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Abstract

Brain network definitions typically assume nonoverlap or minimal overlap, ignoring

regions' connections to multiple networks. However, new methods are emerging that

emphasize network overlap. Here, we investigated the reliability and validity of one

assignment method, the mixed membership algorithm, and explored its potential util-

ity for identifying gaps in existing network models of cognition. We first assessed

between-sample reliability of overlapping assignments with a split-half design; a

bootstrapped Dice similarity analysis demonstrated good agreement between the

networks from the two subgroups. Next, we assessed whether overlapping networks

captured expected nonoverlapping topographies; overlapping networks captured

portions of one to three nonoverlapping topographies, which aligned with canonical

network definitions. Following this, a relative entropy analysis showed that a majority

of regions participated in more than one network, as is seen biologically, and many

regions did not show preferential connection to any one network. Finally, we

explored overlapping network membership in regions of the dual-networks model of

cognitive control, showing that almost every region was a member of multiple net-

works. Thus, the mixed membership algorithm produces consistent and biologically

plausible networks, which presumably will allow for the development of more com-

plete network models of cognition.

K E YWORD S

clustering, cognitive control, functional connectivity, multiple-network membership, network
neuroscience, overlapping networks

1 | INTRODUCTION

Over the past 15 years, researchers have repeatedly demonstrated

that brain regions can be consistently clustered together into a small

number of spatially discontinuous groups based on the tendency for

their activity during rest or performance of a task to be correlated in

time. This measure of timeseries correlation between brain regions is

referred to as functional connectivity (Biswal et al., 1995;

Friston, 1994), and the groups of regions that demonstrate high

mutual functional connectivity are referred to as intrinsic networks

(Cole et al., 2013). Network neuroscience aims to identify these intrin-

sic networks in human functional magnetic resonance imaging (fMRI)

data and understand how they interact in the service of behavior.

Converging evidence from several different metrics indicates that

intrinsic networks communicate through a relatively small subset of

brain regions that are highly connected across multiple networks. For

example, intrinsic networks exhibit many of the properties of a small-

world architecture, including functionally segregated clusters with low
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numbers of cross-cluster connections and power-law distribution of

degree (number of connections) across regions (Bassett &

Bullmore, 2006). Likewise, graph theory metrics of participation coef-

ficient and within-module degree, which assess the distribution of a

region's connections across networks, reveal a group of brain regions

that are particularly strongly connected to multiple networks. More-

over, these properties underlie measures of network segregation and

integration, such as modularity and between-network connectivity,

which have been related to behavioral performance in a range of cog-

nitive tasks (Baniqued et al., 2018; Cohen & D'Esposito, 2016;

Kitzbichler et al., 2011; Mohr et al., 2016; Parkin et al., 2015).

While network neuroscience approaches have provided signifi-

cant insight into the functional organization of the brain, global met-

rics like small-worldness, modularity, and between-network

connectivity do not capture the role of individual brain regions in spe-

cific intrinsic networks. Even participation coefficient and within-

module degree, which characterize region-level connectivity, only pro-

vide aggregate measures that collapse across networks. Characterizing

the specific networks to which individual regions connect would give

further insight into functional organization of the brain that are lost

with these measures. However, the methods implemented in most

studies typically force nonoverlap or minimal overlap between the

networks they use in their analyses or rely on previously published

networks, almost all of which are likewise nonoverlapping (Glasser

et al., 2016; Power et al., 2011; Yeo et al., 2011). The most common

methods of network assignment rely on either clustering methods,

which explicitly assign regions to a single network in a winner-takes-

all fashion (Bassett & Bullmore, 2006), or independent components

analysis (ICA), which tends to produce networks with minimal overlap

in functional magnetic resonance imaging data as a matter of course

(Langers, 2009). These methods of assignment likely lose important

information about how particular brain regions may intrinsically con-

nect to multiple networks.

However, methods exist that emphasize areas of overlap

between networks by explicitly seeking out the meaningful connec-

tions between a region and all possible networks in the brain, which

provides a straightforward and quantifiable way to capture how brain

regions associated with multiple intrinsic networks. For example, Yeo

et al. (2014) reported an early assessment of the differences between

nonoverlapping and overlapping networks generated with ICA com-

bined with a latent Dirichlet allocation algorithm (ICA-LDA). They

found that overlapping networks largely captured the same topogra-

phies as nonoverlapping networks, indicating that they preserved

known network structures. At the same time, the overlapping net-

works extended significantly beyond the boundaries of their nonover-

lapping equivalents, revealing a wide range of pathways through

which different networks could communicate. They also found areas

of overlap that occurred entirely within the bounds of canonical net-

works rather than just at network boundaries, indicating that nono-

verlapping assignment may obscure the areas that subserve this

network communication. Critically, a large portion of the regions

assigned to multiple networks were drawn from association areas,

suggesting that these areas of overlap may be particularly important

for coordinating between networks during higher-order cognitive pro-

cessing. However, the assignments produced by this method only

indicated whether or not a region was included in a given network. As

such, while networks generated through ICA-LDA may be allowed to

overlap, the method does not generate any additional metrics about

each region's association with each network, limiting its potential to

expand our understanding of intrinsic networks.

More recently, Najafi et al. (2016) reported the first use of the

mixed-membership algorithm (Gopalan & Blei, 2013) that generates

novel information about multiple network membership above and

beyond prior methods. This algorithm uses a stochastic block model

to assign regions to a set of overlapping networks, producing an

assignment vector for each region that indicates the strength of the

region's association with each network. This allows for intrinsic net-

work overlap wherever the regions have a nonzero association with

more than one network. Importantly, the area of overlap between

two networks topographically indicates the regions that connect

between those networks. This provides a direct map of which intrinsic

networks each region contributes to and potentially to those regions

that serve as communication bridges between networks. Najafi and

colleagues applied the mixed membership algorithm to a set of fMRI

data collected from 100 human subjects at rest and during several dif-

ferent tasks. Their analysis produced a set of overlapping networks

that resembled networks produced using standard clustering methods,

but extended into other areas of cortex as well. These results showed

that multiple-network membership was common across a wide range

of regions, including areas from all four lobes as well as subcortical

structures. The authors further demonstrated the within-sample reli-

ability of these overlapping networks and explored the stability of the

networks across dimensionalities (i.e., the number of networks speci-

fied for assignment). They also showed, for an arbitrary number of

networks, good agreement between their overlapping networks and

nonoverlapping networks generated with a common method in the

same data. In addition, they further supported Yeo et al.'s (2014) pre-

vious conclusion that areas of overlap may support inter-network

communication during cognition. Specifically, a region's membership

diversity, calculated as the Shannon entropy of each region's assign-

ment vector, was correlated with its functional diversity, or the num-

ber of cognitive domains it supported. Moreover, they identified a

novel metric—“bridgeness”—that could separately identify regions

that might serve as bottleneck gates and those that might support

widespread integration.

Thus, methods such as the mixed membership algorithm give an

intuitive map of regions' multiple-network membership that is lost

with previous methods, providing an important new tool for investi-

gating and expanding network models of cognition. One prominent

network theory of cognitive control, referred to as the dual-networks

model of cognitive control (Dosenbach et al., 2007, 2008), posits the

frontoparietal (FP) and cingulo-opercular (CO) networks each supports

distinct cognitive control processes. The FP and CO networks are

composed of separate sets of regions and do not share any connec-

tions between them, which may be an artifact of the nonoverlapping

network methods used to define them. Using an overlapping method
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such as the mixed membership algorithm allows us to address answer

this question, which has important implications regarding the specific

mechanisms underlying network theories of cognitive control such as

the dual-network model.

Here, we sought to replicate and extend Najafi et al.'s (2016) ana-

lyses of the reliability and validity of the mixed membership algorithm.

We also aimed to further explore the utility of overlapping assignment

for potentially refining network theories of cognition. We first tested

the between-sample reliability of the mixed membership algorithm by

calculating the topographical consistency of overlapping networks

assigned from two different human subject samples collected under

the same MRI protocols (Glasser et al., 2013; Van Essen et al., 2012).

Next, we tested the method's biological validity by calculating the

topographical similarity of overlapping networks with nonoverlapping

networks derived in the same data and relating these explicitly to

well-established networks previously published in the literature.

Finally, we tested whether the CO and FP networks have distinct sets

of nodes, or whether some nodes in each of these networks are mem-

bers of other networks. If the latter is true, revision of the Dual-

Networks model, and likely other network models of cognition, will be

necessary (Dosenbach et al., 2007, 2008).

2 | MATERIALS AND METHODS

2.1 | Datasets

The following analyses were performed on a 200-subject subset of

the open-access young adult data (ages 22–35) from the Human Con-

nectome Project (S500 and S900 releases, Van Essen et al., 2012).

Details on informed consent procedures and measures taken to

ensure ethical and inclusive recruitment are described in detail by Van

Essen et al. (2012, 2013). 100 subjects were selected as those having

the lowest motion from the S500 release, calculated as the average

framewise displacement across all four resting state scans. The second

set of 100 subjects was selected at random from the remaining sub-

jects from the S900 release after excluding the original 100 subjects.

We selected 100 subjects for each subgroup as Najafi et al. (2016)

previously demonstrated good internal reliability for this sample size,

ensuring that each group in our split-half analysis would have reliable

network definitions. The data used here included the de-identified

preprocessed first LR acquisition resting state scans from each subject

(1200 timepoints, TR = 0.72 s, total scan time = 14 min 24 s; Glasser

et al., 2013). Each scan was further subjected to additional processing

using functions available in the Analysis of Functional Neuroimages

(AFNI) package (Cox, 1996). As has been previously reported (Hwang

et al., 2017), the mean whole brain signal (�ort whole_brain_-

signal.1D) and frequencies outside of a band between 0.009 and

0.08 Hz (�band 0.009 0.08 -automask) were removed. Yeo et al.

(2014) previously demonstrated similar results for overlapping assign-

ment regardless of whether whole-brain signal regression was used or

not; we chose to apply whole-brain signal regression in this analysis

for its ability to remove artifacts due to motion and physiological

signals and for its capacity to improve associations between resting

state FC and behavior (Li et al., 2019). The analyses were conducted

in volumetric space. Illustrations of the networks are projected onto

surface space for ease of whole-brain visualization.

2.2 | Data processing

To prepare the data for network assignment analysis, the following

preprocessing steps were followed using a combination of the AFNI

package (Cox, 1996) and MATLAB software. A 1000-unit, 7-network

derived version of the Global–Local parcellation (2 mm resolution) by

Schaefer et al. (2018) was used to define the regions of interest (ROIs)

to be used for the correlation matrix. This parcellation provided the

most fine-grained division of individual brain regions, especially in

association areas such as the lateral frontal cortex.

The AFNI function 3dNetCorr (options: -fish_z, -in_rois) was used

to extract region-wise, z-scored correlation matrices for analysis. ROIs

with zero data were automatically removed from the correlation for

each subject. Next, the data was imported into MATLAB and format-

ted for subsequent network assignment using a series of in-house

scripts (available at https://github.com/savannahcookson/NetChar).

Any ROIs excluded for a given subject were removed from all sub-

jects, ensuring that all subjects had valid correlation values for all ROIs

in subsequent analysis. As the mixed membership algorithm currently

can only be applied to nonweighted, nondirectional networks, nega-

tive correlations were removed from the matrices; the diagonal was

converted to zeros to remove direct regional autocorrelations. The

matrices were thresholded and binarized to retain only the top 10%

of correlations to sparsify each subject's correlation matrix; these

were then averaged across subjects to weight the group-level correla-

tion of a given pair of regions by the number of subjects with strong

connections between those regions. The resulting average matrix was

again thresholded to the top 10% of correlations to again sparsify the

matrix and binarized for subsequent assignment with the mixed-

membership algorithm (again, an unweighted assignment method).

For the split-half reliability analysis, we assessed the two subsam-

ples of 100 subjects each separately; we will refer to the first and sec-

ond subsamples as the “exploratory” and “confirmatory” datasets

respectively for this report. The remaining analyses (validity and util-

ity) were conducted on the combined 200 subjects from both subsam-

ples to maximize the sample size used to define the overlapping

networks in these analyses; we will refer to this as the “combined”
dataset.

The process of preparing the correlation matrices for network

assignment and the actual assignment process both excluded several

ROIs due to a lack of data in one or more participants. Correlation

matrix processing excluded 25 ROIs in the exploratory dataset and

23 in the confirmatory dataset, where 21 were mutually excluded in

both datasets. Overlapping network assignment excluded a further

36 ROIs in the exploratory dataset and 32 in the confirmatory dataset,

with 29 mutually excluded. This resulted in a 939-region correlation

matrix for the exploratory dataset and a 945-region matrix for the
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confirmatory dataset. These regions were mostly located in ventral

frontal and anterior temporal cortex, and were likely due to signal

dropout during data acquisition. Overlapping and nonoverlapping net-

work assignments from the combined dataset, and comparative ana-

lyses were restricted to those regions included in both the exploratory

and confirmatory datasets, for a final count of 934 total ROIs.

2.3 | Overlapping network assignment

Overlapping network assignment was conducted using the mixed-

membership algorithm first reported by Gopalan and Blei (2013);

package available at https://github.com/premgopalan/svinet and

applied to neuroimaging data by Najafi et al. (2016). Briefly, this pro-

gram conducts overlapping network assignment by using an assorta-

tive stochastic block model to infer the probability (Bayesian

estimation) that a given region is connected to each network, where

the number of networks is pre-specified by the user. This produces an

“assignment matrix” in which each region is given an association

weight for each specified network.

We implemented this program on our data, specifying seven

(7) networks for assignment and the number of ROIs included in the

correlation matrix and setting the -linksampling option with the

default threshold. Seven networks were specified to match the num-

ber of nonoverlapping intrinsic networks originally used to generate

the regional parcellation used to define our ROIs, as well as the num-

ber of networks reported in the previously published assignment

results used to compare the networks in the current analysis to

canonical networks from the literature (Yeo et al., 2011). This permit-

ted assessment of the extent of the differences in network topologies

derived from overlapping and non-overlapping methods while keeping

the base number of networks equivalent across all analyses. As the

output of the mixed membership algorithm assigns each region a

weighted association with each specified network, we binarized these

assignment vectors without further thresholding (i.e., setting all non-

zero values to 1, regardless of magnitude) for topographical compari-

sons. This permitted direct comparison with the binary assignment

topographies derived from nonoverlapping methods and allowed us

to explore the broadest extent of potential overlap between

networks.

2.4 | Characterization of assignment consistency

Our first aim was to test the between-sample reliability of overlapping

assignments by assessing mutual similarity between the overlapping

network topographies produced by the mixed membership algorithm

for the exploratory and confirmatory datasets, which were generated

from separate subjects collected under the same protocol. To com-

pare the overlapping networks from each dataset, we binarized each

network without thresholding (i.e., all regions with a nonzero assign-

ment value for that network were included in the topography) and

then conducted a spatial Dice coefficient calculation via the AFNI

command 3ddot (�dodice option, whole-brain mask) between each

pair of networks between datasets.

To assess the significance of the Dice coefficients derived from

this analysis, we conducted a 10,000-iteration permutation test. For

each iteration, the assignment matrix region labels for the confirma-

tory dataset assignments were randomized and the Dice coefficients

recalculated across the exploratory and shuffled confirmatory net-

works. Repeating this process for each iteration generated a null dis-

tribution of Dice coefficients for each pair of networks, which could

be used to assess which of the Dice scores was significantly greater

than chance. Significance was thresholded at αFW = .05 family-wise

corrected (Bonferroni procedure) across network pairs (49 compari-

sons total), for a within-comparison α = .001. For visual comparison,

we used these Dice scores to estimate which of the seven networks

from each set were the most mutually similar; that is, to identify

homologue networks between the samples. More specifically, we

selected the seven pairs of networks between samples (without repe-

tition) that maximized the total Dice score across network pairs. This

process was also used to align other overlapping and nonoverlapping

networks generated in later analyses. For completeness, we repeated

this Dice similarity permutation testing between the overlapping net-

works generated for the combined dataset and each of those from

the exploratory and confirmatory datasets to ensure that the net-

works used in subsequent analyses likewise captured the same topog-

raphies as either subsample.

2.5 | Relation to nonoverlapping networks

Our second aim was to assess the validity of overlapping assignment

by assessing the topographical similarities between overlapping and

nonoverlapping networks derived from the same data using methods

commonly reported in the imaging literature. For example, Yeo et al.

(2011) generated a set of nonoverlapping networks in functional con-

nectivity matrices derived from the resting state data of 1000 partici-

pants (500 participants each in a discovery and replication sample).

They found stable clustering results at a resolution of seven networks,

and the topologies of these networks corresponded to previously

reported functional networks. These networks are remarkably robust,

having been replicated across a wide range of methodologies and

datasets (Cole et al., 2014; Power et al., 2011). They have since

become a mainstay of network neuroscience, commonly being used

as a priori network definitions that are then used to assess integration

and other metrics in other datasets.

Here, we used these extant network definitions (Yeo et al., 2011)

to explore how overlapping networks related to the networks most

commonly referenced in the literature. First, we applied a standard k-

means clustering method to the averaged correlation matrices of the

combined dataset here to define a set of nonoverlapping intrinsic net-

works using standard techniques. First, we conducted the Dice coeffi-

cient permutation tests described above to compare the

nonoverlapping networks to those defined previously by Yeo et al.

(2011) to confirm their topographical consistency. Then, we likewise
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conducted a Dice coefficient permutation test to compare our nono-

verlapping topographies to the overlapping networks produced by the

same data. In both of these permutation tests, the nonoverlapping

topographies identified by k-means assignment in the current dataset

were shuffled to generate the Dice coefficient null distribution used

for statistical testing.

2.6 | Assessing network membership of individual
regions

Our final aim was to perform an exploratory analysis to assess the

overlapping network membership of regions canonically assigned to

the FP and CO networks in the dual-networks model of cognitive con-

trol. To do this, we identified the regions that contained each of the

16 point-coordinates of the regions assigned to the FP and CO net-

works originally reported by Dosenbach et al. (2007, 2008) and

extracted the assignment vectors of each region.

We also sought to characterize the extent of these regions' pro-

pensity for multiple-network membership relative to other regions in

the brain. To do this, we calculated the total number of assigned net-

works and the entropy (DKL) of each region's assignment vector rela-

tive to a uniform assignment reference distribution using the

Kullback–Leibler divergence method from information theory. This

method indexes the extent to which the actual assignment vector

diverges from the reference distribution by estimating the amount of

information about the assignment that would be lost by approximat-

ing it with that reference. In this method, regions that are assigned to

more networks will have assignment vectors that more closely resem-

ble a uniform distribution, resulting in a lower DKL value. We scaled

these values to a range of zero to one for intuitive interpretation, such

that regions with more uniform assignments tended toward zero (low-

est divergence) and regions assigned to a single network had a value

DKL = 1 (highest divergence). We plotted a histogram (100 bins) of

these values across regions along with reference lines for the average

DKL value as a function of the number of networks to a given region

was assigned. We also included reference lines at the specific DKL

values for each of the 16 FP and CO network regions.

3 | RESULTS

3.1 | Comparison between samples

The reliability of the mixed membership algorithm was assessed by

analyzing the consistency of the networks generated by two separate

samples. Applying the mixed-membership assignment algorithm sepa-

rately to the exploratory and confirmatory datasets produced two sets

of seven networks that shared many similarities (Figure 1). Generally,

assignment produced one network that primarily covered visual

regions (Overlapping Network 4), two that covered mostly sensorimo-

tor regions (Overlapping Networks 2 and 5), and four that were com-

prised of mostly association cortex.

The Dice coefficient analysis revealed that each network in one

dataset was statistically similar to two to three networks in the other

dataset (Table 1), consistent with a set of networks with significant

areas of overlap between them. Homologous networks were defined

by identifying seven mutually exclusive pairs of significantly similar

networks between datasets while maximizing the sum of the Dice

coefficients across pairs. These homologues showed strong between-

pair similarity, with Dice coefficients greater than .75 for all seven

pairs (mean: 0.86, range: [0.77:0.93]). There were also significant Dice

coefficient similarities between nonhomologue “secondary” pairs.

These values were generally lower than those seen for the homolo-

gous pairs (mean: 0.56, range: [0.38:0.80]). Three of these secondary

pairs were consistent between the exploratory and confirmatory net-

works. These included pairs between Networks 1 and 6; Networks

2 and 5; and Networks 3 and 4. The remaining secondary pairs were:

F IGURE 1 Overlapping network topographies generated by the mixed membership algorithm. Networks (N) are matched between sets to
produce the largest overall similarity score, indexed by the sum of the Dice coefficients across homologous network pairs
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between Exploratory Overlapping Network (EON) 7 and Confirmatory

Overlapping Networks (CONs) 1 and 2; and between CON7

and EON3.

Comparing the overlapping networks from the exploratory and

confirmatory datasets to those generated for the combined dataset

(Figure 1) generally preserved this pattern of statistical similarity and

homology for both sets of comparisons (Table 2). The patterns of simi-

larity found between the combined dataset and each of the two com-

parison datasets were almost identical, with just one additional

significant similarity score for the similarity between combined Over-

lapping Network (ON) 5 and EON7 that was not reflected in the

scores for the combined and confirmatory networks. The patterns of

both the combined-exploratory and combined-confirmatory similari-

ties showed some additional similarities not reflected in the pattern of

the direct comparison between the exploratory and confirmatory net-

works, likely because the networks derived for the combined dataset

were partially informed by data from both of the split datasets.

Overall, the mixed membership assignment produced a visually con-

sistent set of networks with statistically verifiable homologues, sup-

porting the reliability of this method for overlapping network

assignments.

3.2 | Comparison with nonoverlapping networks

The validity of the overlapping networks generated by the mixed

membership algorithm was assessed by comparing the overlapping

topographies derived from the combined dataset to nonoverlapping

networks in this same dataset. A set of seven nonoverlapping intrinsic

networks was produced using a k-means analysis (Figure 2). We first

compared these nonoverlapping networks to those previously

reported by Yeo et al. (2011) to confirm that they represented similar

topographies to those typically reported in the literature (Table 3). All

of the nonoverlapping networks produced by k-means assignment

TABLE 1 Similarity between
exploratory and confirmatory networks
(Dice coefficient)

EON1 EON2 EON3 EON4 EON5 EON6 EON7

CON1 0.89 – – – – 0.69 0.43

CON2 – 0.77 – – 0.65 – 0.46

CON3 – – 0.85 0.50 – – –

CON4 – – 0.38 0.93 – – –

CON5 – 0.80 – – 0.91 – –

CON6 0.60 – – – – 0.83 –

CON7 – – 0.50 – – – 0.87

Note: Shows the dice coefficients of significantly similar pairs of networks between the exploratory and

confirmatory datasets. “–” represents values that were not significant.

Abbreviations: CON, confirmatory overlapping network; EON, exploratory overlapping network.

TABLE 2 Similarity between
exploratory and confirmatory overlapping
networks and overlapping networks from
combined datasets (Dice coefficient)

ON1 ON2 ON3 ON4 ON5 ON6 ON7

Exploratory EON1 0.82 – – – – 0.66 –

EON2 – 0.73 – – 0.67 – 0.54

EON3 – – 0.77 0.48 0.44 – –

EON4 – – – 0.95 – – –

EON5 – 0.79 – – 0.79 – 0.38

EON6 0.66 – – – – 0.81 –

EON7 0.50 – 0.61 – 0.38 – 0.66

Confirmatory CON1 0.91 – – – – 0.62 –

CON2 – 0.64 – – 0.51 – 0.63

CON3 – – 0.65 0.54 0.47 – –

CON4 – – – 0.92 – – –

CON5 – 0.78 – – 0.79 – 0.39

CON6 0.53 – – – – 0.91 –

CON7 0.53 – 0.66 – – – 0.59

Note: Shows the dice coefficients of significantly similar pairs of overlapping networks between the

exploratory and confirmatory datasets and the overlapping networks produced for the combined

datasets. “–” represents values that were not significant.

Abbreviations: CON, confirmatory overlapping network; EON, exploratory overlapping network; ON,

overlapping network.
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were statistically similar to exactly one of the intrinsic networks

described by Yeo and colleagues, with the exception of the “limbic”
network. The HCP data used for the current analyses has weak signal

in anterior temporal regions, many of which are included in the limbic

network, so this result is not particularly surprising. In any case, the

nonoverlapping networks defined in the current data generally aligned

well with previously published intrinsic networks, insofar as the

regions they contained were included in our data.

We next compared the topographies of the nonoverlapping net-

works from the combined dataset to the overlapping networks pro-

duced in the same dataset using the mixed membership algorithm. In

this analysis, the overlapping networks were significantly similar to

one to three nonoverlapping networks, indicating that each overlap-

ping network represented one or a combination of a small subset of

nonoverlapping networks (Table 4; Figure 3). Two overlapping net-

works were similar to exactly one non-overlapping network; ON4

aligned with the “visual” network, and ON2 with the “somatomotor”
network. The remaining five overlapping networks were similar to

two or three nonoverlapping networks each. ON2 and ON4 showed

relatively similar dice coefficients with their respective KN homo-

logues as were seen for network homologues in our split-half and

published network analyses. On the other hand, the dice coefficients

for the remaining network homologues were lower than in other ana-

lyses, indicating that there was not a one-to-one mapping of overlap-

ping networks to canonical intrinsic topographies. Instead, each

overlapping network appeared to combine large areas of two or three

nonoverlapping topographies.

3.3 | Exploring network models with overlapping
assignment

In this final analysis, we examined the extent of multiple-network

membership in regions across the brain and explored whether the

F IGURE 2 Topographies of
networks generated by k-means
clustering compared with original
topographies reported by Yeo
et al. (2011). K-means networks
(KN) for the current analysis are
presented on the left; networks
from Yeo et al. are presented on
the right with originally reported

names. CTR, control network;
DAN, dorsal attention network;
DMN, default mode network;
LIM, limbic network; SMN,
somatomotor network; SVN,
salience/ventral attention
network; VIS, visual network

TABLE 3 Similarity between k-means networks and published
networks (Dice coefficient)

KN1 KN2 KN3 KN4 KN5 KN6 KN7

CTR 0.74 – – – – – –

SMN – 0.88 – – – – –

DAN – – 0.71 – – – –

VIS – – – 0.90 – – –

SVN – – – – 0.77 – –

DMN – – – – – 0.73 –

LIM – – – – – – –

Note: Shows the dice coefficients of significantly similar pairs of networks

between k-means networks from the current analysis and networks

previously reported by Yeo et al. (2011). “–” represents values that were

not significant.

Abbreviations: CTR, control network; DAN, dorsal attention network;

DMN, default mode network; KN, k-means network; LIM, limbic network;

SMN, sensorimotor network; SVN, salience/ventral attention network;

VIS, visual network.

TABLE 4 Similarity between k-means networks and overlapping
networks (Dice coefficient)

ON1 ON2 ON3 ON4 ON5 ON6 ON7

KN1 0.54 – 0.35 – – – –

KN2 – 0.83 – – 0.57 – –

KN3 – – 0.42 – 0.35 – –

KN4 – – – 0.73 – – –

KN5 – – 0.26 – 0.21 – 0.44

KN6 0.34 – – – – 0.65 –

KN7 – – – – – 0.44 0.44

Note: Shows the dice coefficients of significantly similar pairs of networks

between the k-means networks and overlapping networks generated for

the combined datasets. “–” represents values that were not significant.

Abbreviations: KN, k-means network; ON, overlapping network.
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regions of the FP and CO networks, which were previously defined

using a nonoverlapping method, were members of other networks.

Across the brain, the weighted overlapping network assignments for

the combined dataset were extracted for each region and subjected

to a relative entropy analysis. This analysis revealed a large number of

regions (263 out of 937) with entropy values at 1, with the rest of the

brain regions with entropy values less than 1 distributed relatively

evenly across the full range of values (DKL range: [0:0.9912];

Figure 4). While many of regions were assigned to a single overlapping

network (i.e., DKL approaching 1), many more (i.e., DKL <1) were

assigned to multiple networks, with a maximum of four assigned net-

works for some regions (Figure 4). Histograms of the assignment

weights assigned to each region in each overlapping network can be

found in Figure S1.

Next, we extracted the assignment vectors for the brain regions of

the FP and CO networks (as defined by a non-overlapping assignment

method) that form the basis for the Dual Networks model of cognitive

control. These regions were members of all seven of the overlapping

networks, where the most common assignments were to networks

1, 3, and 7 (Table 5). ON3 visually appeared most like the canonical FP

network, further incorporating regions typically associated with the

Dorsal and Ventral Attention networks; ON7 likewise was primarily

composed of regions associated with the canonical CO (or Salience/

Ventral Attention network from Yeo et al., 2011) network with addi-

tional areas from superior temporal cortex. Accordingly, most regions

assigned to ON3 were nodes of the FP network, while most regions

assigned to ON7 were nodes of the CO network; however, both of

these overlapping networks contained regions from both the FP and

CO networks. ON1 on the other hand did not resemble any one partic-

ular nonoverlapping network, instead combining regions from the FP

and default mode networks in one topography. ON1 showed broad

inclusion of regions from both the FP and CO networks.

Most regions of the FP and CO networks were assigned to two

or three overlapping networks, with only the left anterior prefrontal

F IGURE 3 Visualization of
which nonoverlapping networks
are included in the topography of
each overlapping network.
Overlapping topographies are
shown on the left in green (ON,
overlapping network, combined
dataset). Nonoverlapping
networks (KN) are shown on the

right in red. Brackets indicate the
set of nonoverlapping networks
whose topographies are included
in each overlapping network
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cortex (L-APFC) and mid-cingulate regions assigned to a single net-

work. Accordingly, most of the regions from the FP and CO networks

had relative entropy values much less than one. The regions with the

lowest values—the dorsal anterior cingulate/medial superior frontal

cortex (dACC/msFC), right precuneus, and right anterior insula/frontal

operculum (R-aIfO)—were the three regions assigned to three overlap-

ping networks, the highest number of networks assigned for any FP

or CO network regions.

4 | DISCUSSION

The results of our analyses indicate that the overlapping networks

generated by mixed-membership assignment have good between-

sample reliability, and thus produce consistent overlapping networks

across subjects. They also meaningfully recapitulate structures seen in

nonoverlapping networks both generated in the same data and pub-

lished in the greater literature, indicating that the mixed membership

algorithm produces equally valid network assignments as previous

assignment methods. At the same time, the overlapping networks

revealed relationships between subgroups of nonoverlapping topogra-

phies that are obscured with nonoverlapping definitions, indicating

that they may better capture the biological reality of the brain's net-

work structure. Finally, these results indicate the utility of the mixed

membership algorithm for revealing regions’ involvement in networks

that are obscured by nonoverlapping methods. Together, these results

demonstrate that overlapping network assignment is a practical and

accessible tool. Moreover, they highlight the pressing need to con-

sider how network overlap can be accounted for in our existing net-

work models of behavior.

4.1 | Reliability of overlapping network assignment

Overall, the overlapping networks generated by the mixed-

membership algorithm showed good agreement between two samples

based on the Dice coefficient permutation test. All of the networks

derived from the exploratory dataset had significant similarities with

two or three networks from the confirmatory dataset. Homologous

network pairs could be identified for all seven identified networks,

along with additional similarities that reflected consistent areas of

overlap between networks. Moreover, these patterns were replicated

when comparing each of the sets of networks from the split-half data-

sets to those generated across the full combined dataset. Together,

these findings suggest that the mixed-membership assignment

method produces reliable networks between samples.

Najafi et al. (2016), who originally reported the use of the mixed-

membership algorithm on brain imaging data, previously demon-

strated that the mixed-membership algorithm is a reliable method

within sample using a bootstrapped reliability analysis. The current

results extend those findings to now account for between-sample reli-

ability as well. Additionally, Najafi and colleagues conducted their

F IGURE 4 Distribution of relative entropies across brain regions. Histogram of the relative entropies across the 937 regions included in
overlapping network assignment. Colored vertical lines represent the average relative entropy for all regions assigned to the labeled number of
networks. Black vertical lines show the specific relative entropies for the 16 regions of the FP and CO networks
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analyses in surface space whereas the current results are reported in

volumetric space. The results from both spaces show similar reliability

and validity, demonstrating the mixed-membership algorithm's robust-

ness in both spaces. Notably, direct comparison of the networks pro-

duced here and those found by Najafi and colleagues is not possible

due to differences in the number of networks specified for analysis

(Najafi et al., 6; here: 7). In their original report, Najafi and colleagues

conducted a stability analysis across network dimensionality, which

revealed a slight peak at six networks. However, the stability level

was similar for seven networks in that analysis, and the use of seven

networks here permitted us to relate our overlapping networks to pre-

viously reported network definitions. Nonetheless, there were marked

qualitative similarities in the spatial topographies of the overlapping

networks reported by Najafi and colleagues and the current study.

Future research is necessary to explore how the number of networks

used for assignment might lead to comparable and/or contrasting

topographies and the best resolution for overlapping assignment for

various applications.

An additional difference between the current research and the

study by Najafi and colleagues is the computational demand of the

methods employed for network assignment. Najafi and colleagues

applied an iterative assignment process that aligned the most similar

network topographies across iterations and generated a consensus

assignment that accounted for variations in assignment region-by-

region. Here, we attained similar reliability across networks between

samples with a single round of assignment, lowering the computa-

tional demands of the assignment significantly. Notably, the network

assignments produced by the mixed membership algorithm were reli-

able between samples even though the assignment weights were

ignored in the Dice coefficient analysis, further indicating their overall

robustness. We have made our processing scripts available as an eas-

ily accessible open-source download (https://github.com/

savannahcookson/NetChar), which should facilitate more widespread

adoption of the mixed membership algorithm for network assignment

in future studies of brain networks.

There were some small qualitative differences in the network

topographies derived from the exploratory and confirmatory datasets,

most notably in the areas of medial frontal and mid-prefrontal corti-

ces, superior temporal cortex, and parietal cortex, which might call

into question the overall reliability of mixed membership assignment.

However, given the otherwise high consistency in network assign-

ment across the two datasets, this seems unlikely. Instead, this incon-

sistency may reflect particularly high inter-subject variability. Recent

work identifying “network variants” across individuals using non-

overlapping methods may be a source of this variability in network

assignment across datasets. Gordon et al. (2017) first reported these

TABLE 5 Overlapping network membership and graph theory properties of LFC regions

Coordinates

(MNI)a Overlapping network

DKL (scaled)x y z ON1 ON2 ON3 ON4 ON5 ON6 ON7

Frontoparietal network R-IPS 29 �65 42 0.35 – 0.649 – – – – 0.505

L-IPS �31 �62 45 0.485 – 0.513 – – – – 0.469

R-FCb 42 2 37 - – 0.446 – – – 0.553 0.475

L-FCb �42 3 38 0.407 – 0.591 – – – – 0.482

R-Precuneus 10 �73 43 0.536 – 0.208 0.255 – – – 0.228

L-Precuneus �9 �76 40 0.888 – – 0.111 – – – 0.735

mid-Cingulate �1 �31 31 0.998 – – – – – – 1

R-IPL 50 �51 45 0.728 – – – – 0.271 – 0.554

L-IPL �51 �54 37 0.615 – – – – 0.383 – 0.489

R-dlPFCb 44 21 34 0.875 – 0.086 – – – 0.038 0.656

L-dlPFCb �44 22 36 0.998 – – – – – – 1

Cingulo-opercular Network R-aIfO 38 19 0 0.261 – 0.171 – – – 0.567 0.255

L-aIfO �36 17 3 – – 0.073 – – – 0.925 0.799

dACC/msFC �2 7 50 – 0.426 – – 0.195 – 0.377 0.195

R-APFC 28 51 25 0.641 – – – – 0.274 0.084 0.352

L-APFC �28 54 6 0.998 – – – – – – 1

Note: Shows the original coordinates from each study and their weighted assignment to the seven overlapping networks for the combined dataset.

Weightings of 0 (i.e., nonassigned) are marked with a “–” for visual clarity. Region names are preserved from the original papers.

Abbreviations: aIfO, anterior insula/frontal operculum; APFC, anterior prefrontal cortex; dACC/msFC, dorsal anterior cingulate/medial superior frontal

cortex; DKL, Kullback–Leibler divergence; dlPFC, dorsolateral prefrontal cortex; FC, frontal cortex; IPL, inferior parietal lobule; IPS, intraparietal sulcus; L-,
left hemisphere; ON, overlapping network; R-, right hemisphere.
aCoordinates have been converted to MNI space from the original reported Talairach space.
bCoordinates in original Talairach space are mirrored.
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network variants in a set of 10 subjects with a large amount of high-

quality individual data. Generating a nonoverlapping network parcella-

tion for each subject individually revealed variations in network

assignment in certain areas that were not present in the group aver-

age. These areas included anterior mid/inferior and ventromedial pre-

frontal cortices, middle cingulate cortex, and superior parietal cortex,

which are similar in location to the areas that were inconsistently

assigned here. In a follow-up study using the same dataset, Gratton

et al. (2018) demonstrated that these variants were stable individual

features across task demands, indicating that these variants were

likely intrinsic. Moreover, Seitzman et al. (2019) demonstrated that

these variants are trait-like, suggesting that they are stable over time

within individuals. They also showed that participants could be

divided into groups that show similar variant structures across individ-

uals. Future research using the mixed-membership algorithm will pro-

vide an opportunity to further our understanding of these network-

variants and their influence on group-level network assignment.

4.2 | Validity of overlapping network assignment

To determine the relationship between overlapping and non-

overlapping networks, we applied a k-means clustering algorithm to

the correlation matrix for our combined datasets to produce seven

nonoverlapping networks. The nonoverlapping networks we identified

were generally topographically consistent with networks previously

reported by Yeo et al. (2011). Moreover, the overlapping networks we

identified showed meaningful recapitulation of topographic relation-

ships that would be expected from nonoverlapping assignments while

appearing to combine subgroups of those nonoverlapping topogra-

phies in specific ways. Two overlapping networks showed a strong

similarity to one single nonoverlapping network, one visual and one

somatomotor; the remainder were composed of combinations of mul-

tiple networks comprised of brain regions in association areas. Najafi

et al. (2016) also performed a comparative analysis between overlap-

ping and nonoverlapping networks in the same dataset by calculating

the spatial correlation of their topographies, with similar conclusions.

Four of their six overlapping networks had a single nonoverlapping

homologue, two of which (communities 1 and 2 in their original

report) included visual and somatomotor cortices respectively as seen

in our results here. The other two networks were composed of associ-

ation cortex from widespread frontoparietal and temporal regions.

Given that all seven of our overlapping networks have topo-

graphic consistencies with non-overlapping networks that match

those from the literature, it seems unlikely that overlapping assign-

ment is capturing fundamentally different or novel networks from

those identified using non-overlapping assignment to define the net-

works. Instead, the overlapping networks appear to replicate the non-

overlapping topographies either individually or in limited

combinations. Altogether then, overlapping and nonoverlapping

assignment methods are capturing similar mathematical patterns in

the functional connectivity data. It is tempting then to ask which

method better captures the “ground truth” of the brain's network

topographies; however, this begs the question of how the ground

truth can be achieved. Shinn et al. (2017) point out that there is no

epistemological reason to believe that there is a community structure

in a given network a priori, and further that there is no possible

method to determine the ground truth of the correct resolution or

decomposition of that community structure. Instead, a better question

to ask is which method is more biologically plausible.

First, there is evidence that individual brain regions are anatomi-

cally connected to multiple networks, not just regions within their

own network. For example, seminal work using histological tracing in

primates (for review, see Goldman-Rakic, 1988) demonstrated that

frontal region 46A and parietal region 7A, regions assigned the FP

network in modern analyses, are directly connected to the superior

temporal sulcus (e.g., a region assigned to the default mode network),

post-cingulate gyrus (e.g., a region assigned to the salience/ventral

attention network), and area 19/peristriate cortex (e.g., a region

assigned to the visual network). Work in humans indicates that func-

tional connectivity captures not only these direct connections but also

many indirect connections (Honey et al., 2009), suggesting that net-

work overlap is even broader in functional data. Accordingly, evidence

from human brain imaging studies demonstrates that regions show

flexibility in network affiliation, both at rest and during task perfor-

mance (Cole et al., 2014; Khambhati et al., 2018; Pedersen

et al., 2018). Moreover, studies using other techniques that have

allowed for some level of network overlap (Bijsterbosch et al., 2019;

Yeo et al., 2014) likewise have demonstrated that regions can be

assigned to multiple networks. Finally, many studies have highlighted

the behavioral importance of “hub” regions that share a high number

of connections with regions outside of their assigned network (Cole

et al., 2013; Hwang et al., 2017; Power et al., 2013). Ultimately, there

is no distinction between which network(s) a region is a “member” of
and which they merely “connect” to, a point previously made in Pes-

soa's (2014) recent review of brain networks; these hubs are simply

members of multiple networks. While the connections of these hubs

may be able to be ascertained with nonoverlapping methods, though,

there may be other regions that are not identified as hubs that may

nonetheless be members of multiple networks. These regions’
involvement in multiple networks is effectively lost with nonoverlap-

ping assignments.

Thus, the existing literature broadly indicates that overlapping

networks do indeed better capture the brain's large-scale network

organization. This notion is consistent with studies of task-related

networks. For example, Nee (2021) demonstrated a rostrocaudal gra-

dient of network membership related to the processing of three dis-

tinct cognitive control factors, with extensive overlap between

adjacent networks. Each of the three networks included regions from

multiple intrinsic nonoverlapping networks. More specifically, each

task-related network included combinations of regions from the FP

network, default mode network, salience network, and dorsal atten-

tion network. Notably, the combined topography of these four task-

related networks is similar to the topography of one of the overlap-

ping networks we identified (i.e., ON1). Future research should relate

these and other task-related networks to overlapping network
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topographies to better understand how network overlapping drives

dynamic network reorganization during task performance. More

importantly, it is vital that network neuroscience embrace methods

that explicitly adopt an overlapping network perspective to support

more biologically plausible interpretations of the brain's network orga-

nization and avoid losing information about which regions connect to

multiple networks.

4.3 | Utility of overlapping network assignment

A unique feature of the mixed membership algorithm, like many over-

lapping assignment methods, is that it generates an assignment vector

for each region, which captures the probability that that region is a

member of a particular network. At a whole-brain level, we assessed

which overlapping networks each region was assigned to. Combined

with our analysis of the similarity between our overlapping and nono-

verlapping networks, this gave us an intuitive map of how regions in

different nonoverlapping networks shared membership across multi-

ple networks (Figure 5). An analysis of the relative entropy of assign-

ment for each of these regions revealed a broad spectrum of

connectivity distributions across different overlapping networks. That

is, regions did not universally show preferential assignment to one

network over another; instead, many regions showed relatively even

assignment to two or even more networks simultaneously. It is possi-

ble that our choice not to restrict the assignment matrices may have

overrepresented areas of overlap with spurious low-strength assign-

ments. However, while no thresholding was applied to the assignment

matrix in our study, Najafi et al. (2016) found similar levels of overlap

across networks after applying a bootstrapped thresholding procedure

to the assignment matrices to restrict their analysis to those assign-

ments identified as being statistically greater than zero. Thus, this

potential confound is unlikely to have qualitatively influenced our

findings here. In sum, these results further support the need to imple-

ment overlapping methods that do not obscure the multiple network

membership of regions across the brain.

The goal of any network model of behavior is to capture which

networks support that behavior and how they interact with one

another. A common method of exploring brain network interactions is

to assess their integration and/or segregation during different tasks

(see Sporns, 2013 for review) by calculating by assessing the connec-

tivity between regions in one network and regions in another network

and comparing this value between task conditions or between task

and rest. Previous research using this method has demonstrated that

the FP and CO networks demonstrate increased integration during

performance of a task requiring the integration of FP- and CO-related

processing relative to a simple categorization task (Cohen

et al., 2014), which is taken as evidence that these two networks

indeed interact during cognitive control. Similarly, Menon (2011) has

proposed a “Tri-Network” model of psychopathology that proposes

that clinical symptoms manifest as a function of disorderly interac-

tions between the FP network, the default mode network, and the

salience network.

However, any speculation about interactions between networks

in models such at the dual-networks model of cognitive control or the

Tri-Network model of psychopathology is incomplete without

accounting for regions that are members of multiple networks. To

illustrate, we extracted the assignment vectors for each of the regions

of the FP and CO networks to determine their possible assignment to

all of the overlapping networks that we identified. Collectively, these

regions were members of all seven networks, indicating the potential

involvement of more networks than just the FP and CO networks in

the service of cognitive control. Even the relatively restricted set of

FP regions analyzed here were members of five networks when net-

works were allowed to overlap, suggesting that any model involving

the FP network must account for interactions with many other net-

works. Moreover, our results revealed a novel network combining

regions from the FP and default mode networks that is not found with

nonoverlapping methods; this and other potential “hidden” networks

will need to be accounted for as well. There is indeed mounting evi-

dence that several additional networks are involved in various aspects

of cognitive control, including the dorsal attention network (Badre &

Nee, 2018; Ito et al., 2017; Nee, 2021), salience/ventral attention net-

work (Seeley et al., 2007), and even default mode network (Smith

et al., 2018; see also Cocchi et al., 2013). Thus, a complete network

model of cognitive control needs to be updated to account for the

role of these additional networks and the complex interactions that

occur as a function of their overlapping nature.

F IGURE 5 Visualization of nonoverlapping network topographies
that significantly make up each overlapping network. k-Means
networks (labeled with approximate Yeo network associations) are
presented in black. Each overlapping network (ON, combined dataset)
is then presented in a different color encircling the set of k-means
topographies that are significantly represented in the overlapping
network
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4.4 | Limitations

The first limitation of the current study is that our analyses did not

include the cerebellum or subcortical structures, as they were not a

part of the Global–Local parcellation we implemented (Schaefer

et al., 2018). We chose this parcellation method to maximize the sepa-

ration of regions, especially in the association cortex, that are often

combined in other common parcellation methods, which likely impacts

the assignment patterns of these regions. We note that the topogra-

phies of our networks identified in our study were very similar to

those found by Najafi et al. (2016), even though they did include cere-

bellar and subcortical structures. Thus, it is unlikely that exclusion of

these structures significantly impacted our findings.

As with all network analyses, the current study conducted several

preprocessing steps to prepare the correlation matrices for assign-

ment. These methods include typical steps of zeroing negative corre-

lations and correlation thresholding. While these are commonly used

across studies in the network neuroscience literature, they are primar-

ily (as in the current study) employed as a matter of mathematical con-

venience or necessity. Negative correlations comprise a large portion

of the middle of the distribution of absolute values across the correla-

tion matrix; removing these values could shift the distribution of cor-

relations that is later used to determine thresholds or define hub

regions. Thresholding the correlation values may help remove spuri-

ous low-level correlations that do not represent real connections

(Rubinov & Sporns, 2010), but may downplay critical roles of low-level

correlations in the network's structure as described by the “strength
of weak ties” hypothesis (Pajevic & Plenz, 2012). Moreover, previous

research has indicated that the proportional thresholding like the pro-

cedure used here may overrepresent differences between groups.

While our study demonstrated good agreement between samples, it

will be important to consider these issues further in future basic and

clinical neuroscience studies. Nonetheless, previous research has sug-

gested that network neuroscience analyses are particularly robust to

the specific preprocessing procedures used (He et al., 2009; van den

Heuvel et al., 2017; Yeo et al., 2011), so these issues are unlikely to

have impacted the findings of our study.

Another limitation is that the mixed membership algorithm has as

yet only been implemented for unweighted, undirected, and sparse

correlation matrices. While graph theoretical methods for network

assignment of directed, weighted, dense correlation matrices no doubt

exist, versions that use stochastic block models or other forms of

overlapping assignment have not yet been reported in the neurosci-

ence literature. A related issue is global signal regression, as was used

in the data analyzed here. Global signal regression may improve speci-

ficity of positive correlations, but also can induce spurious anti-

correlations in functional connectivity analyses. Notably, while the

current results were achieved using global signal regression, Najafi

et al. (2016) found similar results without removing the global signal,

suggesting that overlapping assignment may be robust to this particu-

lar approach. It will be necessary to characterize the impact of these

preprocessing steps and parameters on the final results of overlapping

assignment in future research.

The use of the HCP dataset highlighted several data quality issues

that could impact our results and network analyses more generally.

First, we used the open-source download of the HCP dataset, which

does not provide demographic information on its subjects due to pri-

vacy concerns. Since the subjects in this dataset were between the

ages of 22 and 35 at time of collection (Van Essen et al., 2012), age-

related differences in brain network structure are likely minimal. Given

that the HCP study excluded subjects with medical, neurological, and

psychiatric disorders that might impact neuroimaging data, and

included subjects were from a wide range of demographic back-

grounds, the large sample sizes employed here should ensure that

individual differences were averaged out at the group level. Future

research should explore demographic variables that may influence

overlapping network assignment methods.

Another potential confound is the amount of head motion pre-

sent in the imaging data. The HCP dataset has a wide range of motion

parameters across subjects, likely due to individual differences in head

motion across the scans. Motion-induced artifacts in functional neuro-

imaging data can potentially induce spurious correlations in the data

that might bias network assignments and other network metrics

(Power et al., 2012). The use of global signal regression here was

intentionally applied to reduce this potential confound; we have sum-

marized the average framewise displacement across time for each of

the Exploratory and Confirmatory datasets in Figure S2. Whereas the

Exploratory dataset included subjects with the lowest average frame-

wise displacement in the S500 sample while the Confirmatory dataset

was drawn from a random sample of the S900 dataset without con-

trolling for motion, both datasets showed similar average levels of

motion across subjects. Critically, despite the confirmatory sample not

explicitly controlling for motion, our results showed both good

between-sample agreement and further aligned well with the results

from Najafi et al. (2016), who employed a strict motion restriction pro-

cedure, indicating that motion-related confounds likely had minimal

impact on the current conclusions. Future research will be necessary

to fully understand the impact of motion-related confounds on over-

lapping network assignments and its related metrics.

Another consideration for large-sample studies like our study is

data collection time. It is possible that differences in collection time

between samples could impact and overemphasize group differences,

especially if data collection procedures change over the course of the

study. In our study, the Exploratory dataset was selected from the

S500 release of the HCP while the Confirmatory dataset was selected

from the S900 release, so on average, the Confirmatory dataset may

have been collected slightly later in the project. However, both were

selected randomly from their respective datasets and the S900 release

also includes all of the S500 release subjects, so the groups likely

overlap substantially in the time the data was collected. Moreover,

the HCP data were collected over a timeline of just 3 years using a

consistent acquisition protocol across the full study (Van Essen

et al., 2012), suggesting that potential data collection time effects

were minimal.

Finally, the HCP dataset used for these analyses collected a sig-

nificant number of samples from genetic twins. As the subsets of
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subjects selected for this analysis were randomized and demographic

data were not made available in the open-source dataset, they may

have included multiple samples from these twin groups. It is possible

that inclusion of twins may have artificially inflated the reliability esti-

mates between samples if one twin was included in each subgroup in

the split-half analysis. At the same time, it is equally likely that both

twins from a group were included in the same subgroup, which could

have resulted in lower overall reliability by biasing one subgroup

toward an overly represented network structure in the data. Given

the random selection employed in the current data, these effects were

most likely washed out at the group level. However, the inclusion of

twin groups in the HCP dataset affords intriguing opportunities for

future exploration of individual network differences and their genetic

underpinnings.

5 | CONCLUSIONS

We have argued that network neuroscience will need to adopt

methods that account for overlap between networks to fully cap-

ture the network architecture of the human brain. We have pre-

sented evidence that the mixed membership algorithm can be

used to reliably generate overlapping network topographies in

resting state data from multiple samples; these topographies reca-

pitulate and extend known patterns of organization seen in nono-

verlapping networks. We have argued that these overlapping

networks represent a more biologically plausible organization of

the brain. We have further demonstrated that regions show a

broad range of multiple-network membership, and that regions

that are members of networks known to be involved in cognitive

control are likewise members of a wide set of networks unac-

counted for in existing network models. These results highlight

the need to expand our network models of cognition to fully cap-

ture the networks involved and account for the overlap and inter-

actions between them.
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