UC Berkeley
SEMM Reports Series

Title
The Derivation of a Thick and Thin Plate Formulation Without Ad Hoc Assumptions

Permalink

bttgs:ééescholarshiQ.orgéucgitemglfm0294;|

Author
Piltner, Reinhard

Publication Date
1989-11-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/1fm0p94r
https://escholarship.org
http://www.cdlib.org/

REPORT NO. STRUCTURAL ENGINEERING
UCB/SEMM-89/08 MECHANICS AND MATERIALS

THE DERIVATION OF A THICK AND THIN PLATE
FORMULATION WITHOUT AD HOC ASSUMPTIONS

BY

R. PILTNER

NOVEMBER 1989 DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA




The derivation of a thick and thin plate formulation
without ad hoc assumptions

REINHARD PILTNER
Department of Civil Engineering, University of California at Berkeley, Berkeley, CA 94720, U.S.A.

Abstract. For the plate formulation considered in this paper appropriate three-dimensional
elasticity solution representations for isotropic materials are constructed. No a priori assump-
tions for stress or displacement distributions over the thickness of the plate are made. The stra-
tegy used in the derivation is to separate functions of the thickness variable z from functions of
the coordinates x and y lying in the midplane of the plate. Real and complex 3-dimensional
elasticity solution representations are used to obtain three types of functions of the coordinates
x,y and the according differential equations. The separation of the functions of the thickness
coordinate can be done by considering separately homogeneous and nonhomogeneous boun-

dary conditions on the upper and lower faces of the plate.

1. Introduction

The aim of plate theories is to avoid the difficult task of solving the 3-dimensional elasticity
equations under given surface boundary conditions. The goal of plate theories is first to obtain
one or more differential equations for functions depending only on the two space coordinates
x,y lying in the midplane of the plate and second to solve these differential equations with sub-
ject to boundary conditions which are altered (for example to conditions for stress resultants)
according to the considered theory. In order to reach this goal assumptions on stress, strain and
displacement distributions over the thickness of the plate are made. Of the numerous contribu-
tions to the subject of plate theories and solutions especially the work of Kirchhoff [1], Reissner
[2,3], Mindlin [4], Hencky[5] and Lo, Christiansen, Wu [6] ought to be mentioned.

A different concept of deriving a plate formulation is to separate in a 3-dimensional analysis
functions of the thickness coordinate z from functions of the remaining coordinates x and y.
The evaluation of the functions of the thickness coordinate is governed by the differential equa-
tions of the space problem and by the boundary conditions on the upper and lower faces of the
plate.
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In order to derive a plate formulation without ad hoc assumptions one can start with 3-
dimensional elasticity solution representations. Here, the real solution representation of
Neuber/Papkovich [7,8] as well as results obtained via the complex representation of the author
[9-12] will be used.

The basic step for the considered plate formulation is the decomposition of the solution into

different parts. The displacement field u, which has to satisfy the Navier-equations
D'EDu= —f, (1.1)
is decomposed into the form
u=u,+ up (1.2)
=ul + uf + u, ,

where uy, is a solution of the homogeneous system of differential equations and u, is a solution
of the nonhomogeneous differential equations. In the used notation f is the body force vector,
D is a differential operator matrix and E is the matrix of material coefficients. The solution

parts are constructed such that
DTED u} = 0,
DTED uf = 0, (1.3)
DTEDu, = -f
are satisfied. Moreover u and up, ensure the satisfaction of the homogeneous stress boundary
conditions on the upper and lower faces of the plate whereas uf is a particular homogeneous
solution ensuring the satisfaction of the load conditions on the lower and upper plate faces.

With the sum of the solution parts u?, uf and u, we have to fulfill the remaining boundary

conditions on the lateral faces of a plate under consideration.

Three types of solution functions for the solution part up are constructed in paragraphs 4,5 and
6. Examples for the construction of the solution parts uf and u, (involving the treatment of sur-
face loads and body forces) are given in paragraphs 7,8 and 9.

2. Representation of the 3-dimensional stress and displacement fields

With the aid of the real stress function

F = HO + XHI + YHz + ZH3 5 (21)
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which contains the harmonic functions Hy(x,y,z), Hy(x,y,z), Hjy(x,y,z), Hsy(x,y,z), the dis-
placement components u, v, w for three-dimensional elasticity problems can be expressed with

the Neuber/Papkovich representation [7,8]:
2pu = -F, + 4(1—v)H;,
2pv = —F, + 4(1-v)H,, (2.2)
2pw = —F, + 4(1-v)H;,,

where w = E/(1+v). In terms of the functions H; (j=0,1,2,3) satisfying AH; =0 we can

write the displacements as follows:
2pu = —Hgy + (3—4v)H; — xH;, — yHy, — zH3,,
2pv = —Hgy + (3—4v)H, — xHyy — yHyy — zH;,, (2.3)
2uw = —-Hgy, + (3—4v)H; — xH;, — yH,, — zH,,.
The according stresses are
0xx = Hoyy + Hop + 2(1-v)Hy, + x(Hiyy + Hyp)
+ 2vHyy + y(Hyyy + Hyy,)
+ 2vHj, + z(Hayy + Hsp,),
Oy = Hoxx + Hop + 2vH  + x(H;x + Hy,,)
+ 2(1-v)Hy, + y(Hyx + Hyp)
+ 2vH;, + z(H3 + Hay,),
0z = Hoxx + Hoyy + 2vHyy + x(Hygy + Hiyy)
+ 2vHyy + y(Hpre + Hyyy)
+ 2(1-v)Hs, + z(Ha + Hsyy), (2.4)
Txy = —Hoxy + (1-2v)Hyy — xHyy + (1-2v)Hy, — YHayxy — zH3yy,
Tz = —Hox, + (1-2v)H;, — xH;y, — yHy,, + (1-2v)H;, — yH,,,,
Tyz = —Hoy, — xHyy, + (1-2v)Hp, — YHyy, + (1-2v)Hjy, — yHs,,.
The displacement functions (2.3) satisfy the homogeneous Navier-equations
(1-2v)Au + Z—: = 0,

de
1-2v)Av + — =0, 2.5
(1-2v)av + 25 (2.5)



(1-2v)aw + 22 — ¢,
0z

where
€=Uyt vyt w,,

and the stresses (2.4) satisfy the homogeneous equilibrium equations

Jdo aT aT
XX Xy + 2z _ 0,
ax ay dz
kY do a7
X 4 o z o_ 0, (2.6)
ax ax 0z
a7 aT do
= . )

ax ay 9z

Moreover the stresses (2.4) and the displacements (2.3) are compatible and satisfy the constitu-

tive equations o = EDu.

3. Separation of variables for space harmonic functions

Now we want to separate functions of the thickness variable z from the harmonic functions
Hj(x,y,z) appearing in the solution representation (2.3) and (2.4). Omitting the index j we can

write a harmonic function H in the form

H(x,y,z) = f(z) h(x,y). (3.1)
Substitution of (3.1) into the equation AH = 0 gives us

Hg + Hyy + Hy = fhy + fhy + £ h =0, (3.2)
from which we obtain the two possible solutions

i) hyg+ hy=0 and f(z) = ¢ + c;z 3.3)
and

ii) hg+hy+ q’h=0 and f-q% =0. (3.4)

So f(z) is linear or contains the hyperbolic functions sinh qz and cosh qz or the trigonometric
functions sin wz and cos wz if q = iw. Using the separation form (3.1) we see that f(z) can
not contain a term of the form 2 with j>1. In order to construct a space harmonic function

which contains polynomial terms in z we have to represent H(x,y,z) as a sum in the form

Z*hy(x,y) (3.5)
0

H(X,y,z) = ho(x,)’) + Zhl(xvy) b ZZhZ(x5y) + -+ Znhn(an) =

n
1=
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and then to look for the relations between the hy (k=0,1,2,3,...,n). Substitution of (3.5) into

the Laplace-equation gives
AH = Hy + Hyy + Hy,
= Ahy + 2h,
+ z[Ah; + 6h;]
+ Z{Ah, + 12hy]
+ Z2[Ah; + 20hg]
+
z“"z[Ahn_z + n(n—1)h,]
2" Ah,
+ z"Ah, = 0. (3.6)

From (3.6) we obtain the relations

h2 = '—%Aho
1

h3 =—"6‘Ah1

hy = ——LAh, = —L_AAR

4 1272 212 0

he = ———Ah; = —L_AAR (3.7)

5T 073 T g0 '
1 1

hg = —35Ahs = ~ 71230 2480

hy=——2 _Ah . = 1 AAh, _, =

" nm-1)" "2 n@-1)(n-2)(n-3) o4

and
Ahn—l = O,
Ah, = 0. (3.8)

Depending on whether k is odd or even we can write hy as
-1)) ——ah
[( ) (2 ), 0
hy = { N
l(_ Y G +1)v

for k = 2j
for k = 2j+1 (3.9)
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We see that for H(x,y,z) given with expression (3.5) there remain only two functions, one relat-
ing the powers of z with even exponents and the other connecting the powers of z with odd

exponents. Therefore we decompose the space harmonic function H(x,y,z) in the form

H(XvaZ) = Hcven(x,yvz) £ Hodd(xvy,z) (3-10)
where
N .
Heven = EZZJth (3.11)
j=0
and
N .
Hoaa = X7 hyj1. (3.12)
=0

The requirement (3.8) reads now

Ahyy = 0,

Ahyneg = 0, (3.13)
which gives us from (3.9) the characteristic differential equations

AN*lh = 0 (3.14)
for a series with even powers of z and the largest exponent 2N and

AN*lh, =0 (3.15)

for a series with odd powers of z and the largest exponent 2N+ 1,

In order to determine the functions hy and h; for a chosen maximum N we use the following

representation:
N
hg = a0G + 2;AG + a,AAG + - -+ + agANG = I a,AKG(x,y), (3.16)
k=0
N
hy = bog + bjAg + bAAg + - + byANg = 3 bAKg(xy),
k=0

where AN*IG(x,y) = 0 and AN*lg(xy) = 0. Using (3.16) and (3.9) we can write the space

harmonic function parts H,,e, and H 44 in the form

Heven = [20G + 210G + 2,AAG + - -+ + ay_,AN2G + ay_,AN7IG + apyANG]

—?[aOAG + ajAAG + 2,AAAG + -+ + ay_,ANTIG + ay,ANG + 0 ]

4
+ %[aOAAG + ajAAMAG + 2 )AAAAG + - -+ + ag,ANG + 0 + 0 ]



(3.17)
N
_N_Z N
+ (-1) (ZN)!aOA G
= (2), EakAKG]
and
Hoaa =  z[bog + bjAg + bAAg + -+ + by_,AN2g + by AN"1g + b ANg]
3
—-%[boAg + biAAb + bAAAg + - -+ + by ,ANTlg 4 by_ANg + 0 ]
5
; [boAAg + bjAAAg + b)AAAAg + - + by ,ANg + 0 + 0 ]
(3.18)
N Z2N-+-1 " N
+ _— SO R oy
TR T
S (~i AT [ 3 baKg ]
SR e B

The coefficients aj and b; (j=0,1,2,...,N) will be determined later from the stress boundary con-

ditions for the upper and lower faces of the plate.

It should be mentioned that it will also be helpful to use for the representation of the four func-
tions H; in (2.1) the integrated forms

fHevcndx’ fHevcndyv fHodddx’ fHodddy’

which are also harmonic functions.

Since the separation of variables for the space harmonic functions gives us the possibility to
construct solution representations involving polynomials in z, trigonometric and hyperbolic
functions of the thickness coordinate z, we will look separately at the three types of plate solu-
tions belonging to the u—part of the displacement field.
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4. Homogeneous solution parts involving powers of z

4.1 Bending solution

In the Kirchhoff-plate theory we have to deal with biharmonic solution functions. So let us first
see what we get in the 3-dimensional analysis with the aid of a function G(x,y)=g(x,y) which
satisfies AAG = 0 and is used to represent a space harmonic function in the forms (3.17) and
(3.18). We see that only 2 terms in each of the representations (3.17) and (3.18) remain.
Accordingly let us choose the space harmonic functions of the stress and displacement represen-
tation (2.3), (2.4) as

3
Ho(x,y,2) = 2 [bgG(x.y) + bIAG(x.y)] — Z-boAG(x.y),

Hi(x,y,2) = [a0G(x.y) + a;AG(x,y)] — -ZziaoAG(X‘Y), (4.1)

Hi(x,y,2) = Hy(x,y,z) = 0.

The possibility of higher order solutions will be considered later. Since in the representation for
F according equation (2.1) only Hj is multiplied with z, the order of the polynomials of Hy and

H, differ in one.

The coefficients ag, aj, by, by are to be calculated from the following homogeneous boundary

conditions on the upper and lower plate faces:
ox(x,y,z=*h2) = 0,
T(X,y,z=*h/2) = 0, (4.2)
Ty2(X,y,z=%xh/2) = 0.
The substitution of (4.1) into (2.4) gives us
0, = z[by — (1-2v)ay]AG (4.3)

Tz = — [bp — (1—21I)ao]ga;G+ [[bo - (1-2v)ay + 230}? — by + (1_2v)al]i_AG,

3 ( 12 9
Tyy = — [by — (1—2v)ao]EG+ [1b0 — (1-2v)ap + 2a0Jk7 — by + (1—2v)al]EAG,

so that we obtain from the stress boundary condition (4.2) the following relationships for the

coefficients ag a;, bg,b; :

by — (1-2v)ag = 0, (4.4)

2

%—ao —b; + (1-2v)a; = 0. (4.5)
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Two coefficients can be chosen. In order to find a proper normalization involving nonzero

values we write the displacement w to obtain
2
2uw = [—by + (3—4v)ag ] G + [ by — (3—4v)ag + 224 | 27 AG

+ [-b; + (3—4v)a; ] AG (4.6)
For our normalization we require the coefficient of G in relation (4.6) to be
—by + (3—4v)ay = 1, 4.7)

which gives in connection with (4.4)

1
= 4.8
%= (1)’ (4.8)
1-2v
= s 4.9
by 2(1—v) (4.9)
Requiring the coefficient expression of z° AG in (4.6) to be
gives us in connection with (4.8) and (4.5)
h2 1
By = — ———, 4.11
P4 412 (4.11)
h? 3-4v
by = == ————, 4.12
Y4 41—y (12
Since we can decompose our function G, which satisfies AAG=0 , through

into a harmonic function part Gy (i.e. AGy=0) and a true biharmonic function part Ggy (i.e.
AGpy#0 and AAGgy=0) we can writ Hy and H; as H= Hf' + HBY  and
H; = Hi + HPY o obtain

H&'I =z bO GH’
HH = ag Gy, (4.149)

and

z
He" = z [byGpy + bjAGgy | — & b0AGEw,

2
HP = [a)Gpy + a;AGgy ] — S 20AGg. (4.15)

So there exists a harmonic function part which satisfies the required homogeneous boundary
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conditions on the lower and upper faces of the plate and is associated with the terms z° and 2L,

respectively. The other solution part (including biharmonic functions) is associated with the

0

terms 2%, 22 and zl, z3, respectively.

The harmonic solution part involving Gy gives us the displacement representation

Gy
Zuu = - 9x
dGy
= 4.1
2pv z 3y (4.16)
2[.LW = GH

which basically represents the relationships of the Kirchhoff-plate theory.

Since the harmonic solution part is included in the biharmonic function G we omit further dis-
tinctions and give now the displacements and the associated stresses with the aid of G and its

partial derivatives. Using the coefficients of (4.8), (4.9), (4.11) and (4.12) we obtain

d 1 2 23 d
;TR e N h%z - 2(2—v) %= 1 -Z-AG,
pu R € [ bz — 2(2-v) 3 ] axA

ax 4(1—v)
= _, .9 2, _ i 9
2uv = —z ayG 4(1 5 [h%z —2(2-v) %] y AG, (4.17)
2uw = G + 2(1_V)ZZAG
=L .16, +G bz — 22-v) 2 | 22AG
1
Oy = —752[ Gy + vGx ] - 4(1 - [ h%z —2(2—v)~— ] 7AG,
o, =0, (4.18)
_ 1 IO S
Txy zGyy 2(1—) [ h“z —2(2 v)3 ]68 AG,
_ 1 _h,8
== S0 | 7 1526
_ 1 . a
= 20 | 4 15546

For thin plates with the thickness h being small compared to the other plate dimensions we
arrive with the biharmonic function G at the relationships for the Kirchhoff-theory if we neglect

all terms involving h?, 2 and 2°.
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The biharmonic function G(x,y) appearing in (4.17) and (4.18) can be expressed with the aid

of two complex functions ®({) and x({) in the form

G=Z[TOQ)+ 13D + x® + xO 1 = Re[T & + x 1,

(4.19)

where { = x + iy . For the substitution of the partial derivatives of the function G in the dis-

placements and stresses in terms of derivatives of the complex functions we can use the follow-

ing relationships:

Ge=Re[D + LD + x ],

Gy=Im[® + (D + x ],

y

G =Re[® + D + LD + x|,
Gy=Re[® + D —( D" —x"],
Gy =Im[{ D" + x"],

AG = 4Re[ D],

D AG = 4Re[ "],
ax

)
—AG = —4

e G Im[ "],
i AG = 4 Re[ D"
9 - e ,
! [ ]
52
—5AG = —4Re[ "],
ay ‘

92
Ix87 AG = —4Im[®""].

Using (4.20) we can write (4.17) and (4.18) as
— g N 1 2 z '
2pu = —zRe[® + [ @ +x]—T_—v[hz—-2(2—v)—3—]Re[CD 1

2uv = —zIm[¢>+§qT+)—(—’]+ Ti;[hzz—2(2—v)§]1m[¢”],

2v
1—v

2uw = Re[ LD + x | + Z Re[ D' ],

Om = = Tz Re 2(149)@" + (1-v)( @ +x )]

1 z
- L (0% 2092 IR 07,

1—v

(4.20)

(4.21)
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z Re[ 2(1+ )" — (1=)({D" + X ) ]

o
Yy 1—v

+ 1—% [ hZ — 2(2—1;)? JRe[ @],

g = 0, (4.22)
T =—z1m[);517+7]+—-I—[hzz—z(z—v)ﬁ]lm[df’]

Xy 1-v 3 ’

= 2§ — B per |

Z o 1y 4 ’

= —2 (22— e,

yz 1—v 4

Now we want to consider a displacement representation involving higher order terms. The next

higher order stress functions following (4.1) would be
z> >
Ho(x,y,z) = z[ bog + biAg + bAAg] — o [bodg + biddg ] + —— bpAdg,
and (4.23)
2 g
Hy(x,y,z) = [agg + ajAg + aAAg ] - 7 Ladg + a,08g ] + 7 aAAg,

where g(x,y) is a solution of AAAg = 0. For the stresses o, Txz> Tyz WE Obtain

3
= z[[ by = (1-2v)ag JAg + [ b; — (1-2v)a; JAAg ] — 56— [ by + (1+2v)ag JAAg

Oz

by — (1=2)ag o= — [ by — (1-2v)a; Jo-dg

TXZ
— [ b, — (1-2v)a; |- AAg
0x

+ ? [[bg + (1+2v)ag ]%Ag + [ by + (14+2v)a ]-;—XAAg ]

4
d
- 22—4 [ by + (3+2v)a, J5-AAg ] (4.24)

— [ by — (1-2v)ag ];ay—g —[ by — (1-2v)a, %Ag —
~[b, = (1-2v)a, ]%AAg

+ %2‘ [ [ bo + (1‘*‘21’)30 ]%Ag + [ bl + (1+2v)a1 ]'%AAg ]



-13 -

- % [bo + (3+2)a ]%AAg ]

The stresses (4.24) can only vanish on z==*h/2 if ag=bg=0 or if AAg=0. But both cases
mean that in (4.23) we have no terms z* and Z° involved. A look at the use of other higher
order polynomials in z for Hy and H; shows that there are no further possibilities to satisfy the
homogeneous conditions on the upper and lower faces of the plate than through the stress func-

tions of (4.1) involving z> as the highest power of z.

4.2 Membrane solution

The bending solution part constructed in the previous paragraph contains the antisymmetric

1 23 for the displacement components u and v whereas the displacement component w

terms z
has the symmetric terms z°, z2. For the membrane solution part involving polynomials in z we
will construct a solution which contains the symmetric terms z°, 2 in u and v, and the antisym-
metric term z in w. The stress function F for the membrane case contains only even powers of
z. Using two terms in the series representations (3.17) and (3.18) we can choose the four har-

monic functions H; in the biharmonic stress function (2.1) as

2
Hy= [a,G + a,AG ] — -Zi- a,AG,

H, = f{[coG + AG ] - ? cOAG} dx,

H, = f{ [ oG+ d;AG | - _sz dOAG} dy, (4.25)
and

H; = z[ byG + b;AG | —ZgbOAG,

where G(x,y) has to satisfy AAG=0 according to AN*!G=0 and the choice of N, which has
the value N=1.

From the boundary conditions o,,= Te=Tyz=0 on z==*h/2 we have to calculate the coefficients
ag, a1, by, by, ¢, ¢, dg, d;. For o, at the lower and upper faces of the plate we obtain

2
b 18G

2
04(X,y,z=*hW2) = [ag+ 2v(c; + d;) — v-ll:—(co + dg) + 2(1—v)b; + v y

+ [ 2v(cy + dg) + 2(1-v)by ]G
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+ x cofAG dx + y dyfAG dy = 0. (4.26)
Since (4.26) has to hold fbr all values of x and y we get
cg=dg=0, (4.27)

and from this we obtain

by = 0. (4.28)
Using (4.27) and (4.28) we can write the boundary conditions for z= +h/2 as

on(X,y,z=*h/2) = [a5 + 2v(c; + d;) + 2(1—-v)b,; JAG = 0, (4.29)

ro(%,y,2= £h/2) = (i%) [ ag — 2vby ]%AG =0, (4.30)

h 9
Tya(%,y,2= £0/2) = (£ ) [ag — 2vby ]—a—y—AG = 0.

For the satisfaction of these equations we can distinguish between the two cases AG # 0 and
AG = 0. Now let us treat the two cases separately and use the indices 1 and 2 for the func-
tion G (G for the case AG; # 0 and G, for the case AG, =0).

For the case AG; # 0 we obtain from (4.30)

ag = 2vby (4.31)
Substitution of (4.31) into (4.29) gives

by = —v(c; + dy) (4.32)
so that ay becomes

ag = —2v¥(c; + d,). (4.33)

The coefficient (c; + d;) can be chosen for a proper normalization, which will be done later.

For a simplification of the solution representation we choose ¢ =d;.

For the case AG, = 0 the boundary conditions (4.29), (4.30) are satisfied for arbitrary

choices of ay ay, ¢;, d;. Here we choose a; = 1 and a;=b;=c;=d;=0.

Adding the functions of the two cases according to G = G; + G, we obtain the following set

of stress functions, which guarantee the satisfaction of the boundary conditions (4.29)-(4.30):
Hy = —4%,G; + a,AG; + 2cv*2AG, + G,,

H; = ¢ [AG, dx,
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Hy; = ¢ fAGl dy,
H; = —2vczAG,, (4.34)
F = Cl { X IAGI dx + y fAGl dy - 4V2G1 - 222v(1—v)AG1] + alAGl + Gz.

The integral terms in (4.34) can be expressed in a simple form by using a complex function
representation. With the aid of the complex functions @;({), x1(£), x2({) we can write G, and
G, as

Gi= 2 (1@ + LB, + x(0) + X1(D) ] (4.35)
and
G2 = 2 [x®) '+ (D ] (4.36)

Using the relationships

AG, = 2[®] + @, ],

JAG dx = 2[ @, + D, ], (4.37)
JAG dy = 2i[ 0, - @],

and
x [AG;dx + y [AG; dy = 2(x —iy)®, + 2(x + iy)D; (4.36)

we can write F as
F = 2¢ { (1)@ + (1-D)D; — vix; — vixg — 225(1—v) [ ] + B, ]l
J

+ 20 (@] + B 1+ 2 [ + D) I (4.39)

where { = x + iy . For a proper normalization c; is chosen such that the factor of the term

ZCDI in equation (4.39) becomes 1/2. Choosing

-1
= (4.40)

and using the substitutions
'U2 X
1
1—2 "7

X = X2~
P = q)l’ (441)

(4.39) becomes
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v —

1+v22 Ne + @] (4.42)

F=—[l®+[D+x+X]+[2a-

1
P
The remaining coefficient a; can be chosen arbitrarily. For convenience we choose a; such that
the mean value of F across the thickness of the plate is equal to the stress function F~ used in

the Muskhelishvili formulation for plane stress problems [13]. So we require that

1 h2 1 .- _
F h_{ndz S [L0+ 1@+ x + X] (4.43)
and get
h2
f [ 2a; — ——22 ]dz = 0, (4.44)
“ho 1+v

from which we obtain

(4.45)

The treatment of the homogeneous boundary conditions on the upper and lower faces of the

plate led us to the fol]owihg stress functions:

1 - v? = —= h? v v? 5 .
Hy= =[x+%x] - —— D]+ [ + P + @
0= 7 [x+x] 20 [+ 2]+ (5 1 22 1l ]
2 2
v T h v v '
= - R +2[ — - 2 P
Re[x] _— eli2] +2[ > 1.5 — JRe[ @]
Hy = —e [ % & ] = —L R[] (4.46)
Y209 1-12 ’ '
_i —
H=——[0-0]= Im[®],
27 207 1= oammie]
Hy= -z —2—[® + & | = -2z —2—Re[D]],
3 1—112[ ] 1_]}2 [ ]
and
F=Re[(D+x]+2—~ [h—z—zz]Re[(D']. (4.47)
1+v' 12

With the aid of (4.46), (2.3) and (2.4) we get the displacements

_ 3—v = = v h? "
2pu = Re[ T, P —-x1-2 ol = 2 ] Re[® ],
3-v = = v B2, "
2uy = Im[ T —® — (@ —x'] + 2 ol —Z 1 me7], (4.48)
2uw = —4z —~ Re[®],

1+v



-17 -

and the stresses

—_ —— 2
ox = Re[® + & — (0" — "] -2 1L [%—zz]Re[CDm],

1+v
' =% 7 - v h2
Oy =Re[D + @ + (@ + "] -2 1+V[E—22]Re[fb 1, (4.49)
7 - v h2 o
Ty = CIm{ L0+ X" ]+ 2 = > ~Z ] Im[®"],
Oz = Tz = Ty = 0.

We observe that due to the properties of the constructed space stress function F(x,y,z) the gen-
eral three-dimensional relations (2.4) reduce here to the expressions Oxx = Fyy, 04y = Fi; and

Txy = —Fxy, which have the form of the Airy-stress relationships for plane problems.

Taking the average of the displacements (4.48) and the stresses (4.49) by integrating with
respect to the thickness coordinate z and dividing by the thickness h we obtain the Muskhelish-

vili formulas for plane stress [13].

5. Homogeneous solution parts involving trigonometric functions of z

In order to use a multiplicative separation of a space harmonic function in the form (3.1) with
sin wpZ or cos A,z as separated functions we need to construct a displacement representation
which involves no sums in the displacement components and which does not have the factors
x,y or z. This can be obtained with F, = Fy=F,=H;=0. As we see from (2.1) F,, F,
and F, vanish if we choose Hy, H; and H, such that the stress function F vanishes. This can be

reached by the choice of the harmonic functions H; in the form

LA 4

Hy= —x 2% 4
07 XNy TY %k
_—

ay

oV ‘
Hy= —— 5.1
2 BX’ ( )
H3=O,

where ¥ = ¥(x,y,z) satisfying AW = 0. Substitution of (5.1) into (2.2) gives us the simple

displacement representation

2pu = 4(1—v) Yy,
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2pv = —4(1-v) V¥, (5.2)
2uw = 0,

or
2pu = CDy,
2pv = -, (5.3)
2pw = 0,

if we use the substitution ®(x,y,z) = 4(1-v)¥(x,y,z) . For the function ®(x,y,z) satisfying

AD = 0 we can use the following multiplicative separation

gn(x,y) sin wpZ

@(x,y,z) = Ty (5.4)
which leads to
’s, 9%,
2. _
ax> " ay2 "@at =0
82‘\ aZg'\
aé“+ a;’—xggn=o (5.5)

as the characterizing differential equations for g (x,y) and gn(x,y). It is obvious that one solu-
tion part in equation (5.4) is symmetric with respect to the origin of the z-axis and the other

part is antisymmetric.

5.1 Bending solution

For thin plate bending applications we are interested in the solution part leading to antisym-
metric stress distributions for o, Oyy, Txy and symmetric stress distributions for 7,,, Ty, Over the

thickness of the plate. The according displacements and stresses are

9gn
2pu = sin w,z,

ay

08y .

2pv = — o sin w,z, (5.6)
2pw = 0,

gy

= sin w,z,
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%8y
Oy = — 5xay sin w,z,
o, = 0, (5.7)
Ty = l[ G ——a—zg—n]sinwnz
Y2t gy e ’

1 0gn

Txz = Emn 3y COS wgZ,

1 98q
Tz = T 5 @n - COS wgZ,

where o, = nwh (n=1,3,5,....). In order to satisfy the boundary conditions for Txz and Ty,

at z = *h/2 we have to choose odd numbers for n.

5.2 Membrane solution

The membrane solution satisfying the stress boundary conditions (4.2) is obtained when we
write in relationships (5.6) and (5.7) §, instead of g, , A, instead of w, , COS Az instead

of sin w,z, and sin Az instead of cos wpZ , where A\, = mw/h (m=0,24,....).

6. Homogeneous solution parts involving hyperbolic functions

In the paper [11] discussing the application of the author’s complex 3-dimensional elasticity
solution representation [9-12] for the analysis of a rectangular plate it was found that a homo-

geneous solution involving hyperbolic functions of z can be written in the form
2pu = —Re[ Gy(xy) (2) ],
2uv = —Re[ Gy(x,y) £(2) ], (6.1)
2uw = Re[ G(x,y) h(z) ],

where G(x,y) satisfies AG + q>G = 0 and q is a complex eigenvalue which can be computed
from the homogeneous boundary conditions o,(x,y,z=%h/2) = Txz(X,Y,2=*h/2) =

Tyz(X,¥,2=%=h/2) = 0.

In order to get simple expressions during the derivation of the solution (6.1), we make use of

the coordinate transformation
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h
A-—— . .
2=12z+ (6.2)

so that the boundary conditions in the new coordinates are
0,(x,y,2=0) = o,(x,y,2=h) = 0,
T2(X,¥,2=0) = 15(x,y,2=h) = 0, (6.3)
Ty2(X,y,2=0) = 7y,(x,2,2=h) = 0,

( 2 corresponds to the thickness coordinate z used in [11] .) From the results of the example
given in article [11] we can see how we have to choose the harmonic functions H;(x,y,2) if we
want to start with the displacement representation (2.2). Let us include now also the case of
certain nonhomogeneous stress boundary conditions on the upper and lower faces of the plate

so that we are also able to construct particular solutions in the same time.

Choosing the harmonic functions H; in the form
Hy(x,y,2) = G(x,y) [ ¢ cosh q2 + d sinh q2 ],
Hy(x,y.2) = 0,
Hy(x,y,2) = 0, (6.4)
Hj(x,y,2) = G(x,y) [ a cosh g2 + bsinh g2 ],
we obtain the following displacement and stress representation:
2pu = —G,[azcosh q2 + b 2sinh g2 + c cosh q2 + d sinh g2 ],
2pv = —Gy[azcosh qz + b zsinh g2 + ¢ cosh g2 + d sinh g2 ], (6.5)

( ] ( )
2uw = G| at(_3—4v) cosh qZ — gz sinh qZJ + bt(3-4v) sinh g2 — g2 cosh q2J‘

—c qsinh q2 —d q cosh q2 ],
Oxx = —Gx[a2coshqz+ bzsinhqz+ ccosh g2 + dsinh g2 ]
+ G 2vq [ asinh qZ + b cosh g2 ],
oyy = —Gyy[azcoshqz+ b2sinhqZ+ ccosh g2 + d sinh gz ]

+ G 2vq [ a sinh g2 + b cosh g2 |,
( . ] ( _ )
o,=Gq| ai —q2 cosh g2 + 2(1—v)sinh qu} + bt —q2 sinh qZ + 2(1-v)cosh qZJ

—cqcosh g2 —d qsinh g2 ],
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—Gyy [ a2 cosh g2 + b 2sinh q2 + ¢ cosh qz + d sinh g2 ], (6.6)

G,[a {(1~2v) cosh q2 — gz sinh q2 1 + b I(I—Zv) sinh qZ — gZ cosh g2 1
) ( )
—cqgsinh g2 —d q cosh g2 ],
( o) ( o R
Tz = Gy [ a {k(l—b) cosh qZ — g2 sinh g2 J} + b {L(l—ZV) sinh q2 — qZ cosh q2 J}

—cqsinh g2 —d q cosh g2 ].

The substitution of the stresses (6.6) into the equilibrium equations (2.6) gives us

—%[Gn+ny+qz(_}][az"coshq2+bisinhq2+ccoshq2+dsinhq2]=0,
—%[Gn+ny+qZG][aicoshq2+bisinhq2+ccoshq2+ dsinhqz] =0, (6.7)

Gy + Gy + G 12(1-v) [acosh gz + bsinhqz] = 0,
xx wta q

which are satisfied if

AG + q>G = 0. (6.8)

If we have nonhomogeneous stress boundary conditions we choose values for q and calculate

the unknown coefficients a, b, ¢, d. An example for such a solution will be given in chapter 7.

Here we want to get solutions for the homogeneous boundary conditions (6.3). Since the boun-
dary condition for 7, gives the same equations as the condition for Ty, We obtain four homo-
geneous equations involving the four unknown coefficients a, b, ¢, d. The system of equations

can be written as

[ K1 —Ki2 —2q cosh gh —2q sinh th [a] [0]
0 4(1—v) -2q 0 bl _ |o 5.
l2(1—2v) 0 0 —2q l c|= lo| (6.9)
1 K41 -K42 —2qsinh gh  —2q cosh th Id | 0]
where
Ki1 = —2gh cosh gh + 4(1—v) sinh gh,
Ki2 = 2qh sinh gh — 4(1-v) cosh gh,
K41 = —2qgh sinh qh + 2(1-2v) cosh gh, (6.10)

K42 = 2qgh cosh gh — 2(1-2v) sinh gh.
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The equation (6.9) has only nontrivial solutions if the q-dependent determinant of the coeffi-

cient matrix vanishes. This requirement gives us the equation
q% h? — sinh? gh = 0, (6.11)

from which we can compute two infinite series of complex solution values for q associated to
qh = —sinh gh and qh =sinhqh. The lowest zeros of gh + sinh gh=0 and
qh —sinh gh = 0 are given in tables 1 and 2, respectively. One series of zeros is associated
to symmetric solutions and the other to antisymmetric solutions. The conjugate complex values

of q are also solutions of the characteristic equations.

In order to satisfy homogeneous stress boundary conditions on the upper and lower plate faces
we obtained only complex values for q to be used for the solution. Since q is complex and
G(x,y) has to satisfy AG + q>G = 0, G is also complex. Using the complex q and its com-
plex conjugate value q we can formulate a real solution for the displacements as indicated in
(6.1).

6.1 Bending solution

The bending solution is obtained from the zeros of gh —sinh gh = 0. The lowest five values

for gh are given in Table 1.

Table 1: Lowest zeros of gh — sinh gh = 0,
where q = q; + ig;

q:h

gih

2.76867828298732
3.35220988485351
3.71676767975250
3.98314164033996
4.19325147043121

7.49767627777639
13.8999597139765
20.2385177078300
26.5545472654916
32.8597410050699

For every complex eigenvalue we can evaluate the corresponding eigenvector which has the

form

—_—
a0 o

=

1
1 — cosh gh
gh
1-2v

q
2(1—=v) 1 —cosh gh

q gh

(6.12)
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where A is an arbitrary factor, which for our purposes can be chosen as A=1.

6.2 Membrane solution

Using the zeros of gqh + sinh gh = 0 (Table 2) and the corresponding eigenvector
- "
1
1 + cosh gh

3 (6.13)

P———
a0 oW
D el e |
]
>

q
2(1-v) 1+ cosh gh

for the displacement representation (6.5) and the stresses (6.6) we get a membrane solution.

Table 2: Lowest zeros of gh + sinh gh = 0,
where q = q, + iq;

g:h q;h

2.25072861160186 4.21239223049066
3.10314874582525 | 10.7125373972793
3.55108734702208 | 17.0733648531518
3.85880899310557 | 23.3983552256513
4.09370492476533 | 29.7081198252760

7. Particular solution for a normal load p(x,y) acting on the upper face of the plate

The use of real values q and a real function G in the displacement and stress representation
(6.5)-(6.6) is possible for the construction of particular solutions satisfying nonhomogeneous
stress boundary conditions on the upper and lower faces of the plate. A particular solution for

the boundary conditions
on(X,y,2= ~h/2) = —p(x,y),
ox(x,y,2=h/2) = 0, (7.1)
Txe(X,Y,2= £1/2) = 7y,(x,y,z= = h/2) = 0,

can be constructed by choosing
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G(x,y) = sin ax sin B,y,

mr n
0= T, By = T“', (7.2)

= Vi + 8,

and by using relationships (6.5)-(6.6). The domain for the particular solution is chosen to be

9mn

O=x=a, O=y=b, 0=2=<h and the boundary of the particular solution in the x-y-plane can
be considered as an auxiliary boundary. The actual boundary (of the x-y-plane) of a plate
under consideration has to lie inside the auxiliary boundary. The rectangular auxiliary boun-
dary is chosen as we have a solution [11] available for the boundary conditions w(0,y,2) =
w(a,y,2) = w(x,0,2) = w(x,b,2) = v(0,y,2) = v(a,y,?) = u(x,0,2) = u(x,b,2) = 0,4(0,y,2) =
oxx(a,y,2) = 0y(x,0,2) = oy,(x,b,2) = 0. The solution can be expressed with the aid of the

coefficients of the double Fourier-series of the load given by

p(x,y) = 3 3 ay, sin m:X sinn—gx, (7.3)
m n

where for example ap, = 16py(w’mn) for a constant load po and m = 135,...,

n = 1,3,5,.... The particular solution for the displacements taken from article [11] is

2pu = 3 > ap cos anx sin By [ —4A,, 2 cosh qpu?2 + 4By, 2 sinh g2

m n
2 . 2 5
+ —— Epp sinh qppZ — —— Fpp cosh qa? ],
qmn mn
2pv = 3 > Bnsin apx cos Bpy [ —4Ap, 2 cosh qpa? + 4Bp, 2 sinh g2 (7.4)
m n .

+ 2 Emn sinh qpp2 — e, Fian cosh qmp? 1,
mn 9mn

( )
2pw = > > sin ax sin By [ 4A, 1(3—411) cosh qup2 — qmu? sinh g2 j
m n

( )
+ 4B, i—(3—4v) sinh qupZ + qma? cosh g2 J

+ 2Ep, cosh qupu2 — 2F, sinh qpn |,
where 2 = z + h/2 and

ampl Qmoh + cosh gpgh sinh qpgh |
4qmn[ Sinhzqmnh - qr%mh2 ]

mn ’

a_ . sinh?
B - mn qmnhz —, 75)
4qmp| sinh Qmoh — qmnh” ]
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Emn = —2(1-2v)Ap,,

Fra = —4(1

2qma

The according stresses can be found in [11].

The particular solution (7.4) satisfies the load conditions (7.1) on the upper and lower faces of
the plate. In general it satisfies of course not the boundary conditions on the actual lateral
faces of the plate under consideration. But through our solution strategy of superposing a par-
ticular solution satisfying nonhomogeneous boundary conditions on the upper and lower plate
faces and homogeneous solutions satisfying homogeneous boundary conditions on the same
faces we reduce our plate problem to the satisfaction of given boundary conditions on the side

faces of the plate.

8. Particular solution for a constant normal load P on the upper face of the plate

Assuming the same boundary conditions as in (7.1) but now with p(x,y) = p = const. we can
construct a simple particular solution involving polynomial terms in x, y, z. Using odd and
even functions of the forms (3.17) and (3.18), respectively, we obtain a particular solution with

the following choice of stress functions Hj:

) 22 34
Ho(x,y,2) = [ag+ ajAg + a,AAg] — = [ [aode + a;AAg ] + a7 bl
z5
+ 2 cog + cjAg + AAg ] — = [cOAg+ cidAg ] + [ CdAg,
Hl(x’y’i) == HZ(x’y’i) = O’ (81)

Hi(x,y,2) = 2[ by + bjAg + bAAg] — i [ bpAg + bjAAg ] + %5'— bpAAg

. 52 54
+ [dog + diAg + d,AAg ] — o7 [ doAg + djAAg ] + v dpAAg.

In order to get harmonic functions Hj and Hj the function g(x,y) has to satisfy
AAAg = 0. (8.2)

For a convenient treatment of the boundary conditions we use again the coordinate

=z + W2 lyingin the interval 0<2=<h . If we choose g(x,y) such that

AAg = p = const., (8.3)
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we automatically satisfy (8.2) and have the properties

a
L. kg =0
Mg =0,

2 Adg=0 (8.4)

The substitution of (8.1) into (2.4), using (8.4), and setting by = 0 (to make o, a third order

polynomial in z) gives us
[ ap + 2(1—V)b1 ]Ag + [ a4 + 2(1_V)b2 ]AAg

Op =

+ 2 [y~ (1-2v)dg JAg + 2[ ¢; — (1-2v)d; JAAg

2 1, .
= ¢ [eo = (1-2v)dg JaAg - - dg 2 AAg
s 2
- 5 [ap + 2(1-v)by JAAg + by 2 Ag, (8.5)
_ o
T = 5o 1 Tl — (1-2v)do Jg — [ — (1-2v)d; ]Ag
(
+ 2[ay+ 2(1-v)b; JAg — 22 by Ag
(8.6)

22
+ 5 [oo - (1-2v)do JAg + # dy Ag }

The expression for 7y, is obtained if we take the right-hand side of (8.6) and write the partial

derivative with respect to y instead of x.
From (8.3), o,(x,y,2=0) = —p and 7,(x,y,2=0) = Ty(X,y,2=0) = 0 we get
ag + 2(1—-v)b; = 0,
a; + 2(1-v)b, = —1,
¢ — (1-2v)dg = 0,
(8.7)

¢ — (1—2v)d1 = 0.
Using these relationships we obtain from o,(x,y,2=h) = 7,(x,y,2=h) = Ty(X,y,2=h) = 0

the equations

—% h3d0+ hzbl = 1,
(8.8)

h?dy —2hb; = 0,

which have the solution

3
b1='h_2,
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dyg = —. (8.9)

Choosing ¢; = 0 and a; = —1 weget d; = 0, b, = 0, and with (8.9) and (8.7) we obtain

6
¢ = (1-2v) Pl
6(1—v
ay = — 7 (8.10)

ay, ¢ and d; did not appear in the considered boundary conditions and can be set to zero.

For g(x,y) satisfying (8.3) we choose
gxy) = 5 62+ 2 (8.11)

With the aid of the chosen and evaluated quantities we obtain a particular solution for the dis-

placements involving the coordinate 2. Using the substitution z = z + h/2 we get

2uu = ;L}:; [ 2-v)(42 = 3h%2) —3(1—v)(x® + y¥)z + vh3],
2uv = %13;— [ (2-v)(42® = 3h%z) — 3(1-v)(x® + y)z + vh3], (8.12)

2uw = =P [ —16(1+)2* + 48u(x? + yA)Z2 + 24h¥(1+v)22
32h3

+ 6(1-v)(x* + y})? — 12h% v(x? + y?) — 16h3(1—v)z — h*%(13-3v) ].

A look at the according normal stresses

Oy = Z}% [42+v)2® — (9+3v)x% z — (3+9v)y? z — 3h2(2+v)z — vh3] (8.13)
and
Oy = L [42+v)B - G+t z - (9+3v)y? z — 3h?2(2+v)z — vh3] (8.14)

4h?
shows that there are constant stress terms in o4, and Oyy- In order to get a particular solution
for which oy (x,y,z=0) and Oyy(x,y,2=0) vanish we have to superpose a membrane solution of
the form (4.48) and (4.49). This can be done by choosing x({) = 0 and ®({) = cf in
equations (4.48) and (4.49). Calculating the coefficient c to be ¢ = vp/8 we obtain the follow-

ing membrane displacements and stresses:

— v(l-v)
HU=P gy

P Zi(ll-?é)l y, (8.15)

2pv
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12

2(1+v) ©

2pw = —p

_ _ L4
Gxx_cyy_pz’

Op = Txy = Ty = Ty = 0. (8.16)
Superposition of the functions (8.12) and (8.15) and omitting the rigid body term
[Ph(13—3v)/32] in the deflection w of relationships (8.12) gives us the following particular solu-

tion for a constant normal load p on the upper face of the plate:

3
P = il—ﬁ [ 2-v)(423 = 3h22) — 3(1-v)(2 + y))z + f‘fv 1,
2y = BE [ @ — 37 ) - 30-)(2 + yz 4 20 ) (5.17)

2pw = —Po [ —8(1+v)z% + 24u(x® + yO)22 + 1202 (1+v)2

16h3
8h3
310 + ) - 6hT v(x + yY) - -z,
Ox = 2113_3 [4@2+v)2 — (9+3v)x* z — (3+9v)y? z — 3n2(2+w)z ],
Ty = Z:% [42+v)2° = (3+9v)x? z — (9+3v)y* z — 3n2(2+v)z |,
o=~ By @+ b2z -, (8.18)

= - 3P -
Txy = 8 (1-v)xyz,

Tz = —223— x(2z — h)(2z + h),
4h
3

Ty = I}% y(2z — h)(2z + h).

9. Particular solution for a constant body force acting in the thickness direction

A solution for the case of a constant body force fz (i.e. the right-hand side vector in (2.5) and
(2.6) becomes [0, 0, —f,] ) can be written as

2pu = —?Zm'yzvxz,

2uv = —f, (1 —m)y,vyz, (9.1)
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(0 2 . 2
ZPW=fztm[§YzV—(1+’Yz)]x + (1—m)[§'y3v-(1+73)]y

)

+ 10 - [myg + (1 - 2|

o = £, (1 —m)y; vz

Oy = f,my,vz,

0z = L [my; + (1 — m)ysz (9.2)
Ty = 0,

Tz = —f, m(1 + vy,)x,

Ty, = —f (1 —m)(1 + va)y,
where m, vy, and v; are arbitrary constants. In order to have a symmetric structure in the
displacements and stresses with respect to the x- and y-coordinates we choose m = 1/2 ;
Y2 = —1/2 and y3= —1/2. Since the resulting stresses o, = —f, 22 , Tw = —f, x/4 and
Tyz = ——z y/4 do not satisfy the stress free boundary conditions (4.2) on the upper and lower
faces of the plate we have to superpose a solution of the homogeneous differential equations

(2.5).

The homogeneous solution part can be constructed with the aid of the stress functions Hy and
Hj given with equations (4.23) which lead to the stresses o, T, and Ty, given in relationships

(4.24). After the superposition of the stresses (4.24) and (9.2) we get the boundary conditions

o p(X,y,2= h/2) = (:12‘-) { —%?z + [ by — (1-2v)a JAg

]
[ h2 1 |
+ {[ bl o= (1-21’)31] == —27 [ bO + (1+2V)30]}AAg j’ = O,
Ta(xyz=*h2) = —F,x = [ by - (1-21)a 1 2&

[ h? 15
—|[b —(1-2v)a ] - ry [ by + (1+2v)a ]JgAg

[ 2
= (b2 = (=293 ] = &= [y + (1+20)a ]
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1
4
+ 3hT4 [ by + (3+2v)ap ] %AAg =0, (9.3)
]
Ty(X,y,2=xh/2) = —%—z y — [ by — (1-2v)a ]-3—5-
- ([b ~ (1-2v)a ]—h—z[b + (142v)a ]]——B—A
1 v)a, ) 0 0 Jay g
= {[by = (1-2v)a, ] - -}éi [by + (1+2v)a; ]
i 1
+ I b+ B42v)ag ]l Laag = 0
384 L0 o Jay B =

Here we should recall that the function g has to fulfil AAAg = 0, which ensures that the

functions Hy and Hj of the form (4.23) are harmonic. Choosing
AAg =1 (9.4)
we satisfy AAAg = 0 and obtain the properties
B oang =1 9.5)
ax
and
2 aag=o, (9-6)
dy
which simplify the boundary conditions (9.3). If we choose now g as
g= O3+ y)? ©.7)
we get
ag = 502+ ¥, 9.8)

and from this we obtain the following relations, which are useful for the treatment of the boun-

dary conditions for 7, and Tyz!

1
axAg— % (9.9)
] 1
—Ag = —vy. 9.10
3y g=3y (9.10)

Using relationships (9.4) to (9.10) we obtain from the stress boundary conditions on the plate

faces z = =h/2 the equations
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b — (1-2v)ay = 0,

R LR C U L DR S
2 12
L b —-aa g+ B =0
4 2 8
We can set
a; =0
and obtain
b, = £,
%= 51,
and

6 -
by = (1-20) 5,

(9.11)

(9.12)

(9.13)

The coefficients a, and b, did not appear in the boundary conditions (9.3) and can be set to

Z€ro.

With the function g given in equation (9.7) and the coefficients calculated above our stress

functions Hy and Hj of the form given with relationships (4.23) are well defined and we can

derive the following particular solution for a constant body force fz:

2uu = 4f;2 [42—)Z - 3(1—v)(x* + y?)z — 2h%(1-v)z Ix,
2uv = 4f;2 [42-v)Z = 3(1-v)(x* + y))z — 2h%(1—v)z ]y,

2uw = = [ —8(1+v)z* + 24v(x? + y?)22 + 4h¥(1+v)22

— 2h%(1+v)(x% + ) + 3(1-v)(x2 + y3)? ],

e = 4% [42+v)2 — (9+3v)x%z — (3+9v)y%z — h?(2+v)z ]

)

fZ

W= [42+v)Z — (3+9v)x%z — (9+3v)y%z — h3(2+v)z ],

Q
Il

f,
Op = o2 z(2z—h)(2z+h),

(9.14)

(9.15)
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3f
Ty = —5-}1—2 (1—v)xyz,
3f,
Tyz = 2 x(2z—h)(2z+h)
3f,

y(2z—h)(2z+h)

10. Conclusions

Decomposing the 3-dimensional displacement field into different parts a systematic way has
been shown in order to get a plate formulation without ad hoc assumptions. From the pro-
cedure of separating functions of the thickness variable z from functions of the remaining two
other space coordinates x, y we obtained for the bending and membrane cases the characteristic
differential equations which are the biharmonic equation and Helmbholtz-equations with real

and complex wave parameters, respectively.

The use of solution series of the characteristic differential equations for the representation of
the displacements and stresses ensures the satisfaction of the Navier-equations and the equili-
brium equations, respectively. Moreover, the constructed representation ensures the satisfaction
of the stress boundary conditions on the upper and lower faces of the plate. For the solution of
a concrete plate problem with the aid of the presented plate formulation involving series of
solution functions of the mentioned characteristic differential equations the task remains to

satisfy the actual lateral boundary conditions for the given plate geometry.

If it is not possible to find an analytical solution for a given plate geometry one can look for a
numerical scheme in which the remaining lateral plate boundary conditions are satisfied in a
(defined) optimal sense to obtain an approximate solution. Examples for solution methods
which are based on the use of a system of linear independent functions satisfying a priori the
Navier-equations and the equilibrium equations, respectively, are given in the references
[14,15]
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