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ABSTRACT OF THE DISSERTATION

Hyperbolic geometry in biological systems

by

Yuansheng Zhou

Doctor of Philosophy in Biology with a Specialization in Quantitative Biology

University of California San Diego, 2021

Professor Tatyana Sharpee, Chair
Professor Terry Sejnowski, Co-Chair

Many biological systems have intrinsic hierarchical structure, which can be best described

by hyperbolic geometry. Hyperbolic geometry was well developed in mathematics, and has

recently been introduced in machine learning for data representation and visualization. However,

the relevance of hyperbolic geometry to biological data was rarely studied. In this dissertation,

I develop methods to systematically detect the existence of hyperbolic geometry in various

biological systems, and show the advantages of hyperbolic representation of biological data. The

geometry detection of these data are performed using either the sensitive and accurate Betti curve

method or the robust and fast multi-dimensional scaling method. It turns out that many biological

xii



systems, including olfactory data from different species and gene expression profiles from

different sources, all have hyperbolic structure. The visualization of the data can be achieved

by either hyperbolic multi-dimensional scaling or hyperbolic t-SNE, which are both proposed

in this dissertation. The former method correctly reveals the global organization of data points

and identifies the phenotype related axes in the space, e.g. the pleasantness axis in olfactory

space. The latter method aims to perform local clustering as well as preserving inter-cluster

structure, giving an accurate representation of cell types in an informative way. In addition to

the improved data visualization, hyperbolic representations of data inspire new discoveries that

cannot be obtained by traditional Euclidean-based methods, for example, different cell types in

brain are characterized by distinct spatial localization patterns in the hyperbolic disk, regardless

of brain regions.
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Introduction

Modern datasets characterize natural objects with respect to many variables and assign

distances between objects based on a Euclidean metric. For example, the plants can be described

by a number of traits, the cells are classified by the measurements of the transcriptome, and the

odor perception can be characterized by a set of human descriptors, etc. The high-dimensional

measurements are primarily evaluated by a Euclidean metric since it’s the best prior assumption

for the high-dimensional data. However, recent results suggest that for data produced by

underlying hierarchical tree-like networks a hyperbolic metric might be more appropriate than a

Euclidean one. So what is the real geometry that a high-dimensional data represent, and how

to properly visualize it? These are the two questions this dissertation aims to address. Firstly,

I develop two approaches to detecting the hidden geometry of different biological systems,

which are all described by high-dimensional measurements. One of the approaches is Betti

curve method which is fit for small datasets and can precisely determine the parameters of

geometry, the other one is non-metric multi-dimensional scaling (MDS) method which is robust

and can be applied to data of any size. Secondly, I propose two visualization algorithms that

can embed data into two dimensional hyperbolic disks. These visualization algorithms include

hyperbolic MDS (HMDS) method which aims to reveal global organization of data in the space,

and hyperbolic t-SNE (h-SNE) method which performs local clustering as well as preserving the

global inter-cluster orientations. I show that the geometry-preserving embeddings of hyperbolic

data significantly outperform traditional Euclidean-based methods in accuracy, and reveal more

biological insights.

In Chapter 1, I apply Betti curve method to show that the geometry of olfactory space

1



is hyperbolic and determine the geometric parameters for both odor stimuli space and odor

perception space. I use HMDS method to visualize the data in the identified geometry and find

three phenotype-related axes in the odor stimuli space. In Chapter 2, I develop a methodology

for geometry detection of large gene expression data and find the gene expression space from

five different sources all have hyperbolic structure. I propose hyperbolic t-SNE method to

visualize the data in 2D hyperbolic disk, and show that it significantly outperforms other methods

quantitatively and qualitatively. In Chapter 3, I extend the application of HMDS and h-SNE

methods to three other datasets and show several preliminary results in which these new methods

give novel biological insights and inspire interesting future directions.

2



Chapter 1

Hyperbolic geometry of olfactory space

1.1 Abstract

In the natural environment, the sense of smell, or olfaction, serves to detect toxins and

judge nutritional content by taking advantage of the associations between compounds as they

are created in biochemical reactions. This suggests that the nervous system can classify odors

based on statistics of their co-occurrence within natural mixtures rather than from the chemical

structures of the ligands themselves. We show that this statistical perspective makes it possible

to map odors to points in a hyperbolic space. Hyperbolic coordinates have a long but often

under-appreciated history of relevance to biology. For example, these coordinates approximate

the distance between species computed along dendrograms and, more generally, between points

within hierarchical tree–like networks. We find that both natural odors and human perceptual

descriptions of smells can be described using a three-dimensional hyperbolic space. This match

in geometries can avoid distortions that would otherwise arise when mapping odors to perception.

1.2 Introduction

The reason that the sense of smell can be used to avoid poisons or estimate a food’s

nutrition content is because biochemical reactions create many by-products. Thus, the emission

of certain sets of volatile compounds will accompany the production of a specific poison by

a plant or bacteria. An animal can therefore judge the presence of poisons in the food by

3



how the food smells. Other specific examples include the use of smell by bees when judging

whether a flower has more pollen or nectar [1, 2]. Fruit flies select places to lay eggs based on

odors[3]. These examples suggest that, from a practical perspective, it would be useful for the

nervous system to classify odors based on statistics of their co-occurrence. For example, if odor

components that are strongly correlated are represented nearby within the nervous system [4],

then detection of one component could be quickly used as an indicator for the likely existence of

another component that is strongly correlated with it. With this perspective in mind, we set out

to study the structure of the olfactory space based on odor co-occurrence. Before we describe

the results, we review the reasons for why one might expect to find hyperbolic coordinates to be

relevant for olfaction and biological systems in general. Biological data are often represented

using dendrograms or hierarchical tree structures (Fig. 1A). These data can be equivalently

represented using Venn diagrams, where larger circles correspond to broader classifications (Fig.

1B)[5]. For example, before Darwin, these Venn diagrams were used to classify species based on

their properties [6]. Darwin used the mapping from Venn diagrams to trees [6] to infer the likely

tree for speciation based on available descriptions of species properties (Venn diagrams). There

is a deep mathematical reason underlying the equivalence between these two representations,

and it involves hyperbolic spaces. Specifically, starting with the Venn diagram (Fig. 1B), one can

assign points to a three- dimensional (3D) space whose horizontal x and y coordinates equal to

center coordinates of the Venn circles, whereas the vertical coordinate equals to the circle radius

[7]. In this manner, larger circles get assigned to higher heights, which would then correspond to

positions closer to the tip of the tree (Fig. 1C). Sometimes, the presence of partially overlapping

circles leads to a structure that is not precisely a tree because it contains loop. Nevertheless, the

resulting 3D space has a hyperbolic metric [8] and can be described by the Poincare half-space

model for the hyperbolic space. The fact that the metric is non-Euclidean can be ob- served

from the fact that the shortest distance between two points goes up in the z-direction (along the

tree) before descending back to the tar- get node. In Fig. 1D, we show an example shortest path

between two points in a 2D half-space model (red dashed line) and its discrete approximation

4



(red solid line). To foreshadow the results on olfactory odor classification, we note that 3D

hyperbolic space is the lowest dimensional space where the descriptor sets (Venn diagrams) are

not 1D, as in Fig. 1D, but are 2D circles as in Fig. 1 (B and C). At least two axes have been

described for the human odorant perception (the “pleasantness-to- unpleasantness” axis and the

“chemical-to-natural” axis) [9] [10]. Together, these mathematical and biological observations

point to the relevance of 3D hyperbolic geometry for odor perception.

A0

A0

A1 A1B1
B1

C1 C1

A2 A3

A2 A3

B2

B2 B3

B3

C2

C2C1

C1

B4 B5

B5

B6

B6 B7

B7

B4

a b

A
B

C D

Figure 1. Hyperbolic spaces approximate hierarchical networks. (A) Example hierarchical
description of data and (B) its equivalent representation using Venn diagrams. (C) Venn diagrams
can be mapped onto points in a 3D space, forming approximately a tree. The metric in the
resulting 3D space is hyperbolic [7]. The hyperbolic aspects of the metric are illustrated by the
fact that the shortest path be- tween nodes in the tree goes upward and then descends back to the
target node. (D) Discrete approximation to a half-space model of the hyperbolic space in 2D.
Red solid and dashed lines show the discrete and continuous shortest paths between point a and
b within the half-space model of the hyperbolic space [8].
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1.3 Results

1.3.1 Geometry of odor stimuli space

To analyze which space best describes the statistics of co-occurrence within natural odor

mixtures, we used a recently developed a statistical method [11] that can identify the presence

of a geometric structure in data based on observed correlations between data components. This

method is unaffected by linear or nonlinear monotonic transformations of inputs and therefore

can be used to determine the overall geometry of the data without worrying at first about the

precise scaling of the axes. The analysis starts by taking a set of measurements of concentrations

of individual monomolecular odors, as they occur in the natural environment. Our analyses will

be based on four data sets of odors measured from samples of strawberries [12], tomatoes [13],

blueberries [14], and mouse urine [15]. To give an overview of the data, 69 monomolecular odors

were measured across 50 different mouse urine samples, 66 monomolecular odors across 79

tomato samples, 45 monomolecular odors across 101 blueberry samples, and 78 monomolecular

odors across 54 samples of strawberries. The first step of the analysis is to compute correlations

between the concentrations of monomolecular odor across samples (Fig. 2A). The correlation

coefficient between two odors x, y was defined as

corr(x,y) =
∑

n
i=1(xi− x̄)(yi− ȳ)√

∑
n
i=1(xi− x̄)2

√
∑

n
i=1(yi− ȳ)2 (1.1)

where xi and yi represent concentrations of odor x and odor y in ith sample, x̄ and ȳ represent the

mean values of concentrations across all samples, and n is the number of samples. Correlation

coefficients were computed separately for each data set. The absolute values of the correlation

matrix from each data set are passed through a step function with different thresholds: The

correlation values above the threshold are set to 1, and the rest of values are set to 0 (Fig. 2B).

The transformed matrix can now be visualized as a topological graph where all unit values

represent links between the corresponding odors (Fig. 2C). The graph can be characterized by
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the number of holes (cycles) in one, two, or higher dimensions. For high thresholds, the number

of cycles will be low because most units are not connected. Similarly, at low thresholds, the

number of cycles is also low because units form fully connected networks. Plotting the number

of cycles as a function of density of edges, or equivalently the number of connected nodes, yields

the so-called Betti curves. It turns out that the shapes of these Betti curves are quite sensitive to

the statistics of correlations. This sensitivity makes it possible to infer the geometry of the space

that can produce these correlations if we sample points from this space and assume that stronger

correlations (before thresholding) imply closer distances. [11]

Applying this statistical approach to each of the four data sets separately, we found the

data in each case to be consistent with being drawn from a neighborhood of a sphere positioned

within a 3D hyperbolic space together with a small amount of multiplicative noise added to

the distances (Fig. 2D). The fact that hyperbolic space approximates hierarchical tree–like

networks motivated this choice of the model [7], with odors reflecting leaves of the network—the

neighborhood of the surface (Fig. 1). Quantitatively, one can compare Betti curves derived from

a model geometrical space and from a data set by computing the integral of the curve [11], the

quantity referred to as the integrated Betti value. To find the best-fitting geometry, we optimized

parameters of the model such that the noise magnitude and the range of radii within the space

from which the sample points were drawn provided the best match to the first integrated Betti

value. Then, we examined how these optimized parameters could account for the second and

third integrated Betti values. For all four data sets, we found the measurements to be consistent

with sampling from a 3D hyperbolic space (P > 0.25,P > 0.21,P > 0.45, and P > 0.19 for

blueberry, tomato, mouse, strawberry data sets, respectively; in each case, the value stated is

the minimal value across the Betti curves in 2D and 3D; see also table S1). The first three Betti

curves were also sufficient to show that Euclidean spaces could not account for the data, even

when dimensionality and other parameters were optimized (Fig. 2E, P < 0.03 for blueberry and

P < 0.003 for other three data sets). As a control, we verified that shuffling odor concentrations

between samples, which destroys correlations between odors, produced Betti curves that can
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Figure 2. Topological organization of the natural odor space. (A to C) Illustration of the
topological algorithm for identifying spaces consistent with correlation statistics. (A) Example
correlation matrix for five odors in strawberry data set. (B) Correlation matrix after applying
a threshold of 0.25. (C) A nonzero value represents an edge connecting the two elements.
The resulting complex has one 1D cycle and edge density of 0.5. (D and E) Betti curves
with the number of cycles in one (yellow), two (red), and three (blue) dimensions plotted as
a function of edge densities. Data from Betti curves (dashed) are compared with predictions
using model geometry (solid lines) of 3D hyperbolic space in (D) or Euclidean space (E). Insets
show comparisons between integrated Betti values from data (black triangles) compared with
models. The error bars show 95% confidence intervals (from 2.5% to 97.5%) from 300 models
with the same number of odors as the data, and the colored squares show the medium values of
the models.
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be fully ex- plained by random matrices (P = 0.4,P = 0.7, and P = 0.9 for integrated Betti

values one through three, respectively; cf. Fig. S1). These matrices would not be consistent

with the hyperbolic space plus the small amount noise that fits the real data (P < 0.01). As

additional controls, we verified that (i) evaluating differences between Betti curves using L1

distances instead of the integrated Betti values (tables S2 and S3) or (ii) applying logarithm to

concentration values before computing their correlations led to the same conclusions (Fig. S2

and table S4). In particular, hyperbolic 3D is consistent with measurements for all three Betti

curves, whereas the best-fitting Euclidean model can be ruled out according to these measures.

The corresponding P values are provided in tables S1 to S4. Note that hyperbolic spaces of

dimensions higher than three cannot be ruled out (Fig. S3). However, the 3D hyperbolic space

remains the best-fitting model across the four data sets. This is true whether one uses either the

integrated Betti value or the L1 distances between model and experimental Betti curves (Fig.

S3).

Blueberry Tomato

StrawberryMouse urine

Front

Back

Figure 3. Visualization of the natural olfactory space using non-metric MDS. Be- cause the
variation in radius is small, data points are shown on the surface of a sphere with circles/rectangles
for points falling on the near/far side of the sphere. The RGB color scales were proportional to
the XYZ coordinates of points.
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1.3.2 Visualization in hyperbolic space

To visualize how the points consistent with odorant correlation statistics might be dis-

tributed within the hyperbolic space, we used non- metric multidimensional scaling (MDS) [16].

The non-metric MDS algorithm embeds a set of points into the N-dimensional space while

attempting to preserve the rank ordering of distances as best as possible ([16]). Traditionally,

MDS is applied to the Euclidean space, but we modified it (see Materials and Methods) to work

with hyperbolic distances [7]. After testing the algorithm on synthetic data (Fig. S4), we applied

the modified algorithm to the four data sets. In Fig. 3, we show results for the four data sets.

Because the points are located near a surface of a sphere (the range of radii Rmin = 0.9Rmax), we

present the points on a sphere using the two angles of latitude and longitude. The results show

approximately uniform sampling in all four data sets. Notably, the points do not cluster based

on functional chemical properties of the individual components (Fig. S5). One can understand

the absence of clustering from the fact that monomolecular odors with different func- tional

properties are produced together in biochemical pathways.

What are the axes of this olfactory space? Or, in other words, do odors associated with

certain parts of this space have different perceptual or physicochemical properties? Previous

studies found axes that correlated with perceptual odor pleasantness [17] and physicochemical

properties such as molecular boiling point and acidity ([9][17][18]). We checked for associations

with all of these properties, and supporting previous findings ([9][10][17][19]) found that points

corresponding to pleasant and unpleasant odors occupied different parts of the space. We note

that this analysis of pleasantness rankings was based only on odor components from tomato and

strawberry data sets, for which these rankings were available. Thus, the pleasant-unpleasant odor

axis can be identified even solely using fruit odor components. The direction most associated

with a change in pleasantness value is marked by the red line in Fig. 4 (A and C). For odor

mixtures produced by individual fruit samples, we use the “overall liking” rating assigned by

humans to fruit samples as a measure of pleasantness (Fig. 4A). To test how well the identified
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Figure 4. Axes associated with pleasantness and odor physiochemical properties. (A) We repre-
sented 108 fruit samples (54 tomatoes and 54 strawberries) using normalized linear combinations
of odor coordinates in the space, with the weights proportional to odor concentrations in the
samples. The color indicates human rating for the overall liking; circles/squares represent points
from the front/back sides of the sphere. The red line shows the direction most associated with
the pleasantness ratings. (B) The correlation is significant, with correlation value R = 0.34 and
P = 0.01. (C) Visualization of 144 individual monomolecular odors. The red, green, and blue
lines showed the directions of pleasantness, boiling point, and acidity, respectively. Two-thirds
of monomolecular odors were used to determine the directions associated with perceptual or
physicochemical properties of odors, and the rest one-third were projected onto the directions as
validation sets to evaluate the correlations. In the 144 monomolecular odors, only 62 of them
have available boiling points and were used to find the boiling points direction. (D) Correlation
between odor pleasantness with projection onto the pleasantness axes. (E) Correlation between
molecular boiling point, a measure of odor volatility, with projection on the associated axes. (F)
Correlation between acidity value and the associated axes.
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pleasantness axes can predict measured pleasantness rankings for novel samples, we regenerated

this axis using only strawberry samples and use it to predict pleasantness ranking for tomato

samples. The correlation was significant, with correlation coefficient R = 0.34 and P = 0.01 (Fig.

4B). The pleasant- ness values could also be assigned to individual odor components based on

the correlation between the odor concentration in a mixture and mixture pleasantness computed

over samples (Fig. 4C). This measure of pleasantness produced an even stronger correlation

between pleasantness and odor coordinates within the space,R = 0.66 and P = 3×10−7 (Fig.

4D). We also computed these correlation values using different odor components from those

used to generate the pleasant-unpleasant axis for odor components in Fig. 4C. Specifically, we

used two-thirds of randomly selected odor components to generate this axis; we computed the

correlation value using the remaining components. The pleasantness axis for odor components

had a similar orientation to the one for mixtures (that is, individual fruit samples).

In addition to the pleasantness axis, we could also find axes that were strongly associated

with two other properties: molecular boiling point—which is probably a reflection of volatil-

ity—and acidity, both of which showed significant correlations (P < 0.04; Fig. 4, E and F). We

assigned acidity for individual odors as the correlation coefficient be- tween its concentration

and fruit sample acidity measurement. (We computed all of these correlation coefficients using

a different subset of odors from the one used to estimate the corresponding axes.) Be- cause

the space is essentially 2D, the three axes of odor pleasantness, acidity, and molecular boiling

point are not independent. In other words, knowing the coordinates along the molecular boiling

point and acidity axes, one can predict the position along the pleasantness axis. That is, the

identified mapping to a sphere in a hyperbolic space makes it possible to predict, with correlation

R = 0.34 (Fig. 4B) for natural mixtures and with R = 0.66 (Fig. 4D) for monomolecular odors,

how perceptually pleasant these odors are based on their projections on the acidity and volatility

axes.
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Figure 5. Hyperbolic organization of the human olfactory perception. The (A) first and (B)
second Betti curves of the perceptual data set (dotted line) (20) compared to Betti curves of the
3D hyperbolic space (solid line) and 3D Euclidean space (dashed line). Euclidean and hyperbolic
spaces of other dimensions provided a worse fit. Insets compare integrated Betti values from data
(horizontal lines) and 300 repeated models in different dimensions with Euclidean or hyperbolic
metrics. The error bars show 95% confidence intervals; the number of repeated computations of
model curves was 300. (C) Visualization of odors in human olfactory perception space using
non-metric MDS in a 3D hyperbolic space. The sizes of points are proportional to their radii.
The radius distribution is shown in bottom right inset. (D) The multimodal aspects of Betti
curves derived from data (dotted lines) can be accounted for by the nonuniform distribution of
points within the 3D hyperbolic space. Sampling points from (C) produces multimodal first
(yellow) and second (red) Betti curves (solid lines). Inset shows comparison of L1 distances
between Betti curves derived from data and those derived from 100 different MDS fits. Black
open triangles represent the distance between data and model mean, and colored bar plots show
the range of values, where data curves are substituted by different MDS fits.
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1.3.3 Geometry of odor perception space

The observation that the odor mixtures can be mapped onto a continuous metric space is

consistent with a previous vector-based model of human olfactory perception ([19]). This model

posits that the perception of odor mixtures is based on a combination of the mixture components

or, in other words, that there is an underlying set of coordinates that can represent olfactory

mixtures. Previous analysis ([9]) of the Dravnieks database ([20]) containing human perceptual

descriptions of > 120 monomolecular odors showed that the perceptual space is likely to be

curved. Qualitatively, the points were found to form a “potato-chip” surface ([9]). This can be a

signature of the hyperbolic space; potato-chip or saddle-like surface have a negative curvature

and serve as an everyday example of hyperboloid surfaces. To quantitatively test whether the

perceptual space is described by hyperbolic geometry, we applied the Betti curve method to

the Dravnieks database [20]. First, we found that Euclidean spaces were not consistent with

measured Betti curves (P < 0.003;Fig. 5A and table S5). The first Betti curve could not be

matched to the data in terms of its area for any dimensionality of the Euclidean space (Fig. 5A,

inset). Second, we found that the full hyperbolic space of varying dimensions could match the

area of the first Betti curve. However, only hyperbolic spaces with small number of dimensions

could also simultaneously match the area of the second Betti curve (Fig. 5B, inset). The 3D

hyperbolic space produced the best fit, with larger dimensions yielding increasing deviations.

Hyperbolic spaces with dimensions nine and above could be excluded with P < 0.034. The

third Betti curve was essentially zero and is not shown here. One may notice that the first and

second Betti curves were not as regular as in the case of odorants and contained multiple peaks.

It turns out that the biphasic nature of the Betti curve could be explained by the nonuniform

distribution of points across the two angles (Fig. 5C). Unlike in the case of olfactory stimulus

spaces that are sampled approximately uniformly, here, the distribution of points obtained

using MDS is not uniform and clusters in one-half of the space. Sampling points from this

embedding yields biphasic Betti curves that match those derived from perceptual data (Fig. 5D).
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Specifically, P values for L1 differences between Betti curves derived from data and MDS fits

were P = 0.32 (hyperbolic, Betti 1), P = 0.20 (hyperbolic, Betti 2), P = 0 (Euclidean, Betti

1), and P = 0.06(Euclidean, Betti 2) (cf. inset in Fig. 5D). The MDS distances also better

correlated with perceptual distances when we carried out MDS in the hyperbolic space compared

to Euclidean space (Fig. S6).

1.4 Discussion

Our results highlight the importance of hyperbolic curved geometry for understanding

how natural odors are represented in the nervous system. Overall, we find that both the statistics

of natural odor mixtures and human odor perception can be mapped onto hyperbolic spaces. In the

natural environment, hierarchical biochemical networks produce odor components. Hierarchical

networks can often be approximated by trees and, therefore, by hyperbolic spaces ([7][21]). We

find that most natural odor components fall near the boundary of the observed hyperbolic space,

corresponding to leaves of the trees (Fig. 1). At the perceptual level, we also found hyperbolic

organization. However, in this case, the odors selected for the Dravnieks database did not sample

the human perceptual space uniformly (Fig. 5). Hyperbolic perceptual organization is likely

to be general across different sensory modalities. There are two reasons for this. First, neural

networks that give rise to perception are hierarchically organized, and as we have seen in Fig. 1,

this can lead to hyperbolic geometry. Second, individual neurons have limited response ranges.

Because of response saturation, small changes in neural responses near their limit correspond

to exponentially large changes in the input values. This compressive mapping [22] is similar

to the Poincare disk representation of the hyperbolic space [7]. There is evidence that visual,

haptic, and auditory perceptual spaces are all hyperbolic ([23][24][25][26]). Adding olfactory

perception to this list could help explain why humans can map odors to auditory pitch ([27][28])

and to colors [29]. Noteworthy is the low dimensionality of both the physical odor space and

perceptual odor spaces. In both cases, the curved space contains approximately three dimensions
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despite the fact that the data vary in > 50 dimensions associated with different samples of

natural odor mixtures and according > 100 perceptual descriptors. The low dimensionality of

the environmental odor space could be a general property of natural odors because it occurred

for odors as diverse as fruit and mammalian urine odors. Note that all four natural odor data sets

were described by the same 3D hyperbolic space with exactly the same radius (equivalent to

curvature of the space). This property could make it easier to represent data from different data

sets within the same space. For example, odors from strawberry and tomato could be represented

jointly within a single 3D space (Fig. 4). We could not combine data from other data sets because,

for example, there were no overlapping components between fruit odors and mouse urine data

sets. It is possible that representing all possible natural odors will increase the dimensionality

of the overall space. Another possibility is that introducing odors from different sources will

“fill in” the inner part of the hyperbolic space. The natural odors considered here mapped onto a

surface of a hyperbolic space. Odors produced by biochemical pathways of different complexity

are likely to map to surfaces with a different radius, filling in the space. This possibility is

especially interesting because it would provide a link to the filled 3D hyperbolic space that we

find for perceptual data, which was obtained using diverse classes of odors. At the same time,

the perceptual odor mapping reveals that odors tested so far concentrate on one side of the space

(Fig. 5) ([9][19]), whereas natural odor components cover their respective space rather uniformly

(Fig. 3). These analyses thus suggest perceptual coordinates that are yet to be explored. The

match in dimensionality between the environmental and perceptual spaces would not have been

expected a priori. The matching dimensionality between the input and perceptual spaces can

help avoid nonlinear distortions that would necessarily arise when mapping two nonlinear spaces

of different dimensionality. These distortions are known to exist in vision where we perceive

distances in a compressed way: The moon appears disproportionately closer to us than would

be based on the actual Euclidean distance ([23][24]). We also plot equidistant and parallel lines

differently, which is one of the key signatures of the hyperbolic space. Similar distortions arise

in the haptic space ([25]). The matching geometry between the input and perceptual spaces
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in olfaction may therefore serve to minimize these distortions in odor perception. Overall, the

ability of the perceptual system to resolve points in the low-dimensional odor space would

depend on the number and tuning properties of sensory receptors ([30][31][32][33][34]).

1.5 Materials and Methods

A clique topology method for finding geometric spaces consistent with
correlations in the data

We followed procedures from [11] to generate Betti curves for samples taken from spaces

with different geometries. The method effectively converts the correlation matrix to its rank-

ordered version. This renders the algorithm’s results invariant under monotonic transformation

of values, for example, due to nonlinearities introduced at the measurement stage. However,

this property can also be used to assign a distance between points based on the correlation in

the activity of two units in a network [11] or, as in our case, between two odors across different

samples. All monotonic functions will yield the same result. We chose Di j =−|Ci j|, where Di j is

the assigned distance between odors, and |Ci j| is the absolute value of the correlation coefficient

of odor concentrations among a set of points. This definition ensures that stronger correlations

(in absolute value) corresponded to tighter connections and smaller geometric distances, as in

[35]. The first three Betti curves turn out to be quite sensitive measures of the distance matrices

and can be used to find underlying geometries consistent with the data [11]. In addition to

random spaces, we screened two kinds of geometric structures: Euclidean spaces of different

dimensionality and hyperbolic space [we used the hyperbolic ball model [7] with curvature z =

1] with different parameters. In each space, we uniformly sampled points (the same number as

the number of odors in each of the data sets) based on the metric of the space. In a d-dimensional

Euclidean space, the points were uniformly distributed in a d-cube with Euclidean distance. For

a d-dimensional hyperbolic ball model, we used partial space by setting the minimal radius

Rmin and maximal radius Rmax for the ball. This choice of the model was motivated by the fact
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that hyperbolic space approximates hierarchical tree-like networks [7], with odors reflecting

leaves—the neighborhood of the surface. We sampled angular coordinates of points uniformly

and sampled radial coordinate r within [Rmin,Rmax] following the distribution:

ρ(r)∼ sinhd−1r (S1)

The distance between two points was derived from hyperbolic law of cosines:

coshζ x = cosh(ζ r)cosh(ζ r′)− sinh(ζ r)sinh(ζ r′)cos∆θ (S2)

where ζ is the curvature set as 1 in our model, r and r′ are the radial distances of the two

points, and ∆θ is the angle between them. Considering that noise may exist in the monotonous

correspondence between the underlying topological distance and correlation strength of odors

and that the amount of noise may differ between data sets due to differences in sample collection

procedures, we added multiplicative Gaussian noise to the distance matrices for both Euclidean

model and hyperbolic model before plotting the Betti curves. Together, we have the topological

distance matrices of the sampled points in geometric spaces:

D = Dgeo · (1+ ε ·N(0,1)) (S3)

where Dgeo is the geometric distances, and ε is the noise level. In summary, the space

geometry affects Betti curves through the distribution of sampled point density (Eq. S1) and

distance measures (Eq. S2). Multiplicative noise (Eq. S3) also affects Betti curves. The optimal

parameter values for the 3D hyperbolic model were Rmax = 7 and Rmin = 0.9Rmax for all four

odor data sets, while optimal noise values were ε = 0.045 (mouse), ε = 0.050 (strawberry),

ε = 0.050 (blueberry), and ε = 0.040 (tomato). The optimized parameters for the Euclidean

space were as follows: mouse data set, dimension d = 8, ε = 0.05; strawberry data set, dimension

d = 10, ε = 0.05; blueberry data set, dimension d = 10, ε = 0.09; tomato data set, dimension
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d = 8; ε = 0.09. For the perceptual dataset ([20])) (127 mono-molecular odors, 146 descriptions

for each), the topological pairwise distances of odors k and n was defined as ∑
146
i=1(v

k
i −vn

i ) where

vk
i denote human descriptions for kth odor. We use the differences between descriptions across

odors, because in this case the absolute value of the descriptor matter, unlike in the case of odors

where correlations were a more appropriate measure. When fitting the data using geometric

models, no noise was added to distances in models. We also tested the sensitivity of the Betti

curves to noise in pairwise perceptual distances between odors. This was done by computing

perceptual distances based on randomly selected subset of 120 out of the total 146 descriptors.

The variability in the resultant distance values was proportional to the mean distance (Fig. S7).

Importantly, the relative error in the integrated Betti values across these samples was the same

as the relative error of the distances themselves (Fig. S7, inset on the right). Thus, although

the Betti curve construction evaluates data structure globally, it is not driven by variability in

larger distances. In the case of the perceptual dataset, we found that the full hyperbolic space

better described the data rather than a shell, and therefore the minimal radius was set to zero. We

optimized maximal radius of the hyperbolic model, which is a measure of its curvature, to fit the

integrated Betti value of the first Betti curve. The optimal Rmax were as follows: 1.6 (3D), 1.9

(4D), 1.8 (5D), 1.7 (6D), 1.9 (8D), and 3.0 (9D). We used these values to compute the second

Betti curve and determine how well it could account for the second integrated Betti value. All

reported P values for comparison with experimentally gener- ated Betti curves were obtained by

creating, for each candidate geometry, 300 statistically equivalent models. Points for each model

were selected randomly according to the density specific to that geometry (uniformly within the

unit cube for Euclidean spaces and according to Eq. S1 for hyperbolic spaces). The number of

points was matched to the number of points in the corresponding experimental data set. On the

basis of this simulated point distribution, we computed 300 different Betti curves. These curves

were then used to generate a distribution of integrated Betti values or compute the L1 distance of

these curves from the mean Betti curve of this model. The reported P values reflect two- tailed

percentiles for where experimental Betti curves fall within the model-generated distributions.
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We report P values as < 0.003 when none of the samples generated values further from the mean

than the observed data point.

Non-metric MDS embedding of odors on the surface of a 3D hyperbolic
sphere

The non-metric MDS algorithm embeds a set of points within a pre-specified space while

attempting to preserve rank-ordered distances be- tween points. We modified the Euclidean-

based, non-metric MDS algorithm in MATLAB version 2017a by replacing the Euclidean

distance with hyperbolic distance in Eq. S2. The initial positions of points were uniformly

sampled in the optimal 3D hyperbolic space determined in Fig. 1. The radial coordinates were

fixed because their range was small and points were approximately positioned on the surface

of a sphere. The algorithm updated the angular coordinates to minimize the mis- match in the

rank order of distances. The iterations ended when this error fell below a threshold of 0.001.

Because the MDS algorithm can return the arbitrary rotation of the space, in Fig. 3, we used

the Procrustes algorithm to align the positions of odors between the strawberry and tomato data

sets, using the strawberry data set that had the most odors as an anchor. The Procrustes process

was carried out through the Procrustes function in MATLAB, and the scale component and

translation component were set to 1 and 0, respectively.

1.6 SUPPLEMENTARY MATERIALS
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Figure S1. No indications of hyperbolic geometry in shuffled odor data sets. Betti curves from
shuffled blueberry data can be accounted for by random sampling and is not consistent with
the Hyperbolic or Euclidean models. The correlation matrix between odors was computed by
taking measurements of odor pairs from separate, randomly selected fruit samples. This removes
correlations in the fluctuations of component concentrations between odors. Computing Betti
curves from such shuffled correlation matrices produces Betti curves that are fully consistent
with random matrices (P = 0.4,0.7,0.9 for Betti curves one, two and three, respectively) and are
not consistent (P < 0.02) with either Euclidean or hyperbolic spaces with small noise amounts
as necessary to account for real (unshuffled) data.

Table S1. Statistical tests (P values) for consistency with hyperbolic models based on integrated
Betti values.
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Figure S2. Alternative ways of evaluating differences between Betti curves also support hyper-
bolic geometry of natural odor spaces. Error bar plots of Betti curves statistics of both geometric
models using L1 distances (A) or logarithm of concentrations and integrated Betti values (B).
The same geometric parameters were used as in Fig. 2. (A) The gray triangles showed the
L1 distance between Betti curves of data and the mean of 300 geometric models, the error bar
plots showed the statistics of the L1 distances between Betti curves of all of the 300 models and
model mean. The error bar showed the 95% confidence intervals (2.5%∼ 97.5%). (B) Use the
logarithms of odors concentrations to generate Betti curves. The gray triangles and colored error
bar plots show the statistics of integrated Betti values in both geometric models.
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Figure S3. Error bar plots of Betti curves statistics for the hyperbolic model of different
dimensions. The parameters were determined by fitting the first integrated Betti value of the
models to data (first columns), then the same parameters were used to evaluate the correspondence
with the second and third Betti curves. (A) Error bar plots of integrated Betti values of data (gray
triangles) and 300 model repeats (colored bars) with dimension ranging from 3D to 100D. (B)
Error bar plots of L1 difference of Betti curves between data and model mean (gray triangles),
and the distances between all 300 models and model mean (colored bars). The parameters were
the same as in Fig. 2 and Fig. S2.
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Figure S4. Test of the non-metric multidimensional scaling algorithm in the hyperbolic space on
synthetic data. (A) 120 sampling points were generated near the surface of 3D hyperbolic sphere
forming four clusters. The radii were distributed uniformly within 0.9 of the sphere radius, the
same distribution we used to model natural odor mixtures. Inset in the top right shows the matrix
of pairwise distances that indicates these four clusters. (B) Non-metric multidimensional scaling
can be used to embed points on the surface of a 3D hyperbolic sphere. The embedded points
also form four clusters, albeit at different orientation in the space. The distance matrix (inset) is
also reproduced.
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Figure S5. Odors within the identified space do not cluster by functional group. The odors
shown are from the strawberry data set. Circles and squares show the front and back side of the
sphere, respectively.
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Figure S7. Analysis of sensitivity of integrated Betti value to noise in the input distances. (A)
The error bars show 95% confidence intervals for the distributions of Betti value computed based
on 300 different partial samples of perceptual descriptors (120 out of 146 perceptual descriptors).
Odor distances are rank ordered based on the medium distance across 300 samples. The blue
line near the center shows the medium pairwise distances. (B) Pairwise distances normalized by
their medium. The error bar plots show the 95% percent confidence intervals, blue line is the
medium. Variability in normalized distances no longer depends on distance and matches the
variability in the first integrated Betti value normalized by its medium (inset).
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Table S2. Statistical tests (P values) for consistency with hyperbolic models based on L1
distances between Betti curves.

Table S3. Statistical tests (P values) for evaluating consistency of experimental Betti curves with
respect to 3D hyperbolic model or optimal optimal Euclidean model.
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Table S4. Statistical tests (P values) for evaluating consistency of Betti curves computed based
on logarithm of odor concentrations with respect to hyperbolic model. Consistency evaluated
based on integrated Betti values

Table S5. P values of hyperbolic and Euclidean model using integrated Betti values for perceptual
data set.
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Chapter 1, in full, is a reprint of the material as it appears in Hyperbolic geometry of the

olfactory space. Science advances, 2018; Yuansheng Zhou, Brian H Smith, Tatyana O Sharpee.

The dissertation author was the primary investigator and author of this paper.

28



Chapter 2

Hyperbolic geometry of gene expression

2.1 Abstract

Patterns of gene expressions play a key role in determining cell state. Although cor-

relations in gene expressions have been well documented, most of the current methods treat

them as independent variables. One way to take into account gene correlations is to find a

low-dimensional curved geometry that describes variation in the data. Here we develop such

a method and find that gene expression across multiple cell types exhibit a low dimensional

hyperbolic structure. When more genes are taken into account, hyperbolic effects become

stronger but representation remains low-dimensional. The size of the hyperbolic map, which

indicates the hierarchical depth of the data, was the largest for human cells, the smallest for

mouse embryonic cells and intermediate in differentiated cells from different mouse organs.

We also describe how hyperbolic metric can be incorporated into the t-SNE method to lead to

improved visualizations compared to leading methods.

2.2 Introduction

One of the great challenges of modern biology is to understand how the genotype of an

organism impacts its phenotype, such as disease risk. The difficulty of this problem stems from

the complexity of this relationship where thousands of genes can affect a phenotype of interest

through nonlinear interactions [36, 37, 38]. In the past 15 years, genome-wide associations
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studies have demonstrated that a range of traits, including those that related to metabolic and

mental health disorders, are potentially linked to thousands of genes, with each gene explaining

only a small fraction of the expected heritability [37]. At the same time, correlations between

genes are widespread [39]. These observations raise the possibility that genetic variation and

their expression can be described by a low-dimensional geometry. Identifying this geometry

would make it easier to find relevant gene combinations and how they impact a given trait.

Traditional approaches to finding low-dimensional spaces, such as the principal com-

ponent analysis (PCA), assume that the space is “flat” (i.e. has zero curvature) and evaluate

distances between points according to Euclidean metric. Recently hyperbolic spaces have

attracted a lot of attention both for the analysis of biological data [40, 41, 42] as well as in

computer science [43, 44, 45, 46, 47, 48, 49]. The reason for this interest is that hyperbolic

metric approximates the exponential expansion of possible states of the system described by a

hierarchical tree-like process [7]. Hierarchical representations, such as phylogenetic trees and

clustering clades have long been used to characterize differences between cells [50], proteins [51],

the activity of metabolic networks within cells [52, 53] and human brain functional networks

[54]. This suggests that hyperbolic metric should be considered as one of the possibilities when

searching for the low-dimensional geometry in biological data. At the same time, any hyperbolic

geometry (which has negative curvature) can locally be approximated using Euclidean geometry

(which has zero curvature). Therefore, in this work we focus on comparing the signatures of

Euclidean and hyperbolic geometry. For completeness, we also include results from the spherical

geometry that has positive curvature and represents the last of three possible geometries with

constant curvature.

In this work we pursue two goals. The first goal is to develop a quantitative test for

distinguishing the curvature of the underlying low-dimensional geometry. We show that this

can be achieved by performing non-metric multi-dimensional scaling using both Euclidean and

hyperbolic metric and comparing the results. Our second goal is to develop visualization tools

for data that exhibit a low-dimensional hyperbolic geometry. Many of the current state-of-the-art
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visualization tools, such as k-means clustering [55], local linear embedding [56], t-distributed

Stochastic Neighbor Embedding (t-SNE) [57, 58], and Uniform Manifold Approximation and

Projection (UMAP) [59], all use Euclidean metric. We propose a method for incorporating

hyperbolic metric into the t-SNE method and show that this leads to improved visualization

across a range of datasets.

To demonstrate the utility of both the diagnostic method and the hyperbolic t-SNE (h-

SNE), we apply these methods to a range of gene expression data sets from mouse and human.

These datasets uniformly show that gene expression data across different cell types exhibits

a low-dimensional hyperbolic geometry. The curvature of this space, which is related to the

branching ratio of the corresponding tree-like process, was systematically higher in differentiated

cell types compared to embryonic cells, and took even larger values for brain cells. These results

demonstrate that gene expression data can be effectively described using a small number of

coordinates under hyperbolic metric. Visualizations using hyperbolic metric consistently showed

more accurate representations, both in terms of local and large-scale structure, including more

consistent estimates of developmental states in datasets where pseudo-time trajectories could be

constructed [41].

2.3 Results

2.3.1 Non-metric MDS outperforms metric-MDS in geometry detection

Multi-dimensional scaling (MDS) has been widely used to embed a set of data points

into a geometric space in a way that attempts to best preserve the distances between points

in the original space. Metric MDS tries to make the embedding distances proportional to the

input distances, while non-metric MDS preserves the only ordinal values, allowing a monotonic

nonlinear transformation between the distances. Both metric and non-metric MDS in high

dimensional Euclidean space have been well studied during the past few decades. However, the

MDS in the hyperbolic space has not been fully developed yet. Several metric MDS algorithms
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Figure 6. Shepard diagrams for metric MDS and non-metric MDS applied to synthetic
geometric data with either Euclidean or hyperbolic native geometry. These simulations
were produced by (1) randomly sampling 100 points in 5D Euclidean (A,C) and hyperbolic space
(B,D), (2) computing geometric distances using the corresponding distance metrics, and (3) using
either non-metric MDS (A-B) or metric MDS (C-D) to embed the points to 5D Euclidean and
hyperbolic space. The radius of the hyperbolic space (measured in units of inverse curvature) was
3.0 for both the sampling and embedding spaces. The convexity of Shepard diagrams reflects the
difference in geometry between the embedding and native spaces, it is positive when hyperbolic
data is embedded in Euclidean space, and negative when Euclidean data is embedded into the
hyperbolic space. These differences are less distinct in the case of metric MDS (bottom row).
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have been proposed recently for embedding data into hyperbolic space, offering advantages over

Euclidean visualizations in terms of distance preservation, space capacity, trajectory inference

and unseen data prediction [60, 41, 43, 44, 45, 46, 47, 48, 49, 42], etc. However, we find that

metric MDS does not correctly distinguish between Euclidean and hyperbolic geometry of input

data, but non-metric MDS does (Figure 6). The reason for this is that non-metric MDS matches

the ranking order instead of exact values of the data distances. The resulting nonlinear distortions

in embedding distances can be used as indicators for a geometry mismatch between data and

embedding points. When using non-metric MDS, we illustrate that as soon as there is a mismatch

between native and embedding geometry, a nonlinear distortion appears in the scatter plots of

embedding distances versus input data distances (Figure 6A-B). These scatter plots are known as

Shepard diagrams [61]. When Euclidean data is embedded into a hyperbolic space, the Shepard

diagram has negative convexity (Figure 6A). When hyperbolic data is embedded into Euclidean

space, the Shepard diagram has a positive convexity (Figure 6B). Thus, the convexity of the

Shepard diagram can indicate the difference in geometric properties between the embedding and

native spaces, and in particular could indicate the difference in curvature of geometry. When

using the metric MDS, the Shepard diagram shows increased spread (Figure 6D) but does not

yield a nonlinear relationship upon embedding Euclidean data to hyperbolic space (Figure 6C).

The reason is that Euclidean distances can be fully embedded into the faster-expanding hyperbolic

space masking the distortion of distances, and this does not happen in the non-metric MDS [61].

In what follows we apply non-metric MDS to synthetic and several real gene expression datasets

to detect their hidden geometry, and we refer non-metric MDS as simply MDS for brevity.

2.3.2 Synthetic geometric data

When cells are characterized according to the expression of thousands of genes, the

number of genes represents the nominal dimension of the representation space. However, the real

dimension of the gene expression space might be much lower. Furthermore, the true geometry

of the hidden space is not necessarily Euclidean. Therefore, in this section we analyze the
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Figure 7. Illustration of the diagnostic approach base don NDS for geometry detection on
synthetic data. (A) Randomly sampled 100 points from 5D Euclidean space are embedded into
5, 10, 50 and 100 dimensional Euclidean spaces (left), followed by subsequent embeddings into
5D Euclidean space (middle) or hyperbolic space (right). The solid lines represent the fits using
Equation (S1), the Shepard diagram curvatures κ are shown at the top of each panel. (B) Same
analysis for 100 sampled points from a 5D hyperbolic space with Rdata = 3.0. The hyperbolic
radii used in HMDS are Rmodel = 3.0 in both (A) and (B).
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signatures of low dimensional geometry of constant curvature (either Euclidean, spherical, or

hyperbolic) in the situation where each data point is described with respect to large number of

variables. In the synthetic examples below, the points are first sampled from a low dimensional

geometry and then embedded into a high dimensional Euclidean space. This step is included

to mimic analysis of experimental data, where each data point is evaluated according to a large

number of measurements. After this, the data points are embedded into spaces of different

curvatures to determine indicators through which the properties of the original low-dimensional

space can become apparent. In the examples below, we focus primarily on hyperbolic and

Euclidean geometries, because hyperbolic geometry describes hierarchically organized data,

whereas Euclidean metric is often the only feasible geometric metric for computing distances

of high dimensional vectors. Comparison with the results for spherical spaces is provided in

Figure S1.

First, we analyze the case where data has a 5D Euclidean underlying geometry. To

simulate this case we randomly sample 100 points from a 5D Euclidean space, and use Euclidean

MDS (EMDS) to embed the points to 5D, 10D, 50D and 100D space respectively (Figure 7A,

left). This step emulates the representation of real data where each data point is described by a

large number of measurements (e.g. transcriptome) according to which each cell is characterized,

and the distances between points are measured according to a Euclidean metric. The embeddings

with different number of dimensions correspond to cases where measurements are taken with

respect to different number of genes. As expected, the distances of synthetic 5D Euclidean

points can be preserved without distortion when embedding data to Euclidean spaces of higher

dimensions. This is evidenced by the linearity of Shepard diagrams in left column of Figure 7A.

Next, we apply EMDS (Figure 7A, middle) and hyperbolic MDS (HMDS) (Figure 7A, right)

to the points in the Euclidean representation space, as we did in Figure 6A-B. As one can see

in Figure 7A, Euclidean embeddings of these data do not generate distortions in the Shepard

diagrams but hyperbolic embeddings yield Shepard diagrams with negative convexity that is

largely independent of embedding dimensions. This indicates that the data has an underlying
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Euclidean geometry.

To quantitatively characterize Shepard diagrams we fit them using:

y = a · (x− x0)
κ+1, (S1)

where x and y represent distances of points before and after embedding, respectively; parameter

x0 = min(x)−ε is the distance offset representing the difference caused by noise from biological

variations or experimental measurements, with a small ε introduced to avoid zero input values in

the fitting. The parameter κ is key because it characterizes the convexity of Shepard diagrams.

The zero κ = 0 indicates pure linearity and an exact match between the model and data geometries,

while κ 6= 0 indicates convexity and a mismatch between the two geometries. So the sign of κ can

indicate the difference in curvature between two spaces. In the current examples, κ = 0 in EMDS

and κ = −0.5 in HMDS embedding with Rmodel = 3, with no changes as the representation

dimension (Figure 7A). These values describe the signatures of data that has intrinsic Euclidean

geometry (Figure 6A).

The situation is qualitatively different for the case where the data has a hidden hyperbolic

geometry, cf. Figure 7B. Here we sample 100 points from a 5D hyperbolic space with Rdata = 3.0.

The initial embedding of these points into a low-dimensional Euclidean space produces distor-

tions, indicating that using Euclidean metric to evaluate hyperbolic distances between points will

not be accurate when using the same dimension for the embedding space. However, Euclidean

embeddings into larger dimensional spaces can produce accurate distance representations. For

example, in the left column of Figure 7B , accurate distance representation is obtained starting

with ∼ 50 embedding dimensions. The reason for this is that in a large dimensional Euclidean

space points could be distributed along hyperbolic manifolds, approximating the true hyperbolic

metric. We next apply MDS to examine the geometry of the representations by embedding them

into a low dimensional Euclidean (middle column) or hyperbolic space (right column). With

the increase of representation dimension, the convexity parameter κ of the Shepard diagram
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increases from approximately zero value (κ = −0.06) to κ = 1.05 in EMDS and increases

from κ = −0.58 to an approximately zero value (κ = −0.04) in HMDS (Figure 7B). These

signatures (Figure 6B) indicate that hyperbolic property is more fully preserved when points

are characterized with respect to more dimensions. These analyses of synthetic data illustrate

how a combination of EMDS and HMDS can be used to elucidate the intrinsic geometry starting

with the initial Euclidean representation. This method can also be used to detect spherical

geometry which has positive curvature. Synthetic results show that spherical geometry has

opposite property as hyperbolic geometry: spherical is to Euclidean looks like what Euclidean is

to hyperbolic in Shepard diagram (Figure S1).

2.3.3 Geometry of gene expression data

We now apply this method to analyze the intrinsic geometry of gene expression data. We

first analyze a discrete gene expression data from Lukk et al. [62]. In the paper, they integrated

microarray data from 5372 human samples representing 369 different cell and tissue types,

disease states and cell lines, which has a complex global structure. They constructed a global

gene expression map by performing principal component analysis and found that the first two

principal axes described variation in biological variables corresponding to hematopoietic and

malignancy properties. However, the presence and properties of the underlying low-dimensional

geometry and how the samples are organized in the space remain to be investigated. Several

previous studies showed that gene expressixton was stochastic both at the single cell level and

the population level [63, 64, 65], and the expression profiles of samples within the same cluster

were dominated by intrinsic noise [63]. This would imply either Euclidean geometry, at least

locally, or a lack of geometric structure altogether. On a global scale, biological systems usually

show a hierarchical structure which would imply hyperbolic geometry [52, 54]. Therefore, we

separately probe the geometry of gene expression data at the local and global scales. To probe

local geometry we apply k-means (k = 50) method to cluster the whole data and select 100

samples from a single cluster randomly. Similarly to Figure 7, we use increasing subsets of
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Figure 8. Human gene expression has locally Euclidean and globally hyperbolic hidden
geometry. (A) MDS embedding results for samples taken from a single k-means cluster, with
distances evaluated by Euclidean metric with respect to increasing number of probes. Left and
right columns show results of embeddings into 5D Euclidean and hyperbolic space, respectively.
(B) Same analysis for samples taken randomly from the whole data. The hyperbolic space used
in HMDS had radius Rmodel = 2.6 in both (A) and (B).
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genes (from 20 probes to all the 22283 probes) to represent samples and then perform EMDS

and HMDS embeddings (Rmodel = 2.6) for geometry detection (Figure 8A). Increasing the

number of probes with respect to which samples were characterized corresponds to increasing

the dimensionality of the initial Euclidean embedding as in Figure 7. We find that this does not

significantly change the convexiy of the Shepard diagram in both EMDS and HMDS (κ ≈ 0 in

EMDS and κ ≤−0.4 in HMDS). These results match the fitting in Figure 7A, and indicate that

the samples taken from the same cluster have Euclidean structure, even when all the probes are

used (Figure 8A). Additional analyses show that the Euclidean structure is indeed caused by the

stochastic Gaussian expressions of genes among the samples within a cluster (Figure S2).

Variations in gene expression across samples taken from different clusters, which rep-

resent different cell types, tissues and disease states, show more complicated distributions

(Figure S2) and have attracted a great deal of attention [66]. To study the geometric structure of

expression space globally, we selected 100 samples randomly from the whole population instead

of local clusters, and performed the same embeddings as in Figure 8A. Surprisingly we find

that, as the number of probes increases, the convexity of the Shepard diagram increases from

being approximately zero κ =−0.07 to κ = 0.64 in EMDS and from κ =−0.42 to κ = 0.05 in

HMDS (Figure 8B). These fitting results match the signatures expected for hyperbolic geometry

in Figure 7B. It shows that the gene expression space has hyperbolic structure that becomes

increasingly more apparent upon including a moderately large number of genes (> 1000 probes)

in the measurements.

To test robustness of this conclusion and make full use of the whole data, we repeat the

sampling process 300 times both for the local sampling where samples are taken from different

single clusters, and for the global sampling where samples are broadly taken from the whole data.

The samples are taken with replacement. As expected, for samples taken from local clusters, the

median values of convexity κ ≈ 0 in EMDS and κ < 0 in HMDS (Figure 9A-B) even when all

genes are used. These measurements indicate Euclidean structure. For samples taken across the

whole population, with increasing number of probes, the median of κ increases to be positive in
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Figure 9. Statistics of convexity parameter of Shepard diagrams across human gene ex-
pression data. (A-B) Violin plots show the convexity statistics in 5D EMDS (A) and 5D HMDS
(B) across 300 repeated sampling from different k-means clusters, as a function of the number of
probes. 100 data points are taken in each sampling. (C-D) Same analysis for samples taken with
replacement from the whole data. The black dashed lines show κ = 0 and signify Euclidean
geometry in EMDS (A and C) or hyperbolic geometry with Rdata = Rmodel = 2.6 in 5D HMDS
(B and D). In each plot, the width of the shape shows the probability density of different values;
the central line, the left edge and right edge of the box within the shape represent the median, the
75th and 25th percentiles respectively. The line within the shape extends to the most extreme
non-outlier points, the outliers are represented by dots.

EMDS and close to zero in HMDS (Figure 9C-D); these signatures indicate that samples across

population have hyperbolic structure when represented by a moderately large number of genes

(≥ 1000 probes).

2.3.4 The size of the hyperbolic gene expression map varies systemati-
cally across cell types

The HMDS method can also be used to estimate the curvature of the underlying low-

dimensional space or equivalently the size of the hyperbolic map measured in units of inverse

curvature (Figure S3). The hyperbolic radius Rdata can be used as an indication of the hierarchical

depth of the corresponding tree structure [7]. Above we have shown that global human gene

expression data can be embedded without distortion to 5D hyperbolic space with Rmodel = 2.6.

This value was obtained by systematically screening across different R values to find those
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Figure 10. Radius of the hyperbolic space of gene expression varies systematically across
cell types. (A-E) The violin plots of convexity of Shepard diagrams κ as a function of the radius
of the embedding space Rmodel. (A) microarray data from human samples in Lukk et al. [62]
dataset. (B-E) Microwell-seq data [67] for brain cells (B), kidney (C), lung (D) and embryonic
stem cells (E). Solid lines show the linear regression; their y-intercepts yield estimates of the
radius of the hyperbolic map for each datasets (see printed values with ±2 standard deviation
from 300 sampling). The HMDS embedding dimension is D = 5 in (A-E). (F) Dependence
of the radius of the hyperbolic space as a function of the embedding dimension for datasets in
panels (A-E) on human cells (HS), mouse brain (MB), mouse kidney (MK), mouse lung (ML),
and mouse embryonic cells (ME). Rdata = 0 (D≥ 8 in ME) means that κ remains to be negative
regardless of Rmodel.
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best matching Rdata as indicated by the zero convexity parameter κ obtained by fitting the

corresponding Shepard diagram. In Figure 10A we show that the convexity κ decreases with

Rmodel and crosses 0 at Rmodel ≈ 2.6. Therefore, we conclude that Rdata = 2.6 in 5D hyperbolic

representation. Next, we examine several other gene expression datasets and determine Rdata

for them. Han et al. [67] performed Microwell-seq of cells from multiple mouse organs and

generated mouse cell atlas map using the t-SNE method. Here we re-analyze this data to find if

it has a nonlinear low-dimensional structure. The microwell-seq data in this dataset are much

sparser than the microarray data. Therefore, we first check whether changes in sparseness of

measurement data could affect the geometry detection and its parameters. To this end, we

re-analyze synthetic data where at the stage of Euclidean high-dimensional embedding, all values

are re-set to zero if their values are in the smallest 5%. Even though intermediate embeddings

into larger dimensional space have more values that are set to zero, this does not change the

estimated convexity values for low-dimensional embeddings using either Euclidean or hyperbolic

metric, and the tests correctly identify the presence of a low-dimensional hyperbolic geometry

(Figure S4).

With these checks at hand, we proceeded to analyze the microwell-seq data from different

mouse organs. Following previous studies [68], the data was pre-processed using the Seurat

algorithm [69] and projected onto top 50 principle components (see Methods). Next, we applied

5D HMDS to the processed data from four of the mouse organs – brain, kidney, lung and

embryonic stem cells. We find that all these data have an underlying hyperbolic structure

(Figure 10B-E). It is worth noting that the hyperbolic radius necessary to describe these data is

smaller than that for human samples. Among the four mouse cell types, the largest radius is found

for the mouse brain cells with Rbrain = 2.03±0.02 (Figure 10B), followed by mouse kidney and

lung that have similar radii Rdata = 1.78±0.02 and 1.77±0.02, respectively (Figure 10B-C).

Finally, the smallest radius is observed for mouse embryonic stem cells with Rdata = 1.15±0.04

(Figure 10E). Because hyperbolic radius indicates the depth of the underlying hierarchical tree,

these findings indicate an interesting progression in complexity with embryonic cells exhibiting
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the smallest degree of hierarchical organization and brain cells exhibiting the largest degree.

We note that the HMDS methods produce estimates of the hyperbolic radius that de-

pend on the embedding dimension D. This happens because the density of points increases

exponentially with exponent (D−1)R according to Equation (S3). Results in Figure 10A-E are

obtained for a 5D hyperbolic space. In panel F, we show how the estimates of Rdata decrease with

embedding dimension in different data sets (Figure 10F). Importantly, the relative differences in

Rdata across cell types are maintained across a range of different embedding dimensions. The

hyperbolic maps continue to have the smallest radius for mouse embryonic cells, larger values

for mouse differentiated cells, and yet larger values for mouse brain and human cells. We also

find that minimal embedding dimension for all of these datasets is D = 3, and smaller dimension

fails to properly embed the data.

We also tested robustness of the HMDS method to noise in the data. Towards that goal, we

add varying amounts of the multiplicative Gaussian noise to the Lukk et al. data [62] and fit the

resulting Shepard diagrams. The fits produce stable convexity estimates for Shepard’s diagrams

over a broad range of noise values (Figure S5A-E). This robustness is observed up to very large

noise values with ε = 0.5 when noise completely destroys the data structure(Figure S5F). The

reason for this robustness is that noise does not systematically shift the shape of the Shepard

diagram, yielding the same fitting exponent under varying noise amounts.

2.3.5 Hyperbolic low dimensional visualization of gene expression data

While MDS embedding can be used to detect intrinsic geometry, it is not ideal for

low dimensional visualization. One of the primary reasons that is common to all MDS-based

algorithms is that they are not designed to attract similar points together like t-SNE. Consequently,

MDS-based methods achieve poor clustering results. These limitations were solved by non-linear

methods like t-SNE and UMAP, which however, are only performed in the Euclidean space. As a

result, existing visualization methods may cause distortion of global structure in the data that has

a global hyperbolic structure. Here we aim to adapt the t-SNE algorithm to work in hyperbolic
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Figure 11. Comparison of two-dimensional visualizations of human expression data [62]
using g-SNE, h-SNE, PCA and UMAP. (A) Shepard diagrams of the four different mappings.
The Pearson correlation coefficients of pairwise distances plots are shown at the top of each panel.
(B) Quantification of local and global structure preservation using Pearson correlation coefficient
of Shepard diagram (y-axis) and Silhouette score (x-axis), respectively for five algorithms
(including t-SNE). The Silhouette score is defined as the geometric mean of the three scores
obtained by using six hematopoietic labels, four malignancy labels and fifteen subtype labels
respectively (see Methods). (C) In h-SNE, the data points are visualized within a 2D Poincaré
disk with order-7 triangular tiling, which represents a compressed version of a hyperbolic space.
In g-SNE, PCA and UMAP, the points are visualized in 2D Euclidean plane. Four cell types are
highlighted with color: nervous system neoplasm (cyan), breast cancer (magenta), solid tissue
neoplasm cell line (green) and non-neoplastic cell line (yellow). The rest of data points are
shown in gray to avoid confusion between multiple colors, see Figure S6 for colors across all cell
types. (D) The embedding samples are colored using subtractive CMY color mode according
to normalized expressions of three marker genes NCAM1 (nervous system neoplasm), ASPN
(breast cancer) and PLOD2 (non-neoplastic cell line). See also Figure S6.
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space. To achieve this we use hyperbolic metric to evaluate global distances in the data while

keeping the local clustering aspects of the algorithm. The standard t-SNE method effectively

discards large distance information between distant points. We recently proposed a variant of

t-SNE which aims to preserve global Euclidean structure in the data, which was called global t-

SNE (g-SNE) [58]. g-SNE method works by adding to the similarity distance measures present in

the t-SNE another term that focuses on large Euclidean distances (see Methods). When applied to

Lukk et al. data [62], g-SNE preserves data distances very well (Figure 11A, R = 0.848). Despite

the high quality of embedding, g-SNE cannot reveal the hierarchical structure of data which is

only visible in hyperbolic embedding. Therefore, considering that human gene expression space

is locally Euclidean and globally hyperbolic, we develop a hyperbolic t-SNE (h-SNE) method

that applies hyperbolic metric to global similarities as defined in g-SNE [58], while still using

Euclidean metric for original local similarities. We find that h-SNE gives similar embedding

accuracy as g-SNE, both of which largely outperform PCA and UMAP, with R = 0.841 for

h-SNE compared to R = 0.744 for PCA and R = 0.627 for UMAP (Figure 11A). The distance

correlation of Shepard diagram generally quantifies the quality of embedding with respect to

large distances, i.e. the global inter-class structure preservation. To measure the local structure

preservation, we use the silhouette score which measures the quality of clustering [70]. Here we

find that h-SNE achieves higher silhouette score than g-SNE and significantly higher score than

other algorithms(Figure 11B).

These quantitative improvements by h-SNE are also reflected in the improved local and

global visualizations that the method provides. For local visualization, the clusters identified

by h-SNE are well separated with respect to 15 different tissues and disease types (Figure S6).

By comparison, the PCA representation does not separate the fifteen clusters very well, mixing

nervous system neoplasm cells (cyan) with the breast cancer cells (magenta)(Figure 11C). The

non-neoplastic cell line (yellow) are also not separated in the PCA representation from the solid

tissue neoplasm cell line (green) (Figure 11C, see all the 15 labels in Figure S6). The UMAP

methods separate clusters better but generate too many disconnected components that are difficult
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to be matched to sample labels (Figure S6). In terms of global properties, the h-SNE visualization

generates a clearer global hierarchical organization of clusters which is not attainable in g-SNE

embedding: cells from nervous system neoplasm, breast cancer, non-neoplastic cell line and

solid tissue neoplasm cell line are sequentially positioned at different branches in the disk

(Figure 11C); in addition, the two principal hematopoietic and malignancy axes can be clearly

identified in h-SNE, but not in UMAP (Figure S7). Finally, it is particularly interesting to note

the differences in hierarchical positioning that are assigned to breast cancer cells (magenta).

Many of these cells occupy points with smaller radii. Positions that are closer to the center of the

hyperbolic space typically correspond to more de-differentiated cells, as we have already seen in

the comparison between mouse embryonic cells and differentiated cells. Thus, the more central

positions assigned to breast cancer cells are consistent with observations of them being close to

de-differentiated cells.

The quality of h-SNE visualization is also illustrated by the topography with respect to

gradient expressions of three marker genes: NCAM1 [71] for nervous system neoplasm, ASPN

[72] for breast cancer, and PLOD2 [73] for non-neoplastic cell line. These marker genes are

highly expressed in distinct but continuous branches in h-SNE; by comparison, the expression

patterns of these three genes are more difficult to organize in g-SNE, to cluster in UMAP, or to

separate in PCA (Figure 11D).

In addition to visualizing discrete data, hyperbolic embedding is especially useful in

representing temporally continuous data and predicting lineage information. Klimovskaia, et al.

[41] developed Poincaré map method to visualize hierarchies in single-cell data. This method

used similar idea as t-SNE but implemented hyperbolic metric in the representation space. This

has lead to improvements in the representations of cell trajectories. However, the Poincaré map

method, being based on t-SNE, still largely discards large distance information. This problem

can be well solved by h-SNE which is designed to capture global hyperbolic structure. For

comparison with the Poincaré map method(Figure 4 in [41]), we select the mouse hematopoiesis

data in Moignard et al. [74]. This dataset consists of cells from different development stages:
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primitive streak (PS), neural plate (NP), head fold (HF), four somite GFP (Runx1) negative

(4SG-) and four somite GFP positive (4SG+). We first apply HMDS method to determine

the intrinsic geometry of the data and find that the data space is hyperbolic with Rdata = 1.72

(Figure S8). Then we apply h-SNE to the data and compare the results with Poincaré map.

The h-SNE method produces similar local clustering as in Poincaré map, but it generates very

distinct global pattern: the two differentiated branches 4SFG and 4SG extend around the disk

with clear division along the angular variable in the h-SNE visualization (Figure 12A). The

corresponding pattern is not as clear in Poincaré map (Figure 12B). The Shepard diagrams

of the embeddings show that h-SNE preserves data distances much better than Poincaré map,

especially the large distances (Figure 12C-D). When predicting the pseudo time, the h-SNE

method produces a clear pseudo time prediction with a much smaller variance compared to the

Poincaré map (c.f. compare the pseudo time in 4SFG stage, Figure 12E-F). Finally, as another

example, we show the normalized gene expressions of two marker genes Gfi1b (hemogenic

marker) and Cdh5 (endothelial marker), finding that these two genes are differentially expressed

in different branches in h-SNE (Figure 12G). This separation is not obvious in Poincaré map

(Figure 12H). The clear hierarchical organization of cells in h-SNE map may help us better

understand the relationships between cells at different stages.

2.4 Discussion

In this paper we developed a non-metric MDS in hyperbolic space, and showed how it

can be used to detect the hidden geometry of data starting with an initial Euclidean representation.

By applying this method to several gene expression datasets, we found that gene expression

data exhibits Euclidean geometry locally and hyperbolic geometry globally. The radius of

the hyperbolic space differed depending on the cell types. The lowest values were observed

for embryonic cells and the highest values observed for brain cells in mouse data. Given that

hyperbolic geometry is indicative of hierarchically organized data [40, 7], and the spanned radius
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represents the depth of the network hierarchy, it is perhaps intuitive that the largest value would

be observed for highly differentiated and specialized brain cells and the smallest value for the

embryonic cells.

The method that we used to detect the presence of hyperbolic geometry was based on

non-metric MDS. One can also use methods from algebraic topology [40, 11] for this purpose,

as has been recently demonstrated for metabolic networks underlying natural odor mixtures

produced by plants and animals [40]. The advantage of the topological method is that it is very

sensitive to changes in the underlying geometry, including its dimensionality and hyperbolic

radius. However, this method is computationally intensive and does not scale well to large

datasets. In contrast, the non-metric MDS method is computationally much faster. Therefore, we

recommend to use it as a first step in determining whether the underlying geometry is hyperbolic

or Euclidean. If hyperbolic geometry is detected, then radial position of embedding points can

be used to arrange data hierarchically. We have also seen that taking into account hyperbolic

geometry produces better low-dimensional visualizations, cf. Figure 11 and Figure 12 .

Accurate representation of data across scales is a very active area of research [75, 76, 77].

Special attention is being devoted to developing visualization methods that can not only cluster

data in a useful way but also preserve relative positions between clusters [58, 59]. In particular,

preserving global data structure was one of the driving factors for the UMAP method [59].

Knowing the underlying geometry helps to position clusters appropriately and robustly map

them across different runs in a visualization method. For example, the t-SNE method produces

random positions of the clusters across different runs of the algorithm [78]. This problem can

in part be alleviated by additional constraints on large distances [58]. Here we find that using a

combination of a hyperbolic metric for large distances and Euclidean metric for local distances

offers strong improvements in this respect. It also outperforms the recent Poincaré map method

that implements hyperbolic metric only for local distances [41]. We notice that although h-SNE

is best fit for hyperbolic data, it performs similarly as g-SNE in accuracy distances preservation.

It’s future direction to further optimize h-SNE algorithm.
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What could be the origin of hyperbolic geometry at the large scale and Euclidean at small

scale? First, any curved geometry, including hyperbolic, is locally flat, i.e. Euclidean. The scale

at which non-Euclidean effects become important depends on the curvature of the space. From a

biological perspective, the Euclidean aspects can arise from intrinsic noise in gene expression

[63, 64, 65]. This noise effectively smoothes the underlying hierarchical process that generates

the data. We find that hyperbolic effects of human gene expression can be detected by including

measurements on as few as∼ 100 probes. Why do hyperbolic effects require measurements along

multiple dimensions? The reason is that hyperbolic geometry is a representation of an underlying

hierarchical process, which generates correlations between variables. These correlations become

detectable above the noise once a sufficient number of measurements is made. As an example,

one can think of leaves in a tree-like network, and how their activity becomes correlated when it

is induced by turning on and off branches of the network. Intuitively, these correlations generate

the outstanding branches of a hyperbola. We observe that these correlations can be detected by

monitoring even a relatively small (∼ 100) number of probes. This makes it possible to construct

a global map of genes from partial measurements, and open new ways for combining data from

different experiments.

2.5 Methods and Materials

Metric and non-metric MDS in Euclidean model

Assume there sectionre n objects described by a set of measurements, the dissimilarity of

the objects can be obtained by the experimental measurements of the objects. For example, the

dissimilarities of two cells can be calculated by the Euclidean distances of the gene expression

vectors. Metric MDS approximates the geometric distances di j to the data dissimilarities δi j,

while non-metric MDS approximates a monotonic transformation of dissimilarities of data. The

transformed values are known as disparities d̂i j. The loss function S in Euclidean embedding

50



was defined as :

S =

√
S∗

T ∗
(S1)

Where S∗= Σi, j(di j− d̂i j)
2, T ∗= Σi, jd2

i j. In non-metric MDS, d̂i j is determined using the greatest

convex minorant method in Kruskal’s approach [79]. In metric MDS, disparities are equal to

dissimilarities: d̂i j = δi j.

2.5.1 Non-metric MDS in native hyperbolic model

There are many hyperbolic space representations, we will use the native representation

with polar coordinates [7] in our hyperbolic MDS. The angular coordinates in the space are the

same as in an Euclidean ball, the radius Rmodel ∈ (0,∞) characterizes the hierarchical depth of

the structure, measures the degree of hierarchy in data, and determines how points distribute in

the space. The distance of two points di j is calculated as:

cosh(di j) = cosh(ri)cosh(r j)− sinh(ri)sinh(r j)cos(∆θi j) (S2)

Where ri and r j are the radial coordinates of the two points, and ∆θi j is the angle between them.

In D-dimensional HMDS, we initialize the embedding process by uniformly sampling points

within radius Rmodel in the native hyperbolic model. The points directions are uniformly sampled

around the high-dimensional sphere, and the radial coordinate r ∈ (0,Rmodel] follows :

ρ(r)∼ sinhD−1 r (S3)

We note that there can be merits to sample the points uniformly in the angular variables. Although

this does not lead to uniform sampling of points along the sphere, this way of sampling can

be particularly advantageous in the situation where the angular variable maps onto periodic

variables that correspond to cell cycle or other rhytms. We have used this sampling in our
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previous publication on olfactory signals produced by fruits and plants [40] where it matched

developmental processes in the fruit.

During the iteration process, we update both angular and radial coordinates according

to the gradient descent of the loss function Equation (S1), and at the same time set Rmodel as

the upper bound of the radial coordinates. The reason of setting a bound is that the coordinates

in hyperbolic model are polar coordinates which cannot be normalized after each iteration as

performed in Euclidean MDS, so without bound the gradient descent of loss functionsection

Equation (S1) would lead to very large ri and di j (since di j is in the denominator) and hence fail

to preserve radial coordinates of data. By setting the upper bound for radial coordinates, the

HMDS embedding can well preserve the data distances and precisely detect hyperbolic radius of

data Rdata (Figure S3).

2.5.2 Fitting of Shepard diagram

The Shepard diagram is linear if the geometry of input data matches the geometry of

embedding space, and otherwise nonlinear. In both EMDS and HMDS, we use the power

function below to fit the pairwise distances:

y = a(x− x0)
κ+1 (S4)

Where x0 = min(x)− ε is an offset representing the distance caused by intrinsic noise of data,

a small value ε is introduced to avoid zero inputs in the fitting. The convexity κ describes the

linearity of the fitting. κ = 0 indicates Euclidean input in EMDS and means Rdata = Rmodel in

HMDS. κ > 0 means the data is more hyperbolic than the model, and vice versa.

2.5.3 Hyperbolic t-SNE

Given a data set containing N data points described by D dimensional vectors

{x1,x2,x3, ...,xN ;xi ∈ RD}, the t-SNE algorithm [57] defines the similarity of two points xi,x j
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as the joint probability pi j:

p j|i =
exp(−‖xi−x j‖2/2σ2

i )

∑k 6=i exp(−‖xi−xk‖2/2σ2
i )

, (S5)

pi j =
p j|i + pi| j

2n
. (S6)

The similarity of two points yi,y j in embedding space is defined as the joint probability qi j:

qi j =
(1+‖yi−y j‖2)−1

∑m 6=n (1+‖ym−yn‖2)−1 . (S7)

The discrepancy between the similarities of data and embedding points is the loss function, which

is defined by Kullback-Leibler (KL) divergence of the joint probability pi j and qi j :

L = DKL(P‖Q) = ∑
i

∑
j

pi j log
(

pi j

qi j

)
. (S8)

Minimizing the loss function L with respect to the embedding coordinates yi by gradient descent

gives:

∂L
∂yi

= 4∑
j
(pi j−qi j)(yi−y j)(1+‖yi−y j‖2)−1. (S9)

The original definitions of similarities Eqs. (S5-S7) in t-SNE are sensitive to small pairwise

distances among neighboring points but not to large distances between distant points. To

preserve large distances, Zhou et al. [58] proposed global t-SNE algorithm that introduced global
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similarity terms p̂i j and q̂i j which are primarily sensitive to large distance values:

p̂i j =
1+‖xi−x j‖2

∑m 6=n (1+‖xm−xn‖2)

q̂i j =
1+‖yi−y j‖2

∑m 6=n (1+‖ym−yn‖2)

(S10)

And they defined the global loss function L̂ as:

L̂ = DKL(P̂‖Q̂) = ∑
i

∑
j

p̂i j log
(

p̂i j

q̂i j

)
(S11)

The total loss function Ltotal was then defined by combining the two loss functions using a weight

parameter λ :

Ltotal = L+λ L̂ (S12)

The gradient of the total loss function Ltotal gives:

∂Ltotal

∂yi
= 4∑

j
[(pi j−qi j)−λ (p̂i j− q̂i j)] · (yi−y j)(1+‖yi−y j‖2)−1, (S13)

where the weight λ of the global loss function controls the balance between the local clustering

and global organization of the data. Large λ values lead to more robust global distribution of

clusters, but less clear classifications. Small λ moves back to approximate the traditional t-SNE,

and will be exactly the same when λ = 0. In hyperbolic t-SNE, we still use native representation

parametrized by Rmodel as in HMDS, but here Rmodel is only used to determine the initial radial

distribution, not to set the upper bound. We substitute the Euclidean distances in global similarity

terms Equation (S10) by hyperbolic distances dh
i j defined in Equation (S2), and change Cartesian

coordinate system to polar one for all the distance calculations. Then the gradient of total loss

function with respect to polar coordinates would be:
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∂Ltotal

∂ ri
= 4∑

j
[(pi j−qi j) ·de

i j ·
∂de

i j

∂ ri
(1+(de

i j)
2)−1

−λ (p̂i j− q̂i j) ·dh
i j ·

∂dh
i j

∂ ri
(1+(dh

i j)
2)−1]

∂Ltotal

∂θ i
= 4∑

j
[(pi j−qi j) ·de

i j ·
∂de

i j

∂θ i
(1+(de

i j)
2)−1

−λ (p̂i j− q̂i j) ·dh
i j ·

∂dh
i j

∂θ i
(1+(dh

i j)
2)−1]

(S14)

Where de
i j is the Euclidean pairwise distance in polar coordinates, dh

i j is the hyperbolic pairwise

distance obtained from Equation (S2). pi j, qi j, p̂i j and q̂i j are defined by Eqs. (S5-S7) and

Equation (S10) with polar coordinates. When implementing the algorithm, we substitute the

radial coordinates with their exponential transformation to avoid negative radii during the

iteration:

rexp = er (S15)

The derivative of distances with respect to the new variable would be:

∂

∂ rexp
=

∂

∂ r
· ∂ r

∂ rexp
=

1
rexp
· ∂

∂ r
(S16)

When the iterations converge, we make logarithm transformation of rexp to get the real radial

coordinates.

2.5.4 Parameters in visualization algorithms

For Lukk et al. [62] data, we set λ = 8 and Rmodel = 1 in h-SNE. We select the result that

best preserves data distances from 30 repeats. After obtaining the embedded points, we transform

the points from native representation to Poincaré disk model by performing the transformation
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on radial coordinates:

rPoincare = tanh(
rnative

2
) (S17)

In g-SNE, the parameter is: λ = 20. In PCA, we use the first two principal components for

visualization. In UMAP, we screen a wide range of the combination of two key parameters:

number of neighbors ∈ {5,10,20,50,100} and minimal distance ∈ {0.001,0.01,0.1,0.5,0.8},

each of the 25 combinations was repeated 30 times. The optimal combination of parameters

that leads to largest distance correlation of Shepard diagram is: number of neighbors = 100 and

minimal distance = 0.5, and the corresponding result is shown in Figure 11. For Moignard et

al. data [74], the parameters for h-SNE are: λ = 10, Rmodel = 1. The root node index is 1800.

When plotting Poincaré map, we directly use the embedding positions provided in Klimovskaia

et al. [41].

2.5.5 Evaluation of embedding

The Pearson correlation coefficient of Shepard diagram (embedding distances versus

data distances) is used to measure the preservation of distances and global structure. For local

clusters, we apply silhouette score [70] to our embedding results. Silhouette score measures the

quality of data partitioning and clustering in graphical representation of objects, which in our

case can be used to measure the consistency of the data configuration in 2D embeddings with the

“ground truth” cluster labels. The higher score indicates better consistency with data labels. We

consider all the three types of labels available – six hematopoietic properties, four malignancy

properties and fifteen subtypes, and calculate the geometric mean of silhouette scores obtained

by using these three labels:

s = 3
√

s1s2s3 (S18)
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Where s1,s2,s3 represent the silhouette scores by using the three types of labeling respectively.

The mean score s is used to quantify the local structure preservation for the five visualization

algorithms, which is shown in Figure 11B.

2.5.6 Data preprocessing and analysis

No pre-processing was done for the microarray dataset from human samples [62].

For scRNA-seq dataset from [67], we use Seurat packages [69] to perform normalization,

feature selection and scaling for the data, and to select the top 50 principal components for

analyses. These results are reported in Figure 10. The results without pre-processing (and

keeping all 1000 principle components) were qualitatively similar but had slightly reduced

hyperbolic radii: Rmouse brain = 1.62±0.02, Rmouse lung = 1.47±0.03, Rmouse kidney = 1.45±0.03,

and Rmouse embryo = 0.98± 0.02 (compare with number in Figure 10). These obervations are

consistent with the observation that noise reduction done during pre-processing makes hyperbolic

effects stronger and more apparent.

For mouse hematopoiesis data, we use the processed data from Klimovskaia et al. [41].

The Seurat analysis, violin plots and linear regression were performed using R version 3.6.2, the

other analyses were performed using MATLAB R2017a.

2.6 SUPPLEMENTARY MATERIALS
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Non-metric MDS in different geometries

Figure S8. Illustration of non-metric MDS embedding in different geometries. Related to
Figure 7. 100 synthetic points in 5D hyperbolic (top), Euclidean (middle) and spherical (bottom)
space are embedded into 5D hyperbolic (left), Euclidean (middle) and spherical (right) space
respectively. The hyperbolic radius is R = 5 for both data and model. The fitting methods are the
same as in Figure 2 in the manuscript.
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Figure S9. Gaussianity of normalized gene expressions across the whole samples and from
a single cluster. Related to Figure 8. (A) Gene expression distributions of the six most
non-Gaussian distributed probes across all the samples, p values were given by one-sample
Kolmogorov-Smirnov test for Gaussianity, the null hypothesis is that the normalized distribution
is standard normal distribution. (B) Gene expression distributions of the same six non-Gaussian
probes as in (A) across 100 samples in one of the k-means (k = 80) cluster. (C) p value
distributions of all the probes across the whole samples. (D) p value distributions of all the
probes across 100 samples in one of the k-means cluster.
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Figure S10. HMDS embedding of hyperbolic data with different Rmodel. Related to Figure
10. 100 points are sampled in hyperbolic space with D = 5, Rdata = 3. The embedding dimension
is D = 5 in (A-F). The Shepard diagram convexity κ is shown in panel (A,C,E). (A) Shepard
diagram of HMDS embedding of the samples to 5D hyperbolic space with Rmodel = 3. (B)
Histogram of radial coordinates r of 100 sample points and model points after HMDS embedding
with Rmodel = 3. (C-D) Rmodel = 2. (E-F) Rmodel = 4.
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Figure S12. Screening Rdata of Lukk data with different magnitude of noise added by
doing HMDS. Related to Figure 10. The embedding dimension is D = 5. The noise ε is
added as multiplicative Gaussian noise: Mnoise = M[1+ ε ·N(0,1)]. (A-E) Fitting of Rdata under
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Figure S13. Comparison of two-dimensional visualizations of human expression data us-
ing g-SNE, h-SNE, PCA and UMAP. Related to Figure 11. The samples are colored according
to the 15 tissue and disease types.
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Figure S14. Comparison of two-dimensional visualizations of human gene expression data
in different algorithms. Related to Figure 11. (A-D) g-SNE, h-SNE, PCA and UMAP
embeddings of human samples classified by hematopoietic properties, these labels also represent
the six major clusters identified by Lukk et al. The hematopoietic axes are shown in solid lines
in g-SNE(A), h-SNE(B) and PCA(C). (E-H) g-SNE, h-SNE, PCA and UMAP embeddings of
human samples classified by malignancy properties. The malignancy axes are shown in solid
lines in g-SNE (E), h-SNE(F) and PCA(G). The six major clusters, the hematopoietic axis and
the malignancy axis are hard to identify in UMAP.
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Chapter 2 , in full, is a reprint of the material as it appears in Hyperbolic geometry of

gene expression. Iscience, 2021; Yuansheng Zhou, Tatyana O Sharpee. The dissertation author

was the primary investigator and author of this paper.
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Chapter 3

Hyperbolic geometry – a representation
inspiring novel insights

The geometric detection and visualization of data has already been introduced in the

previous two chapters. In Chapter 1, we first discovered the parameters of hyperbolic geometry

of olfactory space, and then used hyperbolic MDS to embed the data points to the corresponding

geometry. On one hand, the biological relatedness of the principal axes in the space further

validated the visualization; one the other hand, the identified geometric space provided a reliable

geometric description of the abstract odorants, which provides a novel approach to organizing

odors as well as characterizing the objects containing the odors, such as the fruits. In Chapter

2, we used HMDS to show that the gene expression space of different biological systems

has hyperbolic geometry on a global scale, and visualized the human samples in Lukk data

using hyperbolic t-SNE. Hyperbolic t-SNE is different from hyperbolic MDS in that it aims to

cluster the cells and separate different types, which is just what the single cell RNAseq analysis

desires; and the analysis on Lukk data can be easily extended to other types of single cell

transcriptome data. In addition to geometry discovery and data visualization, the hyperbolic

MDS and hyperbolic t-SNE methods may have broader application in uncovering biological

insights. In this chapter, I will discuss the application of the methods to several other datasets

and show how hyperbolic geometry inspires new discoveries in different biological systems.
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3.1 Hyperbolic stimuli space for olfactory receptor re-
sponses

Individual olfactory receptors (OR) respond to many odor ligands, and each odor ligand

evokes responses from many ORs. How the activities of ORs collectively encode natural odor

mixtures remains an open question. In Chapter 1 we have demonstrated that odor molecules can

be mapped onto a three dimensional hyperbolic space based on the statistics of their co-occurrence

within natural mixtures, and that the principal perceptual properties of odorants, e.g. pleasantness,

can be well represented by the axes in the space. This indicated that the hyperbolic embedding

space of natural odorants may serve as the stimuli space for olfactory receptors. To show this we

use the concentration measurements of odorants from strawberry and tomato datasets used in

Zhou et al.[40], and the OR response datasets from Hallem et al.[80]. We combined strawberry

and tomato odor datasets based on their overlapping odorants, and then selected the common

odorants that are available in both natural odor datasets and receptor response datasets. The

similarities of odorants in terms of OR responses were defined as the Euclidean distances of

available receptor activities vectors. The co-occurrence similarities were defined as the absolute

values of correlation coefficients of odorant concentrations across samples. The geometric

distances of odorants were calculated using both hyperbolic and Euclidean representations of

natural odorants, which are achieved by hyperbolic multi-dimensional scaling used in [40] and

Euclidean multi-dimensional scaling respectively. Figure 13 shows the correlations between

the OR response similarities and odorants stimuli similarities. The correlation is significant

when using co-occurrence statistics in natural fruit samples as the stimuli, compared with the

shuffling results (Fig. 13A-B) . In the geometric representations, stimuli similarities are given

by the geometric distances of the embedding points. Hyperbolic representation leads to a much

higher increase of correlation compared with Euclidean representation (Fig. 13C-D). These

findings show that OR responses capture the co-occurrence statistics of natural odorants, and

that a hyperbolic model is a proper representation of odorants stimuli space for OR responses.
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Figure 13. Correlation between pairwise distances of odorants calculated from OR response
similarities and from odor stimuli similarities. (A) OR response similarities vs. odor co-
occurrence statistics in combined natural odor dataset. (B) OR response similarities after shuffling
the odorants vs. odor co-occurrence statistics. (C) OR response similarities vs. geometric
distances in hyperbolic representation. (D) OR response similarities vs. geometric distances in
Euclidean representation.
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3.2 Characterization of structure-specific cell types across
different brain regions.

We have shown in Chapter 2 that h-SNE outperforms other algorithms qualitatively and

quantitatively in 2D visualization for Lukk data. The Lukk data is a relatively small dataset and

has a limited degree of complexity. In this section, we apply h-SNE to a highly complicated

dataset which contains scRNAseq measurements of very large number of cells in nine mouse

brain regions. The dataset came from Saunders et al [81] in which they used Drop-seq to profile

RNA expressions in 69000 cells from nine regions in mouse brain. We analyzed the data in both

a global scale which considers cells from the whole brain, and a local scale which focuses on

specific brain regions. We first perform t-SNE, UMAP and h-SNE to 4500 cells equally sampled

from the nine regions (500 cells in each region) and visualize the global mouse brain atlas in

2D map (Fig.14A-C). Some of the brain regions, such as the striatum and hippocampus, are

well separated from other regions in all the three algorithms; while some other regions, such

as cerebellum and substantia nigra, are broken into disconnected sub-clusters in t-SNE and

UMAP embedding, and only continuously represented in h-SNE (Fig.14A-C, and the small disks

in Fig.14D). The global structures of the disconnected components in t-SNE and UAMP are

hard to detect, but a branching structure is clearly shown in h-SNE map. In h-SNE map, there

are two types of regions which show distinct spatial organizations in the disk. One is called

“centering region”: the cells from entopedencular(ENP), cerebellum(CB), globus pallidus(GP),

substantia nigra(SN) and thalamus(TH) locate around the center of disks; the other type is called

“branching region”: cells from the frontal cortex(FC), posterior cortex(PC), hippocampus(HC)

and striatum(ST) stretch out from the center like branches (Fig.14C). Next we look at each of

the nine regions separately and perform h-SNE embedding for 5000 cells sampled from each

region. In these regional embeddings, cells are further separated into several sub-clusters [81]

and labeled by different colors. The cell distributions in regional mapping are consistent with the

distribution in global mapping: in the five “centering regions”, different sub-clusters expand in
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all directions from center in the disks; while in the four “branching regions”, the sub-clusters

tend to branch out in a single direction (Fig.14D). Next we study the relationship between the

cell structures and cell distributions in the disk. The cells with low gene expressions (few Unique

Molecular Identifiers (UMIs)) tend to locate in the center of the disk (CB and TH); the granule

cells in CB and dentate gyrus are small neurons and form circular shapes surrounding the centers

(CB and HC); cells in CA1 and CA3 of hippocampus and layer 2/3 in frontal and posterior cortex

are mostly pyramidal neurons, and they form “crabs” extending to the boundaries of the disks

(HC, FC and PC); polydendrocytes are glial cells and distribute like a “narrow path” going from

the center to the boundary (ENP and GP). These spatial patterns of different cell types are hard

to find in t-SNE and UMAP embedding (Fig.14E). These findings show that structurally similar

cell types across brain regions are characterized by similar spatial localization patterns in the 2D

hyperbolic disk.

The quality of the embeddings are validated by the quantitative evaluation of data

distances preservation. We calculate the correlation coefficient between the pairwise distances of

the low dimensional embedding points and original high dimensional data points, and find that

h-SNE best preserves the data distances with the highest correlation coefficient across all the

nine brain regions in Saunders et al (Fig.15). From the distances plots, we notice that h-SNE

not only preserves distances with less noise (narrower shadows), but also preserves the intrinsic

geometry of the data, as can be seen in the linear distance relationships in the plots, compared

with the other embeddings (Fig.15).

3.3 Characterization of region-dependent cell types across
different differentiation stages.

In Section 3.2, we show that h-SNE embedding can characterize structure-specific cell

types across brain regions, here we further study whether the method can be applied to character-

ize region-specific cell types across brain regions in dynamic process, e.g. cell differentiation.
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Figure 14. 2D mapping of mouse brain atlas and each of the nine anatomical regions. (A-C)
Global map of 4500 cells in mouse brain which includes nine regions (500 cells for each region)
using t-SNE, UMAP and h-SNE embedding. The regions are labeled with different colors. (D)
The larger disks show the h-SNE mapping of 5000 cells in each of the nine regions, each color
represents a cluster annotated in [7]. The smaller disks at the top right corners show the spatial
distributions of cells extracted from the global map in (C), the regions are colored the same way
as in (C). (E) Specific cell types are marked out using red or light blue colors in t-SNE, UMAP
and h-SNE mapping of cells to show their spatial distributions. Few unique molecular identifiers
(UMIs) means the cells contain too few UMIs and were not annotated.
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Figure 15. Pairwise distances preservation in embedding for the data from nine regions of mouse
brain. The pairwise distances of embedding points are plotted against the data points. The data
pairwise distances are grouped using 50 bins. The solid lines and shadows represent the median
values and 95% intervals of the embedding distances versus median of data distances in the 50
bins. The Pearson correlation coefficients between embedding distances and data distances are
shown in the top of each panel.

Marques[82] performed single cell RNAseq for 5072 cells to study the oligodendrocytes differ-

entiation in 10 regions of mouse central nervous system. They identified 13 cell types including:

vascular and leptomeningeal cells (VLMC), oligodendrocyte precursors (OPC), differentiation-

committed oligodendrocyte precursors (COPs), two subtypes of newly-formed oligodendrocytes

(NFOL1-2), two subtypes of myelin-forming oligodendrocytes (MFOL1-2), six subtypes of

mature oligodendrocytes (MOL1-6). These cell types represent different stages of oligodendro-

cytes differentiation. The authors performed t-SNE and defined the 10 regions to be immature

(anterior regions such as amygdala and hippocampus), intermediate (corpus callosum, zona

incerta, striatum and hypothalamus) and mature (cortex and posterior regions such as dorsal horn

and SN-VTA), based on the mature cells proportions in different regions of juvenile brain. How-

ever, the classification of regions was qualitative and the differences of these “mature” regions

were not explored. Here we performed t-SNE, UMAP and h-SNE (Fig.16A-C) on the whole

dataset (including both juvenile and adult brain), and find that all the three embedding methods

show clear global differentiation trajectories, but in totally different ways. t-SNE mapping is

similar to the result in [6],where the two sub-clusters MOL1-4 and MOL5-6 are mixed together

(Fig.16A). UMAP mapping shows a branch between MFOL and MOL cells, however, this branch
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does not separate MOL1-4 and MOL5-6 since they exist in both branches(Fig.16B). h-SNE

shows a narrow path before MFOL and then “explodes” to circular shape, MOL1-4 locate at the

inner circle and MOL 5-6 move further to the outer circle(Fig.16C). Next we separate the cells

based on the anatomical regions and study how the mature cells distributions differ in the five

regions where mature cells abound: SN-VTA, dorsal horn, hypothalamus, cortex S1 and corpus

callosum(Fig.16D-F). t-SNE does not show a clear structure in the mature cells distribution in

these five regions (Fig.16D). In UMAP, the mature cells in SN-VTA and corpus callosum locate

in different branches, but the cells in the dorsal horn, hypothalamus and cortex S1 distribute in

both branches and cannot be distinguished(Fig.16E). In h-SNE, we find that the mature cells of

the five regions locate at different radii in the hyperbolic disk(Fig.16F). The median embedding

radii of MOL5-6 cells are larger than MOL1-4 in all the five regions, and the median radii of both

MOL1-4 and MOL5-6 cells increase from SN-VTA to corpus callosum (Fig.16G). These results

show the expression patterns of the same mature cells are region-dependent in an organized way,

and may provide new insights of studying cell types in different regions during the differentiation.

The quality of the embeddings are also evaluated by distance preservation: the h-SNE embedding

performs best with the correlation of R = 0.78 in distance plots(Fig.16H).

3.4 Conclusion and future outlook

In this chapter we show some preliminary results to illustrate how the hyperbolic geometry

can inspire new insights for different biological systems which can not be obtained by traditional

Euclidean-based model. In the first example, we show that hyperbolic representation of odors can

better bridge the odor stimuli and the odor response than raw data or the Euclidean representation

(Fig.13). There are two future directions: first, this preliminary result needs validation from

analysis on larger datasets and requires a deeper understanding of the biological mechanisms;

second, the odor perception space is also hyperbolic according to Chapter 1, so how to bridge

and unify the whole olfactory system–odor stimuli, odor receptor and odor perception–is an
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Figure 16. 2D mapping of oligodendrocytes in mouse central nervous system in Marques dataset.
The cells are classified the same way as in Marques et al[82], we combine the 13 cells types into
seven clusters, the labels are shown at the top of the figure. (A-C) t-SNE, UMAP and h-SNE
mapping of oligodendrocytes. (D-F) t-SNE, UMAP and h-SNE mapping of oligodendrocytes
in 10 different brain regions. (G) Box plots of radial coordinate distributions of MOL1-4 and
MOL5-6 cells in five brain regions. (H)Pairwise distances plots of t-SNE, UMAP and h-SNE
embeddings for Marques data, the Pearson correlation coefficients between embedding distances
and data distances was shown at the top of the panel.
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interesting and important question. In the second example, we use h-SNE to embed the brain cells

from nine mouse brain regions, finding that structurally similar cell types display similar spatial

localizations regardless of regions (Fig.14). These results provide a novel way to characterize

cell types – according to the structures but not according to anatomical regions; of course

the validation and explanation of these discoveries still require further works. In the third

example, we show that the same mature cell types from different brain regions are quantitatively

distinguished by their radii in the hyperbolic disk from h-SNE, which shows an organized

region-dependent gene expression patterns of the cells in differentiation. This result seems to

contradict with the second example because the same cell types differ in a systematic way in

different regions. But from another perspective, the contradiction might be a complement to

help us better understand the behaviors of different cell types in dynamic biological systems.

These three examples show that hyperbolic representation of biological data may provide new

perspectives of data that cannot be revealed by traditional embedding methods, and further study

of the biological mechanisms behind them might lead to new discoveries.

As one of the three basic types of geometry, hyperbolic geometry best approximates the

complex world because of its equivalence to hierarchical structure. Hopefully many of the other

biological systems can also find better accommodations in hyperbolic space, and more biology

would be revealed.
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Chapter 3, in full, is currently being prepared for submission for publication of the

material. Yuansheng Zhou, Tatyana O Sharpee. The dissertation author was the primary

investigator and author of this material.
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Boguná. Hyperbolic geometry of complex networks. Physical Review E, 82(3):036106,
2010.

[8] James W Cannon, William J Floyd, Richard Kenyon, Walter R Parry, et al. Hyperbolic
geometry. Flavors of geometry, 31:59–115, 1997.

[9] Alexei Koulakov, Brian E Kolterman, Armen Enikolopov, and Dmitry Rinberg. In search
of the structure of human olfactory space. Frontiers in systems neuroscience, 5:65, 2011.

[10] Ernest C Crocker and LF Henderson. Analysis and classification of odors: an effort to
develop a workable method. 1927.

77



[11] Chad Giusti, Eva Pastalkova, Carina Curto, and Vladimir Itskov. Clique topology reveals
intrinsic geometric structure in neural correlations. Proceedings of the National Academy
of Sciences, 112(44):13455–13460, 2015.

[12] Michael L Schwieterman, Thomas A Colquhoun, Elizabeth A Jaworski, Linda M Bartoshuk,
Jessica L Gilbert, Denise M Tieman, Asli Z Odabasi, Howard R Moskowitz, Kevin M Folta,
Harry J Klee, et al. Strawberry flavor: diverse chemical compositions, a seasonal influence,
and effects on sensory perception. PloS one, 9(2):e88446, 2014.

[13] Denise Tieman, Peter Bliss, Lauren M McIntyre, Adilia Blandon-Ubeda, Dawn Bies, Asli Z
Odabasi, Gustavo R Rodrı́guez, Esther van der Knaap, Mark G Taylor, Charles Goulet,
et al. The chemical interactions underlying tomato flavor preferences. Current Biology,
22(11):1035–1039, 2012.

[14] Jessica L Gilbert, Matthew J Guthart, Salvador A Gezan, Melissa Pisaroglo de Carvalho,
Michael L Schwieterman, Thomas A Colquhoun, Linda M Bartoshuk, Charles A Sims,
David G Clark, and James W Olmstead. Identifying breeding priorities for blueberry
flavor using biochemical, sensory, and genotype by environment analyses. PLoS One,
10(9):e0138494, 2015.
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