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ABSTRACT
Acoustic waves traveling through the early Universe imprint a characteristic scale in the clus-
tering of galaxies, QSOs and inter-galactic gas. This scale can be used as a standard ruler to
map the expansion history of the Universe, a technique known as Baryon Acoustic Oscilla-
tions (BAO). BAO offer a high-precision, low-systematics means of constraining our cosmo-
logical model. The statistical power of BAO measurements can be improved if the ‘smearing’
of the acoustic feature by non-linear structure formation is undone in a process known as
reconstruction. In this paper we use low-order Lagrangian perturbation theory to study the
ability of 21 cm experiments to perform reconstruction and how augmenting these surveys
with galaxy redshift surveys at relatively low number densities can improve performance. We
find that the critical number density which must be achieved in order to benefit 21 cm surveys
is set by the linear theory power spectrum near its peak, and corresponds to densities achiev-
able by upcoming surveys of emission line galaxies such as eBOSS and DESI. As part of this
work we analyze reconstruction within the framework of Lagrangian perturbation theory with
local Lagrangian bias, redshift-space distortions, k-dependent noise and anisotropic filtering
schemes.

Key words: gravitation; galaxies: statistics; cosmological parameters; large-scale structure
of Universe

1 INTRODUCTION

In the last decade it has been realized that the large-scale structure
in the Universe can be used as a tool for measuring its expansion
history with high accuracy and low systematics. One of the pre-
mier methods for measuring the distance-scale and expansion rate
uses the baryon acoustic oscillation (BAO) ‘feature’ as a calibrated,
standard ruler (see Olive et al. 2014, for a review). Non-linear evo-
lution of the large-scale structure in the Universe damps the acous-
tic oscillations in the power spectrum at late times (as has been ex-
tensively discussed in the literature, e.g., Bharadwaj 1996; Taylor &
Hamilton 1996; Meiksin, White & Peacock 1999; Crocce & Scoc-
cimarro 2008; Padmanabhan & White 2009; McCullagh & Szalay
2012; Tassev & Zaldarriaga 2012a; Schmittfull et al. 2015). The
modes responsible for the broadening of the peak are of quite long
wavelength (Eisenstein, Seo & White 2007) and, as pointed out by
Eisenstein et al. (2007), these modes are also generally well mea-
sured by a survey aiming to do BAO. Thus the impact of the non-
linear evolution can be modeled and reduced by a process known

as reconstruction (Eisenstein et al. 2007; Padmanabhan et al. 2012).
Reconstruction greatly improves fits to the distance scale using the
BAO feature (Seo et al. 2010b; Anderson et al. 2014).

Traditionally BAO have been measured in galaxy surveys
(e.g., Anderson et al. 2014, for the most recent detections), or in
the intergalactic medium (Busca et al. 2013; Slosar et al. 2013;
Kirkby et al. 2013; Delubac et al. 2015) either directly or in cross-
correlation with QSOs (Font-Ribera et al. 2014). In recent years
technological advances have made it feasible to use 21 cm surveys
to measure large-scale structure and, in princple, the BAO scale at
redshifts z ∼ 1−2. In advance of a detection a wide variety of tech-
nologies are being investigated, ranging from large arrays of dishes
(e.g., BAORadio1, HIRAX, SKA1-MID2), to large single dishes
(e.g., FAST3), to arrays of antenna tiles (e.g., BAOBAB4), to ar-

1 Ansari et al. (2012)
2 http://www.skatelescope.org
3 Nan et al. (2011)
4 Pober et al. (2013)
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rays in the focal plane of a large reflector (e.g., GBT-HIM, Parkes,
BINGO5), to arrays of cylindrical reflectors (e.g., CHIME6, ORT7,
Tianlai8). Each of these approaches has its advantages and diffi-
culties. One difficulty that they all share in using redshifted 21 cm
emission as a cosmological probe is that the signal is dwarfed by
foreground9 contamination (Furlanetto, Oh & Briggs 2006; Chang
et al. 2010). This renders many longer-wavelength modes in such
experiments unusable, and this can have a significant impact on
the ability of such experiments to measure BAO (see Seo & Hirata
2015, for further discussion).

The literature contains very different estimates for the ulti-
mate impact of foregrounds, depending upon assumptions about
how well one can model the instrument. Some authors claim that
foregrounds can be removed down to k ' 0.02 h Mpc−1 (Shaw et al.
2014, 2015) while others claim that all line-of-sight modes with
k‖ < 0.1 h Mpc−1 and modes with k‖ < 0.6 k would be signifi-
cantly contaminated (e.g., Liu, Parsons & Trott 2014; Pober 2015,
building upon Datta, Bowman & Carilli 2010; Vedantham, Udaya
Shankar & Subrahmanyan 2012; Parsons et al. 2012; Morales et al.
2012). We shall consider a range of possibilities motivated by these
investigations.

Not surprisingly, the loss of long-wavelength modes causes a
significant reduction in the BAO signal and, even more dramati-
cally, in the ability to perform reconstruction on such a survey. We
note that at high redshift and large scales we expect the k-modes to
be almost independent of one another, and thus there is no interpo-
lation or filtering scheme that can compensate for a lost mode.10 If
the 21 cm survey is unable to measure a given mode of the density
field it must be supplied by other means. In this paper we investi-
gate whether a very sparse tracer of the density field, such as QSOs
or emission line galaxies (ELGs), can be used to recover some of
the missing, large-scale modes and improve reconstruction.

Specifically we investigate how reconstruction is affected by
missing modes using low-order Lagrangian perturbation theory. We
extend this theory, in the context of reconstruction, to include filter-
ing and missing modes (see also Seo et al. 2015, for similar topics)
and anisotropic noise. Missing modes can be thought of as modes
with infinite noise. A second sample can be used to “fill in” the
modes missed by a 21 cm survey, so that the noise in that region of
k-space is set by the properties of the second sample. To be con-
crete, we consider QSOs and ELGs as tracers of the high-z, large-
scale density field, since surveys covering large areas of sky with
spectroscopic redshifts of objects in the appropriate redshift range
are in progress. As an example, the eBOSS11 survey (Dawson et al.
2015) will obtain spectroscopic redshifts for more than 500,000
QSOs with 0.9 < z < 2.2 over 7500 deg2 of sky (Myers et al.
2015), significantly extending the existing samples in this redshift
range. It will also measure redshifts for 190, 000 ELGs in the range

5 http://www.jb.man.ac.uk/research/BINGO
6 http://chime.phas.ubc.ca
7 Ali & Bharadwaj (2014)
8 http://tianlai.bao.ac.cn
9 The foregrounds have been best studied in the context of 21 cm studies
of the epoch of reionization, i.e., at lower frequencies than we consider.
However the signal and foregrounds scale in a similar manner with fre-
quency so that many of the results carry over with minimal modification –
see e.g., Pober (2015) for a recent discussion.
10 See however Zhu et al. (2015), which appeared as we were finishing
this paper, for a method using the effect of long wavelength modes on short
wavelength modes.
11 http://www.sdss.org/surveys/eboss

0.7 < z < 1.1 over 750-1500 deg2. In the future DESI12 will gener-
ate samples of emission line galaxies (and QSOs) with even higher
number density and wider redshift coverage.

As might be expected, there is little gain in using tracers whose
shot-noise exceeds their clustering power on the scales relevant for
computing the displacements. Which tracers are useful in this con-
text thus depends on the modes which a 21 cm survey is unable to
access. In its standard configuration, QSOs are shot-noise limited at
all k for the eBOSS surveys, though one could imagine similar sur-
veys which could go deeper. Similarly the Lyα forest measured by
BOSS and eBOSS provides good sampling, but long-wavelength
modes along the line of sight can be contaminated by continuum
modeling. Perhaps the best choice is the eBOSS ELG survey near
z ' 1 which will provide a useful sample to augment reconstruction
or, in the future, the DESI sample where even the lower density (but
higher bias), high-z tail will be of use.

The outline of the paper is as follows. In section §2, we
use low-order Lagrangian perturbation theory to characterize re-
construction in the presence of noise, and then consider missing
modes as modes with infinite noise. To avoid modes with infinite
noise from erasing all the effects of reconstruction, we introduce
a Wiener filter into the reconstruction scheme. In section §3, we
generalize our treatment to include anisotropic noise (such as the
“wedge” for 21 cm experiments; Datta, Bowman & Carilli 2010)
and redshift space distortions and bias, and then show that the ad-
dition of even sparsely sampled objects to data where modes were
previously missing can improve reconstruction. We show how this
depends upon the noise of the added field and the geometry of the
“wedge”. We conclude in section §4. A discussion of Eulerian per-
turbation theory is provided in an appendix, as it is a particularly
physical way of viewing reconstruction and seeing how the missing
modes limit the effects of reconstruction.

2 RECONSTRUCTION WITH NOISE

Lagrangian perturbation theory has proven particularly useful as
an approximate, analytic model of reconstruction (Padmanabhan,
White & Cohn 2009; Noh, White & Padmanabhan 2009; Tassev
& Zaldarriaga 2012b; White 2015; Seo et al. 2015). In this section
we review the Lagrangian framework, the reduction in signal-to-
noise ratio that arises from non-linear structure formation and how
to model reconstruction within this formalism. We begin with re-
construction for an isotropic system, to set notation and identify a
few key features when noise is included. The generalization to in-
clude anisotropic noise and redshift-space distortions is presented
in section §3.

2.1 Review: Peak broadening in Lagrangian Perturbation
Theory

The modification of the power spectrum by non-linear evolution
can be seen in the Lagrangian approach as follows (e.g., Matsubara
2008; Padmanabhan, White & Cohn 2009). If we denote a particle’s
initial, Lagrangian, position by q and its final, Eulerian, position by
x then the Lagrangian displacement is defined through x = q+Ψ(q).
Assuming a local, Lagrangian bias defined by F[δL(q)] the density

12 http://desi.lbl.gov
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is (Matsubara 2008)

1 + δ(x) =

∫
d3q F[δL(q)] δ(D)(x − q −Ψ) (1)

with

δ(k) =

∫
d3 x e−ik·x δ(x)

=

∫
d3q e−ik·q

(∫
dλ
2π

F(λ)e−ik·Ψ(q)−iλδL − 1
)
. (2)

An unbiased tracer of the density field has F[λ] ∝ δ(D)(λ), while
a tracer with linear bias b has the average of F′ over the Gaussian
distribution of δL equal to b−1 (Matsubara 2008). To leading order
in the linear density contrast, δL,

Ψ(k) = i
k
k2 δL(k) (3)

(Zel’dovich 1970). Using the cumulant theorem and the fact that δL,
and hence Ψ, is Gaussian one obtains [see Appendix A] a damping
of the oscillations (e.g., Bharadwaj 1996; Taylor & Hamilton 1996;
Meiksin, White & Peacock 1999; Eisenstein, Seo & White 2007;
Crocce & Scoccimarro 2008; Matsubara 2008)

Pnl(k) = D(k) b2PL(k) + · · · with D(k) = e−k2Σ2/2 (4)

(We have assumed a scale-independent bias as appropriate for large
scales and PL is the linear dark matter power spectrum.) The damp-
ing of the linear power spectrum (or equivalently the smoothing
of the correlation function) reduces the contrast of the feature and
the precision with which the size of ruler may be measured. The
damping scale is set by the mean-squared Zel’dovich displacement
of particles,

Σ2 =
1

3π2

∫
dp PL(p) . (5)

As we shall see, reconstruction decreases Σ2 (and also undoes the
shift of the peak position from its linear value – see Padmanab-
han, White & Cohn 2009; Sherwin & Zaldarriaga 2012 for further
discussion). We will be studying the effects of reconstruction by
considering changes toD(k).

2.2 Review: Reconstruction algorithm

Reconstruction ‘undoes’ the effects of non-linearity using the mea-
sured large-scale density field to infer the shifts that galaxies have
undergone due to gravitational instability. The algorithm devised
by Eisenstein et al. (2007) consists of the following steps:

(i) Smooth the halo, galaxy or 21cm density field with a kernel
W (see below) to filter out small scale (high k) modes, which are
difficult to model. Divide the amplitude of the overdensity by an
estimate of the large-scale bias, b, to obtain a proxy for the over-
density field: δ(x).

(ii) Compute the shift, s, from the smoothed density field in
redshift space using the Zeldovich approximation (this field obeys
∇ ·Rs = −δ with Ri j = δi j + ( f /b)ẑiẑ j). Once s is obtained, multiply
the line-of-sight component by 1 + f to approximately account for
redshift-space distortions (see below for further discussion).

(iii) Move the galaxies by s and compute the “displaced” density
field, δd.

(iv) Shift an initially spatially uniform distribution of particles
by s to form the “shifted” density field, δs.

(v) The reconstructed density field is defined as δr ≡ δd−δs with
power spectrum Prec(k) ∝ 〈

∣∣∣δ2
r

∣∣∣〉.

Following Eisenstein et al. (2007) we use a Gaussian smoothing
of scale R for W, specifically W(k) = exp[−(kR)2/2]. Our R is
canonically defined for a Gaussian smoothing, but alternative def-
initions of R exist in the literature13, so care must be taken in
comparisons. We take R = 10 h−1Mpc unless otherwise noted.
Throughout we shall assume that the fiducial cosmology, bias and
f = d ln D/d ln a ' Ω0.55

m are properly known during reconstruc-
tion. Various tests of the Eisenstein et al. (2007) reconstruction al-
gorithm and sensitivity to parameter choices have been performed
in the literature. We refer the reader to Seo et al. (2010b); Pad-
manabhan et al. (2012); Xu et al. (2013); Burden et al. (2014); To-
jeiro et al. (2014); Vargas-Magaña et al. (2014); Seo et al. (2015)
which also contain useful details on the specific implementations.
Note that we have chosen to perform ‘anisotropic reconstruction’,
in which the shifted and displaced fields both include the factor
of 1 + f in the line-of-sight direction as Lagrangian perturbation
theory seems to model this algorithm better (White 2015). Our im-
plementation of anisotropic reconstruction follows White (2015)
and differs slightly from that in Seo et al. (2015). We correct for
redshift-space distortions (to linear order) in defining s in terms of
the observed density field but include the factor of 1 + f in the line-
of-sight component for both the displaced and shifted fields. We
shall make further comparison with Seo et al. (2015) later.

With these definitions the displaced field is14

δd(k) =

∫
d3q e−ik·q

(∫
dλ
2π

F(λ)e−ik·(Ψ(q)+s(q))−iλδL(q) − 1
)
, (6)

while the “shifted” density field is

δs(k) =

∫
d3q e−ik·q(e−ik·s(q) − 1) . (7)

and hence

δr(k) =

∫
d3qe−ik·qe−ik·s(q)

(∫
dλ
2π

F(λ)e−ik·Ψ(q)−iλδL(q) − 1
)
, (8)

The reconstructed power spectrum is P(k) ∝ 〈
∣∣∣δ2

r

∣∣∣〉, which can be
evaluated through use of the cumulant theorem.

2.3 Reconstruction with noise

In current galaxy redshift surveys targeted at BAO, the number den-
sity of tracers is such that noise is relatively insignificant. However
this need not be the case in general. When noise is present in the ob-
served field, it will also contribute to the shifted field (White 2010).
Assuming that the signal approaches linearity on large scales, for
sufficiently large smoothing the general expression for the shifted
field obeys

s(k) ' −i(k/k2) S(k) [δL(k) + δN(k)] . (9)

where we have written the noise contribution δN(k) explicitly.15

In Eq. 9 the weight, S(k), applied to the density field is a
combination of the usual Gaussian smoothing kernel and a noise-
suppression factor,

S(k) = fN (PL(k), PN(k)) W(k) . (10)

13 For example, Padmanabhan, White & Cohn (2009) use W(k) =

exp[−(kR)2/4] in a similar analytic approach, while Burden et al. (2014);
Vargas-Magaña et al. (2014) use the definition here.
14 See White (2015), § 3.1, for a discussion of the use of s(x) vs. s(q).
15 Note that there is an implicit requirement on the smoothing S(k): when
S acts on the observed field it must suppress the non-linear power.

c© 0000 RAS, MNRAS 000, 1–10
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Figure 1. The leading coefficient D(k) of the reconstructed power spec-
trum, Prec(k) = D(k)PL(k) + . . . , for different smoothings and filters. The
larger D(k), the better the reconstruction for the mode k. Top: the change
inD(k) with changes in the Gaussian smoothing scale R. For filtering scale
below ∼ 10 h−1Mpc, D(k) is larger at large k and smaller at low k than for
R > 10 h−1Mpc. Bottom: Holding the smoothing R = 10 h−1 Mpc, D(k)
for different filters and four different choices of isotropic Poisson noise,
corresponding to 4 densities. [Densities are quoted in units of h3 Mpc−3.]
Similar to changing the smoothing scale R above, increasing the noise level
(decreasing the density b2n̄) can improve reconstruction [increaseD(k)] for
some filters and values of k and degrade reconstruction for others. This can
be seen in Fig. 2 below. Also shown is the unreconstructed signal (magenta
dashed line) in the absence of noise. Here and hereon, redshift z = 1 is
assumed.

Here PL and PN are inputs to the algorithm, taken to be theoretical,
linear power spectra estimates for the signal and noise respectively.
We shall assume these are the ‘true’ signal and noise spectra, since
the procedure can be iterated.

We have not attempted to optimize fN . Instead we have chosen
it to be a Wiener filter which acts to suppress noise in s from modes
where PN is as large (or larger) than the cosmological signal.

fN ≡
PL(k)

PL(k) + PN(k)
=

1
1 + [PN(k)/PL(k)]

. (11)

If such a factor fN is not included then a very noisy density field will
lead to almost random “shifts” which wash out the structure rather
than reconstructing it. A Wiener filter was also suggested by Seo &

Hirata (2015, Eq. 17), though they in practice used a Gaussian with
a modified smoothing instead.

2.4 Isotropic example

The effects of the noise PN and the filtering fN can be seen clearly
in a simplified isotropic example, where PN(k) = PN(k), redshift
space distortions are neglected, and the bias b = 1. In this limit, the
leading terms of the reconstructed power spectrum are Prec(k) =

D(k)PL(k) + . . . with16

D(k) = e−(1/2)k2Σ2
ss
[
S(k) + (1 − S(k)) e−(1/4)k2(Σ2−2Σ2

s )
]2
. (12)

Here

Σ2
ss =

1
3π2

∫
dp S(p)2 [

PL(p) + PN(p)
]

Σ2
s =

1
3π2

∫
dp S(p)PL(p) (13)

and Σ2 is the unreconstructed damping (Eq. 5). This is equivalent
to, but written slightly differently than, previous results (see later).
This form isolates both the damping Σ2

ss remaining after reconstruc-
tion (which also contains the full effect of the noise in this approxi-
mation) and the damping Σ2 in the absence of reconstruction. With
no filter (i.e., fN = 1), increasing the noise clearly increases Σ2

ss,
increasing the overall damping of the reconstructed linear power
spectrum.17

Taking fN to be the Wiener filter, 1/(1 + PN/PL), the contribu-
tions S2[PL + PN] in the damping scale in Eq. 13 go to zero when
PN(k) is large (SPL also tends to zero in this limit). The very noisy
modes thus do not contribute significantly to Σ2

ss or to Σ2
s , i.e., to re-

construction. Specifically, Σ2
ss no longer increases with increasing

noise as it would if no filter were applied. In the examples below
we shall take the noise to be Poisson shot noise, PN = b−2n̄−1,
for tracers with number density n̄ and linear bias b. In fact, we shall
typically quote the noise levels in terms of an effective number den-
sity.

A filter can not only ensure that noisy modes do not destroy
reconstruction for all modes; it also modifies reconstruction for the
remaining modes, as does the form and level of noise. These ef-
fects can be similar to those due to changing the Gaussian smooth-
ing scale R. (Studies changing R include Padmanabhan et al. 2012;
Burden et al. 2014; Seo et al. 2015; as mentioned earlier Seo &
Hirata (2015) trade a change in R for a filter.) Altering the filter,
Gaussian smoothing or noise level does not necessarily have a uni-
form effect on the reconstruction of different modes: a given change
may increase damping for some modes and decrease it for others.
In Fig. 1 we show the change in damping, D(k), when changing
the smoothing R (top panel, fixing fN = 1 by setting PN = 0)
as well as changing the noise level at fixed R (bottom panel). In
the latter case we show the results for two filters: fN = 1 and
fN = 1/(1+PN/PL). Modes at low k and high k have different trends
in how well they are reconstructed as the smoothing increases or the
filter changes. In particular with a noise dependent filter and smaller
R (R < 10 h−1Mpc, not shown) increasing noise can increaseD for

16 The propagator is
√
D.

17 Note that the presence of noise means that the shifted field also has a
noise component δr = δd − δs + δN so that to leading order there is a
term proportional to noise P(k) = D(k)PL(k) +DN ((k)PN (k) + . . . , where
DN (k) = 1 + . . . , i.e., the leading contribution to the noise is not damped by
reconstruction.

c© 0000 RAS, MNRAS 000, 1–10
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some low values of k. To summarize, the combination of noise,
filter and smoothing affects different k-modes differently, and in-
creasing noise can sometimes improve reconstruction of a specific
k-mode. This suggests that a series of filters, each optimized to a
specific window and with an optmized shape, could improve re-
construction over what is possible with a single smoothing scale.
We shall leave such investigation to a future paper. Henceforth we
fix fN = 1/(1 + PN(k)/PL(k)).

Now we are in a position to describe the effects of missing
modes, i.e., modes which are not observed, on reconstruction. First
of all, these modes are not present for measuring the power spec-
trum, which decreases the number of modes which can be averaged
over and thus increases the error in a given k-bin [perhaps to infin-
ity]. Their absence also weakens the ability to reconstruct the rest of
the modes. By treating missing modes as modes with infinite noise
in Eq. 12, they can be seen to contribute to the original broaden-
ing (Σ2 is unchanged) but not to the reconstructed factors Σ2

ss and
Σ2

s . Before we explore this further we generalize our treatment to
include anisotropic reconstruction and redshift-space distortions.

3 ANISOTROPIC RECONSTRUCTION

3.1 Formalism

Including redshift-space distortions in our theory, the displace-
ments Ψ and s are increased in the line-of-sight direction by a fac-
tor 1 + f as noted in section §2.2. The undamped signal is modified
from b2 PL to (b + fµ2)2PL, where we have again assumed linear
bias b. In addition, the noise power spectra appearing in the expres-
sions below are to be interpreted as the raw noise power divided by
[1 + βµ2]2,

PN(k)→
PN(k)

[1 + βµ2]2 , (14)

since we “remove” redshift-space distortions when first computing
s from our smoothed density field. This additional factor also prop-
agates into the Wiener filter expression and thus S(k). The noise
power, PN , may depend on the direction of k beyond that given by
the 1+βµ2 term; for example the 21 cm wedge corresponds to direc-
tion dependent missing modes (i.e., modes with very large noise).

The reconstructed power spectrum thus reads

Prec(k, µ) = (b + fµ2)2D(k)PL(k) + · · · (15)

with damping

D(k) = e−(1/2){k2
⊥Σ2

ss,⊥+k2
‖
Σ2

ss,‖}

[
1 + fµ2

b + fµ2 S(k)+ (16)(
1 −

1 + fµ2

b + fµ2 S(k)
)

e−(1/4){(k2
⊥+(1+ f )2k2

‖
)Σ2−2k2

⊥Σ2
s,⊥−2k2

‖
Σ2

s,‖}

]2

.

(17)

The damping terms again depend upon the linear power spec-

trum and the (now possibly anisotropic) noise, and are given by:18

Σ2
ss,‖ = 2(1 + f )2

∫
d3 p

(2π)3

p2
‖

p4 S
2(p)

[
PL(p) + PN(p)

]
Σ2

ss,⊥ =

∫
d3 p

(2π)3

p2
⊥

p4 S
2(p)

[
PL(p) + PN(p)

]
Σ2

s,‖ = 2(1 + f )2
∫

d3 p
(2π)3

p2
‖

p4 S(p)PL(p)

Σ2
s,⊥ =

∫
d3 p

(2π)3

p2
⊥

p4 S(p)PL(p) (18)

These expressions are equivalent to the more familiar forms

D(k) = S2(k)e−(1/2)(k2
⊥Σ2

ss,⊥+k2
‖
Σ2

ss,‖)

+ [1 − S(k)]2e−(1/2)(k2
⊥Σ2

dd,⊥+k2
‖
Σ2

dd,‖)

+ 2S(k)[1 − S(k)]e−(1/2)(k2
⊥Σ2

sd,⊥+k2
‖
Σ2

sd,‖) .

(19)

where we have taken b = 1 and defined

Σ2
dd,‖ = 2(1 + f )2

∫
d3 p

(2π)3

p2
‖

p4

{[
1 − S(p)

]2 PL(p) + S2(p)PN(p)
}

Σ2
dd,⊥ =

∫
d3 p

(2π)3

p2
⊥

p4

{[
1 − S(p)

]2 PL(p) + S2(p)PN(p)
}
,

with Σ2
sd,⊥ = (1/2)(Σ2

dd,⊥ + Σ2
ss,⊥) and Σ2

sd,‖ defined similarly. Note
that for isotropic S and PN the parallel components are simply (1 +

f )2 times the perpendicular components and the coefficients of the
exponentials become

k2Σ2

2

{
(1 − µ2) + (1 + f )2µ2

}
=

k2Σ2

2

{
1 + f ( f + 2)µ2

}
. (20)

In the appropriate limits these equations then agree with those in
Matsubara (2008); White (2010); Carlson, Reid & White (2013);
Seo et al. (2015). Note that in the notation of the Appendix of Seo
et al. (2015) we have chosen κ = b + fµ2 and λd = λs = f . It is
closest to their “rec-iso” case (in which they choose λs = 0).

3.2 Example: 21 cm wedge

As our motivating example we consider a density field with a noise
level and different missing mode scenarios inspired by 21 cm exper-
iments. We will take as a representative 21 cm noise level that cor-
responding to the forecast for a CHIME-like experiment in Chang
et al. (2008), assuming that thermal noise dominates (see also Seo
et al. 2010a; Seo & Hirata 2015). The CHIME-like noise can be ex-
pressed in terms of an effective number density of tracers (of unit
bias)

n̄ = 2.5 × 10−3 h3Mpc−3
(

1 + z
2.5

)3/2

×

[
ΩΛ(1 + z)−3 + Ωm

0.3

]−1/2 (
χ

3.2 h−1Gpc

)−2

(21)

With an eye to using ELG’s as the example of a “helper” tracer we
will focus on redshift z = 1. In this case n̄ ' 3 × 10−3 h3 Mpc−3.

For missing modes, we consider scenarios where we include
only modes with |k‖| > kcut which lie outside a “wedge”, |k‖|/k >

µmin. For definiteness, and because it covers the wide range of opin-
ions in the literature, we consider kcut = 0, 0.02, 0.1 h Mpc−1. For

18 The generalization to noise which depends on kx and ky separately is
straightforward.
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Figure 2. The damping factor,D(k), for a survey where 21 cm modes have
k‖ and µ = |k‖ |/k restricted to the ranges shown. The black lines have no
missing modes. Colored lines include the effect of the wedge with µmin =

0.56 and/or a cut in k‖; the two lines for the constraints k‖ > 0.1hMpc−1,
µ > 0, 0.56 are degenerate. The noise of the 21 cm modes, i.e., modes not in
the wedge, is taken to be equivalent to b2 n̄ ' 3 × 10−3 h3Mpc−3 (see text).
Two directions are shown: solid lines are along the line-of-sight (k‖ = k,
k⊥ = 0) and dashed lines are transverse (k⊥ = k, k‖ = 0). Top: D(k) for
modes which are present (obeying k‖ and µmin cut), PN = ∞ or b2n̄→ 0 for
missing modes. Bottom: The same cuts in k‖, µ, as above, but replacing the
missing modes with an ELG survey with number density 3×10−4 h3 Mpc−3.
Note in the top figure that with our approximations a small range of k‖ is
improved when other modes are completely left out of reconstruction, an
example of increasing noise increasingD(k) and suggesting that a different
smoothing may help with better recovering those components.

µmin the edge of the wedge is given by (e.g., Shaw et al. 2015; Pober
2015; Seo & Hirata 2015, and references therein)

k‖
k⊥
≡ R =

χ(z)H(z)
c(1 + z)

=
E(z)
1 + z

∫ z

0

dz′

E(z′)
(22)

where χ is the comoving distance to redshift z, E(z) = H(z)/H0 and
we have assumed a spatially flat Universe. The appropriate prefac-
tor in front of R and how far into the wedge it is possible to work is
a matter of debate – we shall take this value as illustrative though
higher values are possible. If the wedge cannot be penetrated then
all modes with |µ| ≡ |k‖|/k < µmin

µmin =
R

√
1 + R2

(23)
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Figure 3. The matter power spectrum, at z = 1 and 1.5, compared to the
QSO shot-noise (1/b2n̄; dotted line), the ELG shot-noise (dot-dashed) and
the noise expected for a 21 cm survey such as CHIME (dashed line). Note
that the QSO shot-noise exceeds the cosmological power for all k. For z = 1
we plot the ELG shot-noise for an eBOSS-like sample, assuming b = 1. At
z = 1.5 we plot the shot-noise assuming constant clustering and DESI-like
number densities.

are lost. For a ΛCDM model at z = 1, and our choice of edge,
µmin ' 0.56. Thus slightly more than half of all modes would be
lost to the wedge at z = 1. A graphical representation of the modes
which are lost (or kept) can be seen in Fig. 4 below.

We show in the top panel of Fig. 2 the change in D(k), for
k = k‖ or k = k⊥ when certain modes are omitted from the recon-
struction (the black solid and dashed lines are the comparison case
of no missing modes). As already noted by Seo & Hirata (2015),
the effect on reconstruction is dramatic. Missing modes thus sig-
nificantly compromise the ability of a 21 cm survey to measure the
distance scale.

3.3 Filling in the wedge

The top panel of Fig. 2 demonstrates that loss of line-of-sight or
wedge modes at low k significantly weakens the ability of a 21 cm
experiment to constrain the distance scale. However, the modes
which are missing are of very long wavelength, near the peak of
the CDM power spectrum, and thus can be measured relatively well
even by quite sparse tracers. The combined density field then has
a noise level which is set by the 21 cm survey at high k and the
“filler” survey at lower k.

As a particular example we shall consider using ELGs19 as
measured for example by eBOSS or DESI. Table 8 of Dawson et al.
(2015) lists the ELG number density for the DECam ELG sample
as ∼ (1.5 − 3) × 10−4 h3Mpc−3 over the range 0.7 < z < 1 and
across 1,000 deg2. We shall take the upper end of this range as an
optimistic example and assume the ELGs are unbiased (b = 1).
This gives the “filler” data a number density an order of magnitude

19 Surveys of QSOs currently cover more area and have a wider redshift
overlap with planned 21 cm experiments, but are very sparse. Assuming a
fiducial b(z) = 0.53 + 0.29(1 + z)2 (Croom et al. 2005) and the number
densities from Dawson et al. (2015); Myers et al. (2015) we find that PN >
PL for all k, see Fig. 3. While this still allows high precision measurements
of P(k), given enough volume, it leads to poor reconstruction.
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Figure 4. The damping function, D(k), with 21 cm data restricted to k‖ > 0.02 and µ > 0.56 with an effective density b2n̄ = 3 × 10−3 h3Mpc−3. Top left: no
reconstruction. Top right: reconstruction only with 21 cm data. Bottom left: reconstruction using ELGs with b2n̄ = 3 × 10−4 h3 Mpc−3 to fill in the missing
modes. Bottom right: reconstruction using a photometric redshift survey with b2n̄ = 3× 10−3 h3 Mpc−3 to fill in the modes with k‖ < 0.03 h Mpc−1. To be able
to access such modes requires photo-z precision of δz/(1 + z) ∼ 0.01 (see text). Note that in spite of the wedge, non-missing modes along k⊥ are much better
reconstructed because of redshift space distortions along k‖.

lower than the effective number density for the 21 cm data. The
amplitudes of the shot noise and cosmological power, as a function
of k, are compared in Fig. 3.

While in reality one would estimate the density field from the
combination of the surveys in an inverse variance manner, and the
transition in the noise is likely to be smooth with k, we shall instead
take the noise to be 1/n̄21 where our 21 cm survey has data, sharply
transitioning to 1/n̄ELG where our 21 survey does not. [Our formal-
ism can handle an arbitrary PN(k).] The lower panel of Fig. 2 shows
the improvement that such a survey combination would make in re-
construction – in addition to allowing a measurement of modes in-
side the foreground-dominated region and so lowering the sample
variance for those ks.

Fig. 4 shows the full D(k⊥, k‖) for four cases: no reconstruc-
tion, reconstruction using only 21 cm data, reconstruction with the
addition of the ELGs and reconstruction using a photometric red-
shift sample (see below). Even missing the modes indicated, a com-
parison of the top left and right panels shows that reconstruction
improves the signal-to-noise of the acoustic signature. However,
the improvement that comes from including the missing modes by

using ELG data is dramatic, as a comparison of the bottom left and
top right panels shows. We discuss the lower right panel below.

We find that the combination of experiments does better than
either does alone. The improvement over a 21 cm experiment which
cannot measure some modes is demonstrated above. Although we
do not show it here, the combination of the 21 cm data and the
ELGs provides slightly better reconstruction than can be obtained
with a survey of only ELGs (unless their number density can be
increased by an order of magnitude). The damping scales, Σs and
Σss, are common to all modes and benefit from the regions of k-
space with lower noise. For our fiducial ELG number density the
improvement is not dramatic since the noise is subdominant to the
signal power for a broad range of k, however the situation changes
if such high number densities cannot easily be obtained over the
desired redshift range.

To further explore the parameter space, Fig. 5 shows the
damping function along or transverse to the line of sight (with
k = 0.15 h Mpc−1) as a function of tracer noise (specifically b2n̄)
for different choices of the missing modes. One can see that once
the number density of the tracer has b2n̄ ' 10−4 h3 Mpc−3 or larger
it is able to compensate for the modes missed by the 21 cm survey
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Figure 5. The damping function at k = 0.15 h Mpc−1 as a function of
ELG density for different wedge shapes (as indicated in the figure). Solid
lines show D for k‖ = k = 0.15 h Mpc−1 while dashed lines show k⊥ =

k = 0.15 h Mpc−1. The small density, i.e., large noise, limits asymptotically
reach theD(k) where only the 21 cm measurements are available. (If a mode
is missing entirely when only 21 cm measurements are available, then it will
not contribute before or after reconstruction.) In spite of the wedge, modes
along k⊥ are much better reconstructed because of redshift space distor-
tions along k‖. The line for the constraint k‖ > 0.1 h Mpc−1 is the same for
µ > 0, 0.56.

and improve the performance of reconstruction. This characteris-
tic number density is given by the cosmological power (PL) at the
scales where the 21 cm survey is missing modes, which is close to
the peak of the power spectrum.

So far our discussion has assumed that the “filler” sample
comes from a spectroscopic survey. However, if only the low k
modes are needed, samples and surveys with high-precision pho-
tometric redshifts could be used instead. The lower right panel of
Fig. 4 shows an optimistic case where a photometric redshift sur-
vey can fill in all of the modes with k‖ < 0.03 h Mpc−1. (This
includes some modes already obtained from 21 cm outside the
wedge, but adds information inside the wedge.) Translating a red-
shift uncertainty of δz into a comoving distance uncertainty of
δχ = [c/H(z)]δz, to probe k‖ = 0.03 h Mpc−1 requires δz/(1 + z) <
0.01 at z = 1. Such photo-z precision is in principle achievable,
given enough filters. As shown in Fig. 4 lower right, recovering
k‖ < 0.03 h Mpc−1 (for all k⊥) can have a large impact on recon-
struction. Conversely, if only k‖ < 0.01 h Mpc−1 can be recovered
then the gain is minimal.

4 DISCUSSION

The study of large-scale structure has taught us a great deal about
the Universe in which we live and provides tight constraints on fun-
damental physics. One of the key observables in large-scale struc-
ture are the so-called BAO, which provide a standard ruler enabling
the measurement of the expansion history of the Universe with low
systematics and high precision. The BAO signal is degraded by
non-linear evolution, but the degradation can to some degree be
overcome by density field reconstruction.

While 21 cm experiments can in principle measure large-scale
structure efficiently at very high redshifts, where galaxy redshift
surveys become increasingly expensive, they may suffer from large

foreground contamination in a “wedge” in k-space. The modes lost
due to foregrounds have an impact on BAO measurements but an
even larger impact upon reconstruction (as recently emphasized by
Seo & Hirata 2015). In this paper we have demonstrated, using
an analytic model based on low-order Lagrangian perturbation the-
ory, that even a relatively sparse tracer of the density field can “fill
in” the missing modes. The combined data can be more powerful
than either of its parts: reaping the benefits of full k-coverage and
low shot-noise. This allows density field reconstruction and tight
measurements at smaller scales, which can be especially useful at
higher z.

We have presented formulae for the efficacy of reconstruction
in the case of biased tracers of the density field, including redshift-
space distortions, anisotropic noise and noise-filtering during re-
construction. The missing modes can be modeled as infinite noise,
while the effects of having two different samples can be modeled
via anisotropic noise. These extend the formulae in the literature,
but agree with those formulae in the appropriate limits. We find that
the details of how BAO are predicted to be damped in Lagrangian
perturbation theory depend upon the shape of the filter applied to
estimate the shift field. If this finding holds up in simulations, it
opens the possibility of “shaping” the filter to improve the perfor-
mance of reconstruction.

While even a very noisy tracer of the density field can be
used to measure the power spectrum if enough modes can be av-
eraged together, our intuition tells us that reconstruction — which
depends on the 3D density field and not just its power spectrum —
requires noise per k-mode less than the cosmological signal. Our
calculation quantifies and supports this intuition, and we show that
to measure the low-k modes missed by a 21 cm survey tracers with
b2n̄ ∼ 10−3 − 10−4 h3 Mpc−3 are required.

Of the existing surveys that cover large cosmological volumes
at high redshift, the QSO surveys are currently too sparse to be of
significant benefit. An increase in number density, however, would
lead to improved performance. Some of the low k‖ modes could,
in principle, be filled in with a photometric sample with excellent
photometric redshifts (obtained, perhaps, using multiple medium
bands). In the near term the most promising tracer, in the redshift
range z > 1 where most future 21 cm surveys will be operating,
are ELGs such as will be measured by eBOSS or DESI. If eBOSS
can achieve its forecast number densities it would significantly im-
prove reconstruction for 21 cm surveys which overlap in volume. In
the future even the higher z tail of the DESI ELG sample (with its
higher bias) would be beneficial to 21 cm surveys which are unable
to work deep into the foreground wedge.
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APPENDIX A: DERIVING THE DAMPING

Starting with the expression for δ(k) in the text [Eq. 2] we can write
[setting bias b = 1, or F[λ] ∝ δ(D)(λ)]〈
δ(k1)δ?(k2)

〉
=

〈∫
dq1 dq2e−ik1 ·q1 eik2 ·q2 [e−ik1 ·Ψ(q1)eik2 ·Ψ(q2) − 1]

〉
.

(A1)
Employing the cumulant theorem for a Gaussian variable
(〈exp[iX]〉 = exp[−(1/2)〈X2〉]), making a change of variables
dq1 dq2 → dQ dq with q = q1 − q2 and 2Q = q1 + q2 and us-
ing translational symmetry we have

P(k) =

∫
d3q e−ik·q exp

[
−kik j

{
ξi j(0) − ξi j(q)

}]
(A2)

where we have defined ξi j(q) =
〈
Ψi(q)Ψ j(0)

〉
and assumed k , 0.

Extracting the q-independent piece of the integral and expanding
the exponential gives

P(k) = exp
[
−kik jξi j(0)

] ∫
d3q e−ik·q

[
kik jξi j(q) + · · ·

]
(A3)

The Fourier transform of the kik jξi j(q) term can easily be shown to
be PL(k) to lowest order,∫

d3q e−ik·qkik jξi j(q) = kik j

∫
d3q e−ik·q

∫
d3 p

(2π)3

× eip·q pi p j

p4 PL(p) (A4)

= kik j

∫
d3 p

(2π)3

pi p j

p4 PL(p)

× (2π)3δ(p − k) (A5)

= PL(k) (A6)

while the exponential is the source of the damping term of the BAO
features (or the broadening of the acoustic peak in the correlation
function)

ξi j(0) =

∫
d3k

(2π)3

kik j

k4 PL(k) =
δi j

3

∫
dk
2π2 PL(k) . (A7)

APPENDIX B: RECONSTRUCTION IN EULERIAN
PERTURBATION THEORY

Most of the reconstruction literature either prescribes its implemen-
tation on a data set or interprets this implementation within La-
grangian perturbation theory. However, recently Schmittfull et al.
(2015) developed a theory of reconstruction based on Eulerian
perturbation theory and introduced several new reconstruction
schemes. One advantage of the Eulerian formulation, especially in

c© 0000 RAS, MNRAS 000, 1–10
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the present context, is that it is naturally expressed in terms of the
Fourier space density fields which are measured by 21 cm experi-
ments. A disadvantage of the Eulerian schemes is the increased dif-
ficulty of including redshift-space distortions. In this appendix we
consider the impact of missing modes upon reconstruction in the
Eulerian scheme to build intuition about their impact. We restrict
ourselves to real-space measures, set the bias to 1 and the noise to
zero for modes which have measurements. This preserves the main
features of the problem while simplifying the presentation.

Heuristically, reconstruction works by “undoing” some of the
nonlinear time evolution which decreases and shifts the BAO peak.
For Eulerian reconstruction, Schmittfull et al. (2015) approximate
the initial density field by Taylor expanding the observed field at
late times, specifically subtracting ∆t δ̇. Using the continuity equa-
tion to express δ̇ in terms of the divergence of (1 + δ)v, and with
an appropriate choice of ∆t some algebra gives (Schmittfull et al.
2015)

δr(x) = δobs(x) − s(x) · ~∇δobs(x) − δobs(x)δR(x) . (B1)

Here s(k) = −ik/k2 δobs(k)W(k) is the shift vector and δR(k) =

δobs(k)W(k), with a smoothing kernel W(k) (usually a Gaussian). In
Fourier space, this becomes

δr(k) = δobs(k) −
∫

d3 p
(2π)3K(k − p,p)δobs(k − p)δobs(p) (B2)

where by changing the kernel, K , we can now describe more gen-
eral reconstruction methods.

The reconstructed power spectrum is Prec(k) ∝ 〈
∣∣∣δ2

r

∣∣∣〉 as before.
The leading contribution to enhancing the BAO features, i.e., to
reconstruction, was found by Schmittfull et al. (2015) to be (their
Eq. 69):〈

∆(3)(k)δL(k′)
〉

= 3(2π)3δ(k+k′)Plin(k)
∫

d3k1

(2π)3 D3(k1,−k1,k)PL(k1) .

(B3)
This 3-point term can be seen to explicitly enhance the oscillations
over those in Pobs(k), restoring some of the signal that is damped
by non-linear evolution and bringing the result closer to PL(k).

In more detail,

D3(k1,k2,k3) = −
2
3

[K(k1,k2 + k3)F2(k2,k3) + cyclic] , (B4)

where

F2(k1,k2) =
5
7

+
1
2

(
k1

k2
+

k2

k1

)
k̂1 · k̂2 +

2
7

(
k̂1 · k̂2

)2
. (B5)

is the usual perturbation theory kernel. For the Schmittfull et al.
(2015) EGS reconstruction method

K(k1,k2) =
1
2

[W(k1) + W(k2)] + W(k1)
k1 · k2

k2
1

, (B6)

and, defining µ = k̂1 · k̂,

D3(k1,−k1,k) =
2
3

[
−

1
2

(W(k + k1) + W(k − k1))
[
5
7

+
2
7
µ2

]
−

1
4

[W(k + k1) −W(k − k1)] µ
[

k
k1

+
k1

k

]
+W(k1)

[
5
7

+ µ2
(

9
7

+
k2

k2
1

)]]
. (B7)

Fig. B1 shows the contribution of different modes to
D3(k1,−k1,k)PL(k1)k1,⊥. The modes which contribute most to D3

contribute the most to restoring the BAO signal, i.e., to reconstruc-
tion. Two different modes with k = 0.15 h Mpc−1 are shown, along
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Figure B1. Two slices in the k̂1,x, k̂1,z plane of the integrand
D3(k1,−k1,k)PL(k1)k1,⊥ in Eq. B3. Its integral is the dominant contribution
in reconstruction of the linear power spectrum PL(k), as noted in Schmit-
tfull et al. (2015). The top figure has the contribution for observed mode
k = 0.15k̂‖ = 0.15k̂z, and the bottom figure corresponds to k = 0.15k̂x.
The measure of integration is dk‖dk⊥ = dk‖dkx in this plane, thus area is a
measure of the size of the contribution to reconstruction. Note that the color
scale is logarithmic in this plot, unlike the earlier plots.

the k̂1,z and k̂1,x axes (the latter shown in the k̂1,z − k̂1,x plane). Equal
area in this plot gets equal weight in the integral, so that the relative
importance of different modes can be read off more easily. 20

As before, if an interferometer does not measure a given k1

mode, it will not contribute to D3 but it will contribute to the damp-
ing of the signal in Pobs. A simple way to see the effect of missing
modes to reconstruction of a mode k is to ask what impact remov-
ing contributions from k1 and k±k1 would have. Visually it is clear
that the modes where the color scale is red or orange contribute the
majority of D3, so losing these modes has the largest detrimental ef-
fect on reconstruction. This agrees with our the intuition obtained
from the Lagrangian theory exposition in the main text.

20 For k ∝ k̂z the k1 modes with large contributions seem closer to the k̂1,z
axis than for k ∝ k̂1,x. We thank the anonymous referee for pointing this
out.
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