 data. Again, we used thematch-
ing criteria described in the reproducibility analysis to
determine the overlap between two loop calls. Figure 5
a shows the recovery plot on GM12878 cohesin HiChIP
data [29]. The x-axis represents the number of Hi-C loops

called by MUSTACHE (blue), HiCCUPS (red), and SIP
(green) sorted by their significance. We set HiCCUPS’
significance to be the median of the q values over the
four local filters. MUSTACHE’s significance is the q value
reported, as described in the “Methods” section. SIP’s sig-
nificance is set to oneminus the loop enrichment reported
by the method. The y-axis represents the percentage of
the HiCCUPS loops from cohesin HiChIP data that were
recovered by each method. Figure 5 a shows that MUS-
TACHE and HiCCUPS on GM12878 Hi-C data had similar
recovery patterns and both exceeded SIP’s recovery for

Fig. 5 Comparison of the recovery of several reference loop sets by MUSTACHE, HiCCUPS, and SIP applied on the 5-kb resolution GM12878 Hi-C data.
Recovery of a GM12878 cohesin HiChIP HiCCUPS loops, b GM12878 cohesin HiChIP FitHiChIP loops, c GM12878 RAD21 ChIA-PET interactions, d
GM12878 CTCF ChIA-PET interactions, e GM12878 H3K27ac HiChIP FitHiChIP loops, and f GM12878 PCHi-C FitHiChIP loops
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equal number of loop calls from each method. However,
MUSTACHE recovered more than 70% of all reference
loops compared to less than 55% for HiCCUPS, even
though the “reference” loops were previously determined
using HiCCUPS on HiChIP data. We observed similar
higher recovery for MUSTACHE when we used FitHiChIP
[21] to call cohesin HiChIP loops (Fig. 5b). When we
used ChIA-PET loops either from a RAD21 experiment
(Fig. 5c) [30] or from a CTCF experiment (Fig. 5d)
[31], MUSTACHE again provided a 10–15% improvement
in recovery compared to HiCCUPS and and SIP. For
H3K27ac HiChIP data [32] and for promoter capture Hi-
C (PCHi-C) experiments [33] on the same cell line, the
overall number of loop calls was several fold higher com-
pared to each of the Hi-C methods we compared here due
to different types of looping that these other experiments
are designed to capture. However, MUSTACHE still pro-
vided an improved recovery when either the same number
of loops (compared to HiCCUPS) or the whole set of calls
were considered (Fig. 5e, f).
Taken together, the genome-wide analyses described

above showed that MUSTACHE has better power in
recovering loops identified from independent conforma-
tion capture experiments. To further elaborate on this
point, we illustrate additional examples demonstrating
that MUSTACHE-specific loops are supported by other
conformation capture data. Specifically, for each Hi-C
loop called by any of the three methods, we asked how
many of the five reference loop sets listed in Fig. 6 sup-
port this Hi-C loop (number shown next to each circle),
using the usual matching criteria defined above in the
reproducibility analysis. The different radii of the circles
illustrate the scale at which MUSTACHE detected these
loops.
Figure 6a and b correspond to the two regions ana-

lyzed previously in Figs. 3 and 4, respectively. MUSTACHE
(blue), HiCCUPS (red), and SIP (green) loops are high-
lighted on the lower diagonal, and the upper diagonal
was left untouched to allow visualization of contact pat-
terns. For the 1.2-Mb region on chromosome 1, Fig. 6a
highlights six loop calls reported by all three methods,
two reported by MUSTACHE and SIP, and three by MUS-
TACHE only. Each one of these three MUSTACHE-specific
loops was supported at least by one reference set, and
two were supported by two independent lines of evidence.
Figure 6b shows that MUSTACHE and SIP both detected
five chromatin loops lying on the border of a topologically
associating domain [34], and potentially corresponding to
a “stripe” region [35], out of which only one was detected
by HiCCUPS (upper-left corner of the shown contact
map). All four loops missed by HiCCUPS were supported
by one or more reference sets. This same region also har-
bored one MUSTACHE-specific loop and one SIP-specific
loop that were supported by three and two reference sets,

respectively. For the last two regions, one on chromosome
4 (Fig. 6c) and one on chromosome 1 (Fig. 6d), we identi-
fied a total of fiveMUSTACHE-specific loops each of which
was supported by at least one reference set. As expected,
most of the detected loops fell inside or on the bound-
ary of visible TADs for all methods. In general, there
was high concordance between all three methods as indi-
cated by 12 common loop calls in total. All these results
taken together, along with the recovery analysis, suggest
that the additional loops reported by MUSTACHE are not
false positives, but they are likely bona fide looping events
as they are supported by multiple lines of evidence and
correspond to visibly and quantifiably enriched regions.

Mustache detects loops that are consistent between Hi-C
andMicro-C data
The objective here was to assess the performance of MUS-
TACHE on Micro-C data and evaluate the consistency
of Micro-C loops when compared to Hi-C loops on the
same cell line. For this purpose, we used MUSTACHE on
Hi-C and Micro-C data (using the same parameters) for
the HFFc6 human cell line [12]. Figure 7a shows that
MUSTACHE calls from Micro-C and Hi-C were largely
consistent: 90% of Hi-C loops were also reported on the
Micro-C data. However, MUSTACHE identified over 20k
more loops from Micro-C, which is more than double the
number of loops detected from Hi-C contact maps. We
then assessed how this overlap changed if only consid-
ered the top-k most significant MUSTACHE loops from
each dataset. Figure 7b shows the overlap fraction (y-axis)
between the two datasets for different values of k rang-
ing from 1k to 30k (x-axis). The overlap between Hi-C
and Micro-C loops ranged between 60 and 74% with its
maximum achieved when k is about 10k. This suggests
that the ordering of loop candidates with respect to their
significance is consistent between the two datasets, with
Micro-C offering better statistical power for detection.
In order to further understand this, we generated APA
plots for loop calls from Hi-C and from Micro-C using
the same contact maps for aggregation. Figure 7c and d
show that the Micro-C loops had strikingly higher center
pixel enrichment consistent with previous observations
that Micro-C enriches signal-to-background ratio [12].
The reverse APA analysis (i.e., loop calls were taken from
one dataset but the aggregation of contact patterns was
computed using the other) showed that the Hi-C loops
had a very striking center pixel enrichment in the Micro-
C contact map (Additional file 1: Figure S6a), suggesting
that MUSTACHE accurately detected the correct looping
locations from Hi-C data. However, the local enrichment
of loops detected from Micro-C was substantially lower
when aggregate maps around the loop calls are created
from Hi-C data compared (Additional file 1: Figure S6b)
to the Micro-C data itself (Fig. 7d.)
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Fig. 6 Four example regions showing Mustache, HiCCUPS, and SIP reported loops. Mustache, HiCCUPS, and SIP loops are represented by blue
circles, red filled circles, and green squares on the lower diagonal matrices, respectively. The upper diagonal matrices were left untouched in order
to allow visualization of contact patterns in the underlying Hi-C data. The loop calls of the three methods using GM12878 Hi-C data are shown for a
50.75–51.75 Mb region of chromosome 1, b 12.5–13.4 Mb region of chromosome 12, c 88.7–88.5 Mb region of chromosome 4, and d 67.2–68Mb
region of chromosome 1

Finally, we visualized Hi-C and Micro-C loop calls
from MUSTACHE for an 800-kb region on chromosome
1. Figure 7e shows the loops called by MUSTACHE, when

the tool was set to call the same number of loops on
both datasets. Figure 7f shows loops called by MUSTACHE
using a significance threshold of 0.01. We used a common



Ardakany et al. Genome Biology          (2020) 21:256 Page 12 of 17

Fig. 7 a The consistency between MUSTACHE loops detected using Micro-C and Hi-C data in HFFc6 cell line using a fixed q value threshold of 0.01,
shown as a Venn diagram. b The consistency plot for MUSTACHE results between Hi-C and Micro-C for the top-k reported interactions for each
contact map. The APA plots for MUSTACHE loops in HFFc6 cell line for c Hi-C and dMicro-C data. The APA score for the enrichment of center is
reported above each plot. MUSTACHE reported loops in Hi-C (lower triangular) and Micro-C (upper triangular) of HFFc6 for e the top 16,132
significant interactions, and f a fixed q value threshold of 0.01. The loop call marked by a “�” was in common between Hi-C and Micro-C, but was
detected at a smaller scale and has a stronger enrichment in Micro-C compared to Hi-C. The loops that are uniquely detected in either by Hi-C or by
Micro-C are denoted by black arrows

normalized color scale for the contact map visualization
to account for sequencing depth differences. Figure 7 e
highlights a loop call (marked by a “�”) that was common

between Hi-C and Micro-C, but was detected at a smaller
scale and has a stronger enrichment inMicro-C compared
to Hi-C. This example is consistent with the genome-wide
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patterns we summarized above using APA analysis. Also,
in Fig. 7e, despite the fact that the same number of loops
was called for both data types, MUSTACHE had different
priorities in selecting loops due to the underlying differ-
ences between Hi-C and Micro-C outputs. This is also
visible from the contact maps: loops that were uniquely
detected in Hi-C or Micro-C are denoted by black arrows.
When a fixed q value threshold is used, Fig. 7f shows that
MUSTACHE called more loops from Micro-C compared
with Hi-C including the two “Hi-C-specific” loops when
top-k loops were considered (Fig. 7e). These additional
Micro-C loops had strong local enrichment only visible on
theMicro-C contact maps. This is possibly due to dilution
of contact enrichment for some loops into multiple pixels
for Hi-C in contrast to their concentration on a specific
pixel when a higher resolution digestion system is used
such as Micro-C. Taken together, all these experimen-
tal results show MUSTACHE provides highly consistent
results between Micro-C and Hi-C data, but can leverage
the unique strengths of each protocol to discover loops
that are specifically enriched by that assay.
By taking advantage of the high-depth Micro-C exper-

iments, we investigated loops beyond 5 kb resolution
and included regions below the commonly used genomic
distance threshold of 20 kb, both of which have been chal-
lenging to date even with deeply sequenced Hi-C datasets
[9, 13]. For this experiment, we appliedMUSTACHE on the
1-kb resolution Micro-C contact map of mouse embry-
onic stem cells (mESCs) [25] as well as human foreskin
fibroblast cells (HFFc6) using a genomic distance range of
5 kb to 2 Mb. For these settings, MUSTACHE reported a
total of 11,231 loops for mESC and 50,472 loops for HFFc6
cell lines both for q value < 0.01. About one third of the
reported loops had a genomic distance< 50 kb as apposed
to only 4% for our 5 kb resolution analysis for both cell
lines (Additional file 1: Figure S7). These included 1670
and 6823 loops for mESC andHFFc6, respectively, that are
within 20 kb distance, a distance range generally ignored
when studying 5 kb resolution contact maps. In this set-
ting, MUSTACHE also identified loops that are > 1 Mb
distance suggesting detection of both very short- and
very long-range loops is possible from 1 kb data (Addi-
tional file 1: Figure S8). We then evaluated the support
of MUSTACHE’s high-resolution loop calls by perform-
ing an APA analysis. The APA plots were generated by
aggregating Micro-C contact counts in a ± 10-kb neigh-
borhood (5 times shorter than 5 kb resolution) around
the detected loops (Additional file 1: Figure S9) show-
ing a significant enrichment of the loop calls compared
to their local background (APA score of 4.79 for mESC
and 6.71 for HFFc6). Next, we evaluated the enrichment
of the structural marker CTCF [13] on the anchors of
detected 1 kb loops for mESC Micro-C data. We found
that 85% of the loop anchors (after extension to 5 kb

rather than 15 kb as was used for 5 kb resolution analy-
sis) overlap with CTCF binding, showing that the majority
of detected loops in 1 kb resolution are associated with
CTCF signal. We also computed the number of detected
loops that involve promoters and enhancers (when loop
anchors extended to 5 kb) using ChromHMMannotations
showing that 3567 (32%) connect promoters to enhancers
while 2148 (19%) connect promoters to promoters sug-
gesting that a majority of these high-resolution calls may
relate to gene regulation.

Conclusions
The rapid adoption of Hi-C and its variants has fueled
efforts in the development of computational tools to study
3D chromatin organization including chromosome com-
partments, topologically associating domains and chro-
matin loops [8, 9, 34, 36, 37]. Here, we presented a novel
method for the identification of loops that uses a scale-
space representation of Hi-C and Micro-C contact maps.
Our novel multi-scale approach allows MUSTACHE to
account for the dependencies among neighboring pixels
(both spatially and across resolutions) of the contact map,
which are ignored by methods that use global background
estimates for significance calculation.
Our experimental results on Hi-C and Micro-C contact

maps show that MUSTACHE robustly identifies looping
events including those reported by HiCCUPS [9] and
SIP, as well as those detected by independent chromatin
conformation capture experiments, including ChIA-PET,
HiChIP, and promoter capture Hi-C. MUSTACHE has
several advantages, namely (i) it is scalable to kilobase-
resolution human/mouse genome contact maps on stan-
dard laptop or desktop computers (few minutes per chro-
mosome for 5 kb resolution human cell contact maps);
(ii) it has better reproducibility of loop calls from repli-
cate experiments; (iii) it provides higher statistical power
that results in a higher number of chromatin loops with
the additional loops strongly supported by genomic and
epigenetic features; (iv) it produces highly consistent loop
calls when comparing Hi-C and Micro-C data, allowing
a robust comparative analysis of the two methods; and
(v) it can handle Micro-C data for studying loops within
genomic distances below 20 kb (at 1 kb resolution), an
advance over most tools published to date. In summary,
MUSTACHE represents a significant improvement over the
state-of-the-art for the analysis of chromatin organization
from high-resolution Hi-C and Micro-C contact maps.

Methods
Scale-space modeling
Objects in real world, as opposed to mathematically
defined abstract entities such as points and lines, are com-
posed of a variety of structures and textures at different
scales which often makes them difficult to detect in the
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absence of a priori knowledge about their true scales.
A way of addressing this challenge is to describe each
object at multiple scales. In the specific problem on con-
tact maps we are interested here, significant chromatin
interactions are “blob-shaped objects” with a scale that
depends on their size and other properties of the inter-
acting genomic regions (e.g., CTCF binding, presence of
regulatory elements).
Scale-space theory is a framework developed by the

Computer Vision community for multi-scale representa-
tion of image data. In scale-space theory, each image is
represented as a set of smoothed images. In order to
build a scale-space representation of an image, a gradual
smoothing process is conducted via a kernel of increas-
ing width, producing a one-parameter (i.e., kernel size)
family of images. This multi-scale representation makes
it possible to detect smaller patterns at finer scales, while
allowing the detection of larger patterns at coarser scales
(Fig. 1a). The most common type of scale-space represen-
tation uses the Gaussian kernel because of its desirable
mathematical properties. In particular, the causality prop-
erty of Gaussian kernel guarantees that any feature at
a coarse resolution scale is caused by existing features
at finer resolution scales. This property makes sure that
the smoothing process cannot introduce new extrema in
the coarser scales of the scale-space representation of an
image [38], which is critical for the problem we tackle
here.
The Gaussian-kernel scale-space representation of an

image A(x, y) is a function L(x, y, σ) obtained from the
convolution of a variable-scale Gaussian G(x, y, σ) with
the input image, as follows:

L(x, y, σ) = G(x, y, σ) ∗ A(x, y),

where ∗ represents the convolution operation in x and y,
and

G(x, y, σ) = 1
2πσ 2 e

− x2+y2
2σ2

is a 2D Gaussian (see [39] for more details).
Blob-shaped objects can be typically detected in an

image by finding the strong responses in the application
of the Laplacian of the Gaussian operator with an image,
as follows:

∇2 = Lxx + Lyy

Lindeberg showed that the normalization of the Lapla-
cian with the factor σ 2∇2 provides the scale invariance
required for detecting blob-shaped objects at different
scales [38]. According to Lowe [40], the scale-normalized
Laplacian σ 2∇2 can be accurately and efficiently esti-
mated by the difference-of-Gaussian (DoG) function.
Therefore, blob-shaped objects of varying scale can be

detected from the scale-space maxima of the DoG func-
tion D(x, y, σ) convolved with the image, which can be
computed from the difference of two nearby scales (in a
scale-space representation) separated by a constant mul-
tiplicative factor k, as follows:

D(x, y, σ) = (G(x, y, kσ) − G(x, y, σ)) ∗ A(x, y)
= L(x, y, kσ) − L(x, y, σ)

Development of MUSTACHE

Since a chromatin contact map can be represented by a
digital image, we assume that a chromatin loop can be
described as a somewhat-circular (blob-shaped) object
with its own specific scale (that can be determined
using the scale-space representation). Thus, MUSTACHE’s
objective is to find blob-shaped regions of interactions
with high statistical significance, i.e., regions with an aver-
age interaction significantly greater than expected. Due to
random polymer interactions driven by one-dimensional
genome proximity, interactions between pairs of loci that
are closer in genomic distance are more frequent than
interactions between loci at higher genomic distances.
To account for the amplification of contact frequency
due to 1D proximity, MUSTACHE performs a simple local
z-normalization of the interaction frequencies in the con-
tact map A with respect to their genomic distances along
each diagonal d. Then, MUSTACHE re-scales the interac-
tions by the logarithm of the expected interaction of the
corresponding distance, as follows:

Ã(i, j) = A(i, j) − μdij
σdij

log (1 + μd)

where d = |j − i|, μd is the average interaction on diago-
nal d, andμdij , σdij (not to be confused with Gaussian scale
σ ) are the local average and standard deviation along the
diagonal d in a ± 1-Mb neighborhood, respectively. Then,
MUSTACHE constructs the scale-space representation D
of the normalized contact map Ã. As explained above,
in order to compute D(x, y, σ), MUSTACHE convolves Ã
with Gaussians that have increasing scales (i.e., σ , kσ ,
k2σ , · · · ). This process produces a set of smoothed con-
tact maps separated by a constant factor k in scale-space.
MUSTACHE computes the difference of Gaussians (DoGs)
by subtracting pairwise adjacent smoothed contact maps
(Fig. 1a).
The scale-space representation comprises a set of

“octaves,” each divided into s intervals, such that k = 21/s
[39]. In each octave, the scale starts with an initial value
(σ0) which gradually increases by getting multiplied by
the constant k until it is doubled. The next octave starts
with the initial scale of 2 × σ0, and this process contin-
ues until the whole representation is built. In this study,
MUSTACHE uses two octaves of scale-space. MUSTACHE
computes the p value Pσk (x, y) for each pixel D(x, y, σ =
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σk) by fitting a Laplace distribution on each scale of DoG,
as follows:

Pσk (x, y) = Pr (X > D (x, y, σ = σk))

where X is distributed according to the Laplace distri-
bution. The choice of Laplace distribution was based on
empirical observations. After computing the difference of
Gaussians D(x, y, σ), MUSTACHE searches for local max-
ima in the 3D space over the parameters x, y, and σ .
Specifically, MUSTACHE defines a 3D local maximum as
a pixel (x, y, si) (where si is a specific scale) that is greater
than all its neighboring pixels at scale s (eight surrounding
pixels) as well as its nine neighboring pixels in the scale
above (si+1) and nine neighboring pixels in the scale below
(si−1) within a 3×3×3 cube, as illustrated in Fig. 1b. Such
local maxima are selected as candidate loops at scale s, and
the rest are discarded (non-maxima suppression). In case
a pixel is a local maximum atmultiple non-adjacent scales,
MUSTACHE reports the minimum p value across all scales
for that specific pixel as its significance.
In order to find high-confidence and locally enriched

loops, the set of detected candidates undergoes a few addi-
tional filtering steps. In the first step, MUSTACHE removes
candidates that are not local maximum in at least two con-
secutive scales in a 3 × 3 two-dimensional neighborhood
(i.e., it discards candidates that are local maximum at scale
si but not in si−1 and not in si+1). Figure 1 b illustrates
an example candidate pixel that passes the non-maxima
suppression step (being a maximum in a 3 × 3 × 3 neigh-
borhood) as well as the first filtering step. Observe that the
pixel at (x, y) location (center pixel) is a local maximum in
its 3 × 3 neighborhood at scales si and si+1 but not a local
maximum at scale si−1. In the second filtering step, MUS-
TACHE finds connected components using 8-connectivity
(i.e., a 3 × 3 neighborhood around each pixel) on a binary
matrix in which an entry is set to one when that pixel is
a candidate loop at any scale. For each connected compo-
nent, MUSTACHE reports the single representative pixel
that has the lowest p value. In the third filtering step,MUS-
TACHE filters out candidates that are located in sparse
regions of the contact map. Specifically, it discards pix-
els whose neighborhood, as defined by a size equal to the
σ of the scale the candidate was detected from, contains
more than 20% pixels with zero count in the rawHi-C con-
tact map. Such pixels are likely enriched near repetitive
and unmappable regions of the genome and may intro-
duce false positives. In the fourth and final filtering step,
candidates with contact count smaller than two times the
expected count for that specific diagonal (i.e., the aver-
age contact count of all pairs with that corresponding
genomic distance) are discarded. The remaining set of
pixels are reported as loop calls together with their sta-
tistical significance and the scale of the Gaussian that the
reported p value was identified from. MUSTACHE uses the

Benjamini-Hochberg [41] procedure to correct p values
for multiple hypothesis testing.
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