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Abstract

Network science offers computational tools to elucidate the complex patterns of interactions 

evident in neuroimaging data. Recently, these tools have been used to detect dynamic changes in 

network connectivity that may occur at short time scales. The dynamics of fMRI connectivity, and 

how they differ across timescales, are far from understood. A simple way to interrogate dynamics 

at different timescales is to alter the size of the time window used to extract sequential (or rolling) 

measures of functional connectivity. Here, in n = 82 participants performing three distinct 

cognitive visual tasks in recognition memory and strategic attention, we subdivided regional 

BOLD time series into variable sized time windows and determined the impact of time window 

size on observed dynamics. Specifically, we applied a multilayer community detection algorithm 

to identify temporal communities and we calculated network flexibility to quantify changes in 

these communities over time. Within our frequency band of interest, large and small windows 

were associated with a narrow range of network flexibility values across the brain, while medium 

time windows were associated with a broad range of network flexibility values. Using medium 

time windows of size 75–100 s, we uncovered brain regions with low flexibility (considered core 
regions, and observed in visual and attention areas) and brain regions with high flexibility 

(considered periphery regions, and observed in subcortical and temporal lobe regions) via 

comparison to appropriate dynamic network null models. Generally, this work demonstrates the 

impact of time window length on observed network dynamics during task performance, offering 

pragmatic considerations in the choice of time window in dynamic network analysis. More 
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broadly, this work reveals organizational principles of brain functional connectivity that are not 

accessible with static network approaches.

1. Introduction

The use of network science in the field of neuroimaging has led to a better understanding of 

the brain as a complex system. This approach treats the brain as an interdependent network 

that displays both properties of local and distributed processing (Bassett and Bullmore, 

2006, Bullmore and Sporns, 2009, Telesford et al., 2011). Network representations of 

neuroimaging data have been useful in understanding disease states including Alzheimer’s 

disease (Supekar et al., 2008, Seeley et al., 2009), schizophrenia (Calhoun et al., 2009, 

Lynall et al., 2010), and epilepsy (van Diessen et al., 2013, Khambhati et al., 2015). These 

diseases are now commonly characterized using graph theoretical properties that describe 

topological structure, such as community structure (Porter et al., 2009, Fortunato, 2010), 

core-periphery structure (Borgatti and Everett, 2000, Bassett et al., 2013b, Sporns, 2013), 

and network motifs (Milo et al., 2002). The study of these systems as networks enables a 

greater understanding of how patterns of interaction in the brain support human thought and 

behavior (Medaglia et al., 2015).

In practice, brain networks are represented as either structural networks, which include tract 

tracing (Honey et al., 2007) and diffusion tensor/spectral imaging (DTI/DSI) (Hagmann et 

al., 2003, Hagmann et al., 2007), or functional networks, which include functional magnetic 

resonance imaging (fMRI) (Eguíluz et al., 2005), electroencephalography (EEG) 

(Micheloyannis et al., 2006, Stam et al., 2007), magnetoencephalography (MEG) (Stam, 

2004), and multielectrode array data (Srinivas et al., 2007). Across these neuroimaging 

modalities, network-based techniques can reveal differences between subject groups or 

between brain states (Simpson et al., 2013, Zalesky et al., 2012, Ginestet et al., 2011, Bassett 

et al., 2012).

Most network-based neuroimaging studies utilize a static brain network representation, 

which constructs a network using data from an entire scan session. In essence, these 

networks summarize the strength of functional connectivity between pairs of brain regions 

over the period of a scan session. However, many changes in the brain occur at shorter time 

scales on the order of milliseconds (for neuronal activity) or seconds (for cerebral blood 

flow) (Gonzalez-Castillo et al., 2014, de Zwart et al., 2005). Static network analyses are 

agnostic to these changes occurring at shorter time scales; however, recent interest in how 

networks change has led to the development of methods to examine dynamics in functional 

connectivity more generally (Hutchison et al., 2013a, Siebenhühner et al., 2013), and more 

specifically in brain networks (Bassett et al., 2011). The goal of the latter type of 

investigation uses a dynamic brain network representation to provide information about the 

time-evolving neurophysiological processes that underlie cognition.

To analyze dynamic networks, a neuroimaging scan session is subdivided into shorter time 

intervals or windows and functional brain networks are derived from each interval. Time 

windows can either be overlapping (Hutchison et al., 2013a) or non-overlapping (Bassett et 

al. 2011), depending on the desired temporal resolution of the analysis. Time window 
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analyses have been used for a variety of dynamic functional connectivity studies in both rest 

(Sakoğlu et al., 2010, Hutchison et al., 2013b, Gonzalez-Castillo et al., 2014) and task 

(Bassett et al., 2011, Hutchison et al., 2013a, Siebenhühner et al., 2013) states, revealing 

transient reconfigurations of brain networks over time. Sliding time window analyses have 

also been used in independent component analyses (ICA) during tasks (Esposito et al., 2003) 

and rest (Kiviniemi et al., 2011). While there have been a variety of studies using a sliding 

window for ICA and functional connectivity, such studies in the context of whole-brain 

network analysis remains underexplored. In principal, dynamic network methods could 

significantly improve the sensitivity of whole-brain analyses to detect changes in network 

topology that capture changes in cognition and behavior (Braun et al., 2015).

Here, we examine the ability of dynamic network methods to uncover features of functional 

brain network reconfiguration across cognitive states. Specifically, we apply dynamic 

network analysis using a sliding window approach with non-overlapping time windows to 

fMRI data collected from a sample of 82 healthy adult subjects performing three different 

cognitive tasks: a strategic attention task and two recognition memory tasks with either faces 

or words as stimuli. These tasks required dynamic interaction among brain regions to 

integrate incoming sensory information with stored knowledge representations, providing 

rich spatiotemporal dynamics (Hermundstad et al., 2013). Given these task requirements, we 

were particularly interested in understanding the patterns of functional integration between 

brain regions and how they changed during task performance. To study these patterns, we 

built on recent work demonstrating that patterns of functional integration and segregation 

during task performance can be parsimoniously summarized in a network’s modular 

architecture (Doron et al. 2012; Cole et al. 2014; Mattar et al. 2015). A module is a set of 

brain regions that are densely interconnected with one another (functional integration) and 

sparsely interconnected with brain regions in other modules (functional segregation). The 

dynamics of these modules can be studied using recently developed network-based 

clustering techniques (Mucha et al. 2010) that explicitly account for the fact that brain 

network dynamics in one time window are dependent on brain network dynamics in the 

preceding and following time windows. These temporal dependencies are represented in a 

multilayer network framework (Kivelä et al., 2014), where the functional brain network in 

one time window is linked with the networks in neighboring time windows (Bassett et al. 

2011). This approach facilitates a statistical examination of temporal variation in functional 

connectivity patterns (Bassett et al., 2013b). Further, it enables us to study the dynamics of 

brain network function (Bassett et al., 2015), by identifying network communities or 

putative functional modules that are coordinated during task-driven cognitive states (Mattar 

et al., 2015).

To formalize our study, we implement an experimental approach in which we manipulate 

two independent measures (time window and cognitive state), and ask how they impact three 

metrics of network reconfiguration. The metrics of network reconfiguration are dependent 

measures of increasing abstraction, and include community size, flexibility, and core-

periphery structure. Intuitively, the first statistic – the size of communities – reflects the 

spatial resolution of the underlying functional network architecture, and is a fundamental 

statistic of network dynamics. While the number of communities can provide information 

regarding functional grouping of nodes, the transient nature of communities is better 
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understood using graph statistics that explicitly quantify community dynamics. Thus, the 

second statistic we study is the flexibility of community structure, which explicitly measures 

the magnitude of the change in community structure over the course of the experiment; by 

counting the fraction of times that a region changes its allegiance to a functional community. 

Flexibility has previously been shown to be an important correlate of learning (Bassett et al. 

2011), cognitive flexibility (Braun et al. 2015), and working memory function (Braun et al. 

2015). Finally, core-periphery analysis offers a statistically principled approach to 

identifying a set of regions that remain relatively rigid in their community allegiance 

throughout task performance (the temporal core), and a set of regions that remain relatively 

flexible in their community allegiance throughout task performance (the temporal 
periphery). In prior work, this notion of temporal core-periphery structure has offered 

fundamental insights into the task-general (flexible periphery) and task-specific (rigid core) 

reconfigurations required to produce successful task performance (Fedorenko and 

Thompson-Schill, 2014), and the role that rigid versus flexible regions play in behavioral 

adaptation (Bassett et al. 2013).

We study these three dependent metrics of network reconfiguration by manipulating two 

independent measures. The first independent measure that we manipulate is the time window 

used to extract sequential (or rolling) measures of functional connectivity. The choice of 

time window is a key issue in dynamic network methods, and yet its role in observed 

properties of brain network reconfiguration are far from understood (Bassett et al. 2013b). 

The second independent measure that we manipulate the task that the subjects are 

performing. Together, this experiment approach enables us to consider the effects of time 

window on observed features of functional brain network reconfiguration across multiple 

independent measurements of different brain processes, and to quantify our confidence in 

those observed features as well as to inform our understanding of how different cognitive 

tasks are instantiated in flexible versus rigid brain network dynamics.

2. Materials and Methods

2.1. Participants and scanning protocol

The dataset has 82 participants (including 79 males, mean age 35 ± 4 (SD) years) taking part 

in three visual tasks, two recognition memory tasks and one strategic attention task (Aminoff 

et al., 2012, Hermundstad et al., 2013). Stimuli for the two recognition memory tasks were 

presented in a pseudo-block format. The stimuli were comprised of 360 stimuli of faces or 

words shown as mini-blocks with 6–9 stimuli shown in sequential trials with a 1.5 s and 1 s 

inter-trial interval, respectively. Participants studied 180 items and were tested on a 50/50 

mixture of old and new items; 180 fixation trials were intermixed throughout the session, in 

which a ‘+’ symbol was displayed on-screen for 2.5 s. The strategic attention task consisted 

of two 112 trial experimental blocks with random inter-trials intervals ranging from 160 ms 

to 1400 ms followed by stimulus cues that lasted 50 ms; fixation trials were displayed at 

inter-trial interval varying between 1200 ms and 3200 ms. Stimuli used a modified spatial 

cueing procedure where arrows preceded trials to cue the appearance and/or location of a 

target rectangle with variable probability (for task-specific information, see Aminoff et al., 

2012, Hermundstad et al., 2013). For the attention task, a rapid event-related fMRI design 
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was used to present a pseudo-random sequence of trials within each scanning run. In all 

three tasks, participants made a button response to indicate if a target was present or absent 

on each trial. Informed written consent was obtained from each subject prior to the 

experimental sessions. All procedures were approved by the Human Subjects Committee of 

the University of California, Santa Barbara.

Functional MRI (fMRI) was collected using a T2*-weighted single shot gradient echo, echo-

planar sequence sensitive to BOLD contrast (TR = 2500 ms, TE = 30 ms, FA = 90) with 

generalized auto-calibrating partially parallel acquisitions (GRAPPA; 64×64 matrix, 192 

mm × 192 mm FOV). Each volume consisted of 37 slices acquired parallel to the AC-PC 

plane, interleaved, 3mm thickness with 0.5mm gap; 3mm×3mm in-plane resolution. For the 

structural scan, a three dimensional (3D) high-resolution T1-weighted sagittal sequence 

image of the whole brain was obtained by a magnetization prepared rapid acquisition 

gradient-echo (MPRAGE) sequence with the following parameters: TR = 2300 ms; TE = 

2.98 ms; flip angle = 9°; 160 slices; 1.10 mm thickness. Each task consisted of two scans, 

and the time series for each scan had 240 fMRI volumes.

2.2. Brain network construction

To construct a brain network, one must define network nodes (here brain regions) and the 

edges between them (here functional connectivity measures). In this study, we defined 

functional brain networks using a gray matter parcellation based on the Lausanne atlas 

(Hagmann et al., 2007, Cammoun et al., 2012). The brain parcellation uses the MPRAGE 

scan for each subject and subdivides the brain into N = 194 regions of interest (ROIs) across 

the cortex, subcortical nuclei, cerebellum and brain stem. These ROIs serve as nodes in the 

network, and the time series for each voxel is averaged to derive the functional activity for a 

region. Connections or edges between the nodes are estimated by the pairwise coherence 

between regional activity of each node pair (Davison et al., 2014). Specifically, we used a 

wavelet coherence (WTC), which identified areas in time frequency space where two time 

series co-varied in the frequency band 0.06–0.12 Hz. This frequency band is considered 

relevant because it has previously been used to measure functional associations between 

low-frequency components of the fMRI signal and task-related functional connectivity 

(Bassett et al., 2011, Sun et al., 2004). This procedure resulted in a 194×194 weighted 

adjacency matrix with coherence values bounded between 0 and 1 for each functional 

connection or network edge.

2.3. Dynamic network construction

To construct a dynamic network, the fMRI time series was decomposed into smaller non-

overlapping windows (or blocks) covering the entire times series. In this study, we use the 

term “window size” to indicate the length of time (in seconds) within a block: window sizes 

of 25 s, 30 s, 37.5 s, 40 s, 50 s, 60 s, 75 s, 100 s, 120 s, 150 s, 200 s, 300 s and 600 s 

represent epochs of 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120 and 240 TRs, respectively.

As described earlier, although the time series is divided into windows, it is understood that 

single graphs in time-evolving networks have some dependency on the graphs constructed 

from preceding and following time windows (Mucha et al., 2010). Accordingly, we used a 
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multilayer network approach, which explicitly accounts for the time dependence between 

windows in contrast to methods that treat the data in each window as an independent sample. 

Multilayer networks were constructed by placing a connection between a node in the 

coherence matrix and its respective node in the coherence matrix of adjacent time windows. 

This representation of the network creates an adjacency tensor, which can be used to 

represent a time-dependent network (Mucha et al., 2010).

2.4. Multilayer network analyses

Very few multilayer network properties have been applied to neuroimaging data. A notable 

exception is the multilayer network extension of the traditional community detection 

algorithms based on the optimization of the modularity quality function (Bassett et al., 2011, 

Hermundstad et al., 2013, Bassett et al., 2013b, Bassett et al., 2015, Doron et al., 2012, 

Mantzaris et al., 2013). Community detection algorithms based on modularity maximization 

(Newman, 2006b, Porter et al., 2009, Fortunato, 2010) can be used to find putative 

functional modules in the human brain (Mucha et al., 2010, Bassett et al., 2011). The 

modularity quality function describes the partitioning of a network’s nodes into communities 

via a comparison to a statistical null model (Newman and Girvan, 2004, Newman, 2006b, 

Newman, 2006a). A generalization of the modularity quality function for multilayer 

networks can be defined as

where l is the number of layers in the multilayer network, μ is the total edge weight in the 

network, Aijl is the adjacency matrix, Pijl is the corresponding null model matrix, γl is the 

structural resolution parameter, which defines the weight of intralayer connections (in this 

study γl = 1), gil gives the community assignment of node i layer l, gjr gives the community 

assignment of node j in layer r, and ωjlr is the connection strength between nodes in two 

layers (in this study ωjlr = 1). For this study, the connection strengths within layers 

(intralayer, γ) and between layers (interlayer, ω) were set to 1. We note that changing the 

value of intralayer and interlayer connection strengths can affect the number and temporal 

dynamics of the detected communities: values of γl greater than 1 yield more communities, 

while values smaller than 1 yield fewer communities; values of ωjlr greater than 1 decrease 

the number of changes in community assignment across layers, while values smaller than 1 

increase the number changes. There is no single established method for parameter 

optimization (Bassett et al., 2013a); therefore, parameters were set to 1, so as not to bias 

results toward a specific number of communities, or a specific scale of temporal dynamics in 

community structure. Via a Louvain-like locally greedy algorithm (Blondel et al., 2008, Jutla 

et al., 2011), optimization of multilayer modularity yields a partition of brain regions into 

communities for each time window. This community assignment represents the evolution of 

putative functional modules across time in the brain network. Since the community detection 

algorithm is non-deterministic and susceptible to near degeneracies (Good et al., 2010), we 

optimized the multilayer modularity quality function 100 times for each temporal network 

(Bassett et al. 2013b).
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2.5. Multilayer network null models

In this study, we performed stringent statistical comparisons to 3 different null models to 

determine if our multilayer networks demonstrated non-trivial dynamic properties (Bassett et 

al. 2011; Bassett et al. 2013b). The three null models used in this study included constraints 

that complemented each other; these constraints, described below, affected either network 

structure or temporal properties, and could be used to illustrate how the choice of null model 

affects statistical inferences about network flexibility.

The first type of null model was constructed by permuting intralayer edges of the network 

within each window uniformly at random, creating a randomized edge model. This network 

is similar to null models used in static networks whereby the topological relationship 

between nodes is disrupted within windows. The use of this null model helps to inform how 

the structural links between nodes informs the temporal community structure. The second 

null model preserved the topological relationship of intralayer edges in each window, but 

permuted the edges between windows uniformly at random, creating a randomized interlayer 
(or interslice) network. Multilayer modularity uses the coupling of a node to itself to inform 

its community assignment, thus disrupting temporal coupling helps to describe the 

importance of intranode coupling over time. The third null model was constructed by 

permuting the ordering of windows in the network uniformly at random while preserving 

intralayer and interlayer connections. This randomized window model disrupts the temporal 

ordering of a node, which informs the stability of communities over time.

Using any of these null models alone can highlight statistically significant regions, but using 

all three examines if these network communities show consistent topological structure, 

temporal coupling, and stability over time. For our analysis, a total of 100 randomized 

networks for our three null model types were generated for each subject at every window 

size. Afterward, the multilayer modularity quality function was optimized 100 times for each 

random network. These null models were used to determine the statistical significance for 

number of communities detected in our multilayer networks (using the Kruskal-Wallis test 

with Bonferroni correction for multiple comparisons) and network flexibility (discussed in 

the next section, using permutation testing).

2.6. Multilayer network statistics: Node flexibility

One important aspect of multilayer modularity is that it demonstrates changes in the 

assignment of brain regions to communities over time, revealing the emergence or 

dissolution of communities as patterns of functional connectivity change. The temporal 

variability of community structure reflects brain dynamics that support task-dependent 

behavior on short time scales. To measure the changes in community assignment during task 

performance, we calculated the flexibility fi of node i for each brain region. Flexibility is a 

fractional measure that expresses how often nodes switch communities over time; it is 

defined as the number of times that a node changes community assignment across time 

windows normalized by the total number of possible changes. A highly dynamic node that 

changes communities at every time point would have a flexibility value of 1, while a stable 

node that does not change communities across the entire experiment would have a flexibility 

value of 0. Network flexibility F is the mean flexibility of all nodes in the network. Nodes 
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with low flexibility are considered to play a role in a temporal core while nodes with high 

flexibility are considered to play a role in a temporal periphery (Bassett et al., 2013b).

Since the results for multilayer community structure are non-deterministic (as discussed 

earlier in this Methods section), node flexibility and network flexibility were averaged 

across 100 simulations. While network flexibility highlights the overall variation in 

community assignment, we were also interested in which regions were identified as part of 

the temporal core (low flexibility) or temporal periphery (high flexibility) at each window 

size. Node flexibility was calculated across participants for the strategic attention, word 

recognition memory, and face recognition memory tasks. This measure allowed us to 

determine task-specific temporal core and temporal periphery regions; temporal core regions 

were defined as nodes in the bottom 5% for node flexibility and temporal periphery regions 

were defined as nodes in the top 5% for node flexibility.

2.7. Statistical approach: Nonparametric permutation testing

To determine the statistical significance for a given node, per node flexibility was averaged 

across simulations for each subject, resulting in a group of 82 networks for each task. 

Likewise, per node flexibility was averaged across all simulations for each null model, 

resulting in three representative null models for each subject. Permutation testing with 106 

permutations was performed to determine the difference between the observed node 

flexibility with the respective random networks for each null model, and controlled for 

familywise error rate using Bonferroni correction (α = 0.05, N = 194; p < α/N).

3. Results

3.1. Dynamic network reconfiguration in the brain

Reconfiguration in functional brain networks can take on many forms, perhaps the most 

salient of which is a restructuring of the functional modular architecture present during task 

performance (Bassett et al., 2015). We therefore begin by examining the number of modules 

(or network communities) identified via multilayer modularity maximization (see Methods), 

and determining whether this differed from the number of modules detected in appropriate 

dynamic network null models. In the large majority of window sizes for all three cognitive 

tasks, the random edge model (also previously referred to as a connectional null model; 

(Bassett et al., 2011)) – the model in which each edge was re-assigned to a pair of nodes 

chosen uniformly at random – resulted in significantly more communities than observed in 

the real data (α = 0.05, n = 82; p < α/n). The notable exception to this rule was the word 

memory task with a window size of 120 s. This difference suggests that the reconfiguration 

observed in the true neural data is more highly structured, and slower to evolve, than 

expected under the null hypothesis of non-modular organization in functional brain network 

architecture.

We utilized two additional dynamic network null models to test two complementary 

hypotheses. First, we wished to determine whether the reconfiguration of network 

communities observed in the true data was driven at least in part by specific roles played by 

specific regions. To address this hypothesis, we use a random interlayer null model (also 
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previously referred to as a nodal null model; Bassett et al. 2011), in which the links between 

nodes in different layers were rewired uniformly at random (see Methods). We observed that 

the number of communities identified in this interlayer null model was significantly different 

than the number identified in the true data, particularly in the 60 s time window for the 

attention task and in the 75 s time window for the word task. This result suggests that the 

reconfiguration observed is driven by the identity of individual brain regions. Finally, to 

determine whether the reconfiguration of network communities observed in the true data 

was homogeneously distributed across the task performance, or showed appreciable change 

during the experiment, we use a random window null model (also previously referred to as a 

temporal null model; Bassett et al. 2011), in which the order of layers in the multilayer 

network is permuted uniformly at random. We observed no significant differences in the 

number of communities between this null model and the true data (for more details on 

number of communities, please see supplement). This result suggests that the 

reconfiguration of the true brain network does not display any long time-scale structure, 

consistent with the fact that no appreciable learning occurs over the course of task 

performance.

3.2. Flexibility of network nodes (brain regions)

Although the number of communities can provide information regarding the grouping of 

nodes, the transient nature of communities is better understood using the dynamic graph 

statistic known as network flexibility. A node’s network flexibility is defined as the fraction 

of times that that node changes its community allegiance. Regions with high flexibility 

change their community assignment often (and may thus play a role in a flexible temporal 

network periphery) while regions with low flexibility change less often (and may thus play a 

role in a rigid temporal network core) (Bassett et al., 2013b). It has previously been posited 

that flexible areas in the temporal periphery may be important in adaptive functions while 

rigid areas in the temporal core may be critical for stable task execution (Bassett et al., 

2013b). Flexibility therefore provides a window into the potential role of transient 

community structure in task-driven cognitive states.

We calculated node flexibility for each subject across window sizes for the attention, word 

and face task (Figure 1). Importantly, window sizes of 200 s and 300 s resulted in node 

flexibility of 0 for all subjects, and results from these window sizes are therefore not further 

discussed. We observed that the mean node flexibility decreased as the window size 

increased. Yet, the distribution of flexibility values first broadened as the window size 

increases before narrowing again at large window sizes. A particularly interesting time scale 

in which to study flexibility therefore lies in the median window sizes, where the distribution 

of flexibility across brain regions is broadest, thereby potentially highlighting differential 

roles of brain regions within the dynamic modular architecture supporting task performance.

The unique sensitivity of the dynamic reconfiguration of modular architecture to the median 

time window is further supported by an examination of the number of communities versus 

the variance of node flexibility (see Figure 2). Consistent with the beanplots displayed in 

Figure 1, the variance of node flexibility first increased and then decreased, peaking at a 

time window of approximately 75–120 s. Relative to this trend, the average number of 
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communities decreased reaching a minimum in windows sizes of 100 s and above. These 

results demonstrate that window sizes from 25 s to 100 s offer an increasing range of node 

flexibility values over brain regions; however, windows sizes greater than 100 s produce a 

skewed distribution of node flexibility values, dominated by nodes with flexibility values 

equal to 0. The shape of this distribution is a consequence of capturing dynamics from low 

flexibility nodes at larger window sizes. As window size increases, the technique is unable to 

capture changes in core nodes over a scan session. Thus, large window sizes represent a 

dynamic floor for measuring nodes with low flexibility.

To determine whether the observed peak variance is affected by methodological choice, a 

narrower frequency band of 0.06–0.09 Hz was also investigated. Similar to the results we 

observed in the 0.06–0.12 Hz frequency range, we found that the variance of node flexibility 

displayed the same characteristic curve with increasing window size, peaking around 75–

120 s (for 0.06–0.09 Hz plot details, see supplement). These results suggest that the number 

of windows (or blocks) has the greatest effect on node flexibility. In particular, larger 

windows result in fewer possible switches in community assignment. Paired with an 

inability to capture more rapid changes, the dynamic range of flexibility is appreciably lower 

at larger window sizes as compared to smaller window sizes.

To determine whether the observed dependence of flexibility on time window size is 

expected by chance, we compared the true node flexibility to that expected in dynamic 

network null models. We observed that the variance of node flexibility was higher in the true 

data than expected in any of the 3 null models that perturb intra-layer coupling, inter-layer 

coupling, or time window order (Figure 3). These results indicate that the observed 

flexibility is driven by all 3 potential factors: topology of the functional network within a 

single time window (permuted by the random edge null model), temporal coupling of 

individual brain regions (permuted by the random interlayer null model), and stability of 

networks over time (permuted in the random window null model). The critical role of all 3 

factors for network flexibility stands in contrast to the earlier results demonstrating that the 

number of communities is most driven by the topology of the functional network within a 

single time window, not brain region identity or window order. These results emphasize the 

importance of topological structure in determining temporal community structure, but also 

highlight how intranode temporal coupling is essential to observing changing network 

structure over time. In all data sets, the peak variance in flexibility was observed in window 

sizes of approximately 75–100 s, which offers a particularly relevant framework in which to 

determine the presence of a temporal core and periphery (for results in other window sizes, 

see the supplement). We observed similar results for the peak variance and for the minimum 

number of communities for a more narrow frequency band 0.06–0.09 Hz (for results using a 

different frequency band, see the supplement). These results suggest that the range of 

flexibility is not appreciably altered by choice of frequency band, provided that frequency 

band is within the expected frequency range characteristic of the hemodynamic response 

function.
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3.3. Temporal Core and Periphery Networks

Nodes in the temporal core and the temporal periphery are intuitively those with the lowest 

and highest values of flexibility, respectively. To understand the distribution of flexibility 

across the brain, we averaged node flexibility across ten functional brain systems: auditory, 

cingulo-opercular, default mode, dorsal attention, fronto-parietal, somatosensory, 

subcortical, ventral attention, visual, and other (Power et al., 2011, Gu et al., 2015). We 

observed that the distribution of flexibility values differs considerably by cognitive system 

(Figure 4). Across tasks, visual areas consistently displayed lower values of node flexibility, 

suggesting that these primary sensory areas play a role in a rigid temporal core of the human 

brain for these three visually-demanding tasks. The subcortical areas displayed consistently 

higher values of node flexibility, suggesting that these transmodal areas (Mesulam, 1998) 

play a role in a flexible temporal periphery.

The relative preference of cognitive systems for rigid core-like dynamics or flexible 

periphery-like dynamics is supported by an assessment of the brain regions identified in the 

top and bottom 5th percentile of flexibility values (Figure 5) (for core-periphery areas at 

other percentiles, see supplement). Using this 5th percentile cutoff, temporal core regions 

were identified mainly in the visual areas for the attention, word, and face task (70%, 100%, 

100% of core, respectively). In contrast, temporal periphery regions were identified mainly 

in the subcortical areas, while regions in the temporal lobe and default mode system also 

contributed. To determine if the observed regions were consistent in their roles as either 

temporal core or temporal periphery across window sizes, we produced binary maps for each 

window size and overlaid these maps for core and periphery nodes in the 5th percentile of 

flexibility values (Figure 6). The most consistent regions were found in core visual areas, 

while periphery regions were less consistent in their anatomical locations. Nonetheless, 

these periphery regions were more consistent at higher percentiles (for other percentiles, see 

supplement). These results highlight the fact that core regions are robustly identified across 

different window sizes, giving investigators more latitude for detecting nodes with low 

flexibility; however, given less consistency for periphery regions, it is useful to perform a 

statistical validation of core-periphery regions when selecting a particular window size.

To determine whether the observed temporal core-periphery structure is expected by chance, 

we compared the anatomical distribution of node flexibility to that expected in dynamic 

network null models. We first identified brain regions with flexibility values significantly 

greater than or less than expected using nonparametric permutation testing (106 

permutations). For each cognitive system in each task, we compared the average nodal 

flexibility of that group of regions in the experimental data to the average nodal flexibility in 

that group in the null model networks. At a window size of 75 s, nodes in the temporal core 

and periphery displayed flexibility values that were statistically different (p<0.05) from 

those observed in the random edge and random interlayer null models. These results indicate 

that the temporal core-periphery architecture of the brain during these cognitive tasks is 

driven by the topology of the functional network within a single time window (permuted by 

the random edge null model), and by the identity of individual brain regions (permuted by 

the random interlayer null model). In contrast, we observed that the nodes in the temporal 

core and periphery displayed flexibility values that were not statistically different (p>0.05) 
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from those observed in the random window null model, where the order of time windows 

across the task was permuted (for detailed plots, please see supplement). This result is 

consistent with the fact that these tasks do not produce any long-term learning, and therefore 

the temporal core-periphery architecture does not display any changes over the course of the 

experiment. Finally, we note that smaller and larger window sizes did not offer as clear 

delineations into a temporal core and a temporal periphery, again highlighting the critical 

role of window size in characterizing brain network dynamics (see supplement).

To complement statistical testing, we also investigated whether temporal core and periphery 

regions were task-general or task-specific. We found that several brain regions were 

consistently identified as temporal core and periphery areas across all three tasks, suggesting 

a generic architecture of community dynamics that is present across a range of cognitive 

functions (Table 1). For example, the pallidum was consistently identified in the temporal 

periphery for all tasks at both shorter and longer time scales, which might reflect the role of 

basal ganglia circuits in cognitive control (Collins and Frank, 2013). The parahippocampal 

gyrus, a region critical for decision-making and memory processing (Gupta et al., 2011, 

Lalumiere, 2014, McIntyre et al., 2012, Zola-Morgan et al., 1989), also demonstrated high 

flexibility across all tasks. Rigid core regions were present in the lateral occipital lobe, 

lingual gyrus, and pericalcarine cortex across all tasks, as expected given the visually 

challenging nature of the task set. Together, these consistently flexible and consistently rigid 

areas may be differentially involved in adaptive- and performance-related cognitive function 

(Bassett et al., 2013b).

In addition to these task-general roles, we also identified brain regions with task-specific 

roles in dynamic community structure: that is, regions that were part of the flexible 

periphery (or rigid core) in one task but not in another task (for core and periphery structure 

at different window sizes, see supplement). Specifically, we observed that the flexible 

periphery comprises regions from a variety of brain systems. Periphery regions unique to the 

strategic attention task included the superior frontal gyrus, superior temporal gyrus and 

precentral gyrus. Periphery regions unique to the word recognition memory task included 

the supramarginal gyrus, posterior cingulate, and postcentral gyrus. We did not observe any 

periphery regions unique to the face task. Rigid core regions were less variable across the 

three tasks, which is perhaps unsurprising given that all tasks relied heavily on visual 

discrimination of the stimuli. However, in the strategic attention task, we observed that the 

pars orbitalis, superior parietal lobule and the cuneus formed part of the temporal core. 

Another noteworthy finding is the stable identification of the fusiform gyrus as a temporal 

core region across time scales in the recognition memory task with faces, a region well 

known for its role in face detection (Kanwisher et al., 1997, Nestor et al., 2013). These 

results suggest that while some regions are engaged in task-general dynamic roles, other 

regions are engaged in task-specific dynamic roles as either flexible periphery areas or stable 

core areas, respectively (Fedorenko and Thompson-Schill, 2014). Together, these results 

support the notion of a flexibly reconfiguring network architecture that contains rigid areas 

potentially critical for task execution and flexible areas potentially critical for task 

adaptability.
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3.4. Individual differences in flexibility across cognitive tasks

A critically important question is whether dynamic reconfiguration processes in brain 

networks can only be used as a group-level statistic (showing inter-task differences, for 

example as demonstrated above), or whether they are also sensitive to individual differences 

in cognitive processing and resultant behavior. Initial evidence supports the hypothesis that 

dynamic reconfiguration processes can be used to understand both group-level and subject-

specific cognitive processing (Bassett et al., 2011, Bassett et al., 2013b, Ekman et al., 2012, 

Braun et al., 2015). Here we test whether specific windows sizes are most sensitive to 

individual variation across the three cognitive tasks.

To test if specific window sizes are sensitive to individual variation, we calculated the 

average flexibility for each task and for each subject, and then computed a ‘task-average’ 

flexibility per subject as the mean of the task-specific flexibility of that subject across tasks. 

As shown in Figure 7, we observed a negative relationship between the average flexibility 

and variance of node flexibility within subjects across tasks: R2-values were 0.81 (p<0.001), 

0.76 (p<0.001), 0.74 (p<0.001), 0.74 (p<0.001), 0.67 (p<0.001), 0.54 (p<0.001), 0.22 

(p<0.001), 0.10 (p<0.01) and 0.03 for window sizes 25 s, 30 s, 40 s, 50 s, 60 s, 75 s, 100 s, 

120 s, and 150 s, respectively. In addition, mean flexibility versus variance in the true data 

was compared against the same variables obtained from the three null models. With 

exception to the random window model, the most conservative null model, correlations were 

significantly lower for the random edge and interlayer null models across most window sizes 

(window length less than 100 s). Although correlations were not significantly different at 

larger window sizes, the slopes of the random edge and interlayer null models were 

significantly different across most window sizes (window length greater than 40 s); in 

contrast, the slopes between the real data and the random window null model were only 

significantly different at larger window sizes (120 s and 150 s).

These results suggest that individuals with low task-average flexibility tend to show high 

variance in task-specific flexibility, while individuals with higher task-average flexibility 

appear to show stable task-specific flexibility values. In other words, individuals with high 

flexibility tend to have a consistent level of flexibility across tasks, while individual subjects 

with low flexibility show more variability across tasks. Sensitivity to detect these individual 

differences is greatest for small window sizes in these three tasks. Furthermore, these results 

demonstrate that the observed correlations are a feature of the data as they are more 

significant than those observed in our null models, with the exception of our most 

conservative model, the random window null model (for details of correlation values and 

slopes for the real data and the three null models, see supplement).

An additional important consideration in the context of these results is the question of how 

subjection motion (or mean displacement) might affect the observed relationship between 

mean flexibility and variance of node flexibility. To assess the potential contribution of 

motion to these results, we calculated the correlations between average flexibility and 

variance of flexibility for each window size with and without mean displacement as an 

explanatory variable in a linear model. Mean displacement was estimated using existing 

methods previously developed to assess subject motion (Power et al., 2012). As shown in 

Table 2, although the inclusion of mean displacement slightly raises the correlation 
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coefficients at smaller window sizes, it does not change the observed correlations 

significantly. These results further underscore the observed individual differences in 

flexibility across cognitive tasks.

4. Discussion

In this study, we delineate how network topology changes over time in a variety of task 

settings, and we highlight the importance of the methodological choice of window size when 

characterizing dynamic network properties. The use of the entire time series provides a static 

representation of the functional brain network; however, to understand the dynamic changes 

in the network, a sliding time window is an approach that can be used (Hutchison et al., 

2013a). When choosing a window, one often wishes to consider two factors: (i) the smallest 

window size necessary to calculate functional connectivity between regions (network edges), 

and (ii) the number of windows needed to map the dynamics of the signal (Sakoğlu et al., 

2010, Jones et al., 2012, Leonardi and Van De Ville, 2014). In comparison to shorter time 

windows, longer window sizes offer less sensitivity to the dynamics, but higher precision in 

estimating statistical similarities in time series (Leonardi and Van De Ville, 2014, Gonzalez-

Castillo et al., 2014, Shirer et al., 2011). Nonetheless, it is important to statistically validate 

the results from dynamic network analyses using proper surrogate data (Hindriks et al., 

2016). In this study, we employed three different null models to identify regions that were 

statistically significant.

In this study, we offer additional considerations in selecting window sizes that maximize (i) 

one’s ability to distinguish the roles of brain regions in the temporal core or flexible 

periphery, and (ii) one’s ability to distinguish individual differences in network dynamics. 

Specifically, our results offer additional insights into the tradeoffs that occur at different 

window lengths in the context of dynamic reconfiguration of community structure in 

networks. We observe that shorter time windows are sensitive to transient network processes 

but do a poor job of stratifying brain regions into a temporal rigid core and flexible 

periphery. This stratification is most evident for time windows of intermediate size (Figure 

3). Additionally, our results highlight that these intermediate sizes are the most robust for 

identifying regions with strong spatial and temporal coupling, but may be less sensitive to 

individual differences in dynamic network reconfiguration which instead is most salient in 

small time windows.

4.1. The effects of window size on dynamic networks

Dynamic network approaches allow for characterization of functional brain networks and 

their evolution during task performance (Bassett et al., 2011, Bassett et al., 2013b), 

(Dimitriadis et al., 2010, Holme and Saramäki, 2012, Ioannides et al., 2012, Mutlu et al., 

2012, Tagliazucchi et al., 2012, Siebenhühner et al., 2013, DeSalvo et al., 2014, Dwyer et 

al., 2014, Zalesky et al., 2014). Methods based on dynamic community detection are 

particularly relevant for understanding the flexible reconfiguration of the brain’s functional 

modules during adaptive behavior (Bassett et al., 2011, Bassett et al., 2013b, Bassett et al. 

2015). One important consideration in applying dynamic network techniques to 

neuroimaging data is the choice of window length, whether non-overlapping or overlapping 
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(Hutchison et al., 2013a). We observed that window sizes of 75–100 s provided a large range 

of flexibility values and minimized the number of nodes with flexibility values equal to 0. 

Indeed, at this window length, null models identified statistically significant regions in the 

rigid core and flexible periphery.

The range of approximately 75–100 s per window is consistent with the range employed by 

several previous studies. For example, Hutchison et al. describe stable resting state fMRI 

networks at time scales as short as 30s (Hutchison et al., 2013b). In a study by Jones et al., 

reliable communities were found with a window size that was approximately 30s in length 

(Jones et al., 2012). Other studies have provided theoretical suggestions for an optimal 

window size of 30–60s for a given frequency (Sakoğlu et al., 2010, Keilholz et al., 2013, 

Leonardi and Van De Ville, 2014). It has also been demonstrated that dynamic functional 

connectivity states can be detected in windows sizes as small as 22.5 s (Gonzalez-Castillo et 

al., 2015). Although small window sizes demonstrate prominent features like core structure, 

it is worth noting that larger window sizes produce a larger dynamic range of flexibility 

values. Of note, our results demonstrate that medium-sized windows (75–100 s) identify 

core-periphery regions that are statistically significant across a variety of tests. Undertaking 

such an investigation, the question of the best or optimal window size is prominent. 

However, these results reveal that the choice of window size is more dependent on the focus 

of the investigation. Smaller windows may highlight individual differences while 

compressing the dynamic range of flexibility. In contrast, large windows are dominated by 

nodes with flexibility values equal to zero, hindering the detection of core areas.

In this our frequency band of interest, choosing a medium window size consistent with the 

time scales of several hemodynamic response function latencies may be appropriate for 

many scientific investigations. One of the main concerns is capturing the slow frequency 

changes in the BOLD signal while simultaneously capturing transient properties of network 

dynamics that might be missed over long time intervals. In our data, a window size of 75s 

was sufficient to capture both transient processes in functional networks and slow frequency 

fluctuations in BOLD signals, while being less sensitive to individual variation in these 

transient processes. Nevertheless, methods that circumvent time window construction 

altogether might provide additional complementary insights (Robinson et al., 2010, Cribben 

et al., 2013). One such approach is the multi-resolution time-frequency analysis based on a 

wavelet transform, which eliminates the need to select a specific window size (Torrence and 

Compo, 1998).

4.2. Network flexibility and task differences

Here we study dynamic community structure in functional brain networks and how the 

estimates of regional flexibility are affected by both task and method (chosen window size). 

We observed that window sizes in the 75–100 s range consistently identified specific regions 

belonging to the rigid temporal core and the flexible temporal periphery. The most stable 

core regions for all three tasks were areas critical for visual processing, including the 

pericalcarine cortex, the lateral occipital lobe, and the lingual gyrus. The most flexible 

region consistently identified across tasks was the pallidum, a component of the basal 

ganglia circuit associated with cognitive control (Collins and Frank, 2013); however, the 
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absence of other control regions in the periphery could indicate some other factor 

contributing to the significance of this subcortical region and warrants further investigation.

The dynamic community detection approach allows one to quantify how brain regions 

change their roles within a network as a person moves from one task to another. These 

results are exemplified by measuring the flexibility of an individual across tasks (Figure 7). 

Individuals with higher flexibility maintained this level of flexibility, as evidenced by low 

node flexibility variance. Nonetheless, although there was consistency in overall network 

flexibility, task-specific (as opposed to task-general) reconfigurations are evident from the 

different anatomical distributions of regional flexibility across different tasks (Figure 4). We 

observed that regions whose activation is traditionally associated with performance on a 

specific task tended to change the least in terms of their community allegiance, thus forming 

part of the rigid temporal core. For example, core areas specific to the attention task included 

the cuneus and dorsal attention area, while core areas specific to the face memory task 

included the fusiform gyrus, a region associated with face perception (Kanwisher et al., 

1997). Most relevant to this reconfiguration is the consistency in brain systems for a specific 

task. Although the temporal core was comprised mostly of visual areas, the recruitment of 

these visual areas differed depending on the specific task. Likewise, it was observed that 

subcortical areas were prominent in the flexible periphery, yet these regions were recruited 

at various levels depending on the task.

Finally, we observed that flexibility of brain areas differs across individuals, consistent with 

prior observations in different task contexts (Bassett et al., 2011, Bassett et al., 2013b). Of 

particular note, these differences were most reliably observed when we chose short time 

windows in the dynamic network analysis. These results suggest that studies seeking to 

uncover neurophysiological correlates of individual differences in brain network processes 

might benefit from examining dynamic networks over short time scales.

5. Conclusion

In this study, we addressed one of the critical questions in utilizing a dynamic network 

analysis: the choice of parameters to effectively measure time-dependent changes in network 

organization. In our frequency band of interest (0.06–0.12 Hz), we observed an important 

tradeoff in the advantages of different window sizes in addressing distinct neuroimaging 

hypotheses. Specifically, medium window sizes uncover a broad range of flexibility values 

across brain areas and effectively show task differences, while shorter window length reveal 

individual differences that were not apparent at longer time scales or in static networks. The 

work supports the notion that the multilayer formalism has a distinct advantage in treating 

time windows as inherently dependent measurements of neurophysiological function. This 

work further demonstrates how flexibility measures can be validated using appropriate null 

models; depending on the constraints used in the null model, statistical significance can be 

assessed for structural and/or temporal properties of the community architecture and its 

dynamics. It will be interesting in future to use the multilayer formalism to study features of 

the topology beyond community structure (Mucha et al., 2010), thereby more 

comprehensively measuring network reconfiguration processes that accompany cognition.
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Figure 1. Node flexibility vs. window size beanplot
Node flexibility was calculated for each subject at every window size across the attention 

(left), word (middle), and face (right) tasks. Results were plotted as a beanplot, which 

describes the distribution of the data. The green bar (middle bar) represents the median 

flexibility, while the lower and upper red bars (outside bars) represent the first and third 

quartiles, respectively.
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Figure 2. Average number of communities and variance vs. window size
As the window size increases, the average number of communities decreases up to the 

window size of approximately 100 s. Following this point, the number of communities 

begins to increase again, albeit more slowly. The variance of flexibility increases as the 

window size increases, peaking at a window size of approximately 75–120 s, then 

decreasing to zero at the window size of approximately 200 s or 300 s.
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Figure 3. Variance in node flexibility vs. window size across null models
Here we plot the variance in node flexibility for the original data set and the dynamic 

network null models. The variance of the flexibility in the random edge (topological 

structure) and interlayer (temporal coupling) null models was lower than that observed in the 

original data. The variance of flexibility of the random window null model (community 

stability) was also lower than that observed in the original data, but it had a similar shape to 

that observed in the original data across all window sizes.
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Figure 4. Node flexibility by brain system at window size 75 s
Node flexibility across the group was averaged for each brain system for the attention, word 

and face task. The distribution of flexibility is expressed as bean plots, with the middle bar 

representing the median, and the outside bars representing the interquartile range.
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Figure 5. Temporal core and periphery regions for cognitive tasks
Temporal core and periphery nodes defined as lying in the lower or upper 5th percentile of 

node flexibility, respectively, were grouped according to functional brain areas for the (a) 

attention, (b) word, and (c) face task. The pie chart denotes the proportion of nodes in the 

temporal core or periphery occupied by a given system. The most prominent regions in the 

temporal core across task are the visual areas, while the most prominent regions in the 

temporal periphery are the subcortical areas.
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Figure 6. Consistency of core-periphery nodes across window sizes
Temporal core and periphery nodes defined as lying in the lower or upper 5th percentile of 

node flexibility were mapped to their respective brain regions for (a) attention, (b) word, and 

(c) face task. For each window size (25s, 30s, 37.5s, 40s, 50s, 60s, 75s, 100s, 120s, and 

150s), core and periphery nodes were mapped to the brain and overlaid with one another. 

Periphery areas were moderately consistent, while core regions were prominent in the visual 

areas across tasks, suggesting that core nodes are prominent across a range of window sizes.
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Figure 7. Individual differences across tasks
Here we show scatter plots of the mean node flexibility across all tasks versus inter-task 

variance of node flexibility for each subject. R2-values were 0.81, 0.76, 0.74, 0.74, 0.67, 

0.54, 0.22, 0.10 and 0.03 for window sizes 25s, 30s, 40s, 50s, 60s, 75s, 100s, 120s, and 150s, 

respectively. Additionally, mean node flexibility versus inter-task variance was calculated for 

the three null models.
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Table 1
Temporal core and periphery regions in the brain for three cognitive tasks

Nodes in the 5th percentile for rigid and highly flexible regions were considered core and periphery, 

respectively. Nodes reported were statistically significant (p<0.05) compared to random edge and interlayer 

null models using nonparametric permutation testing with 106 iterations.

Core Regions

Attention Word Face

Cingulo-Opercular:
pars orbitalis [L/R] ***

Visual:
fusiform [L/R] (partial)
lateral occipital [L/R]
lingual [L]
pericalcarine [L/R]

Visual:
fusiform [L/R]
lateral occipital [L/R]
lingual [R]Dorsal Attention:

superior parietal [L] ***

Visual:
cuneus [L/R] ***
lateral occipital [L]
lingual [L/R]
pericalcarine [L/R]

Periphery Regions

Attention Word Face

Auditory:
superior temporal [L/R] ***

Cingulo-Opercular:
caudal anterior cingulate [R]
supramarginal [L] ***

Cingulo-Opercular:
caudal anterior cingulate [R]

Default Mode:
superior frontal [L/R] ***

Default Mode:
posterior cingulate [L] ***

Fronto-Parietal:
insula [L]

Other:
parahippocampal [R]

Fronto-Parietal:
insula [L]

Other:
parahippocampal [L]

Somatosensory:
precentral [R] ***

Other:
parahippocampal [L]

Subcortical:
amygdala [L]
caudate [L]
pallidum [L/R]
putamen [L/R]

Subcortical:
caudate [L/R]
pallidum [L]

Somatosensory:
postcentral [L] ***

Subcortical:
amygdala [L/R]
pallidum [L/R]

Three asterisks (***) indicate brain areas unique to its respective task at 75 s.
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Table 2

Correlation between variance node flexibility and mean flexibility (with and without relative contribution of 

motion in a linear regression).

Window Size (s) R2 (with motion regressor) R2 (without motion regressor)

25 0.85 0.81

30 0.80 0.76

40 0.78 0.74

50 0.76 0.74

60 0.68 0.67

75 0.54 0.54

100 0.23 0.22

120 0.11 0.10

150 0.03 0.03
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